Incomplete Nested Dissection with
Implicit Storage and Solution Schemes*

Alan George
and
Hamza Rashwan

Department of Computer Science
University of Waterloo
Waterloo, Ontario , Canada
Research Report CS-81-01

January 1981

Faculty

of

Mathematics

University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

Incomplete Nested Dissection with

Implicit Storage and Solution Schemes

Abstract

It is well known that nested dissection orderings are
very effective in reducing storage and computational requirements
for solving sparse symmetric systems of linear equations. Recently,

it has been shown that incomplete nested dissection orderings are

competitive in their storage and arithmetic requirements with nested
dissection orderings. In this paper we study the effect of using a
so-called implicit storage and solution method on the storage and
computational demands of incomplete nested dissection. Analysis of
this strategy for n by n grid problems suggests that we can achieve a
significant reduction in storage requirements at the expense of
slightly increasing the operation count. We also provide some
numerical experiments which show the performance of the new method,

along with some comparisons with other methods.

§1. Introduction

In this paper we consider the direct solution of the system
of Tinear equations
(1.1) Ax = b
where A is a sparse N by N symmetric and positive definite matrix
arising in finite element problems. The system (1.1) is solved
using Cholesky's method by factoring A into LLT, where L is a
lower triangular matrix, and then solving the triangular systems
Ly = b and LTx = y. When the factorization of A is carried out, it
usually suffers from fill-in; that is, the triangular factors have
nonzero components in positions which are zero in A. Thus, we might
consider the equivalent system

(1.2) (P AP

Px = Pb
where P is a permutation matrix chosen to reduce fill-in or operation
count or both among other objectives.

The so-called nested dissection ordering [2,4] is an effective

method for reducing storage and arithmetic for solving the system (1.1).
It has been proved that this ordering applied to n by n grid problems

is optimal in the asymptotic sense [2,8]. The incomplete nested

dissection ordering [7] was shown to be competitive with nested
dissection orderings in both storage and arithmetic requirements for
solving n by n grid problems.

In this paper, we consider the use of the implicit storage

and solution ideas [3,5] in conjunction with incomplete nested dissection.

The motivation for this study is that the (incomplete) nested dissection

ordering is very effective in reducing storage and computational

requirements, and the implicit storage scheme can be used to further
reduce the storage requirements.

The outline of the paper is as follows. In §2 we briefly
review the nested dissection and incomplete nested dissection orderings.
In §3 we review the basic ideas of implicit storage and factorization
schemes, and then derive storage and operation counts for incomplete
nested dissection employing these ideas. Section 4 contains a brief
description of the storage scheme used, some numerical experiments,
and our conclusions.

The following notations are used throughout this paper.

O - the number of operations (multiplicative
operations) required to compute the Cholesky
factorization.

0g - the number of operations required for the upper
or lower solvers, given the Cholesky factorization.

o The number of nonzero elements of L which must be

stored, including some of those of A which must be
stored as well, in order to execute the algorithm.
(For the method we consider here, this is less than
the number of nonzero elements of L since a part

of L is not stored.)

§2. Review of nested dissection and incomplete nested dissection

orderings.

2.1 Nested dissection ordering.

Following George [4], Tet V be the set of nodes of the n by n

mesh and let C] be the set of nodes on a vertical mesh line which as nearly

as possible divides the mesh into two equal parts R} and Rf, where

- = pl 2 _
v C1 R1 UR] R].

R? and finally those in C], induces the following block structure in

Numbering the nodes in R} followed by those in

the reordered matrix A.

ETE A13

(2.1) A={0 Ay Pog
T T

| M3 Pos Aag |

'3

Now choose vertex sets S% c R], 2 = 1,2, consisting of nodes lying

L

on a horizontal mesh line which as nearly as possible divides R] into

two equal parts. If we number the variables associated with the nodes

. 2 2
in R] - S]

remaining nodes as before, we induce the 7 by 7 partitioning on A shown

before those associated with S%, 2 =1,2, and then the

in (2.2)

1 As A7

Arz Ars Ar7

A33 Az Mgz

(2.2) Ay Mg Aay
15 A Ass As7

Ay Agg As6 Ay

Ay Ay Ay Mg Aty Agz A77_J

The partitioning in (2.2) corresponds to a one-level

dissection of the mesh as depicted in figure 2.1.

~
4 2
7
9 |
3 1
4 _/

Figure 2.1. A one-level dissection

of the mesh.

Applying the dissection strategy recursively on the resulting
smaller grids until we can no Tonger dissect them results in a nested

dissection ordering. The following estimates for storage and operation

counts are taken from [4].

(2.3) @ = 9.88n° - 17 n” log(n + 1) + 16.06 n° + O(n Tog, n)
(2.4) n = 7.75 n2 Tog, (n+1) -24 n2 + 0 (n 1og2 n)

(2.5) Og = n.

2.2 Incomplete nested dissection

Consider the n by n grid problem. If n = 2k - 1, where
k is a positive integer, then the dissection strategy described in

section 2.1 can be earried out k - 1 (= 1092 (n+1) -1) times.

Suppose we stop the dissection process sooner than necessary, say
at the 2 - th level, and simply number the n2/222 2-1evel nodes
in a row by row (or column by column) fashion. The resulting ordering

is called an incomplete nested dissection ordering. Figure 2.1

shows a one-level incomplete nested dissection ordering. Figure 2.2
displays the structure of the matrix A and its Cholesky factor cor-

responding to the ordering in Figure 2.1.

\

l
N

\

N\ 4

, !
i
L N - - N %\ ;

! 2 3 4 5 6 7

Figure 2.2 The structure of L is shown in the lower
part; while that of A is in the upper part.

Note that an 2-level incomplete nested dissection

ordering partitions the node set into u subsets, where

20 _

(2.6) p=2x2 1

The corresponding reordered matrix has 221 leading diagonal blocks,

each of size n - (22 - 1) 2 and bandwidth n - (22 - 1)
* 2%
The remaining diagonal blocks correspond to the separators.

Now consider the two-level incomplete nested dissection of

figure 2.3. The last-level blacks (blocks 1 through 16) are classified

as corner, side, and interior blocks for obvious reasons.

The

structure of the corresponding block columns of the Cholesky factor

L is shown in figure 2.4.

interior
blocks

side blocks

corner
blocks

z ~
A Y MY)
~
1124 3 9 12711
aus Czi | Ca2 D
2 4 10 12
31
29 30
N —)| | C)
>]
5(26| 7 13 128 15
QLD)
6 8 14 16
L | ¢
—J
Figure 2.3 A two-ltevel incomplete nested dissection.

_ block column corresponding to a corner block

’3,#~“—~ block column corresponding to a side block

R, «— block column corresponding to an
@ interior block

4 d__

A
—a
/
/

/

R B

Figure 2.4 Structure of the block columns of the Cholesky
factor L, corresponding to leading diagonal

blocks.

The expressions for storage and operation counts are derived
under the assumption that the banded character of the leading diagonal
blocks and the leading zeros of the off-diagonal blocks are exploited.

The following estimates for storage and operation counts are taken

from [7].
(2.7) n (n,2) = S (3x27%-4x 2724 4 2 x 273%)
2@ B sx2t i sx 2 g x 2
+n (.%% x 2% + 3;g S13+39x 2% - 24 x 27 4 5 x 273%)
PP a3 1y L1 L x2 Lo x 27w 2 x 273

2 4 2

4 l%_x =28 -31 -44y

(2.8) eF(n,z) =N -10x 27" +6x2

+n3(829 .- 353 x 2% 4 148 ¢ 2720 _ 1048 x 273 + 24 x 27%%)

8¢ 12 3 21
+n2(=17 x & + 2003 - 963 x 2% + g6 x 272% - 664 y 73
42 7 7
+ 36 x 27
7 1657 , 325 , oL 4 128, p2%
+ n(= X X+ 6x 0 - i TR 27+ 5 X 2
RTINS

20 1Ty g% 403 x q 2859 4 9354 o7t 4 4y o722

t(ex2™ - ¢ 7y tgX
- ég—?—-x =34 6 X 2-42).

(2.9) 6g(ns2) = (n,2) ,

where 0 < g < Tog, (n+1) -1

10

§3. Incomplete nested dissection with the implicit storage scheme.

3.1 Factorization of a block 2 by 2 matrix.

The basic ideas of implicit storage and solution of
partitioned matrices are illustrated with a block 2 by 2 symmetric,

positive definite matrix. Following [4, p.171], Tet A be partitioned as

A A

(3.1) A= N 12)
T
Ao By

The first key observation is that the following two

factorizations of A can be computed

N T
52) SR I A L
T T T
AL, Ay, oL 0 L
A Ao AH 0 I i
(3.3) T =l . . ,
Ap Ay Alg Ayt |0 T

_ T T_+ _ _ _
where A]1 = L1L] and L2L2 = A22 = A22 A]Z A]1 A12' The off

diagonal blocks are defined by

(3.4) W=1L;" Ay
and N I :
(3.5) W=1Ly W=~ A,

The factorization (3.3) is as useful as (3.2), since we
compute and store L] and L2 rather than retaining A]] and 322 . The

factorization (3.2) is called a symmetric factorization and (3.3) is

11

called an asymmetric factorization. The essential difference between
T

. o~ . -T -1
(3.2) and (3.3) 1is whether A22 is computed as A22 - (A12 L]) (L] A]Z)
or A,, - AIZ (L;T (L;] A]Z))' These factorizations in general require

different amounts of arithmetic to compute, and the asymmetric factori-
zation (3.3) may be cheaper than (3.2). A particularly important point
for our purpose in this paper is that the calculation of 522 in the
asymmetric factorization can be done column by column, *so that only one
column of the matrix A¥2A;}A12 needs to be stored at any one time. On
the other hand, the first form of the computation seems to require the

storage of the whole matrix L;]A]z.

" The second key observation is that we may not wish to retain
the off-diagonal blocks of the factorization. Bunbh and Rose [1] |
observe that in performing the solution, given the triangular factori-
zation (3.2), it may require fewer arithmetic operations to qompute
;1 = Wx, by computing ;a = Ay, x, and then solving L1_§1 = ;},
than by simply multiplying Xo by W. Similar remarks apply to the use
of W', W and W'.

Returning to our incomplete nested dissection, our basic

strategy is to treat all the ZZK

leading diagonal blocks as just one
block corresponding to A1], and all the remaining 222 - 1 blocks as

one block corresponding to A22.

3.2 Estimates for storage and arithmetic operations.

The following observations are helpful in obtaining estimates

of storage and operation count. For an 2-Tevel incomplete nested

12

dissection we have 222 leading diagonal blocks each of size

['n - (2t - 1)] 2 and bandwidth {h - §22 - 1ﬂ . Four of these
2 : L 256 2% L
are corner blocks, 4(2” - 2) are side blocks, and (2 -4 x27+ 4)

are interior blocks.
Our estimate of the storage required is obtained from

(2.7) by subtracting the storage for the off-diagonal blocks of L and

adding the storage for the corresponding blocks of the original matrix.

It is straight forward, but lengthy, to obtain the following estimate

n . Letting B = [!L;;jﬁf:_l)

22 » We have

(3-6) ﬁi (n,ﬂ) = nL (n,ﬁ)
+ [2% (128 - 4) - 2*(128) + 4]

[2%% (26% + 4g? + 28) - 2%(48° + 68% + 28) + (28° + 28)]

where . (n,2) is given by (2.7).

We are interested in finding the value of 2 which minimizes
(3.6). Letting a = 22, and assuming n to be sufficiently large so that
lower order terms may be ignored in (3.6), we obtain
31 21

+ —Z-n21092a - —f no

Q|3
w

(3.7) ni (n,ﬂ) ~ 3

- 3% nZ - o2 (283 + 482 - 108 + 3).

It is a simple exercise to find out that & = @n which minimizes (3.7)

is given by solving (3.8).

13

TR TN

Q>

(3.8) (

The solution of (3.8) is given by ~£‘z 11.95, and hence

(3.9) n = logon - 3.58

It is interesting to notice that this value of in implies
that the Tleading diagonal blocks are of size 120 by 120 and bandwidth

11 approximately. The estimate of ni (n,@n) is given by
1 >~ 2 2
(3.10) n. (n,2n) = 7.75n Tog,n - 31.3 n” + 0 (n %ggzn).

Note that equations (2.4) and (3.10) are asymptotically
similar. We can also see that we have saved about 7 n2 in the
storage required. Although it is clear that the relative reduction
in storage decreases as n increases, it is still a significant
saving for quite large systems. It is also noteworthy that the
function ”L (n,2) changes slowly near on, so it is only necessary
to obtain an approximate value for 2n.

The estimate for the operation count for the upper{lower}solve
is given by
(3.11) eé (n,2) = 8 (n,2)

+ 2% (6% + 62 + 108 - 4) - 2%(128) + 4]
- [2%%(26% + 4g? + 2g) - 2%(4g3 + 682 + 28)

+ (28% + 28)]

14

where es(n,z) is given by (2.9). The value of & = ES which

approximately minimizes (3.11) is given by

(3.12) ES = Tog,n - 2.36

Notice that for this value of & the leading diagonal

blocks are 16 by 16 with bandwidth 4. The estimate of eé (n,ES)

is given by

1 ~ 2 2
(3.13) Og (n,zs) ~ 7.75 n 1092n - 25.9 n" + 0(n logzn).

Again, we notice that (3.13) and (2.5) are asymptotically

2

similar, and the operation count can be reduced by 1.9 n“ by

choosing % equal to ES' However, if we choose & = En’ we

have
! ~ 2 2
(3.14) Og (n,xn) = 7.75 n” log,n - 21.4 n” + 0(n 1ogzn),

which means that the operation count is slightly higher than (2.5).
The estimate of the operation count for the factorization

is given by

(3.15) Br (n,) = eF(n,z)

[22% (ag* + 1283 + 3607 + 4p)

-+

- 2%(8g* + 208 + 5867 + 4p) + 4(s? + g3 + 462 +p)]

- 2P+ 863+ 662 + 2p)

3 3

- 2%(108% + 128% + 882 + 28) + (687 + 285 + 282 + 28)] .

15

eé (n,2) dis minimized when we fully dissect the mesh.

Table 3.1 shows the relative difference tn storage and
operations for solution and factorization between nested dissection and
the new scheme for the n by n grid. For the incomplete nested
dissection, we used & = Tog, (n + 1) - 3; which means that the leading
diagonal blocks are of size 49 by 49. The estimates in the table do
suggest that if n is moderately large, we can achieve significant re-
duction in storage at the expense of a modest increase in operations for

factorization.

Table 3.1
Difference between incomplete nested dissection and
the new scheme. In the table, index 1 refers to
nested dissection and index 2 refers to the new
scheme.
n N (nz -n])x 100 (632 - es]) x 100 (GFZ - eF]) x 100
7 T § < 1
1 8 9
$1 | F
31 961 -24.2 10.9 35.1
63 3,969 -22.6 2.0 22.8
127 16,129 -19.4 - .8 12.8
255 65,025 -16.5 - 1.6 7.7
511 261,121 -14.2 - 1.7 3.9
1023 |1,046,529 ~-12.2 - 1.4 1.9

16

§4., Storage scheme for L and some numerical experiments.

4.1 The storage structure for L.

The storage scheme for the matrix A (overwritten by the
Cholesky factor L during the factorization process) is briefly
considered here. The elements of the leading diagonal blocks are
stored using the envelope storage scheme, which is described in
chapter 4 of [6]. The elements of the last diagonal block,
thatis, the block corresponding to all the separators, are stored using a
general sparse storage method, as described in chapter 5 of. [5].
The elements of the off-diagonal blocks of L are not stored; instead, we
store the corresponding elements of the original matrix, as
explained in detail in chapter 6 of [5]. An array XBLK
of Tength v + 1, where v is the number of diagonal blocks, is used
to record the partitioning information. XBLK (i) records the be-
ginning of block i. For convenience of programming, XBLK (v + 1) is

set to N + 1, where N is the number of equations.

4.2 Numerical experiments.

In order to obtain some results about the performance of the
suggested ordering and the related solution and storage schemes, and
to compare with other implementations, we applied them to a problem
arising from the graded L mesh [5, p.279]. The numerical experiments
were performed on an IBM 3031 computer, using the Fortran H extended
compiler. The times reported are all in seconds. Most of the programs
used are minor modifications of those in SPARSPAK, a sparse matrix

package developed at the University of Waterloo [6].

17

The mesh was dissected until the size of the blocks re-
maining to be dissected dropped below 100. In Table 4.1, we report
some statistics about the ordering and storage allocation programs.+
Also included are some statistics about the partitioning. Table 4.2
contains some statistics about the total storage used for the linear
equations solver, and the overhead storage. The overhead storage is

that used for pointers for the data structures of L, as well as working

storage used by the solver.

Table 4.1

Performance statistics for the ordering and storage allocation,
together with some partitioning statistics.

N lordering|orderinglallocation jallocation|number|number of
storage time storage time |of lTeading

blocks|blocks
265| 3,346 | 0.167 7,120 0.153 7 4
4064 5,155 | 0.383 11,924 0.263 9 5
5771 7,354 | 0.447 17,846 0.373 13 7
7781 9,943 | 0.740 23,857 0.490 19 10
1009(12,922 | 0.910 31,396 0.627 25 13
1270 16,291 | 1.147 40,205 0.810 31 16
1561} 20,050 | 1.443 49,800 1.020 39 20
1882 24,199 | 1.813 59,022 1.190 49 25
2233 28,730 | 2.100 71,581 1.443 | 55 28
2614 33,667 | 2.560 80,311 1.650 73 37
3025| 38,986 | 3.020 96,751 2.000 77 39
3466 | 44,695 | 3.533 112,883 2.323 85 43

T The allocation storage reported in Table 4.1 is much Targer than
necessary. This can be reduced by about 50% without changing the
allocation time by using the recently published algorithm, "“An Optimal
Algorithm for Symbolic Factorization of Symmetric Matrices" by George
and Liu in SIAM J. COMPUT., Vol1.9, No.3, August 1980.

18

Table 4.2

Storage used for the solution.

N | Total Overhead Total |Overhead | Overhead
Storage | Storage [N log N N Total
265 | 4,447 1,854 2.08 7.00 414
406 | 7,479 2,840 2.13 7.00 .380
577 | 11,545 4,131 2.18 7.16 .356
778 116,691 5,726 2.23 7.36 .343
1009 | 22,626 7,492 2.25 7.43 .331
1270 | 29,823 9,464 2.28 7.45 .317
1561 | 38,174 [11,761 2.31 7.53 .308
1882 | 47,759 | 14,400 2.33 7.65 .302
2233 | 58,760 | 17,072 2.37 7.65 .291
2614 | 71,673 | 20,424 2.42 7.81 .285
3025 | 84,816 {23,456 2.42 7.75 277
3466 | 98,733 | 26,887 2.42 7.76 272

The results of Table 4.2 suggest that the total storage is of
order N log N, as expected. It also seems that the overhead storage grows
Tinearly with N. It is interesting to notice that the ratio of (over-
head storage)/(total storage) ~ 0 as N » = ,

In Table 4.3 we consider some statistics about the per-

formance of the linear equations solver. The times and operation

counts for factorization and solution are reported.

Table 4.3

Statistics about the performance of the
Tinear equations solver.

19

Factorization Solution
N Joperationg time | operations |operations|operations|time [operations|operations

NN time N log N time

265| 5.084 0.786 11.79 6.47 0.757 |0.090 3.55 8.42
406 10.280 1.487 12.57 6.91 1.374 10.163 3.91 8.43
5771 18.282 2.633 13.19 6.94 2.113]10.243 4.00 8.70
778 27.716 3.916 12.77 7.08 2.973 10.343 3.98 8.67
1009] 40.336 5.769 12.59 6.99 3.944 |0.453 3.92 8.71
1270| 56.715 7.919 12.53 7.16 5.335 {0.583 4.07 9.15
15611 77.058 (10.786 12.49 7.14 6.797 |0.757 4.10 8.98
1882 | 98.387 [13.948 12.05 7.05 8.349 10.933 4.08 8.95
22331130.574 {19.654 12.37 6.64 10.413 {1.216 4.20 8.56
2614 [160.059 [|22.610 11.98 7.08 12.520 |[1.373 4.22 9.12
3025 }205.905 {28.550 12.38 7.21 15.150 |1.643 4.32 9.22
3466 |252.527 [35.056 12.38 7.20 17.649 |1.903 4.33 9.27
x10* x10% x10* x10%

20

We may conclude from Table 4.3 that the operations for
factorization and solution are of O(N VN) and O(N 1092 N) respectively,
as predicted by our analysis. Similar observations are true for the
execution times. It is also clear that the operation counts for both
factorization and solution do reflect the actual computation performed,

since in both cases the ratio operations/time do not change much.

Table 4.4 shows the distribution of primary storage of L
between the Teading diagonal blocks and the off-diagonal blocks and

the last block.

Table 4.4

Distribution of primary storage for L.

N Total { MAXLNZ |ENVSZE |MAXNZ | ENVSZE | MAXLNZ |MAXLNZ
Storage N N log N | Total
265 | 2,328 676 1,235 152 | 4.66 0.32 .29
406 | 4,233 1,311 | 2,292 224 | 5.65 0.37 .31
577 | 6,837 2,664 | 3,246 3501 5.63 0.50 .39
778 {10,187 4,855 | 4,040 514] 5.19 0.65 .48
1009 [14,125 7,620 | 4,780 716 | 4.74 0.76 .54
1270 119,089 | 10,397 | 6,550 872 { 5.16 0.79 .54
1561 | 24,852 | 14,325 | 7,870 |1,096 | 5.04 0.87 .58
1882 | 31,477 | 19,465 | 8,760 {1,370 { 4.65 0.95 .62
2233 | 39,455 | 24,789 (10,815 |1,618 | 4.84 1.00 .63
2614 148,635 | 32,108 |11,905 [2,008 | 4.55 1.08 .66
3025 | 58,335 | 38,063 | 15,006 [2,241 | 4.96 1.09 .65
3466 | 68,380 | 45,271 {17,098 |2,545 | 4.93 1.11 .66

21

In Table 4.4, MAXLNZ is the primary storage for the last
diagonal block, ENVSZE is the primary storage for all the leading
diagonal blocks, and MAXNZ is the number of the elements in the off-
diagonal blocks of the original matrix. The following observations
are clear from Table 4.4, First, the storage used by the Teading
diagonal blocks appear to grow linearly with N. Second, the storage
for the last diagonal block appear to grow as N log N, but is
approaching that Timit slowly due to the existence of large sub-
dominant terms. Finally, the ratio of MAXLNZ/(total storage) tends
to 1 as N tends to increase.

In order to compare this new scheme with other methods, we
report in Table 4.5 some of the important statistics of the one way
dissection, nested dissection, and the new incomplete nested dissection.
The statistics about the one way dissection and the nested dissection

were taken from [9].

Table 4.5

Comparison between 1WD, ND, and Incomplete ND.

22

Total Storage Factorization Solution

operations operations
N ND TWD IND ND 1WD IND ND TWD IND
265 7,005 | 4,204 | 4,447 3.254 4,383 5.084 | 0.718| 0.690 | 0.757
406 || 11,721 | 6,852 | 7,479 6.926 9.254 | 10.280 1 1.267} 1.180 | 1.374
577 |} 17,695 {10,412 | 11,545| 12.558 | 18.107 | 18.282 | 1.992| 1.869 | 2.113
778 || 25,032 | 14,524 {16,691 {f 20.101| 29.220 { 27.716) 2.879| 2.675 | 2.973
1009 || 33,850 (19,402 | 22,626 || 31.111 | 44.905 | 40.336 | 3.998| 3.659 | 3.944
1270 || 43,896 | 25,331 | 29,823 || 44.454 | 65.999 | 56.715|| 5.270| 4.866 | 5.335
1561 || 55,804 | 32,451 | 38,174 || 62.571| 97.139 | 77.058 | 6.821| 6.362 | 6.797
1882 || 69,043 | 40,006 {47,759} 83.851 | 131.132 | 98.387 | 8.543| 7.903 | 8.349
2233 || 84,246 | 48,943 {58,760 || 111.183 | 177.168 |130.574 {{10.566 | 9.910 [10.413
2614 11100,269 | 58,777 | 71,673 || 140.707 | 232.319 [160.059 || 12.692 | 11.995 |12.520
3025 (118,590 | 70,087 | 84,816 |} 178.443 | 301.070 |{205.905 || 15.160 | 14.462 }15.150
3466 ({138,549 | 81,702 | 98,733 || 220.695 | 373.641 [252.527 |[17.843 | 17.024 |17.649
10 | x0* | xe* | xe*] xi0* | xi0*
It seems safe to conclude that the new scheme is able to reduce
the storage requirements from that of the nested dissection, although the

one way dissection scheme still requires the least storage. Considering

the operations for factorization, our new method is more attractive than the

one way dissection method. The operations for solution are all very close.

In order to have some insight on the relative performance of the

new method in comparison with the nested dissection and the one way

23

dissection methods we consider the following cost function.
COST(S,T) = SxT ,

where S = storage used, and T = execution time. We will use the number
of operations required for the numerical factorization and solution as
an estimate for the execution time (see the comments following Table 4.3).
In the cost function mentioned above we will ignore the cost of ordering
and storage allocation because they are similar for the methods under
comparison. This assumption is also justified in situations where many
problems with identical matrix structure but different numerical values
must be solved.

In Table 4.6 we report the value of the cost function for the

three methods under comparison.

Table 4.6

COST Function = (Total storage) x
(Factorization operations +
solution operations) x10~

N ND WD IND
265 .278 .213 .260
406 .960 715 .872
577 2.575 2.080 2.355
778 5.752 4.632 5.122
1009 11.884 9.422 10.019
1270 21.827 17.951 18.505
1561 38.724 33.587 32.011
1882 63.792 55.622 50.976
2233 102.569 91.562 82.844
2614 153.812 143.600 123.693
3025 229.594 221.147 187.490
3466 330.492 319.181 266.753

24

The results in Table 4.6 show that for moderately large
problems the new method is a viable choice to use in situations where
many problems with the same matrix structure must be solved.

We have presented and analysed a new scheme for solving

sparse systems of linear equations, based on incomplete nested dissection
and an implicit storage scheme. Our analysis and numerical experiments
show that this new method enjoys the same asymptotic behaviour as nested
dissection orderings, which are known to be optimal. The new ordering
and solution scheme requires significantly less storage than nested
dissection, but its operation count for factorization is slightly higher

for moderately large problems.

§5.

[1]

[2]

[3]

[4]

- [5]

[6]

[7]

[el

[9]

25

References

James R. Bunch and D.J. Rose, Partitioning, tearing and
modification of sparse linear systems, J. MATH. ANAL. and
APPL., 48 (1974), pp. 574-593.

Alan George, Nested dissection of a regular finite element
mesh, SIAM J. NUMER. ANAL., 10 (1973), pp. 345-363.

» On block elimination for sparse linear systems,

SIAM J. NUMER. ANAL., 11 (1974), pp. 585-603.

» Numerical experiments using dissection methods

to solve n by n grid problems, SIAM J. NUMER. ANAL., 14 (1977),

pp. 161-179.

Alan George and J.W.H. Liu, Computer solution of large sparse
symmetric positive definite systems of linear equations, to be
published by Prentice Hall, 1981.

, The design of a user interface for a sparse

matrix package, TOMS, 5 (1979), pp. 139-162.

“Alan George, William G. Poole, Jr. and Robert G. Voigt,

Incomplete nested dissection for solving n by n grid problems,
SIAM J. NUMER. ANAL., 15 (1978), pp. 662-673.

Alan J. Hoffman, Michael S. Martin and Donald J. Rose,
Complexity bounds for regular finite difference and finite
element grids, SIAM J. NUMER. ANAL., 10 (1973), pp. 364-369.

E.G. Ng, On one-way dissection schemes, M. MATH. Thesis,
University of Waterloo (1979).

	

