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Abstract

The following problem is shown to be decidable. Given are

homomorphisms h] and h2 from I* to I* and strings ay and dy

i

and all n=0, i.e. for i=1, 2, hi generates from o; an

infinite string oy with prefixes h?(oi) for all n=0 . Test

over I such that h?(ci) is a proper prefix of hn+](oi) for 1i=1, 2

whether @y = a, . From this result easily follows the decidability of

1imit language equivalence (w-equivalence) for DOL systems.



1. Introduction

Since the old work of Thue [15], infinite words (w-words) have
been investigated. Apart from being of interest in its own right, the
theory of infinite words has often been able to shed 1ight on some
problems concerning ordinary finite words and languages of them. As
regards infinite words associated to finite automata, the reader is
referred to [8], and as regards those associated fo context-free grammars,
the reader is referred to [11].

Iterated morphisms (in other words: DOL systems) provide a
very suitable framework for studying certain problems dealing with
infinite words, see [13] and [14]. This problem area is closely connected
with problems concerning morphisms in general, see [5]. For instance, it
has been shown in [6] that our main result, the decidability of w-sequence
equivalence problem for DOL systems, implies the decidability of the
ordinary DOL sequence equivalence problem, which was for a long time the
best known open problem in the area of L systems [4]. This indicates
that our main result is a hard one, especially when the attempts to reduce
it to DOL equivalence have not succeeded. However, we are using some
auxiliary results and refinements of techniques from [4].

We consider both words and infinite words also referred to as
w-words, over a finite alphabet % . An w-language is a set of w-words.
If Lcz*, then 1im(L) is the w-Tanguage consisting of the w-words
with arbitrary long prefixes belonging to L .

The 1imit language equivalence problem {or w-equivalence
problem) for a family of languages is the decision problem of whether

1im(L]) = 11m(L2) for any two effectively given languages L; and L,



from the family. We show that this problem is decidable for DOL
1anguagés, given by DOL systems. It was conjectdred to be decidable in
[6], where it was reduced to the following problem.

Given are endomorphisms h], h2 : I*¥ > £* and words Gys Oy € z,
such that h?(oi) is a proper prefix of h?+](oi) for i=1,2 and
for all n =0 ; i.e. morphisms h1 and h2 generate two infinite words
oy with prefixes h?(o]) for all n=0 and a, with prefixes hg(cz)
for all n =0 . Decide whether ay = 0 ?  We will use this reduction
and also a very useful lemma from [6] concerning "combinations" of
morphisms (our Theorem 2.6).

Our approach generalizes and extends the techniques used in [4]
to prove the decidability of the DOL-sequence equivalence problem.

Similar notions of normal systems, simple systems, common subalphabets

and combinations of morphisms as in [4] are used, however the situation

at a number of places is more difficult and new techniques need to be
deviced. The basic strategy remains the same, we show that for every pair
of w-equivalent DOL systems we can construct a finite number of pairs of
DOL systems each of them w-equivalent with "bounded balance".

The main goal of section 2 is to show that without loss of
generality we can restrict ourselves to normal 1-systems. In the next
section 1-simple systems are introduced and it is shown, using linear
algebraic arguments, that w-equivalent 1-simple systems have combinations
with bounded balance. The last section contains the most crucial

arguments showing essentially that the general case can be reduced to the

case of T1-simple normal systems.



2. Preliminaries

For notations and definitions in language theory not explained
here we refer to [12]. We shall also assume familiarity with the results
in [4].

The entity |x| denotes (i) the absolute value of a complex
number x ; (ii) the length of a word x ; (iii) the vector
(|x]|, cees |xk|) if x 1is a real-valued vector'_(x], cees xk) .

Let x and y be two words over a finite alphabet. If
x is a prefix (a postfix, resp.) of y then we denote x <_ vy

r
(x <po y , resp.). Aword x is periodic if it is of the fozm X = yny],
where nz 2 and 2 <pr y . The words x and y are comparable if
either x <pr y or y <pr X . The empty word is denoted by e and the
free monoid generated by a set I 1is denoted by I* .

If h], cees hk are endomorphisms on X* then <h], cees hk>
denotes the monoid generated by h], cees hk under the operation of
composition of morphisms.

An infinite word is called an w-word and a set of w-words is
said to be an w-language. To each language L (of finite words) we

associate an w-language Lim(L) , the 1imit language of L , which consists

of the w-words o having arbitrarily long prefixes belonging to L .
Clearly if L 1is finite then Lim(L) = ¢

A language L is semi-convergent if Lim(L) # ¢ , convergent

if each word in L is a prefix of some w-word in Lim(L) . Furthermore

L 1is said to be uniformly convergent if #Lim(L) =1, i.e. L has an

unique limit word.



The 1imit language equivalence problem (dr w-equivalence problem)

for a family of languages means the decision problem Lim(L]) =? Lim(LZ)
for any (effectively given) L1 and L2 from the family.

We shall prove that the 1imit language equivalence problem is
decidable for DOL languages.

For the proof of this result we shall first reduce the problem
to a simplified form in this chapter. A DOL system is a construct
G = (X, h, o) , where I 1is a finite alphabet, h 1is an endomorphism on

I* and o ¢ £* . Denote
L(6) = {h"(o) : nz 0},
the language generated by G .

Lemma 2.1

Given a DOL system G = (I, h, o) , it is decidable if
Lim(G) (= Lim(L(G))) is empty or not. Furthermore Lim(G) is always
finite.
Proof

See [6]. | a

The system G (as defined above) is prefix-preserving

if o <pr h(c) . The following was shown in [6].

Theorem 2.2
The Timit language equivalence problem is decidable for DOL

systems iff it is decidable for prefix-preserving DOL systems.



In fact it was shown in [6] that
Lim(L(G)) = U Lim(L(6,)) ,
i=1
where Gi ,» 1=1,2,...,n, are subsystems of G and Gi is

prefix-preserving for each i . From [6] we take also

Theorem 2.3
A prefix-preserving DOL system is uniformly convergent or its

Timit language is empty.

By Theorem 2.3. #Lim(L(G)) =1 if G is
prefix-preserving and L(G) 1is infinite.
A DOL system G = (£, h, o) 1is a l-system if it is
prefix-preserving and furthermore
(i) o€ & , (denote I, =L - {c}) ,
(ii) h(o) € ozz and h(ZC) E.Zé R
(iii1) if a e ZC then a occurs infinitely many times in the

unique limit word of G .
The subset L. of I 1is called a core (core alphabet) of G .

We note here that if G = (&, h, o) 1is prefix-

preserving and if h(oc) = ox then
o) = "o"(x)

for all n=z 0 .



Lemma 2.4

Two prefix-preserving DOL systems G = (z, h, ci)‘,

i=1, 2 define the same Timit word iff of <pr o, Or o, <pr 9
Proof

Immediate since G1 and 62 have the same morphism h to be
iterated.

O

The next lemma reveals that we may restrict ourselves to
1-systems.
Lemma 2.5

The Timit language equivalence problem is decidable for DOL

systems iff it is decidable for 1-systems.

Proof
Let Gi = (I, hi’ Oi) , 1 =1, 2 be two prefix-

preserving DOL systems. By Lemma 2.1 we may suppose that they both define

an w-word : as correspondingly. Let Ai be the set of symbols which

occur infinitely often in o - The sets A] and A2 can be constructed

effectively. If A, # A, then oy # ay - Suppose thus that Ay =Dy

o.x, for i=1,2 . Now, there exists an integer n

and Tet hi(ci) 5%

0
such that

n
hi(xi) € A’_f

n°+1(

for nz N » 1 = 1, 2 . Assume that hi Gi) <pr o for i,j =1, 2.

Otherwise we conclude that oy # oy - Let h§°+](oj) be of maximum



length of the two words h?°+](o]) and hg°+](02) .

By Lemma 2.4 the systems (I, hss h?0+1(oj)) define the limit

words 0 correspondingly for i =1, 2 . Thus

. = h19(q, )h0(x, )z,

(M a; = h50(o;)0(x)a,

for some w-word &} » 1=1,2. Let o be a new symbol and set
T = {o} uA Define two DOL systems

1

G_i = (Z, hi’ o), i=1,2,

where ﬁ}(o) = oh?o(xj) and E}(a) = hi(a) for a e Ay . Here j s

fixed as above. By (1) the system G} defines the 1imit word

]
Oy
i

= shMo(x.)a
chj (Xj)ai
. - . . Voo not+l
for i =1, 2. Thus a, = a, if and only if a; = a, and h] (01)
and h20+](02) are comparable. The claim follows since Gi and Gé are
both 1-systems.
0

The following important result was proved in [6] (Thm 6 in [6]).

Theorem 2.6

Let Gi = (z, hi’ o) be two 1-systems for i =1, 2 and

h ¢ <h], h2> . Then

Lim(L(G1)) = Lim(L(Gz)) {a}

iff

Lim(L(Gi)) Lim(L(65)) = {a} ,

=1,2 . 0

-l

where G% = (I, hih’ o) for



This result yields immediately to the following:

Lemma 2.7
Let Gi be as above and 9; € <h], h2> for i=1,2 . The
systems G] and 62 define a common 1imit word o iff the 1-systems

G% = (g, higi’ o) define the 1imit word o for both i =1, 2 .

For the next reduction we need some notations and facts from

[4]. Let x be a word in I* and define
min(x) = {a : a occurs in x , ae I} .

Let G = (Z, h, o) be a 1-systemand m : P(Z) >~ P(X) a function, where

P(z) 1s the set of subsets of I , such that

m({a}) = min(h(a)) for a ez ,

m(A v B) = m(A) u m(B) .

The 1-system G 1is said to be normal if

aemi(b), j>0 implies a ¢ m(b)

holds for every a,b ¢ ZC . The following result immediately follows

from [4, Lemma 2].

Lemma 2.8

(i) For each 1-system G = (£, h, o) one can find effectively

k k

an integer k such that the l-system G = (X, h™, o) is normal.
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(ii) For each pair of normal 1-systems G; = (z, hss o) ,
i =1,2 one can find effectively an integer k such that the 1-systems
ek = (z, hs(hih)¥, @) , 1= 1,2 are normal.
0

The morphism (hlhz)k in (i1) was called a normal combination

of (G], G2) in [4].

Combining Lemmas 2.5, 2.7 and 2.8(i) we obtain

Lemma 2.9
The T1imit language equivalence problem is decidable for DOL
systems iff it is decidable for normal 1-systems.

a

Let Gi = (z, hi’ o) be two DOL systems for i =1, 2 . Define

a mapping B : I* - Z by setting
B(x) = [hy(x)] = |hy(x)]

The integer B(x) is called the balance of the word x (with respect

to h] and h2 ). The systems G1 and G2 are of bounded balance if

there exists an integer k such that
IB(x)] = k

whenever x 1is a prefix of a word in L(G]) . The following result has

been shown in [7].

Theorem 2.10

If G.I and G2

are of bounded balance. 1

are DOL sequence equivalent, then G] and G2
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The boundedness of the balance concerns also the subwords of

L(G;) » [31.

Lemma 2.11
If G] and G2 are of bounded balance then there exists an
integer k such that |g(x)| = k for each subword x of L(G]) .
0
In the next chapter we shall need some facts and notations about
the growth matrices of DOL systems, [12].
Let G = (X, h, o) be a DOL system and A its growth matrix.

Hence

[x]An = |h(x)] ,
where [x] is the Parikh-vector of the word x ¢ 2* and n = (1, ..., 1)T

is a column vector (of suitable order) consisting entirely of ones.

If G 1is a T-system then there is a permutation matrix B such

that

I ¢
(2) BAB' = < > X
0 D

where T is a 1 x 1 identity matrix, C 1is a nonzero vector and D is a

square matrix. Without contradiction we may identify A and BABT .
For the following matrix theoretical results we refer to [9].

Let M be a nonnegative matrix and let (M) be the real and positive

characteristic value of M such that

o(M) 2 |y

for any other characteristic value v
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Furthermore denote by agng the (i, j) element of M" . The
H]

matrix M is irreducible if for each (i, j) there is an integer n

(n) . . e s . .
such that a5 5> 0. M is said to be QE1T1t1ve if there is an integer
n

n such that M" is positive, i.e. if a; ;>0 for each (i, J) .

Theorem 2.12

If M is primitive then p(M) 1is a simple characteristic value
and greater than the absolute value of any other characteristic value.
Furthermore M has a positive characteristic vector v (called the

maximal (characteristic) vector) corresponding to p(M) and any non-

negative characteristic vector of M 1is a scalar multiple of v

Lemma 2.13
Let G = (X, h, c) be a T-system and (2) its growth matrix.
We have

p(A) = o(D) = 1

(%

and if D is primitive then p(D) > 1

Proof

Since G is a T-system we have

[0]A" < [o]A™! |

for each n=z 0 . The claim follows from this.
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3. 1-Simple Systems

A 1-system G = (£, h, o) 1is called 1-simple if the growth
matrix of h restricted to Ze is primitive. Thus the growth matrix of
a 1-simple system may be transformed by suitable permutations of rows and

columns into the form

I
(1) A=< > ,
o P

where I s a 1x] identity matrix, P 1is a primitive (square) matrix,
and C is a non-zero vector.

For the primitive matrix P we have the following property
from [1]

n
(2) Tim 2P =4 .y,

e p(P)" X

where v is the normalized positive characteristic vector of P corres-
ponding to p(P) and d, 1is a scalar constant depending only on x .

By (2) we obtain

x
0
>3
i
n
0.

Tim
e o(P)" X

and thus

n

(3) Tim —XP
n>o xP

]
<

Here the 1imit v 1is independent of the start vector x .



Lemma 3.1

Proof

where the

A we have

14

We shall show that the corresponding limit exists for A , too.

Suppose first that y = (1, 0) and assume that yA = (1, x) ,

vector x is non-zero because of (1). By the form of the matrix

n-1 .
yA" = <1, v oxp! ).
i=0

Let € >0 be a real number. There are integers r and n_ such that

S
=
=
v

and

(5)

whenever

for some

0

i

v

r . Using (4) and (5) it is not difficult to show

n_] R -V = KoeonT

K>0.
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This proves the claim for y = (1, 0) . If y = (0, x) for some non-zero
x then the claim holds true by (3). The general case follows from these
two cases when a vector is represented as a sum of vectors of the above
form. Since this general statement is never used in what follows we omit
the details here.
0

We shall generalize Lemma 3.1 to the 1imit word o generated by

the morphism h . Let o, be the prefix of a of length n . In

n
particular a =0

Lemma 3.2
[o ]
Tim = VY
n->co
Proof
Let € >0 be a real number. By Lemma 3.1 there is an integer
o such that
[h"(0q)]
(5) T - vo < €n
[h"(a) |
for nz n, - Consider a prefix B of o of the form
(7) B = h'(o)h™(x)

where nzn and B is a prefix of hn+](a]) . We have
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[h"(a,)] + [h"0(x)]
-l - e -
S 6| + [h0)]  °
[h(e)] ho
Wy e e g - o[ e

A

0|+ [h"O(x)|

< €'nT s

by (6) and the fact that

()] . (0 [x]p"0 )
[hMo(x)| " [xJp"n

For any prefix a s NEno, there are prefixes B] and 82 of the

form (7) such that B, 1is aprefix of o , o isa prefixof 8, and
0 = IBZI - IB]| < max{lhno(a)l tael}.
Since

max{[hno(a)l taell
|hn(a])|

€

for nz n] , the claim follows.

Lemma 3.3

If G; = (z, hy» o) , i=1,2, are 1-simple systems which are

1imit language equivalent then the maximal characteristic vectors of the
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two systems are equal.
Proof

This follows immediately from Lemmas 3.1 and 3.2 and from the
equality in (3).

(]

We shall now turn to investigate the balance of two limit
language equivalent 1-simple systems. The previous result is not
sufficient for showing any bounds for the balance since it does not say
anything about the maximal characteristic values of the two growth
matrices. Thus a lemma of the following kind is needed. So, in the
following lemma we add an assumption which implies the equality of the
maximal characteristic values. It will suit our purposes later.
Lemma 3.4

If G] = (z, h, o) and G2 = (£, g, o) are limit language
equivalent and 1-simple and there are morphisms h] and h2 such that
h = h]h2 and g = h2h] » then the maximal characteristic values and
vectors of the two systems are equal.
Proof

The claim follows by Lemma 3.3 and by the fact that the

characteristic values of AB and BA are the same for any matrices A

and B .

Lemma 3.5
Let G, = (z, hy s o) be two 1imit language equivalent 1-simple
systems with a common maximal characteristic value and let o be their

common limit word. If a denotes the prefix of o of length n then
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IB(an)l
1im — = 0o,
n—)OO

where B 1s the balance function of the pair (G1, Gz) .

Proof
Let € >0 be a real number. By Lemma 3.3 there is an integer
o such that
[a ]
(8) vl < oent
n 0

for nz= n0 and for the maximal characteristic vector Yo common to G1

and G2 . Furthermore by the definition of B

lB(an)I [“n](Al - Ayn

n

n

where Ai is the growth matrix corresponding to Gi (i =1, 2) . Thus

8(a )| [([o T = nevy + nev ) (A, - Ajn

n n

(L] = nv ) (A = Ayn|

. n-\)o(A.I - Az)nl
|

I

n n l

Here vO(A] - A2) = 0 since Vo is a characteristic vector of A] and
A2 which corresponds to the same characteristic value. Hence by (8) we

have

|B(a )]
—n < enT(A] + Az)n .
n



19

where nT(A] + Az)n‘ is a constant scalar independent of n . This

proves the claim.
Let G] and G2 be as in Lemma 3.5 and let
- . i
c; = max{[B(x)] : x “pr hy (o)}

By the previous lemma we have

(9) lim—N"— = ¢
oo An—k
for each k . By Lemma 3.1
hY(a)|
1im — >0
n-o A

for all a ¢ ZC.
(Here A denotes the maximal characteristic value of the growth matrices
for G] and G2 .) Thus for each k =z 0 there exists an integer N

such that

(10) " K@) > ¢

for all a ¢ I and n =z Ny -
Let us now fix (for the rest of this section) two limit

Tanguage equivalent 1-systems

Gi = (z, hi’ o) i=1,2

In the next two lemmas we show that the balance of the systems
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(z, h]h2’ o) and (=, h2h], o) 1is bounded whenever they are 1-simple.

Lemma 3.6
If G-]Z = (Z’ h]h2, 0) and GZ.I = (Z, hzh]’ 0) are ‘]_Simp-le’

then either they are both exponentially growing or #ZC =1 and
h1h2(a) = h2h1(a) =a,

where Zc = {a} . In the latter case the systems Gu]2 and 621 are

DOL equivalent and their balance is zero.

Proof

If #ZC > 1 then the systems are exponentially growing since
they are 1-simple. Suppose that I, = {a} . If Ih]hz(a)l >1 and
|h2h](a)| > 1 then the systems grow exponentially.

Otherwise h]hz(a) =a or hzh](a) = a , which implies that

h]hz(a) = h2h1(a) = a since hi(a) € Zz for i =1, 2 . Furthermore if

h](o) = ga’ , hz(c) = ga>

then

+
h]hz(o) =ga"'s = h2h](o)

Thus the systems are DOL equivalent. Moreover

r+s+n

h]hz(oan) = ga = h2h1(0an)

for each n =z 0 and hence the balance of the systems G]2 and Gz] is

zero. In fact G]2 = GZ] . |
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The following lemma is analogous to Theorem 2 in [4], however,
its proof is considerably harder. It uses the "shifting lemma" from [2]
which says that the existence of a local strict maximum of balance would
imply the existence of a substring of the form v2 at the point of the
maximum. However, unlike in [4], this does not immediately yield a

contradiction.

Lemma 3.7

If G.]2 = (I, h]hz, o) and 621 = (z, hzh], o) are l-simple
(and corresponding to the limit language equivalent 1-systems G] s GZ)
and they are exponentially growing then their balance is bounded.
Proof

Assume the contrary, i.e. that the balance is unbounded

(Assumption 1). Denote gy = h]h2 > 9y = hzh] and Tlet

= "o = .
wno’0 91 (o) gajd,..:8,

where o is large enough, a, ¢ T 1=1i=r, such that if ab is

i c’

a subword of any g?(o) »nz=1, then ab 1is a subword of W
09

a,b ¢ Zc . Furthermore we write

- o J
Wii = 9i(oley(agay...a;)

for i=1,2,...,r and j =z ng - Thus w. . 1is always a prefix of the

J,i
Timit word o for each j and 1 .

By Assumption 1 for each n > 0 there exists integers i , j

(T=isr, j=zn) and a prefix u of o such that u <pr W g and
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(i) [B(w)]
(ii)  |B(w)]

A

[B(u)] for w <pr Y >

A

IB(U)I for w <pr wj,i

Thus we select those prefixes u of o whose balance is maximal with
respect to the words wj i It was shown in [2] (or Thm 2 in [4]) that
if u satisfies the conditions (i) and (ii) for sufficiently large j

(j = n1) then there exists a nonempty word v such that o = u‘vza' .

where u = u'v , and

(1) V] < lad(a)| , forall acs.

Note that u < for some i and thus u <pr g%+n°(0). The "shift"

pr wj,i
word v 1is of length at most |[B(u)| by [2]. The inequality (11) follows

now from (10).

Suppose that B(u) > 0 , the case B{u) < 0 is quite analogous.
From the above we deduce that g(v) > 0 since the case (i) implies that

|8(u')] < |B(u)] . Thus
B(u) < B(uv)

and hence uv cannot be a prefix of LR by (ii). However, by (11)

1

)

(12) w o<y suc(wj,i

where suc(wj,i) = W54 if i=r.

By (12) it follows that suc(wj 1.) has a prefix u; satisfying the

if i<r and suc(wj 1.) = W54 ,1

conditions (i) and (ii) such that W g <pr U; . Proceeding inductively

)i
}o,tzj, T=msr, starting from u such

we find a sequence {u
t,m

that for each t and m
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(13) Bluy ) < B(suc(uy )
and
(14) wt,m <pr ut,m <pr suc(wt’m) >
where suc(ut’m) is defined analogously to suc(wt’m) .
+ + +
A (o) 9;‘ '(a,) o1 (a,)
- N - N 1
. —~ }t "——-N/—‘———-—-—JI L4
n,1 Un,2

Consider the subsequence where t = j+1 and m=1,2,...,r in (13) and

(14). We may write for m=1,2,...,r

J+l -
9 (am) VoZn »

where B(v ) >0 and B(z ) =0 , and Y5.m 7 Y5m-1%m-1m -

By the above considerations we have that B(zm_]vm) >0 and

thus

18(v)| > 18(z,_)]
for each m . We may conclude that if x = b1b2"‘bs is a subword of
wno’0 then

8(9‘11+1(X)) z s+ B(v)

where v =z = for some m (namely for b, = am) . This implies that
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8(g3"1(x)) > 0

whenever |x| > max{lB(zm)l :m=1,2,...,r} . Since j is fixed the
right hand side of this inequality is also fixed. Therefore there exists

an integer k such that
k
8(gy(a)) >0

for each a « ZC . Thus for n=z=Q

v

B(g?+k(a)) 97 (a)|

for each a « zc .

On the other hand there is a constant o such that
9™ @) < o)
and hence
B(eT™ (@) > g™ (a)| /o

for nz 0 . This contradicts Lemma 3.5 (see also the 1imit in (9)) and

proves the claim.
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4. The General Case

Given a 1-system G = (&, h, o) a set = S I, is called a
subalphabet of G if h(w) c7* . Denote Q=132 -7 and let x* be
a word in Q* obtained by deleting the symbols from = in x .

Furthermore set hQ(x) = h(x)Q and G = («, hQ, o) . Aset 7 1is called

a common subalphabet of the 1-systems G] and G2 if it is a subalphabet

of both of them. Note, that in distinction with [4] we are not requiring

that 7 # ¢
Lemma 4.1
If G] and G2 are 1imit language equivalent then so are G?
and Gg for any common subalphabet w . Moreover, if G] is normal,
Q

then so is G] .

Proof

Immediate by the definitions.

Let us fix for Lemmas 4.2-4.4 two normal 1-systems

G1-=(Z, h.is G)s 1=.|’2

which are Timit language equivalent.

Lemma 4.2
There is a morphism h ¢ <h], h2> and a common subalphabet @
of

G],i = (z, hih’ o) , 1=1,2
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Q

9]
such that G and G]’2 are normal and 61’] and G],Z are

1,1
propagating for Q@ =% -7 . Furthermore, m and h can be found

effectively.

Proof

If h] and h2 are already propagating then mw=¢ and h
is the identity morphism. Otherwise we define a sequence of pairs of
morphisms (g]’i, gz’i) as follows. Set 950~ hj for J =1,2.

J
Suppose now that

Ty = {a : gj’t(a) = e}

is nonempty for t =z Q and for j=1 or 2 . Then we define
_ k
95,41 = 95,4095 ¢ 95,¢)
and
)k

E]

9 .e+41 = 94,09 ¢ 95,t

where i # j and the two morphisms are normal (by the choice of k , see

Lemma 2.8). Now,

g'l ’t+'| (TTt) = gz,t.',] ('th) = {e}

and thus Ty is a common subalphabet of the systems (I, 95 t+]° a)
1=1,2. Furthermore =, _, c m . Hence there is an integer p = #z
such that ﬂp = ﬂp+1 .
morphisms 9, b and 9, D would not define an infinite 1imit word

Moreover L. - ™ # ¢ since otherwise the

contradicting Theorem 2.6. This proves the lemma when we choose = = ﬁp .

d
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The next Temma appears already in [4] for DOL equivalence.

Lemma 4.3
If G] and G2 are propagating then they have a nonempty common

subalphabet or the morphisms h1h2 and hzh] are 1-simple.

Proof

The proof given in [4] (Lemma 5 in [4]) proves the present
claim when we note that By =B, = Lo s where A is the subset of Lo
of symbols which occur infinitely often in L(Gi) s 1 =1,2 . MWe
remind here that G] and G2 are 1-systems and thus Ai = ZC for

i=1,2.

The previous lemmas have the following corollary.
Lemma 4.4
There is a morphism h ¢ <h1, h2> and a common subalphabet =

of normal

G; = (z, hih’ o), i=1,2

h)%

such that (h1hh and (hzhh]h)Q are l-simple for Q=3 - 7

2
Furthermore 7 and h can be found effectively.

Proof (i) By Lemma 4.2 we find a combination 9 of h, and h,

and a common subalphabet = such that the 1-systems

1,1

G],i = (z, hig], o), 1i=1,2

Q'l,] Q

and G 1,1

are normal and G]’] 1,2

are propagating for Q] 1° I - T
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(ii) By Lemma 4.3 the morphisms hy9;ho9, and h,g,h,g9, are

Q
1-simple or there is a common subalphabet T2 # ¢ of 611{] and
Q
Gllé] . If the first case holds the claim follows. Otherwise we observe

that the set

ﬂ] = ﬂ],] U W],z

is a common subalphabet of 61 1 and G] o - We may assume that T .2
’ Q, ’

is a maximal common subalphabet. If G1]i

Q] z - LA i =1,2 then the claim follows by Lemma 4.3. Suppose

Q
that 61]1 is nonpropagating for i =1 or 2 . Then we start the

are propagating for

procedure from (i) on again but now for G] 1 and G] 9 -

Thus we obtain a sequence of pairs of normal 1-systems

GJ,1 = (Za h1gjs 0) ’ J = ]323---
and a sequence

nj = ﬂj’] U ﬂj’z . Jg=1,2,...
of common subalphabets of Gj,] and Gj’2 such that M5 S Tay - Thus
this procedure will terminate for some j = #% when ”j =T Denote

3

Q. = % - T, i =1,2,... .
y ﬂJ for J 1

Claim 4.5

Qj - {c} #¢ foreach jz=1.
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Proof of the claim.
Assume the contrary and let j be the least integer such that
Qj = {0} and thus m = ZC . By the beginning of the proof we know that

j > 1. Denote Q}_] = Qj-] - {0} . By the assumption Qj - {o} = ¢

it follows that
(hog)%-T(0 ) = {e} , i =1,2
ivj j_] ] ]
and thus

* 1 =
higj(a) e ¥ i=1,2

-1

for each a ¢ Qj_] . Because

*
higj(ﬂj_]) e

it follows that there are no symbols b ¢ ZC such that
a e min(higj(b)) , i=1,2

if ace 93_1 . Hence the symbols in Qj_] would occur only finitely many
times in the 1imit word of higj . This contradicts the fact that higj
is a 1-system and the fact that Q&_] # & . Thus the claim has been
proved. By Claim 4.5 the systems obtained in (i) are all propagating and

thus the systems GjJi are nontrivial for j = 1,2,...,#Z . Hence

R .
Gle and Gsz are propagating for some j = #T and the Temma follows

by Lemma 4.3.

The previous lemmas further reduce the general problem:
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Lemma 4.6
The limit Tanguage equivalence problem is decidable for DOL

systems iff it is decidable for pairs of normal 1-systems

G; = (2, hy, o), 1=1,2

with the following property (P) : G] and G, have a common subalphabet
m such that (h]hz)Q and (hzh])Q are 1-simple for Q=32 -7 .

Proof
The Lemmas 4.2-4.4 are clearly effective in the construction of
the common subalphabets and of the morphisms. The lemma follows now by

Theorem 2.6 and Lemma 2.9.

In the next Temma we prove that the property (P )implies
bounded balance of the "commutator systems".
Lemma 4.7

Let G, = (z, hi’ o), .i =1,2, be two normal Timit language equivalent
1-systems with the property (P) . Then the 1-systems G]2 = (z, h]hz, o)

and 621 = (z, hZh]’ o) have bounded balance.

Proof

Let w be the common subalphabet of G] and 62 such that
G?z and Gg] are 1-simple for Q=2 -7 . The T-simple systems G?Z
and Gg] are limit language equivalent and thus by Lemmas 3.6 and 3.7

their balance is bounded: (BQ denotes the balance with respect to
morphisms restricted to Q)

18%x)| = B
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for all subwords x of the Timit word o . Moreover by Lemma 3.6 there

is a constant k such that for each a ¢ O
(1) | (hyh) %) > B2

Note that we write h(a)Q instead of more precise (h(a))Q . Define
9 = (hh)€ and g, = (hyhy) (hyhy)*]

gg is also bounded by B . Denote g1(o)Q = ox and

. Clearly, the balance of g? and

N, \Q _
91(X) =ax.

where an e Q for nz 1. For each nz= 1 there are two words u, and

vn such that

(@) (0%, = 9,97 ()
(b) luyv,|

(c) u, =e or v =e;

=

lIA

B s

() u < 0@)% L vo<g,(a )

n pr n pr

Here the words U, and v, are the "balance words" for 9 and 95 -

9]
n )Q g](an)
a X —~
N g]( i 1
! ; ! \
' . ] + ———}
: ungl ! ; un '

n-1 Q
959 (x)

Claim 4.8

There are integers n_ and p such that

0

=u_,. V. =V ., .
Un nt+ip ’ n ntip
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whenever n = n0 and iz 0.

Proof of the claim.
Note first that there are integers n and q such that

an ='an+iq whenever n =z n] and iz 0. Thus, for n= n, and k =

n+jq Q n+kq
(2) g] (an) <p (a )
Suppose that there is an integer m =z N such that

(3) u or v

m+iq F Umt (141)q m+iq ? Yt (i+1)q

for infinitely many integers i . If no such m exists then the claim

follows immediately. By (2) we obtain for each j =z 0 and k > j that

gm+JQ( ) m+(J+])Q(a )9

vm+kq pr m+kq9291 m

Here Ium+kq Vm+kq| = B and thus the assumption (2) implies that the words
m+3q(a ) are periodic for jz 0 . Moreover by (2) the periods of

these words must be equal for each j = 0 . Thus we may write

miag, )2 < LY
g] (am) Zz Zj

b

where z 1is the minimal period, |z| =B and 25 <pp Z - The morphism

g? is 1-simple and thus
min(gy(a )*) = - {0}

Let a € @ - {0} . The words g%q(a) are subwords in gT+Jq(a) for

z 0 and hence they are periodic, too. Thus
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. t.
gi]q(a)Q =z, z 993,

J.a J.a
for aeQ - {0}, j=0, where 25 a <po z and Z3 a <pr z . The
subwords z, and Z, form a periodic sequence for j = 0,1,...

J.a J,a
since their lengths are bounded by B . Let n, and Py be integers

such that

N

4 .=z, . 2, =12,
() “Ja” firppa t e T Pyepgsa

whenever j 2 N, and a € Q - {c} . By (1) the balance of 2z must be
zero (with respect to g? and gg ), i.e. BQ(Z) = 0 , since otherwise

we would have for sufficiently large n that
Q, . n
6% (2, )| > B .

The periodicity of the sequences in (4) implies now that

(j+ip])q

s%(gi %)) = g, (a)2)

for j = Ny iz0 and a ¢ Q - {g} . Hence,
. Jgtipqq
ey = g, ()Y

ftv
(=)

for yela-1{o))* and jzn,,i20. Set y=g3(x), s

v

Thus, we have
i
8%a7 ()% = gUg] P (x)%?)
for n=z n,q and p = Pa - This proves the claim since g](c) = oX .

In order to complete our proof of Lemma 4.7 our next task is to

transform the 1-systems (I, 9> o) , i=1,2 into two sequence
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equivalent DOL systems. Let a(i) » 1 =0,1,...,p-1 , be new symbols for

each a € Q -~ {o} and denote

L=3 U'{a(i) taef - {0}, 0=1i=p-1}U{c}

We write <j,p> for the integer k , where 0=k = p-1 and j = k (mod p).

Define two morphisms g and ¢y aS follows.

(i) wj(S) = cya(]) s, J=1,2,
. n 2 _
if g]O(c) = ayay; , where (ay]) =a
(ii) cpj(a) = gj(_a) s, i=12
if aetX
(1) oty = ypl<i*1op),
. Q0 _
if g](a) = yby; » where (by;)" =b ;
(iv) 0 (all)) = yplT1oP2),
. - Q _ .
if un0+1 #e and g,(a) = yby, , where (by,)" = buno+1 ;

. s
(v) (Pz(ah)) - yb(“ 1sP>)’
if u"o+1 = e and yb <pr gz(a)gz(ano+i) such that b ¢ 9 and

Q _ Q

(yb)* = g,(a)v, 45
0
(Note that possibly Up 4 = Vp 4§ = © .} By (i)-(iii) we have: If
0 0

) =

g?o+i(0) = yay, and (ay, a (i.e. if a0 and y, e 7* ), then
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w}(&) = ya(<i+]’p>). In particular

n i,a
(5) 9}(a) <, 9] ()
for n < i+n0 . Furthermore, by (a) there are words Yy, and z ~ such
that

-1
9 (), = 5,97 (0)z,
Q _ Q _ .

for nz=1 , where Yp = U, and z, =V, . Thus by (iv), (v) and (d)

w§(3) = wch}"](a)

for iz 1 . Hence the systems (%, 95 G) , i=1,2 are sequence
equivalent DOL systems and their balance is bounded by Theorem 2.10.

The prefix property (5) implies that the morphisms g; and g, are of
bounded balance on L(G]z) , i.e. the systems (I, 95 o) ,1=1,2 have
bounded batlance. FinéT]y, we reason that the systehs (Z, h]hz, c) and
(z. hohys o) have bounded balance since

m m
n_ 2

where n = km] + m2 . m2 < k .

Let h and g be two endomorphisms on x* . The compatibility

language of h and g is defined'by

Com(h,g) = {x : h(x) <pr 9(x)org(x) <, h(x)} .

P

Note the resemblance of Com(h,g) and Eq(h, g) as defined in [12].
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In fact the equality language Eq(h, g) 1is included in Com(h, g) .
Denote by Comk(h, g) the subset of Com(h, g) which has balance at most

k , 1.e.
Comk(h, g) = {x : x € Com(h, g), X) <pr X * IB(X])I < k}

The following lemma is an analogy of the result for bounded equality
languages. Since the proof is obvious and similar to that given for

Eqk(h, g) , see [2] or [12], we just state the result.

Lemma 4.9
For each k z 0 and endomorphisms h and g , the set
Comk(h, g) is regular and can be effectively constructed.
a

Finally we collect the above results into the main theorem.

Theorem 4.10

The 1imit language equivalence problem is decidable for DOL
systems.

Proof
By Lemma 4.6 we may restrict ourselves to normal 1-systems
which have the property (P ) Let G, = (z, hss o) be two of such systems
for i =1,2.
We use two semidecision procedures, one for non-equivalence and

one for equivalence.

(A) The first semidecision procedure computes h?(o) and hg(o) for

n=20,1,... and checks for each n if these words are comparable. Thus
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if G] and G2 are not 1imit language equivalent then the procedure

finds an integer n such that h?(c) and hg(c) are incomparable.

(B) The procedure for equivalence constructs the regular languages
Comk(h1h2, hzh]) = Ck for k =0,1,... inductively. For each k one

checks if
(6) L(G) = ¢ -

The above inclusion can be checked effectively since L(G]) is a DOL
language and Ck is a regular set by Lemma 4.9. If G] and 62 are
1imit Tanguage equivalent, then by Lemma 4.7 the systems

G]2 = (I, h]hz, o) and G21 = (z, h2h1, o) have bounded balance and thus
(6) holds for some k=0 . On the other hand if (6) holds for some

k then G] and 62 are limit language equivalent since L(G]) is an

infinite prefix-preserving language.
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