MENT

N&E BEBARY
NCE DEPARTMENT

33 CalRiEn S

WATERL

E
F WATERL

/8
ITY

§

UNIVERSITY OF WATERLOO COMPUTER SCIENCE DEPARTMENT

0

A Look at
Symmetric Binary B-trees

Nivio Ziviani
Frank Wm. Tompa

CS-80-51

November, 1980

A LOOK AT SYMMETRIC BINARY B-TREES

Nivio Ziviani
Frank Wm. Tompa
Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl
Canada

ABSTRACT

Symmetric binary B-trees have been proposed as an alternative
for AVL trees and B-trees for representing dictionary information.
The average costs to search, insert, and delete keys in symmetric
binary B-trees are examined empirically, and the results are
compared to similar experimental results for AVL trees. A general-
ization of the symmetric binary B-trees is also proposed. The results
indicate that symmetric binary B-trees should be considered seriously
when designing a representation for dictionaries.

Key phrases: Symmetric binary B-trees, 2-3-4 trees, dictionary
representations, AVL trees, expected search time.

CR Categories: 4.34, 5.25

November 13, 1980

A LOOK AT SYMMETRIC BINARY B-TREES

Nivio Ziviani
Frank Wm. Tompa
Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada

1. INTRODUCTION

B-trees were introduced by Bayer and McCreight (1972) as a dictionary
structure primarily for secondary store. A special case of B-trees, more appropri-
ate for primary store, are called 2-3 trees, in which each node has either two or
tree subtrees (Knuth, 1973). Such trees can be represented by binary trees as
shown originally by Bayer (1971), and depicted in Figure 1. When seen as a
binary B-tree, there is an inherent asymmetry in the sense that the left edges must
be vertical (i.e., point to a node at the descendent level), whereas the right edges
can be either vertical or horizontal. Removing the asymmetry of the binary B-
trees leads to the symmetric binary B-trees, abbreviated as SBB trees (Bayer,
1972).

Figure 1 A 2-3 tree and the corresponding binary B-tree

Figure 2 shows a graphic representation of a SBB tree. SBB trees are binary
trees with two kinds of edges, namely vertical edges and horizontal edges (called
d-edges and p-edges respectively, by Bayer), such that:

(i) all paths from the root to every leaf node have the same number of vertical
edges, and
(ii) there are no two successive horizontal edges.

For SBB trees two kinds of heights need to be distinguished: the vertical
height A, required for the uniform height consiraint and calculated by counting
only vertical edges plus one in any path from root to leaf, and the ordinary height
k, required to determine the maximum number of key comparisons and calculated

)

N. Ziviani and F.W. Tompa

&

=/

O O 06 O

Figure 2 SBB tree of vertical height A = 2 and ordinary height k =4

by counting all edges plus one in a maximal path from root to leaf. The ordinary
height & is larger than the vertical height A whenever the tree has some horizontal
edges. In particular, for a given SBB tree with n internal nodes, we have
h < k < 2h, and log(n +1) € k < 2log(n +2) — 2 (Bayer, 1972).%

An SBB tree can also be seen as a binary representation for a 2-3-4 tree as
defined by Guibas and Sedgewick (1978), in which “‘supernodes” may contain up
to three keys and four sons. For example, such a “supernode” (with keys 3, 5,
and 9 and sons containing keys 2, 4, 7, and 10) can be seen in the SBB tree of
Figure 2.

SBB trees have been studied by several researchers. Bayer (1972) introduced
the trees and the maintenance algorithms, and showed that the class of AVL trees
is a proper subset. Wirth (1976) presented an implementation of the insertion
algorithm using Pascal. Olivié (1980a, 1980b) presented a relationship between
SBB trees and son-trees (Ottman and Six, 1976), and a new insertion algorithm
which needs less restructurings per insertion and produces SBB trees with smaller
height than the original algorithms. Ladner, Huddleston, and others (Ladner,
1980) have shown that rebalancing while building a tree of n nodes from the
empty tree requires at most O (n) time.

The objective of this paper is twofold:

(i) to present a performance evaluation of SBB trees. The average costs to
search, insert, and delete keys in SBB trees are experimentally examined,
and the results are compared to similar experimental results for AVL trees.

(i) to present some ideas that permit a generalization of the concept of SBB
trees, by permitting the number of successive horizontal edges to be greater
than one. while not permitting unrestricted growth of the tree. This will be
compared to similar work for AVL trees as presented by Foster (1973).

2. PERFORMANCE EVALUATION OF SYMMETRIC BINARY B-TREES

The algorithm to construct and maintain SBB trees uses local
transformations on the path of insertion (deletion) to preserve the balance of the
trees. The key to be inserted (deleted) is always inserted (deleted) after the lowest
vertical pointer in the tree. Depending on the tree’s status prior to insertion
(deletion) two successive horizontal pointers may result, and a transformation may
become necessary. If a transformation is performed, the number of vertical

+ All logarithms are taken to base two.

A Look at Symmetric Binary B-trees 3

pointers from the root to the new leaf may be altered, thus requiring further
transformations to obtain a uniform height.

Figure 3 shows the transformations proposed by Bayer (1972). Symmetric
transformations (i.e. right-right and right-left) also may occur. The results of a
performance evaluation of the algorithm using these transformations can be found
in Appendix B.

Initial situation Resulting tree

o o

(a) Left-left split

-0 O

(b) Left-right split
Figure 3 The two transformations, called splits,
as proposed by Bayer (1972)

1

A revised set of transformations has been proposed by Olivié (1980b). The
insertion algorithm using the new transformations produces SBB trees with smaller
height than does the original algorithm, and it needs less transformations to build
the tree. Guibas and Sedgewick (1978) have also defined similar transformations,
which have been adopted in the University of Washington’s ESP text editor
developed by Fisher, Ladner, Robertson, and Sandberg (Ladner, 1980). Figure 4
shows the new transformations. The left-left split and the left-right split require
the modification of 3 and 5 pointers respectively, and the height-increase
transformation requires only the modification of two bits. Symmetric
transformations may also occur.

When a height-increase transformation occurs, the height of the transformed
subtree is one more than the height of the original subtree, and thus the node
rearrangement may cause other transformations along the search path up to the
root. Usually the retreat along the search path terminates when either a vertical
pointer is found or a split transformation is performed. As the height of the split
subtree is the same as the height of the original subtree, at most one split
transformation per insertion may be performed.

Both Bayer (1972) and Olivié (1980b) used two bits per node in their
algorithms to indicate whether the right and left pointers are vertical or horizontal
pointers. The University of Washington’s text editor, however, uses only one bit
per node: the information whether the left (right) pointer of a node is vertical or
horizontal is stored in the left (right) son. Besides the fact that this requires less
space at each node, the retreat along the search path to check for two successive
horizontal pointers can be terminated earlier than when using the two bits
algorithms. because the information about the type of pointer that leads to a node

4 N. Ziviani and F.W. Tompa

Initial situation Resulting tree

o0 OO0

(a) Left-left split

) O—O—0

(b) Left-right split

>0

{c) Height-increase
Figure 4 The new transformations for insertion into SBB trees
as proposed by Olivié (1980b)
is available without the need to retreat to its father. The results in the next
section were obtained using the set of transformations of Figure 4 and one bit per
node.

2.1. Experimental Results

The performance evaluation of SBB trees was obtained by means of a
sufficient number of repetitions (for different tree sizes) of the following
experiment: a permutation of an ordered list is presented one key at a time to the
procedure that inserts keys into an initially empty tree; this is followed by the
presentation of another permutation to the procedure that deletes keys from the
tree just constructed. In other words, there are n insertions followed by n
deletions. Consequently, all observations of inserting (deleting) the it (i < n
node into a tree are independent events, which eliminates correlation in the
simulation results. A similar type of design was used by Karlton et al. (1976) in
an experimental study of AVL trees. In order to generate random permutations
of an ordered list we used the algorithm presented by Durstenfeld (1964). After
insertion of the n™ node into the tree the following values are tabulated:

(i) the average number of comparisons in an unsuccessful search (Cn);

(ii) the average number of comparisons in a successful search (C,); and

A Look at Symmetric Binary B-trees 5

(iii) the length of the longest path (i.e., the ordinary height).

Table I presents results for trees of various sizes. The unsuccessful search
time G, is proportional to log n. In fact, from Table I(a) it can be seen that

C, = alogn + 8.

The values for @ and 8 can be derived from the data in that table. The graph of
Figure 5 shows the values of logn for trees of size 10, 50, 100, 500, 1000, 5000,
and 10000 nodes represented along the x-axis, and the difference (C, — logn)
95% confidence interval is represented along the y-axis. The values obtained for
trees of size greater than approximately 50 nodes can be shown to be
asymptotically independent of the number of nodes in the tree. (The number of
sample trees for each tree size was chosen in such a way that the variance is
approximately the same for all tree sizes.)

In order to obtain the bounds for @ and 8 we considered the points in the
graph corresponding to the trees of sizes 500, 1000, 5000, and 10000 nodes and
performed a linear regression. Thus, the approximate value for C,, to within the
precision of the simulation, is

Cy, = (1.0186£0.0010) logn + 0.0912+0.0114.

In addition, the following values are tabulated in order to estimate the cost
of maintaining the properties of SBB trees:

on insertion:

(i) the percentage of insertions that caused a transformation to be performed
(all four types of splits are considered separately), and

(i1) the number of nodes revisited to restore the tree property, counted from the
father of the node inserted into the tree to the node at which the retreat
terminated.

on deletion:

(iii) the percentage of deletions that caused a transformation to be performed (all
four types of splits are considered separately), and

(iv) the number of nodes revisited to restore the tree property, counted from the
node to be deleted from the tree to the node at which the retreat terminated.
Sometimes the retreat terminates immediately at the node to be deleted; this
is not counted as a retreat. For instance, if the node to be deleted is pointed
at by a horizontal pointer, the only operation to perform is to replace that
pointer by nil. (If the node to be deleted has two subtrees, it is first
interchanged with the rightmost node of its left subtree before deletion.)

Table I1 presents the insertion and deletion results. These results are
actually for trees of 10000 nodes only because they have shown to be
asymptotically independent of the number of nodes in the tree. (In fact, for trees
greater than approximately 50 nodes, the results approach these.)

N. Ziviani and F.W. Tompa

n Ca Variance

5 2.6667+0.0003 0.0000

10 3.5509+0.0032 0.0005

50 5.8549+0.0051 0.0030
100 6.8621+0.0053 0.0022
500 9.2234+0.0059 0.0014
1000 10.2435+0.0063 0.0010
5000 12.6056+0.0073 0.0010
10000 13.6273+0.0084 0.0009

(a) Expected unsuccessful search

n C, Variance

5 2.2000+0.0003 (0.0000

10 2.905740.0035 0.0005

50 4.9720+0.0051 0.0031
100 5.9307£0.0054 0.0023
500 8.2419+0.0059 0.0014
1000 9.2537+0.0062 0.0010
5000 11.60814+0.0073 0.0010
10000 12.6287+0.0083 0.0009

(b) Expected successful search

n Longest Path Variance

5 3.0000+£0.0198 0.
10 4.0229+0.0222 0.0225
50 7.0089+£0.0163 0.0311
100 8.0933+0.0330 0.0849
500 11.0267+0.0259 0.0261
1000 12.14001+0.0684 0.1216
5000 15.014340.0280 0.0143
10000 16.1800+0.1076 0.1506

(c) Expected worst case search

Table I SBB tree statistics (expected number of comparisons)

A Look at Symmetric Binary B-trees 7

C, = alogn+g
1 a=l a = 1.018640.0010
d 8 = 0.0912+0.0114
L’
B8
T | T T T T = logn
10 50 100 500 1000 5000 10000

Figure 5 Representation of the ¢, for SBB trees of sizes 10, 50, 100, 500, 1000,
5000 and 10000 nodes. The straight line corresponds to a linear
regression of the points corresponding to trees of 500, 1000, 5000, and
10000 nodes and the dashed lines correspond to choosing a and 8 at the
extremes of their 95% confidence intervals

N. Ziviani and F.W. Tompa

Mean Variance
Insertion:
LL split 0.09671+0.0007 0.0000
LR split 0.0976+0.0008 0.0000
RR split 0.0970+0.0007 0.0000
RL split 0.0968+0.0009 0.0000
Total splits 0.3880+0.0011 0.0000
Height increase 0.511940.0007 0.0000
Nodes revisited 2.410940.0019 0.0001
Deletion:
LL split 0.0585+0.0005 0.0000
LR split 0.0460+0.0005 0.0000
RR split 0.0585+0.0008 0.0000
RL split 0.0461£0.0006 0.0000
Total splits 0.2091£0.0011 0.0000
Height increase 0.0018+0.0001 0.0000
Ptr rearrangement 0.0583+0.0007 0.0000
Nodes revisited 0.85964+0.0014 0.0000

Table I Insertion and deletion statistics for SBB trees of 10000 nodes

A Look at Symmetric Binary B-trees 9

2.2. Symmetric binary B-trees versus AVL trees

A binary search tree is AVL if the height of the left subtree and the height
of the right subtree of any node in the tree differs by at most one (Adel’son-
Vel’skii and Landis, 1962; Knuth, 1973). In Bayer (1972) it was shown that (i) the
class of AVL trees is a proper subclass of SBB trees, and (ii) the upper bound on
the number of comparisons in an unsuccessful search is 2log(n +2) — 2 for SBB
trees, whereas it is well-known that the same upper bound for AVL trees is
1.441og(n +2) — 0.328. These two facts about SBB and AVL trees led Bayer
(1972, p. 296-297), and also Wirth (1976, p.264), to conjecture that the number of
comparisons for an unsuccessful search in an SBB tree is, on the average, larger
than in the AVL case, but less work is required to maintain the SBB tree
properties.

In order to compare the experimental results with similar results for AVL
trees, the experiments done for SBB trees were repeated for AVL trees. The
results for AVL trees coincide with the results of Karlton et al. (1976). The
number of comparisons needed to insert the n' item into an AVL tree is
approximately a'logn + 8 + for large n , where a' = 1.0176+0.0022, and
B = 0.0513+0.0247; recall that the same measure for SBB trees is approximately
alogn + B for large n, where @ = 1.0186 £ 0.0010, and 8 = 0.0912 + 0.0114.

As expected, less work is required to maintain the SBB tree property than
the AVL one. The number of splits per insertion is approximately 0.39 (against
approximately 0.47 for AVL trees), and the number of nodes revisited per
insertion is approximately 2.4 (against 2.8 for AVL trees). The height-increase
transformation for SBB trees is equivalent to the modification of the balance field
in the AVL case, and so this cost does not affect the comparison between them.

The number of splits per deletion is approximately 0.21 (against
approximately 0.21 for AVL trees), and the number of nodes revisited per deletion
is approximately 0.9 (against approximately 1.9 for AVL trees). Thus the number
of transformations per deletion for AVL and SBB trees are roughly the same, and
the number of nodes revisited per deletion is less for SBB trees.

3. GENERALIZATION OF SYMMETRIC BINARY B-TREES

Foster (1973) generalized the concept of AVL trees by allowing left and right
subtrees to differ in height up to some constant d > 1. SBB trees can be similarly
generalized as follows:

Let A be the maximum number of successive horizontal edges permitted in an
SBB tree (A represents the quantity of imbalance permitted in a tree). An SBB[A]
tree is any SBB tree that may contain up to A successive horizontal edges oriented
in the same direction.

+ The expected number of comparisons needed to insert the n th item into an AVL tree has been report-
ed to be approximately logn + 0.25 for large n (Knuth, 1973, p.460). As a matter of fact in our
experiments we found the coeflicient of logn to be different from one. The appendix B shows the values
for €, from which the above result was obtained in the same way the C,, for SBB trees were obtained
in the previous section.

12 N. Ziviani and F.W. Tompa

which gives
Np(A By =(QA+DQR"=1), for h > 0. (4)

Again the proof proceeds by induction on A. (4) satisfies (3) for the basis step,
h = 0. If it satisfies (3) for h = i, where i > 0, then

Ny (Ai+1) = (A+ l)(2i— D+ A+])2i+l—l
=@+t -@a+n
= (A+ 1)(2i+] -1

and thus satisfies (3) for # = i+1. Thus N,(AR) = (A + l)(2h — 1) satisfies (3).
Figure 9(b) shows a mintree of V,,(1,3) = 14 nodes.

O—Oé%@—@éo—%oo\v&o

(a) SBB[2] maxtree of h = 2, k = 4, and Ns(1.2) = 15 nodes

(b) SBB[1] mintree of h = 3.k = 6, and V,,(1,3) = 14
Figure 9 Example of a maxtree and a mintree

Consequently, the upper and lower bounds for the ordinary height
k = (A + 1)h of an SBB(A) tree of N(A,h) nodes is obtained taking logarithms in
(2) and (4), as follows:

A+1

N(Ah)
log(2A + 2)

+ 1

log(N(Ah)+ 1) < k € (A+ Dlog + 1

3.2. Experimental results

Experiments similar to those reported in Section 2.1 can be done for SBB[A]
trees using various values of A. In fact, using transformations that extend Bayer’s
original algorithms, experiments were carried on trees with A equal to 1, 2, 3. 4,
and 5. Comparing the results to those for generalized AVL trees (Foster, 1973), it
was discovered that SBB[A] trees do not perform as well on the average. For
example:

A Look at Symmetric Binary B-trees 13

O the average number of comparisons in a successful search (C,) of an
AVL[A] tree of 1000 nodes increases from 9.29 for A =1 to 10.37 for
A = 5. The same measures for SBB[A] trees increase from 9.38 for A = |
to 10.78 for A = 5.

O in AVL[A] trees the average number of transformations per insertion drops
from 047 for A = 1 to 0.045 for A = 5. The same measures for SBB[A]
trees drop from 0.65 for A =1 to 0.21 for A = 5.

O the average number of nodes revisited in updating an AVL[A] tree increases
from 2.8 for A = 1 to 3.3 for A = 5. The same measures for SBB[A] trees
increase from 3.3 for A = 1 to 4.6 for A = 5.

It must be remembered, however, that the performance of SBB trees depends
very much on the types of transformations employed. Thus the use of
transformations obtained by extending Olivié’s algorithms, as described in Section
2, may improve the performance of SBB[A] trees sufficiently to compare favour-
ably with AVL[A] trees. Such experiments remain to be done.

1. CONCLUSIONS

Symmetric binary B-trees have been shown to be reasonable structures for
representing dictionary information. Among balanced trees, experimental results
show that, on the average, SBB trees perform approximately as well as AVL trees
and can be generalized analagously to allow various degrees of imbalance. The
experimental results support the conjecture that SBB trees require less work than
AVL trees to maintain balance, but this is at the expense of search time. In fact,
the search time is only slightly longer and the maintenance time is in some areas
significantly less. Thus as a practical structure, SBB trees should be considered as
an option for representing dictionaries.

As for other balanced tree structures, what is most needed for SBB trees is
an analytical performance study. Other researchers have begun the study of the
expected behaviour for 2-3 trees (Yao, 1978) and for AVL trees (Brown, 1979;
Mehlhorn, 1979), and the approaches used can be applied in a similar analysis of
SBB trees, as started by Olivié (1980b). However, more research is required for a
better understanding of all these structures. It is hoped that a deeper understand-
ing of SBB trees will, in turn, yield insights into the behaviour of other balanced
tree structures. ’

Acknowledgements

We wish to acknowledge the many fruitful discussions with Gaston Gonnet
and with J. Howard Johnson, who helped particularly with the presentation of the
experimental results. Financial support from the Brazilian Coordenagao do
Aperfeicoamento de Pessoal de Nivel Superior (CAPES), the Universidade
Federal de Minas Gerais, and the Canadian Natural Sciences and Engineering
Research Council (NSERC) under grant A-9292 are also gratefully acknowledged.

14 N. Ziviani and F.W. Tompa

REFERENCES

Adel’'son-Vel’skii, G.M. and Landis, E.M. “An algorithm for the organization of
information”, Doklady Akademia Nauk USSR 146, 2 (1962), 263-266.
English translation in Soviet Math. Doklay 3 (1962), 1259-1263.

Bayer, R. “Binary B-trees for Virtual Memory™, Proc. 1971 ACM SIGFIDET
Workshop, San Diego (1971), 219-235.

Bayer, R. “Symmetric Binary B-trees: Data Structure and Maintenance
Algorithms”, Acta Informatica 1, 4 (1972), 290-306.

Bayer, R. and McCreight, E. “‘Organization and Maintenance of Large Ordered
Indexes”, Acta Informatica I, 3 (1972), 173-189.

Brown, M. “A Partial Analysis of Random Height-Balanced Trees”, SIAM
Journal of Computing 8, 1 (Feb. 1979), 33-41.

Durstenfeld, R. “Random Permutation”, Algorithm 235, CACM 7, 7 (July 1964),
420.

Foster, C.C. “A Generalization of AVL Trees”, CACM 16, 8 (1973), 513-517.

Guibas, L.J. and Sedgewick, R. “A Dichromatic Framework for Balanced

Trees”, 19th Annual Symposium on Foundations of Computer Science,
1978.

Karlton, P.L., Fuller, S.H., Scroggs, R.E. and Kaehler, E.B. “Performance of
Height-Balanced Trees”, CACM 19, | (1976), 23-28.

Knuth, D.E. The Art of Computer Programming, Vol. 3 (Reading, Mass. :
Addison-Wesley, 1973).

Ladner, R.E. Private communication, 1980.

Mehlhorn, K. “A Partial Analysis of Height-Balanced Trees under Random
Insertions and Deletions”, Report A 79/21, Universitit des Saarlandes,
West Germany, October 1979,

Olivié, H. “On the Relationship Between Son-Trees and Symmetric Binary B-
trees”, Information Processing Letters 10, 1 (February 1980a), 4-8.

Olivié, H. “Symmetric Binary B-trees Revisited”, Technical Report 80-01,
Interstedelijke Industriéle Hogeschool Antwerpen-Mechelen, Antwerp,
Belgium, (1980b).

Ottmann, Th. and Six, H.-W. “Eine neue Klasse von ausgeglichenen
Binarbdumen”, Augewandte Informatik 9 (1976), 395-400.

Wirth N. Algorithms + Data Structures = Programs (New Jersey: Prentice-
Hall, 1976).
Yao, A. “On Random 2-3 Trees, Acta Informatica 9 (1978), 159-170.

A Look at Symmetric Binary B-trees 15

APPENDICES

A. Experimental results for the original transformations

The results of a performance evaluation of the SBB insertion and deletion
algorithms using the original transformations (Bayer, 1972) presented in Figure 3
can be found in Table A.l and Table A.Il.

The performance of the algorithm using these transformations is clearly
worse than the new algorithm using the transformations presented in Figure 4.
The expected number of comparisons for an unsuccessful search in an SBB tree
with 5000 nodes using the original algorithm is approximately 12.8, and
approximately 12.6 using the improved algorithm.

A surprising result has occurred with the work required to maintain the SBB
tree property under insertion. The number of splits for insertion is approximately
0.65 (against approximately 0.47 for AVL trees and approximately 0.39 for the
new SBB algorithm), and the number of nodes revisited per insertion is
approximately 3.3 (against 2.8 for AVL trees and 2.4 for the new SBB algorithm).
In the absence of the discovery of the improved transformation algorithms, these
results would seem to contradict the conjecture mentioned in Section 2.2,

The number of splits per deletion is approximately 0.22 (against
approximately 0.21 for AVL trees and approximately 0.21 for the new SBB
algorithm), and the number of nodes revisited per deletion is approximately 1.6
(against approximately 1.9 for AVL trees and approximately 0.86 for the new SBB
algorithm).

N. Ziviani and F.W. Tompa

n C, Variance
5 2.6667+0.0003 0.0000
10 3.55794£0.0047 0.0010
50 5.8823+0.0084 0.0046
100 6.9325+0.0106 0.0058
500 9.33804+0.0125 0.0065
1000 10.3634+0.0135 0.0047
5000 12.8179+£0.0163 0.0062
10000 13.8600+£0.0437 0.0065

(a) Expected unsuccessful search

] Cy Variance
5 2.2000+£0.0003 0.0000
10 2.9137+0.0051 0.0012
50 4.999940.0086 0.0048
100 6.0018+0.0107 0.0059
500 8.3567+£0.0125 0.0065
1000 9.3738+0.0135 0.0047
5000 11.8205+0.0163 0.0062
10000 12.8614+£0.0437 0.0065

(b) Expected successful search

n Longest Path Variance
5 3.000040.0198 0.

10 4.1371+£0.0510 0.1183
50 7.30004+0.0568 0.2100
100 8.77004+0.0646 0.2171
500 12.01254+0.0714 0.2123
1000 13.4000+£0.1037 0.2800
5000 16.955640.1063 0.2647
10000 18.46154£0.2710 0.2485

(c) Expected worst case search

Table Al

SBB tree statistics (expected number of comparisons)

A Look at Symmetric Binary B-trees

Mean " Variance
Insertion:
LL split 0.1636+£0.0010 0.0000
LR split 0.1637+0.0009 0.0000
RR split 0.1633£0.0009 0.0000
RL split 0.1636+0.0009 0.0000
Total splits 0.654210.0009 0.0000
Nodes revisited 3.3022+0.0019 0.0001
Deletion:
LL split 0.0519+0.0005 0.0000
LR split 0.0594+0.0007 0.0000
RR split 0.052640.0006 0.0000
RL split 0.0595+0.0007 0.0000
Total splits 0.2233+0.0011 0.0000
Nodes revisited 1.598440.0010 0.0000

Table A.Il

Insertion and deletion statistics for trees of 5000 nodes

18 N. Ziviani and F.W. Tompa

B. Experimental results for AVL trees

The results of a performance evaluation of the AVL insertion and deletion

algorithms are presented in Table B.I and Table B.11.

n C, Variance
5 2.6667+0.0003 0.0000
10 3.5507+0.0030 0.0005
50 5.8161+0.0044 0.0018
100 6.8228+0.0049 0.0013
500 9.1737+0.0054 0.0011
1000 10.1923£0.0056 0.0010
5000 12.559340.0067 0.0010
10000 13.5693+0.0079 0.0008

(a) Expected unsuccessful search

n Ch Variance
5 2.20004£0.0003 0.0000
10 2.9060+0.0033 0.0006
50 4.932440.0045 0.0018
100 5.8911+0.0049 0.0013
500 8.1920+0.0054 0.0011
1000 9.2025+0.0056 0.0010
5000 11.5618+0.0067 0.0010
10000 12.570610.0079 0.0008

(b) Expected successful search

n Longest Path Variance
5 3.0000+0.0198 0.
i0 4.0000+0.0149 0.
50 6.9514+0.0226 0.0463
100 8.0000+0.0149 0.
500 10.9333+0.0401 0.0626
1000 12.0000+£0.0247 0.
5000 14.8941+0.0658 0.0958
10000 16.00004£0.0582 0.

(c) Expected worst case search

Table B.I AVL tree statistics (expected number of comparisons)

A Look at Symmetric Binary B-trees

Mean Variance

Insertion:
Total rotations 0.4657+0.0015 0.0000
Nodes revisited 2.7816+0.0015 0.0000

Deletion:

Total rotations . 0.2142+0.0010 0.0000
Nodes revisited 1.91524+0.0012 0.0000

Table B.II Insertion and deletion satistics for AVL trees of 10000 nodes

20 N. Ziviani and F.W. Tompa

C. Implementation of insertion and deletion algorithms for SBB trees

The SBB manipulation algorithms have been implemented in Pascal. A
node has four fields, as follows:

KEY: the key stored in the node

LEFT: pointer to the left son

RIGHT: pointer to the right son

BIT: a Boolean variable to indicate whether the edge that

points to the node is vertical or horizontal.

The parameters X and P for INSERT (DELETE) contain the key to be
inserted into (deleted from) the tree and the pointer to the root of the subtree in
which the insertion (deletion) must be performed. Whenever a node is raised to
the next level during insertion, the parameter H for INSERT is set to the value
HORIZONTAL to indicate that the pointer to that node has been made
horizontal.

The five procedures LLSPLIT, LRSPLIT, RRSPLIT, RLSPLIT, and
HTINCREASE are used in both INSERT and DELETE procedures in order to
remove two successive horizontal pointers. The following five procedures are used
locally in DELETE:

(o] LEFT_SHORT (RIGHT_SHORT) is called when a left (right) leaf node
that is referenced by a vertical pointer is deleted. (The subtree is short in
height after deletion.)

(o] LEFT_PTR__REARR(RIGHT_PTR__REARR) is used to rearrange the
nodes near the one just deleted from the tree and is called from the
procedure LEFT_SHORT(RIGHT__SHORT).

O If the node to be deleted has two subtrees the procedure DEL is called in
order to interchange it with the rightmost node of its left subtree before
deleting it.

The insertion and deletion procedures have been written as two procedures
each. The outer procedures INSERT and DELETE are non-recursive and allow
the shortcutting of the full recursion of the inner recursive procedures IINSERT
and IDELETE.

{ Tree search, insertion and deletion in a SBB tree }

type inclination = (verticalhorizontal):
ref = $node:
node = record
key: integer:
left, right: ref:
bit: inclination:
end:

procedure [lsplit (var p: ref: trans__type: inclination);

var pl: ref:

begin | rrans__rype=vertical => iransf. increase height }
pl := phleft: phlefi:= pltrightt plhright ;= p:
pltbit := ptbit: phbit = trans__type:

' A Look at Symmetric Binary B-trees

if trans__type = vertical then pl}.left}.bit := vertical;
p:=pl
end:

procedure Irsplit (var p: ref: trans__type: inclination);

var pl, p2: ref;

begin { rrans__tvpe = vertical => transf. increase height }
pl := phleft: p2:= pltright:
p24.bit := pt.bit: ph.bit := trans_type:
if trans__type = vertical then p14.bit := vertical;
plhright := p2hleft; p2t.left := pl:
ptleft := p2t.right; p2bright:=p; p:=p2

end:

procedure rrsplit (var p: ref, trans—type: inclination);

var pl: ref:

begin | trans__type = vertical => transf. increase height }
pl := phright: phright := pitleft: pltleft := p;
plt.bit := ptbit; pl.bit ;= trans__type;
if trans__type = vertical then ptt.right}.bit := vertical;
p:=pl

end:

procedure rlsplit (var p: refi trans__type: inclination);
var pl, p2: ref;
begin | trans__type = vertical => transf. increase height }
pl := phright: p2:= plh.left:
p2t.bit := phbit: plbit := trans_type;
if trans__type = vertical then p14.bit := vertical;
pitleft := p2f.right; p2t.right := pl:
ph.right := p2tleft: p2tleft:=p. p:=p2
end:

procedure htincrease (var p: ref):

begin pt.right}.bit := vertical:
ph.lefth.bit := vertical

end;

procedure insert (x: integer:; var p: ref: var h: inclination);
label 999: { Shortcut full recursion of iinsert }

procedure iinsert (x: integer; var p: ref; var h: inclination);
var b: inclination;
begin
if p = nil
then begin | key is not in the tree; insert it }
new(p);: h := horizontal:
phkey := x; ph.bit := horizontal;
phleft := mil: pt.right := nil;
end
else
if x < ptkey
then
begin
iinsert(x. p}.left. h);
if h = horizontal
then if pt.bit = horizontal then h := vertical else goto 999
else
begin b := vertical.
if pt.right # nil
then if pt.right}.bit = horizontal then b := horizontal;
if b = horizontal

then begin htincreuase(p); pt.bit := horizontal: h := horizontal end

else if pf.leftt.left # nil

21

22 N. Ziviani and F.W. Tompa

then if pf.leftt leftd. bit = horizontal
then begin llsplit(p.horizontal); goto 999 end
else begin Irsplit(p.horizontal); goto 999 end
else begin Irsplit(p.horizontal). goto 999 end
end
end
else
if x > ptkey
then
begin
tinsert(x, pt.right. h):
if h = horizontal
then if pt.bit = horizontal then h := vertical else goto 999
else
begin b := vertical;
if pt.left # nil
then if pt.leftd.bit = horizontal then b := horizontal:
if b = horizontal
then begin htincrease(p); pt.bit := horizontal: h := horizontal end
else if pt.rightf.right # nil
then if pt.rightf.rightf.bit = horizontal
then begin rrsplit(p.horizontal): goto 999 end
else begin risplit(p.horizontal); goto 999 end
else begin rlsplit(p.horizontal): goto 999 end
end
end
else begin writeln(’ Key *. x. ” is already in the tree’); goto 999 end
end; liinsert}

begin {insert}

linsert(x, p. h):

999: | Shortcut full recursion of iinsert }
end: {insert}

procedure delete (var x: integer: var p: ref):
label 1001 { Shorteut full recursion of idelete }

rearr (var p: ref);

procedure left__ptr

var pl: ref;

begin pl := pt.right: phright := pif.ieftd left;
pth.leftfleft := p; pt.bit := horizontal:

plt.bit := vertical: p:= pl

end:

procedure right__ptr__rearr (var p: ref);

var pl: ref;

begin p1 := phleft: phleft .= plf.rightd.right;
pld.righth.right := p: pt.bit := horizontal:
plb.bit ;= vertical: p:= pl

end;

procedure idelete (var x: integer: var p: ref);
var q: ref:

procedure left__short (var p: ref):
begin { The left leaf was deleted and the tree is left short in height }
if ptleft # nil
then if pt.leftf.bit = horizontal
then begin pt.lcftf.bit := vertical: goto 1001 end;
if pt.rightt.bit = horizontal
then
begin left__ptr__rearr(p):
if pt.lefid.left right # nil
then

A Look at Symmetric Binary B-trees

begin if pt.lcfttleftd right}.bit = horizontal
then begin if pf.leftd.right » nil
then if p}.leftd.rightf.bit = horizontal
then
begin htincrease(p}.left):
pt.leftf.bit := horizontal;
goto 1001
end:
Irsplit(pt.left.horizontal):
goto 1001
end
else goto 100!
end
else goto 1001
end
else
begin p}.rightt.bit := horizontal:
if pt.rightf right # nil
then
begin if p}.right?.right}.bit = horizontal
then begin rrsplit(p.vertical): goto 1001 end
else if pt.right}.lefty.bit = horizontal
then begin risplit(p.vertical): goto 100! end
else if p}.bit = horizontal
then begin p}.bit := vertical: goto 1001 end
end
else if pt.rightt.left # nil
then begin risplit(p.vertical): goto {001 end
end
end: {lefi__short}

procedure right__short (var p: ref):

begin { The right leaf was deleted and the tree is right short in height }

if pt.right # nil
then if pt.right}.bit = horizontal
then begin p}.right}.bit := vertical: goto 1001 end;
if p}.left}.bit = horizontal
then
begin right__ptr__rearr(p):
if pt.right}.right}.left # nil
then
begin if pt.right}.right} left}.bit = horizontal
then begin if p}.right left # nil
then if p}.rightt.leftd.bit = horizontal
then
begin htincrease(p}.right):
pt.right} bit := horizontal:
goto 1001
end:
rlsplit(p}.right horizontal);
goto 1001
end
else goto 1001
end
else goto 1001
end
else
begin pt.left} bit ;= horizontal:
if ptleftt.left # nil
then
begin if pt.left} left}.bit = horizontal
then begin !Isplit(p.vertical): goto 1001 end
else if pt.leftd rightt bit = horizontal
then begin Irsplit(p.vertical); goto 100! end

23

24 N. Ziviani and F.W. Tompa

else if pt.bit = horizontal
then begin pt.bit := vertical; goto 1001 end
end
else if pt.left.right # nil
then begin Irsplit(p.vertical); goto 1001 end
end
end: {right_short}

procedure del (var r: ref);
begin { The node to be deleted is interchanged with rightmost node of left subtree |
if rf.right # nil
then begin del(r}.right): right_short(r) end
else
begin
gtkey := rtkey: q:=r1 r:= rhleft;
if gf.bit = horizontal -
then begin dispose(q). goto 1001 end
else begin dispose(q):

if r # nil
then begin rf.bit := vertical; gote 1001 end
end
end
end:
begin {idelete)
if p = nil
then begin writeln(’ Key ’. x. * is not in the tree’); goto 1001 end
else
if x < plkey
then begin idelete(x. p}.left): lefi_short(p) end
else

if x > phkey
then begin idelete(x. pt.right); right__short(p) end
else
begin
q:=p
if gf.right = nil
then begin p : = g}.left:
if qt.bit = horizontal
then begin dispose(q); goto 1001 end
else begin dispose(q):
if p * nil
then begin pt.bit := vertical: goto 1001 end
end
end
else
if gf.left = nil
then begin p := gt richt;

dispose(q):
if p # nil
then begin pf.bit := vertical: goto 1001 end
end
else begin del(qt left); left__short(p) end
end
end; [idelete}
begin {delete}
idelete(x, p):
1001: { Shortcut full recursion of idelete }

end;

	

