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SOLUTION OF LARGE-SCALE SPARSE LEAST SQUARES
PROBLEMS USING AUXILIARY STORAGE

A. George
M. T. Heath
R. J. Plemmons

ABSTRACT

Very large sparse linear least squares problems arise in a

variety of applications, such as geodetic network adjustments, photo-
grammetry, earthquake studies, and certain types of finite element
analysis. Many of these problems are so large that it is impossible to
solve them without using auxiliary storage devices. Some problems are
so massive that the storage needed for their solution exceeds the
virtual address space of the largest machines. In this paper we de-
scribe a method for solving such problems on a typical (large) computer
and provide the results of some experiments illustrating the effective-
ness of our approach. The method includes an automatic partitioning
scheme which is essential to the efficient management of the data on

auxiliary files.



1. Introduction and Overview

1.1 Introduction

In this paper a method is presented for solving the linear least

squares problem

(1.1) min ||Ax - b||2
X

when the m x n matrix A is very large and sparse and has full column
rank n. The problems we wish to solve are so large that the use of
auxiliary storage is essential regardless of the numerical method em-
ployed. In some cases storage requirements may even exceed the virtual
address space of the largest machines, and therefore auxiliary space
cannot be managed implicitly by a paging algorithm. Our approach is to
break the large problem up into smaller subproblems which are processed
sequentially, eventually producing the solution to the original problem.
Such an approach requires a method for partitioning the large problem,

a computational module for processing tﬁe subproblems, and an algorithm
for managing external files containing intermediate results. In the
remainder of this section, after giving some specific examples of large-
scale least squares problems, we survey possible numerical methods and
then describe the particular technique we have chosen for the computa-
tional module. 1In Section 2, problem partitioning and data management
are discussed. Section 3 presents numerical test results and observa-

tions.

In recent years least squares problems of ever-increasing size

have arisen with ever-increasing frequency. One reason for this is



that modern data acquisition technology allows the collection of mass-
ive amounts of data. Another factor is the tendency of scientists to
formulate more and more complex and comprehensive models in order to
obtain finer resolution and more realistic detail in describing physi-
cal systems. Particular areas in which such large-scale least squares
problems occur include geodetic surveying (Avila and Tomlin [1979],
Golub and Plemmons [1980]), photogrammetry (Golub, Luk and Pagano
[1980]), earthquake studies (Vanicek, Elliott and Castile [1979]), and
in the natural factor formulation of the finite element method (Argyris
and Brénlund [1975], Argyris et al [1978]). An example of truly spec-
tacular size is the least squares adjustment of coordinates (latitudes
and longitudes) of stations comprising the North American Datum, to be
completed in 1983 by the U.S. National Geodetic Survey (Kolata [1978]).

This enormous task requires solving, perhaps several times, a least

squares problem having six million equations in four hundred thousand

unknowns.

1.3 Numerical Methods for Sparse Least Squares

Several methods have been proposed for solving sparse linear least
squares problems (Duff énd Reid [1976], Bjﬁrék [1976], Gi1l and Murray
[1976]). For our purposes the most important qualities 1in a numerical
method will be storage requirements,.numericaI stability, and conveni-
ence in utilizing auxiliary storage.

The classical approach to solving the linear least squares problem

is via the system of normal equations

(1.2) ATAx = ATb.



The n by n symmetric positive definite matrix B = ATA is factored using
Cholesky's method into RTR, where R is upper triangular, and then x is
compufed by solving the two triangular systems RTy = ATb and Rx = y.

This algorithm has several attractive features for large sparse problems.
The Cholesky factgrization does not require pivoting for stability so
that the ordering for B (i.e., column ordering for A) can be chosen

based on sparsity considerations alone. Moreover, there exists well-
developed software for determining a good ordering in advance of any
numerical computation, thereby allowing use of a static data structure.
Another advantage is that the row ordering of A is irrelevant so that
the rows of A can be processed sequentially from an auxiliary input file
in arbitrary order, and A need never be represented in fast storage in
its entirety at any one time. Unfortunately the normal equations method
may be numerically unstable. This is due to the potential loss of infor-

Tb, and to the fact that the con-

mation in explicitly forming ATA and A
dition number of B is the square of that of A.

A well-known stable alternative to the normal equations is provided
by orthogonal factorization (Golub [1965]). An orthogonal matrix Q is

computed which reduces A to upper trapezoidal form

(1.3) QA = [SJ Qb = [32’] ,

where R is n by n and upper triangular. Since Q does not change the

two-norm, we have

(1.4) ax - o1, = 11[8]x - 11,



and therefore the solution to (1.1) is obtained by solving the triangu-
lar system Rx = y. The matrix Q usually results from Gram-Schmidt
orthogonalization or from a sequence of Householder or Givens transforma-
tions. Both the Gram-Schmidt and Householder algorithms process the
unreduced part of-the matrix A by columns and can cause severe intermed-
iate fill-in. The use of Givens rotations is much more attractive in
that the matrix is processed by rows, gradually building up R, and in-
termediate fill-in is confined to the working row. This approach, im-
plemented with a good column ordering and an efficient data structure,

is the basis for the computational module described in section 1.4.

Other direct non-normal-equations methods for sparse least squares,
including those of Peters and Wilkinson [1970] (as implemented by Bjorck
and Duff [1980]) and Hachtel [1976], were considered, but these elimina-
tion methods ﬁé&;ﬂ?:& row and column pivoting for stability ;;:;é23=§éfserve'
sparsity, necessitating access to the entire matr_‘ix:t This feature

greatly inhibits the partitioning of large problems and the flexible

use of auxiliary storage.

1.4 The Computational Module

The numerical method.we use is developed in detail in George and
Heath [1980]. Our motivation is to combine the flexibility, convenience
and low storage requirements of the normal equations with the stability
of orthogonal factorization. The basic steps of the algorithm are as
follows:

Algorithm 1 Orthogonal Decomposition of A

1. Determine the structure (not the numerical values) of B = ATA.

T For least squares problems where (A\b) fias rows of abat cqual magnitude,
elimination. methads fequave smly partial posting for stability. However,
both mur ond column pn'w‘h;tq are necded ta ¢€Fceaf('ucly fimit fitt-in .
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2. Find an ordering for B (column ordering for A) which has a
sparse Cholesky factor R.

3. Symbolically factorize the reordered B, generating a row-
oriented data structure for R.

4. Compute é by processing the rows of A one by one using Givens

rotations.

Steps 1 through 3 of Algorithm 1 are the same as would be used in
a good implementation of the normal equations method. These steps may
be carried out very efficiently using existing well-developed sparse
matrix software (George and Liu [1979]). It is important to emphasize
that the data structure for R is generated in advance of any numerical
computation, and therefore dynamic storage allocation to accommodate
fill-in during the numerical computation is unnecessary. The order in
which the rows of A are processed in Step 4 does not affect the struc-
ture of R or the stability of computing it. Therefore the rows may be
accessed from an external file one at a time in arbitrary order. A
suboptimal row ordering to reduce the amount of computation associated
with intermediate fill-in during the orthogonal decomposition phase
was shown to be effective in George and Heath [1980] and is used here.
Thus Algorithm 1 requires the same storage and exploits sparsity at
least to the same degree as the normal equations, allows convenient

use of auxiliary storage, and in addition is numerically stable.

Alternatively, o row or dering scheme can also be used to
enhance accuracy In Problems ha.vn'na w(dclg ua.ryn;‘g row

norms or weights( C—:o.g Cio ]).



2. Decomposition of A Using Auxiliary Storage

2.1 Introduction

This section consists of two parts. The first describes an algo-
rithm for finding a column ordering and partitioning of A which lends
itself to the ef%icient use of auxiliary storage. The method uses
slightly modified ideas and techniques which have already been described
in detail by George and Liu [1978], so our presentation is brief and
limited to showing our modifications and the relevance of the schéme to
the least squares problem. It is important to note that in some con-
texts such partitionings/orderings arise as a natural by-product of the
modelling procedure (finite element analysis) or data acquisition (geo-
desy). In these cases, this "preprocessing" algorithm would not be
required.

The second part of this section deals with the utilization of the
software described in Section 1.4 and the partitioning provided by
Algorithm 2 of Section 2.2, along with files on auxiliary storage, to

solve very large least squares problems.

2.2 Finding an Appropriate Ordering and Partitioning for the Columns of A

In the sequel it is convenient to work with the symmetric graph

ATA. The graph

associated with the normal equations matrix B

G = (X,E) associated with B has n nodes x., i =1, 2, ..., n,which form

i
X, and an edge set E consisting of unordered pairs of nodes with
{xi, xj}EZ E if and only if Bij = Bji #0, i # j. Thus the nodes X;
correspond to the variables of the least squares problem; i.e., to the
columns of A. Implicit here is the assumption that the nodes of G have

been labelled as the columns of A. Thus, a relabelling of the nodes of



G corresponds to a symmetric permutation of the matrix B, or equivalent-
1y, a column permutation of A. Given G without any labels, finding an
appropriate permutation of the columns of A can be viewed as finding an
appropriate labelling for G.

A graph G' =-(X',E') is a subgraph of G = (X,E) if X' C X and E' C E.
For Y € X, G(Y) refers to the subgraph (Y,E(Y)) of G, where
E(Y) = {{u,v} € E[u,v €Y}

Nodes x and y are said to be adjacent if {x,y} is an edge in E. For

Y c X, the adjacent set of Y is defined as

Adj(Y) = {x €X - Y|{x,y} €E for some y € Y}.

A path of length & is a sequence of 2 edges {xgsx1}s {xysX5}s ...
{xl_],xk}whereall the nodes are distinct except for possibly Xg and X, -
A graph G is connectéd if there is a path joining each pair of distinct
nodes.

A partitioning P of G is an ordered collection of node sets

P=qY , Y.},

],ng e p

p
where Yiﬁ.Yj =@, 1#Jj, and U Yi = X.

i=1
Given a partitioning P of G, the only numberings (labellings) we
will be concerned with in this paper will be compatible with P. That
is, each Yi is numbered consecutively, and nodes in Yi are numbered
before those in Yi+1'
A subset Y C X of the node set of G is a separator of G if G(X-Y)
consists of two or more connected components. A separator is minimal

if no subset of it is a separator.



As we shall see below, a desirable column ordering and partitioning

for A is provided by a nested dissection partitioning of the graph of B

(George, Poole and Voigt [1978]). The algorithm we use here can be
described as follows, where G = (X,E) is the graph of B and u is a user-
supplied parameter.

Algorithm 2 Incomplete Nested Dissection Partitioning

1. SetV=X,p=0,andn = |X].

.2. If V=@, go to step 4. Otherwise, let G(T) be a connected com-
ponent of G(V) and set p=p + 1. If |T| <u, set Sp = T; otherwise,
find S_, a minimal separator of G(T) which disconnects it into two or

more components of approximately equal size.

3. SetV

V- Sp, n=n - |Sp|, and go to step 2.

4. Set P {Y], Yosr =ee» Yp}, where Yi =35

Apart from the inclusion of the thréshold u, and the omission of any
specific labelling strategy for each Sp, our implementation corresponds
exactly to that described by George and Liu [1978, pp. 1054-1060], so
the reader is referred there for details. For our purposes, any order-
ing compatible with P is acceptable, and the choice of u is discussed in
Section 3. It should be obvious that u governs the relative "complete-
ness" of the dissection procedure. An example of a nested dissection
partitioning along with a compatible ordering is given in Figure 2.1.
In order to avoid unnecessarily complicated notation in the follow-
ing section, we assume from now on that A has been reordered by columns
and that the Yi simply consist of the appropriate consecutive subse-
quences of the first n integers. In other words, the nodes of Y, have

been replaced by their labels.
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P={Y,, Y

ves Y7} where Yi = 58

1 °2° ° -i’

Figure 2.1 An example of a nested dissection partitioning of a graph

and an induced numbering of its nodes.

We now define a partitioning R = {Z], ZZ’ cens Zp} of the row

numbers of A, induced by the column partitioning P, as follows. Let

i=1 ]
U Z2 s 17 1,25...45 P>

Z; = k!HjCYiBakjfo; -
2=1

with ZO = @. The manner in which the Zi are defined above implies that in

general, for a sparse matrix A, if the rows of A are permuted so that those

specified by Zi appear above those specified by Zi+1’ then A will have
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block upper trapezoidal form, as depicted in Figure 2.2, for three diag-

onal blocks. Again, to keep the presentation simple, we assume that the
rows of A have been relabelled so that the Zi consist of consecutive
integers, with those in Zi preceding those in Zi+1. We denote the sub-
matrices of A bybhij, 1 <1, j <p, and our objective is to find a form

for A such that Aij =0 for i > j.

r \
x| x v,
X Y, = {1,2,3} Y! = {5,7,8}
x 1 sk 1 sl
X X X Y, = {4,5} Yy = {6,8,9)
X
g Yy = 16,7,8,9} Yy =
X X
X
= Z, = {1,2,...,8)
X X _
O X Z, = {9,10,...,14)
X X Zy = {15,16,...,23)
X| X
.......... X X
4 b 4 =
) P =Y, Yy, Yy)
X R = {z]! 229 23}

O

Figure 2.2 A 23 by 9 sparse matrix A partitioned by columns according

to P and the induced row partitioning R.
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As mentioned earlier, this process of dissection of the problem
variables into independent subsets may arise more or less automatically.
or may be carried out by some means other than the one proposed above.

For example, in geodesy, observations between or among control
points are collected and tabulated by geographic region, so the vari-
ables (coordinates) and observations are naturally arranged in a hier-
archical structure. Moreover, automatic subdivision can be implemented
on the basis of specifying latitude and longitude boundaries as separa-
tors for the coordinate sets. For a more detailed description of this
process, called Helmert blocking by geodesists, see Golub and Plemmons
[1980] and the references cited therein.

In the analysis of structures,the variables in the model are often
subdivided according to subassemblies, with each component being pro-
cessed by an individual design group. This may occur at several levels,

leading to "multi-level substructuring."” This partitioning procedure

together with the natural factor formulation of the finite element
method (Argyris et al [1978]) leads to a sparse least squares problem
having block upper trapezoidal structure, as illustrated in Figure 2.2.

A special case of the block upper trapezoidal form is the so-called

p. This form

block angular form, where Aij =0 unless j =1ior]j
arises naturally in many mathematical programming contexts, but more
important from our point of view is that Weil and Kettler [1971] have
provided a heuristic algorithm for permuting a general sparse matrix

into block angular form. We have not used their algorithm, but in some
contexts it might serve as an alternate "preprocessor" (partition genera-

tor) to the one proposed in this section. Golub and Plemmons [1980]
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have exploited this block angular form structure in connection with

computing orthogonal decompositions of problems arising in geodesy.

2.3 Reduction of A Using Auxiliary Storage

Before describing in detail how the partitioning P is used in
exploiting auxiliary storage, we first review the basic computational
procedure, without any reference to the actual implementation. For
definiteness, we assume |P| = 3 and that A has the form shown in
Figure 2.3. The computation consists of p major steps; the i-th step
results in the generation of lYiI rows of the upper triangular factor R
6f A. During the i-th step, the columns of Yi and a subset of columns
from fzi+1yj are involved in the computation. We denote the column
numbers of this subset by Y{.

The computation involved in the first step is depictedAfn Figure 2.3,
and all the other major steps are similar, generating the sequence of
successively smaller matrices A], A2, A3, e Ap. At the first step,
which transforms A = A] to A2, the matrix [A11EK1] is reduced to upper
triangular form using Algorithm 1 described in section 1.4. The matrik
X1 consists of those columns of A]2 and A]3 which are non-null. (Thus,
K] is simply a "compressed" version of A, and A13.) The first |Y1|
columns of the resulting upper triangular matrix are the first IY]I
columns of R; the remaining columns are "compressed", bearing the same
relationship to R as K] does to [A]ZEA]B]. The rows corresponding to
these latter columns are "expanded" and put on the top of the second
row-block of A, yielding A2. The next step of the computation is de-

picted in Figure 2.4, and the final step has no special features.
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) 7,
Ry 77— FIRST 1Y,| ROWS
ALGORITHM : %] OF R (COMPRESSED)
Au lawla ~ | 1OF§ 14 P\
11 121713 r— Ay Ay [ ———
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(S et e
WY LIRS
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f Az | A3
Az22] Az3
. J /
y
A\-.A1

Figure 2.3 Pictorial description of the first step of the |P| step

reduction of A to upper trapezoidal form.
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Az Az | |- 227
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Figure 2.4 Depiction of the second step of the block-reduction of A

to upper trapezoidal form.
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Thus in the general case, after i-1 steps of the reduction process,

the matrix Ai will have the form shown in Figure 2.5.

Ai-,i {Aiq o Aiqp|
Aji (A Aip
Aj = .
[
®
®
App
\.

Figure 2.5 Block structure of Ai'
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Note that since we assume that the rows of Ai are stored on auxili-
ary storage at all times, the only storage needed at the i-th stage of
the computation is that required for the presumably sparse upper triangu-

lar matrix Ri’ where

Another important practical observation is that in Algorithm 1 of
Section 1.4, and in the one that is described in the sequel, there is

no restriction on the order that the rows of any of the Ai are stored

so that any beneficial row ordering may be used.

In what follows it is helpful to have names for certain subsets of
the rows of Ai' We define the set of rows of Ai having nonzeros in
columns which intersect Y1 by 7}, and we use Z% to denote the remaining
rows of Ai' Thus, it is precisely those rows in 7} which are involved

in the i-th major step of the camputation.

For simplicity, we have not included the right hand side in our
Figures 2.3-2.5, but welintend that it be processed simultaneously with
the rows of A, and carried along in parallel. In particular, throughout
this paper, when we refer to processing a "row of A" or an "equation,"
we implicitly include the corresponding element of b, the weight (if
any), and so on. Our program allows for weights, and in order to handle
them uniformly (i.e., to avoid distinguishing between virgin rows in Ai
and those that have been transformed), a weight of 1 is associated with

transformed equations.
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We are now ready to describe the algorithm for reducing A, which
involves the use of four files. These files may be stored on tapes,
disks, drums; only serial access to the files is necessary. The files
are:

1. R-fi1e:- accepts the rows of R as they are computed.

2. C-file: (current file) at the beginning of the i-th major
step of the computation, contains the rows of Ai in
arbitrary order.

3. Z-file: during the i-th step of the computation, contains
the rows in the set 7}; that is, those rows of
A that are involved in the computation at the

~ i-th major step.

4. Z'-file: at the beginning of the i-th step, this file is empty.
The C-file is read, and split into the Z-file and
this file, which receives the rows of Ai in the
set Z%. After the computation of Ri is per-
formed, the rows of Bii are written on this

file, and the Z'-file becomes the C-file for the next

step of the computation. (It now contains the rows

of Ai+1')
Thus the Z-file is a scratch file, and the roles of the C-file and Z'-
file alternate at each succeeding major step of the computation.

Algorithm 3 Block Reduction of A to Upper Triangular Form

For i =1, 2, ..., p do the following:
1. Rewind the C-file, Z-file, and Z'-file. Read the equations

from the C-file one by one, and for each do the following:
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1.1. If the equation number is in 7}, write the equation on
the Z-file and record the structure it contributes to the
normal equations matrix H}Hi, corresponding to the

n
ma?rix H = [AiiiAi]'

1.2 If theveduation is 1in Z%, write the equation oﬁ
the Z' file. |

2. Order the equations so that HEHi suffers low fill-in, restrict-
ing the ordering so that the variables in Y% appear last.

3. Create the data structure for Ri'

4. Rewind the Z-file. Read the equations from it and compute Ri’
also applying the transformations to b.

5. MWrite the rows of Rii on the R-file along with the transformed
elements of b. |

6. Write the rows of Eii on the Z'-file, along with the transformed
elements of b.

7. Reverse the names of the C-file and Z'-files.

It~should be clear that the combination of the structure recording
part of Step 1.1 along with Steps 2, 3, and 4 is essentially Algorithm 1,
described in Section 1.4. The only modification is the adjustment of
the ordering provided by A]gofithm 1 so that variables in Y% appear
last; all others remain in their same relative position. The ordering
of the variables of Yi that is provided in Step 2 is recorded so that
the rows of R written on the R file can be processed in the correct
order in the back substitution. (Note that Algorithm 2 in Section 2.1
only provided the partitioning and did not provide an ordering for each

‘Yi')
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Z' FILE BECOMES .
C-FILE FOR THE .-

NEXT STEP
(STEP 7)
STEP iOF THE |—=
REDUCTION | i ROWS
STEPS 2-6 OF THE
REDUCTION
i PROCEDURE
Rii

Figure 2.6 Diagram of the data flow of the algorithm for reducing A

to upper trapezoidal form.

At the conclusion of the reduction of A to upper trapezoidal form,

along with the simultaneous reduction of b, the rows of R and correspond-

ing right-hand side elements (y in (1.3) of Section 1) will be on the

R-file, with the "write head" positioned at the end of the last record.

The following simple back substitution is then used to compute Xx.

For i =n,n-1, ..., 1 do the following:

1. backspace the R-file;

2. read the i-th row of R and corresponding right-hand side

element Y5 and compute X;3

3. backspace the R-file.
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3. Numerical Experiments and Observations

3.1 Introduction

This section contains results of some experiments performed using
an implementation of the algorithms described in Section 1.4 and
Section 2. Ouf test problems are of various sizes (ranging from 1,444
equations and 400 unknowns up to 17,946 equations and 4,554 unknowns )
and of two different types. One class of problems is typical of those
that would arise in the natural factor formulation of the finite ele-
ment method (Argyris and Bronlund [1975]), and the second class typi-
fies those arising in geodetic adjustment problems (Golub and Plemmons
[1980]). The descriptions of the problems we provide include only the
details necessary to characterize their size and structure; for impor-
tant information on the physical origins and their mathematical models,

the reader is referred to the references.

3.2 Test Problems

Our finite element test problems are associated with a q by g grid

consisting of (q-])2 small squares, as shown in Figure 3.1 with q = 3.

Associated with each of the n q2 grid points is a variable, and
associated with each small square are four equations (observations)
involving the four corner grid points (variables) of the square. Thus,
the associated coefficient matrix is n = q2 by m = 4(q-1)2, as illus-
trated in Figure 3.1.

Our second set of test problems were also derived from a q by q
mesh, but of a rather different type. The purpose here is to construct
problems typical of those arising in geodetic adjustments. The mesh

2

can be viewed as being composed of q~ "junction boxes," connected to
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1 2 3 456 7 89 7 8 9
1 -; X X X 7] 4 £ 6
2 |x x X X
1 2 3
3jx x X X
4 Ix x X X Finite element grid
5 X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X
11 X X X X
12 X X X X
13 X X X X
14 X X X X
15 X X X X
16 L X X X {_
A

Figure 3.1 A 3 by 3 finite element grid and its associated 16 by 9
least squares coefficient matrix arising in the natural factor

formulation of the finite element method.

their neighbors by chains of length 2, as shown in Figure 3.2 where

g=3and 2 = 4. There are two variables associated with each of the

2

59~ + 2q(q-1)(3(2-1)+1) vertices in the mesh, n observations associated

with each pair of nodes joined by an edge (involving four variables),
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Figure 3.2 Idealization of a 3 by 3 geodetic network having connecting

survey chains of length 4.

and n observations associated with each triangle in the mesh (involving

six variables). Thus, the associated least squares problems have

2

n = 10q" + 4q(q-1)(3(2-1)+1) variables, and m =(12q2 + 2q(q-1)(112-1»Q -

observations. In typical real problems, % is around 5 or 6, so we set
2 .

£ =5 in our experiments, yielding n = 62q° - 52q and m = n(120q2-108q).

In our experiements we set n = 2, yielding m/n ¥ 4 for large q.



24

3.3 Numerical Experiments

Since one of our main objectives is to provide a means of solving
very large problems on computers having limited main storage, our first
experiments involve solving a sequence of problems of increasing size,
using a fixed aﬁount of array storage. Of course, as the problems in-
crease in size, the dissection process which provides the partitioning
(Algorithm 2 in Section 2) must be allowed to proceed further, creating
more blocks. The results of these experiments are summarized in
Table 3.1. Al1l tests were made on an IBM 3033 at the Oak Ridge National
Laboratory. The times reported are in seconds and the storage in words.

The factor and solve time includes the orthogonal decomposition time

in applying Algorithm 1, together with the final back substitution time

in computing the least squares solution. The total elapsed time also
includes I/0 processing and represents the total amount of IBM 3033 time
in solving the problem.

The maximum storage used includes all array storage, storage for

permutations, bookkeeping, etc., in words on the IBM 3033.

Our second set of experiments was designed to demonstrate the
influence of the block size limit u on execution times and total storage
requirements. We solved one moderately large-scale problem from each
of the two classes a number of times, with different values of u, lead-
ing to different values for the resulting number of blocks p. The

results of these experiments are summarized in Table 3.2.
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1. Geodetic Network Problems

Block size Factor Total
Junction{1imit Number|Maximum|and solve|elapsed
Unknowns Equations| boxes blocks|storage|time in |time in
n m__ q u P used |[seconds |seconds
402 1,512 3 500 1 7,430 1.69 4.69
1,290 4,920 5 1,500 1 25,367 7.21 22.77
2,674 10,248 7 1,500 3 32,070 | 22.27 57.69
4,554 17,469 9 1,500 7 30,141 | 46.18 107.40

2. Finite Element Grid Problems

Block size Factor Total

limit Number |Maximum|and solve elapsed

Unknowns Equations| Nodes blocks{storage|time in |time in
n m q u p used |seconds |seconds
400 1,444 20 500 1 10,029 3.10 5.97
1,225 4,624 35 1,000 3 30,547 | 20.78 | 32.23
2,500 9,604 50 1,000 7 28,462 | 72.98 96.10
4,225 16,384 65 500 23 28,987 (142.81 208.20

~Table 3.1. Summary of test results showing storage and execution times
for a sequence of problems, where the maximum total amount of fast

storage is fixed at about 30,000 words.
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1. Geodetic Network

n = 2,674 unknowns
m = 10,248 equations
Block size - Total
limit Number Maximum Factor and - elapsed
blocks storage solve time time in
u p used in seconds seconds
3,000 1 53,858 17.73 71.40
1,500 3 32,070 22.27 57.69
800 7 17,966 23.66 52.71
500 18 13,699 27.56 61.80
2. Finite Element Grid
n = 2,500 unknowns
m = 9,604 equations
Block size Total
limit Number Maximum Factor and elapsed
blocks storage solve time time in
u ) used in seconds seconds
2,000 3 73,002 72.58 106.80
1,500 5 46,178 68.73 96.00
1,000 7 28,462 72.98 96.10
500 15 23,332 69.11 100.80

Table 3.2 Summary of results for the solution of a single problem from

each class, using different levels of blocking.
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3.4 QObservations

1. In Table 3.1, the factor and solve times, as well as the total
elapsed times, increase in a roughly linear fashion as the problem
sizes go up under the constraint of a fixed maximum amount of in-core
storage. B

2. For the two problems represented in Table 3.2, the factor and
solve times are relatively insensitive to the block size limit u. These
times gradually increase for the geodetic network and oscillate for the
finite element grid. Also, the maximum storage used drops considerably
at first and then levels out as the block size limit decreases in each
problem. |

3. The fact that finite element problems generally result in a
less sparse observation matrix than geodetic network problems has the
obvious result. 1In each of our tables the storagé and execution times
are larger for the finite element problems.

4, One possible disadvantage of the use of our automatic blocking
program (Algorithm 2) is that the entire structure of ATA must be
initially stored in~core in order to apply the nested dissection scheme.
However, in practice this would not often be a serious limitation since
some preliminary blocking is usually provided for the larger problems
as a by-product of the modelling procedure (finite element analysis) or
data acquisition (geodesy).

5. In each of our problems the time required for thé automatic
blocking provided by Algorithm 2 turns out to be small in comparison
to the total elapsed time. These automatic blocking times are not

reported separately in Tables 3.1 and 3.2; however, Algorithm 2
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requires only .78 seconds out of a total elapsed time of 208.20 seconds
for our largest problem.

6. Our scheme is storage effective. In each test problem the
maximum storage used is a modest multiple of the number of variables n.
In summary, ou;réumerical experiments demonstrate that the approach
taken in this paper can be used to solve large-scale least squares

problems using a relatively small amount of in-core stbrage.
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