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0. INTRODUCTION

Since the early Nineteen-Sixties,various systems have been developed for symbolic '
computation,Between them,these systems encompass a wide range of analytical and
algebraic calculations,surpassing by far the unaided efforts of human calculators.
Naturally,a crucial factor is the quality of the algorithms used;and the versa-
tility of the hardware/software packages has been achieved only gradually—as a '
result of experiment.Special languages have been designed to allow the I/0 to be as
'natural' as possible in some packages;while others seek to extend high-level nu-
merical languages just sufficiently to include the symbolic facilities required.AZE—-
thoughmany problems must be ovefcome before symbolic computation syskems are as
readily available as,say,FORTRAN or ALGOL,recent design improvements and new algo- '
rithms have been so successful that a survey of systems,and of their potential use
© in nontrivial mathematical problems is overdue.Previous reviews in this area(Barton
and Fitch(1972a,b)Cohen,Leringe and Sundblad(1976),Hearn(1977),Brown and Hearm
(1978),d'Inverno(1978) )have omitted some systems altogether,and concentrated on
problems in general relativity,quantum electrodynamics and celestial mechanics,
where the size of the computations is the main obstacle,the mathematical procedures
being fairly straightforward.loreover,they have not described ihe structure of the
languages,or their mathematical scope,except in the barest outline( though the two
papers of Barton and Fitch do contain good description of some of the bagic algo-
ritiuns——-as of about 1971).There are also shorter articles by Miola(1976q,b——in
Italian),and Sundblat(4976),but these do not alter the position.

The impact of the latest developments in symbolic computation should not be con-
fined to the improved performance of comparatively simple but tedious manipula-
tions.Rather,the increasingly sophisticated facilities constitute both an invita-

tion and a challenge to mathematicians to (re)forrulate procedures as construc—

tively as possible,to exploit this powerful aid in calculation.There are signs of
some movement in this direction.The group theory system,GROUP,with its associated
language ,CAYLEY( Cannon( 1 976) )is highly developed;Stoutemyer{{1974a,b),(1975),
(1977a,b))has adopted an analytical approach to certain problems in optimization,
calculus of variations,solution® of equations in finite terms,error analysis,and

* » analytical solution of integiﬂ'equatiwns.Davenporb(1979a,b) and Trager(1979),
building on earlier work of Riéch((1969),(1970))are developing effective methods
for the integration of algebraic functions(though most of the mathematics is hid-
den: the aim is to provide a strong integration facility rather than to apply sym—
bolic computation in a new field).However,the scope for development in this area

is enormous;and the level of sophistication now reached makes it important to iden-
tify and outline potential fields of application where complicated mathematical
constructions may be implementedsA start in this task is made in Section 15.
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It may be argued very strongly that the dominant ingredient in all xpathemétical
activity is approximation--identities of all kinds,however important,forming at any
time a 'small' subset of special cases within a morass of partially solvable prob-
lems.Although this idea is palpable in computational contexts,its validity within
realms of mathematics apparently remote from computation is seldom recognized,and
many jnteresting lines of investigation are thereby ignored.For instance,a matter
of geat interest is the definition of 'spaces of problems',and the study of poss~
ible topologies for such spaces.The use of symbolic computation,in a suitably gen-
eral way,camnbined with techniques of complexity theory( especially those based on
measures of 'data information')seems likely to produce fundamental results heres’
(5ee the conference proceedings edited by Traub(1975,1978),and the monograph by
Traub and Wozniakowski(1980)for details of the information-based approach,and for
related papers and references on analytic and computational complexity.)

One of the aims of this paper is to show that symbolic computation may be used as
a standard resource in mathematical research,bringing within the realms of prac-
tical calculation many effective procedures of considerable subtelty which are at
present of purely formal interest{as they are too cumbersome to use,except in
essentially trivial cases)and prompting the developnerit of such procedures in
areas so far almost devoid of constructive content.This aim entails the identi-
fication of mathematical schemes where symbolic computation,properly used,could
play a basic(often,crucial)role.There are several novel elements in the approach
adopted in Section 14,amd in the problems discussed in Section 15.They are inten—
ded to stimulate interest,rather than to arrive at best possible formulations,
since it would be premature to seek definitive results at this early stagee.

The other principal aim is to give outlines of all the established systems,with
accounts of the corresponding languages and of the mathematical processes covered.
On this level,it is possible to assess therelative scope of the systems,and to
indicate those most suitable for particular types of calculations.Further comparis-
‘ ons may be made on the basis of various attributes related to the writing and run-
ning of programs.Hmever,modification.s are made almost daily in details of design,
and the only reliable way to ascertain the current situation for any of the pack-—

ages is to consult members of the design eroups( the addresses are given in the

Bibliography).Even so,there are linguistic peculiarities and limitations in scope
which transcend such fine-structural details as may be in a constant state of
flux; and R is these macrostuctural characteristics{which largely determmine the
system{s) best suited to particular 'users')that are of primary concern here.
Since relatively few people are familiar with even the basic ideas of symbolic

A computation, the most sensible course seems to describe one system in comparative
detailjafter which the somewhat briefer descriptons of :o0ther systems will be com-
prehensible,and adequate for the ldentification of special fcatures.



It should be clear that 'the optimal choice of systems' is seldom well—defined.
There are so many competing requirements that it is most unlikely for any system

to be optimal in relation to all of th em.Examples of important characteristics are:
size of memory;speed of operation;clarity of I/0;ease of practical use;mathematical
scope;algorithms usedjediting facilitiesjexistence of interactive(as opposed to
batch)modes;quality of interface with high-level nunerical languages;portability;
potential for user-modification;error detection_facilities;ease of learningeThis
is far from bzing an exhaustive list,but it is apparent that some,at least,of these
attributes are incompatible.So the problem of system design is one of skilful com-
promise—which accounts,in part,for the variety of packages available,matters of
emphasis determining their dominant characteristicss ’

Unfortunately,it is impractical to perform calculations in several stages,on dif-
ferent systems,since the variations in 1/0 do not allow this,and the use of com-
pilers or preprocessors would be prohibitively complicateds.Thus,users must decide
once and for all which single system to use in a given calculationsIt will become
clear that,with some knowledge of the list processing language,LISP(MacCarthy et
al.(1959),Berkeley and Bobrow(1964),Weissman(1967),A11en(19 ),Maurer{1972),LISP
Machine Manual(MIT,19 })a user can add facilities to some packages wi thout undue
effort.Other systems,although possessing a far larger stock of built-in routines,
can be modified only with extreme difficulty.This must be borne in mind in any
discussion ofthe comparative merits of systemseFlexibility is especially important
in the most sophisticated mathematical applicationse. ’

My own interests lie in constructive mathematics,rather than in system design.The
preferences I express represent judgements on the mathematical scope,versatility
and outward logical coherence of the packages.Questions of relative cost{ under
near—optimal use),elegance of internal organization or subtelty of editing or de-
bugging facilities,though undoubtedly important,are outside my purview and perhaps
deserve an article of their owneBasic information of this kind may be found in the
manuals,and in the sporadically issued newsletters and technical reports(see also
the review articles referred to abovej.iWhen all relevant aspects of performance -
are taken into account,no single system is absolutely the best j;and itis notable
that the opinions of designers about their own and rival systems cannot be taken

_ always at face valuelHowever,a tolerable element of competition adds to the cham
of the subjecteIn view of my emphasis on mathematical procedui‘es of high complex—
ity,I shall describe the MIT system,NACSYMA(The Mathlab Group,1968 onwarcs)in
somewhat greater detail than is given for the others «As a self-contained pack—
age,MACSYMA offers the most built-in facilities and,by briefly describing these,
one gets an idea of the scope attained(and potentially attainable in some other

systems,given sufficient user-participation.See Sections 12 and 13 for more re-
marks about this)e



Thus,I do not claim to zive an objective ordering of systems(indeed,it. is-clear
that no absolute ordering can be justified).On the other hand,outstanding merits
are mentioned and obvious defects are identifiedeReaders are referred to the des-
ign groups on all matters of technical implementation,availability and current
states of development.(As examples of attempts at 'semi objective comparison',
based on timings,two tables,due to Cohen et al.(1976)and d'Inverno(1978),are re-
produced in Section 16).

It is hoped that the cutlines given here,though brief,contain all of the essent-
ial information that does not depend on the particular implementations of each
system,s0 that potential mathematical users can decide which system(s) to use.It
appears that the majority of computer scientists(let alone mathematichans in gen—"~
eral)are practically unaware of the existence of symbolic computation.This is
especially regrettable because the most fruitful path for research in this area
lies in the extension of combined symbolic and numerical facilities.All of the
examples considerad in Section 15 could—and should—lead ultimately to calcula-
tions_with a numerical component.This paper should be understood as an outline de-
scribtion of symbolic computation systems,viewed from the perspective of MACSYMA,
and emphasizing nontrivial mathematical procedures.

The layout of tﬁe paper is as f‘ollo.vs;Section 1 contains a kistorital sketch,
giving an idea of the pioneering work in this field,and of the key role played by
LISP.Thé outline of MACSYMA is given in Section 2,covering briefly the mathema-
tical scope and certain aspects of the data-handling and evaluation procedures.The
more a%l?«rfgiﬁtf? outlines,Sections 3 to 10,cover,respectively ALTRAN(Brown et al.,
{19681 973))‘;;§lushkov et alo(197131 978));CAMAL(Fibch(1975));FORMAC(Tobey and Sammet
(1967) jKnoble and Bahr{1973));REDUCE(Hearn(1973));SAC~1(Collins et al.(1976));
SCRATCHPAD(Griesmer,Jenks and Yun{1975)),and SYMBAL(Engeli(1966~)) +Of course,all
of these systems have been developé:j by many different people,at various times;the
citations here refer only to those workers associated most closely with particu-
lar packageseSection 11 contains short descriptions of certain special-purpose
packages,among them,those for relativity,and for finite groups.In Section 12,
remarks are made on relative scope(including comments on algorithms that have

been developed largely for use in symbolic computation),while a discussion of

I/0 and problems of simplification is given in Section 13,together with repro-
ductions of the listings and sample I/0 of programs for various systems.



The potential use of symbolic computation as an aid in general mathematical re-
search is discussed in Section 14,where the design of an 'environment for inves-—
tigation' is emphasized.In Section 15,a brief discussion is given of diverse ex—~
amples{ of which many more could have been adduced,but for lack of space).I am
developing some costructive routines,on which experimental programs may be based,
though this is a longterm project.Hopefully,this article will stimulate others to
study analogous problems,the ultimate aim being to accumulate a library of pro-
cedures ranging widely over mathematics and its applications.The examples have
‘been chosen deliberately to include many different mathematical fields,as this
adds point to my claim that symbolic computation can be used effectively as a
standard research tool.

Of particular importance is te attempt to incorporate fundamental results in
Yoperatimal form'.This is a significant extension of the idea of ‘'side relations',
which are used mainly as aids to simplification.It requires that modifications of
the system mey be made by a user fairly easily( though there is also scope for
this approach in large 'fixed' systems).The aim is to allow various results(in the
form of 'thebrans')to be applied~-for instance,in the construction of error esti-
mates for approximation schemes-—the choice of these results being dictated by ‘the
problem under consideration.Several systems have the potential for extensive use
of this strategy,which largely characterizes 'mathematical',as distinet from
'numerical-computational',amalysis.Indeed,to emphasize this distinctivon,I intro-
duce the temn symbolic analysis to describe the fullest simulation by computer of
mathenatical activity(in all fields). '

The variety of the examples is so great that space{and competence)allow only .the
barest indications of effective procedures to be given;but these are complenehted
with references and suggestions for more detailed schemesoIn fact,many of the ex—
amples were suggested by the existence of potentially éonstructive but totally
impractical treatments,to which references are given.WWith the help of symbolic
computing,some of these methods may be converted into powerful approximation pro-—
cedures.ithat is essential is the effective reduction of each scheme to a set of
(coupled)subroutines that are covered{at least,in principle)by existing symbolic
computation packages——or else,have a good chance of being covered in the near
future.The practicality of these schemes can be judged only after programs have
been developed for them;but the task of furnishing potentially suitable mathe~
matical algorithms is in itself of great importance,as many numerical analysts

have recognized in recent years(especially in the solution of partial differential
equations—see,e.g.,Wendland(1979) ) .Naturally, the existing libraries of subroutines
make a substantial contribution(they provide many of the basic facilities upon
vhich more elaborate algorithms depend);but they hardly touch on any of the ex~—
mples considered here,being concerned mainly with the efficient selution of prob
lems involving linear algebra and ordinary differential ecuations,using well known
methods,.



The object of Section 15 is to draw the attention of matbmaticians to a plethora
of fascinating possibilities for the use of symbolic computation.Up to now,there
have been remarkable advances in system/language design,and in basic algebraic/
analytical algorithms;moreover,the computational results in several areas of
theoretical physics and applied mathematics have been spectacular.However,the
mathematical scope of all this activity has been extremely limited,and it is this
scope that the present article aims to enlarge. -

In Section 16,0bservations are collected on aspects of symbolic computation lying
on the boundary between computer science and mathematics.These include efficiency
and algor"i_tm:‘,desigri,and same possible criteria for {objective)comparison of
systems.Finally,Section 17 is devoted to conciuding remarks,biblidgraphical notes
and comments on some of the items given in the list of references.

Before concluding this introduction,I should explain what is meant,in this paper,
by constructive mathematics,since there are many interpretations of this term.The
essential characteristics of' constructiveness,in all of the following considera-
tions,is that{in principle)effective implementations of procedures(possibly,invol-
ving many different types of approximations)are realizable--with associated{ inter—
mediate and cumulative)error estimates.This requirement is in line with that of

' approximate realizability' of abstract procedures,in forms amenable to symbolic
analysis.Although it-is demonstrated only oceasionally that particular error esti-
mates are valid,no procedure is considered for which the potential determination
of suitable estimates is not not obviously feasible{ the crucial problem being to
derive them in forms optimal for the investigations at hand).This pragmatic usage
of the word 'constructive' contrasts sharply with the more formal,and rigid,require-
ments of Intuitionisn see,e.g.,Beth(1968)),and,of *constructive analysis',in the
sense of Bishop(1967)--see,also,Bridges(1979).Yet another variant of constructivism
stems from the systems of 'constructive logic' developed(mainly)by Soviet mathemati-~
cians( see,e.g. ,Idel! son{1964) ,5anin(1964) ,Phan(1970)) (ALl of these approaches to
constructivity have attractive features,but they are(in spite of their apparently
practical basic aims)highly theoretical and restrictive.Even though there are cases
where a suitable constructive fornmilation of a problem yields error eétimates,while
the classical version does not do so,the use of such formal constructive methods in
symbolic computation must await their systematization,and simplification;as well as
a broadening of the range of procedures known to admit strictly constructive real-
izationse



1+ BISTORICAL SKETCH.REMARKS ON THE ROLE OF LISP

1+1 The advantages of symbolic computation.

Before indicating how the subject has developed,I offer some arguments to justify
the use of symbolic computing.For the majority of computer users,!computing® still
means the mechanical performance of numerical procedures,and even those people

who have seen systems now in use tend to think of tirem as largely irrelevant to
practical calcuiation.l!mever, this view is quite mistaken.It is true that,in many

cases, the aim of a calculation is to obtain numerical estimates for specified
properties(of a model of some phenomenon};but the point at issue is at what Stage
in the calculation numerical values are assigned to the Var‘iables.By delaying as
far as possible the numerical phase,one can avoid the needless repetition of a
chain of computations,where each repetition is required purely to cover changes in
the numerical values of a few basic variables.If an analytic form of the results
can be obtained then. the subsequent use of a succession of numerical values for the
original daté_b. achieves the basic aim and reduces the chances of round-off error or
machine errorJioreover,from the form of the analytical results,predictions may be
made which coﬁld never be made on the basis of purely nimerical output.This is seo
especially where one is dealing. ‘with functions dependent on parameters that do’ not
enter dxrectly into the- n'am calculation.The form of this parameter dependence
cvan_no_tvbe deduced from numerical values . alone,m a reliable ways -y, .
Anoiher reason for using symbolic computing ,even in a problem where the condit-
ionsv Just adumbr'ated'do not hold,is that it may be possible to circumvent the in-
stabllltles inherent in the numerical calculation(if this is done from scratch).For
instance,it may be that the analytical form of some integral is known,but that,
when the correspending definite integral is required,between specified limits,
singularities occur.“iany similar examples could be given.

ﬂext. o ,there is,.the obvmus use of- symbollc computmg to do calculatlons that
would take too long if done *by hand'(typical calculations in relativity are of.
this Lmd-—-see,e.g. ,at Inverno(1978)).For an account of current activity in applied
mathematlcs and theoretical phys.tcs see Fltch(1979).For an elaboration of the iss-—
ues.raised here,see Hearn(1971).

Lastly,‘there 'is " the us'e'of s_ymboliq computation as a mathematical tool-—the
preqccupatior{ of this paper.The main argumehts for,and problems in,this area are
discussed in Section 14,and illustrated in Section 15;but the biais of the paper is
strongly towards this mode of computation,and this coleurs the system outlines,
since it is the mathematical facilities,rather than thé precblems or limitations in
their implementations,that are the major concern.It is not possible to combine

these two points of view in an acceptable way;nor is it necessary to do soO.
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1.2 Historical sketch.

(The following outline is based mainly on the book of Sammet(1969))

The fTirst recorded attempts to write programs for symbolic computation appear to
be those of Karimanian(1953) and Nolan(1953),who wrote programs for symbolic dif
ferentiation.Evidently,they did not realise the implications of their work,as
there was no follow-up or extension,and the subject was forgotten until many years’
later.The first full system was FORMAC~1,an extension of FORTRAN,designed by
Sammet and Tobey(1962-64);a later version(!1967)was PL-1 based.Emphasis was placed
on simplicity of use,rather than scope or power.The arithmetic was rationalf though
the interface with FORTRAN did allow floating point arithmetic on IEM 7090 models).
The FORMAC/FORTRAN manual appeared in 1965,and the FORMAC/PL-1 version in 1967.

As an example of the use of FORMAC/PL-1,consider the solution of the system of
coupled differential equations dyi/ dx = f‘i(x,y,l sooe ,yn),all y; being functions
of x,with yi( 0) = yio given constants,and each f‘i a polynromial in its arguments,
for £ = 1,...,n.(See the FORMAC-73 manual for a detailed treatment).In spite of
its apparent difficulty,all that is needed to solve this problem is substitution,
and integration of polynomials in one indeterminate,x.For the program,one speci-
fies the number of equations,the proposed number of iterations,the initial values,
y.o,and the coefficients of the polynomials, f' «If one puts, initially,y. = yio,
‘on the right side of the given equatlons,mtegmtes the . (x,ylo y- ...,yno) 935S
polynomials in X,to obtain new polynommls,y( )(x),aftcr‘ which the y, ;0 are re-
placed{on the right side of the equations) by the y( ) (x)—and so0 omyuntil the

k th lterace,y( )(x) is obtained,k having been specified.

The assignment of values,expressions,etc.,in FORIAC is governed by the LET operator
~~€¢Ze,LET X = A + Be.Similarly,the FORTRAN READ and WRITE operators govern FORMAC
I1/0.A good general survey of early work in algebraic manipulation{with some stress
on FORMAC)is Sammet(1967).An essential feature of almost all symbolic computation
systems is the reduction of the data to an encoding or mapping of symbols into in--
ternal representation of integers,or of lists of integers( coefficients,exponents,
etc. ) It is readily seen that most algebraic/analytical data may be transformed
into lists(or lists of 1lists,...),and that operations on these’lists mirror the
more familiar mathematical operations.(Basically,it is a matter of replacing all
infix operators by prefix operators).This is the main reason for the great power
of LISP in the design of symbolic computation systemse
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A crucial problem for any system is that of simplification.in the early s&stens,

this was very rudinmentary,and current systais are far more sophisticated.However,
most of the fundamental questions arising in the design of effective symbolic com-
putation systems were formulated and studied in connection with FORMAC.In this
sense,FORMAC is of importance(and its latest versions are competitive in many
kinds of calculations).A problems closely related to that of simplification is to
control the growth in intermediate expressions formed during a calculation.There
are various facilities to reduce the size of expressions,by cancellation,collect~
ing similar terms and imposing side-relations{such as trigonometrical identities).
In CAMAL,a use-count facility ensures that an expression no longer required is
‘unset'(i.e.,the store allotted to it is cleared).REDUCE,MACSYYA and SCRATCHPAD
are based on LISP,so "garbage collection' is incorporated automatically.More de-
tailed remarks on these matters will be found in discussions of individual sys-~
tems,and in Sections 412 and 13. ) '

The next system of historical importance to be implemented was MATHLAB,the fore-—
runner of MACSYMA(See,e.g.,Manove et al.(1968)) MATIILAB was an experimental,inter-
active(on-line)system written in LISP,and including a facility for rational func—
tion integration.A mathematically questionable,but linguistically interesting,ex—
ample of the use of MATHLAB,illustrating some powerful,basic routines is as fol-
lowseThe aim is to choose a parameter,h,such that the expectation of the random
variable,p{u;h)-~where u has probability density f(u;x,y)—is maximal for X = y.
The program given seems to put x = y hefore evaluating the x-derivative and equa-
ting this to Oj;and the second derivative is not considered at all.Nevertheless,the
key instruction in the ‘program is of great interest,foreshadowing as it does some
of the most useful facilities in the more recent systems.The key line is:

¥ SOLVE( * sUB( Y, X, ' DERTV(DEFINT( ' P1*'F(U), U, Y-5*Y, X)+ ' DEFINT( ' P2*'F(U), U, X, Y+ 5*Y) ,
' X)) =0,H) S

It is assumed that the density,f,has support[y—sy,y+sy] sand that p has distinct
forms for u<x and ujXx,these forms being denoted by P, and pz.All of this is
transcribed into upper case for programming purposes.This single line of program
directs the system to solve for h the equation obtained by differentiating the in-
tegral(from y~-sy to y+sy) of the product,fp,as a function of u,then putting x=y
and setting the final,symbolic result equal to O.Notice that many operations are
compressed into one line of program;so that,if such procedures are combined with
various loop constructions,the subsequent demands on storage are likely to be
great—and easily overlooked!
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Another early system(probably the first one having a strong mathematical orien-
tation)was FLAP,writt,en in LISP for use in a U.S.Naval research laboratory.This
~had "atoms', 'lists of expressions', expressions of the form 'A = B' swhere A and -
B are expressions,and 'functional expressions' of the form f(x,‘ ,...,xn) .There
were facilities for multilinear and exterior algebra,and the system was used
to study integral transforms, tranformation properties of families of matrices,and
related matters of use in solving partial differential equations.

SYMBOLIC MATHEMATICAL LABCRATORY was designed as a PhD project by W.A.Trlart.ln(niIT,
1967).The coding was in LISP.An unusual feature was the possibility of using a )
'light pen' shointing at a display screen,to give extra instructions during a cal-
culation.(This facility is used also in ANALITIK:see Section 3).A typical applica-
tion was to the perburbative solution of nonlinear ordinary differential equations
such as %4 0% = ex® , with x(s) =3Sex (s),and ts) -EeJt (s),the dots de-
noting differentiation in t.Similar appllcauons( in celestial mechamcs)were made
using CAMAL,which was designed mainly to solve such problems.REDUCE,on the other
hand,was developed to handle calculations in high cnergy physics(e.ge,those invol—
ving 'Dirac matrices' and 'Feynman diagrams' J.It is of interest to trace the influ—

ence of these primary aims in the present(general-purpose)CAMAL znd REDUCE systemse.

The following list includes early systems for symbolic or numerical/symbolic com-
‘puting.Most of these systems have disappeared,but some of their features have been
incorporated in the latest packages.

ALGY(Bernick et al.(1961),on Philco 2000) ;elementary factorization;simplification
of products of fmgonometmcal functions.

FORMAC(Sammet and Tobey(1962-64)~~See Section 6 for the current version.
NMATHLAB(MIT Artificial Intelligence Group.See Bobrow(1968)pp 86-97)

ALTRAN( 3rown,Bell Labs.,(1961-66)—This initial version was essentially a set of
call routines for the algorithms of ALPAK,written in FORTRAN.(See Section 3).

FLAP(U.S.Naval Laboratory}). Wmtten in LISP for study of partial differential
equations.

MAGIC)PAPER(T}us system used light~pens,push-buttons and 'scrolls'(similar to
files).

SYMBOLIC MATHEMATICAL LABORATORY(Mart1n(1 967) )--Al lowed rational function
integration,and the use of a light-pen.
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FORTRAN IV;FORMULA ALGOL;NELIAC(Navy electronics system-~created its own .compl-
lers);MAD(Michigan Algorithm Decoder--Graham(1959));JOSS(an early on-line system);
BASIC(Kemeny et al.(1965);MIRFAC(Gawlik,1967.See Gawlik(1 963) for background);
KLERERSMAY( Columbia University,1963.See Klerer{1964,1965));CPS(Conversational
Programming System,on-line,PL/1-like) ;MAP, AMTKAN, CULLER-FRIED, LINCOLN RECKONER
(all of these systems,developed,in part for NASA,are compared in 'The Status of
Systems for On-line Mathematical Assistance',Proceedings of the 22nd ACM National
Conference,?967);MADCAP(See Goodman(1 962) ) ;COLASL(See Balke(1962):extensive

choice of symbols,and combination of geometrical shapes using t superposition').

Further remarks on most of these systems may be found in the book by Sammet(1969).

4.3 The R8le of LISP

There are,essentially,two levels at which a new symbolic computation system may
make use of existing computer languages,namely,for I/0 and for internal organ-
ization.Although the symbolic facilities regire some new constructional features,
it has been possible,in certain systems,to make practically no changes in the I1/0
language .ALTRAN, FORVAC and SAC-1 are in this category( though SAC-1 is hardly to be
regarded as a language at all,being,rather,a set of FORTRAN calls for subrou=’
tines.See Section 8).These systems are extensions of FORTRAN or PL/1 .Similarly,
ANALITIK,MACSYMA,REDUCE and SYMBAL have I/0 languages based on ALGOL,and the CAMAL
I/0 language is based on the original 'Autocode’.However,the innovative content of
the ALGOL-based languages is far greater than for those modelled on FORTRAN.

In one obvious respect direct extensions have an advantage:they are easy to Jearn
for anyone familiar with the basic numerical language.Against this one must set
their relative lack of optimality in handling 'purely symbolic expressions(in com-
parison with languages designed specially for this purpose).In this respect,
SCRATCHPAD and ANALITIK are exceptionalteach was designed more or less from
‘scratch,with. minimal reference to existing languages,in relation to basic design.
Moreover, themost fundamental parts of ANALITIK are implemented in hardware.

.

Nevertheless,most of the I/0 lang;tages for symbolic computation have been influ-
enced markedly by the established high-level numerical languages—both as to syntax
ahd procedures.On the other hand,in the matter of intemal innplenentdtion of these
procedures,there is less divergence than is found at the I/0 stages:either there
is no distinct internal language(apart from the machine language for the computer
in use),as in ALIRAN,FORMAC and SAC-1;or else LISP is used.The fundamental suita-
bility of LISP for symbolic computation was touched on in Section 1.The data,
coded into lists(or,lists of lists,...)may be manipulated in this form until a
'‘result' is retrieved,by means of a two-way translator between LISP and the L/0
languages.For this reason,it is not necessary to know LISP in order to use a system
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(except for certain specified facilities in REDUCE),but without some acquaintance
with LISP,sane precedures may seem unmotivated.Therefore,a few remarks on the
" structure of LISP will be made now.Detailed treatments are given in the books

referred to in Section O.

LISP,originally designed by J.cCarthy and co-workers at MIT in 1959,is based on

a scheme for the representation of partial-recursive functions of symbolic expres— .
sions(see,e.g. ,Davis(1958)).The difficulties of learning the input format(for ex—
ample,in balancing large numbers of pairs of brackets)have been overcome,largely,
in modern gsystems.LISP is intended for problems where list-~processing,recursion
and.symbol manipulation are all present,and are the dominant operations.Most mod-_
ern. LISP systems are interactive.The crucial properties of LISP(aside from its
natural relation to suitable representations of mathematical expressions,and op-
erations on them)aresits machine indeperidence;and its built-in capability for

consistent self-extension{which allows designers to modify or extend a system

written in LISP without completely re-designing it).

The variant of LISP on which most symbolic computation systems are based is known
as LISP 1.5(LISP 2 having taken too long to become availablel).The principal char—
acters in LISP are upper case Latin letter,digits O to 9 and brackets {( ).In
LISP,there are operators(or functions)and operands(the lists).A program is,
roughly,a collection of functions,interrelated as subroutines are in other lan-
guages.Programs are activated by invoking one function,which then activates the
rest.The basic elements are atoms(=identifiers,or numbers)and S-expressions(=
symbolic expressions,or lists}),an empty S—expression being denoted by ( )or NIL.
{Operations on S-expressions are expressed in a meta-language,as so-called M-ex-
pressions--but these are largely ignored in modern systems).The basic functions ’
operating on (non-atomic)S-expressions are: car{selects the first item in a list);
cdr(selects all of the list except the first item),and cons(joins its two argu-
ment lists to form a compound list).Other important functions are:

eq{tests for equality between two atomic symbols),and atom{a predicate which
returns 'True'when applied to any atom,and'False',otherwise).In cases of inher-
ent ambiguity,a basic LISP construction uses the 'Church lambda symbol',e.g.,
for assigning argument values to variables.For instance,the notation f(x,y)(a,b)
is unclear to a machine.This is resolved as follows: A((x,y);f(x,y)(a,b))=f(a,b);
whereas, A((y,x);f(x,y)(a,b))=f(b,a).0bviously,this construction may be used for
arbitrarily complicated functions of any finite number of variables.The definit—
ion of recursive functions in LISP is achieved by using the operators define
and label,the first of which assizns a name,while the second allows that name to
be itself written into the definition(thus completing the recursive structure).
This is very jimportant for the mathematical applicationse
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Conditional statements like: IF P, THEN k1 ELSE IszTHEN k2 ELSE ...IF P, THEN kn
are rendered in LISP as [p1 - k1;p2—v k2; oos pn—r kn ] Here, the ki are expres-—.
sions and each pi has the value T or NIL(= True or False).Thus,the value of the
compound statement just given is kj,where J is the least subscript for }vhich

P; is truefand it is undeTined if no p; is true).

To illustrate the power of LISP in defining functions that would be extremely'
hard(if not impossible)to define in the numerical languages,and ,at the same
time,to show some basic functions in use,the following construction is givenjit
aims to form a function which selects the first atomic symbol in its argument
list,say,xJ.Note that it is not merely the first item in the list that is required--
that is obtained by applying the car operator.A heuristic definition of the func-
tion,say,g,is as follows: g[x] = [atom[x J»x;T+gfcar[x ]]] +This can be
made respectable in terms of recursione As another exan;ple of a function whose
definition would be almost impossible in numerically oriented languages,consider
the problem of constructing a mnctim,say,h,sétisfying.the conditions:
.edr{h{y]] =_<_:_d_r:[y] (vy) yand h[y] =y if car[y ] £ Av—vhere A is given.

Claim:if B is any expression distinct from A,then h may be defined by:
hi{y] = [ eq[car{y]sA] - cons [B;cdr[y }]s T ¥y ] «The reader is invited
to verify the validity of this definition.

In summary:the main features of LISP which are important for the design of symbol-
ic computation systems are {i)that lists are the natural I/0 for LISP(and (opera-
tions on)lists can mirror{operations on)mathematical expressions);(ii)LISP is de-
signed to work efficiently with recursively defined functions,and many basic
processes in mathematics use such functionsj;{iii)LISP is machine~independent{ so
a system written in LISP should be equally implementable on all machines);{iv)
LISP is capable of consistent extension(so systems can be modified relatively
easily);(v)LISP has a built-in ‘garbage collector'(as socon as all the free space
is exhausted,this facility removes all 'inactive',i.e.,unused,lists~~the garbage
—from the store,and so creates space for new lists to be used).The possibility of
comparatively simple extension is of great importance,since it is very hard to
forecast how a particular algorithm will 'fit into'the existing structure of the
systemyat any time.By concentrating on absolute fundamentals,LISP is flexible,
though the price of this flexibility is “ . clumsiness.One might ask whether a
system written in machine language would be superior to any other form.Moses
has estimated that such a machine-based language would operate at about twice the
speed of LISP;but the programming resources nee(el/d\'to implement nontrivial algo-
rithms in the machine language would be so great that mathematical development of
the system would be extremely slow.On balance,therefore,LISP constitutes an accept~
able compromise solution to the problem of language design for internal organiz—
ation of calculations.
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2. MACSYMA —A General Description.

MACSYMA is the lar‘gest and most versatile of all self-contained systems now
available.It is self-contained in the sense that all of the facilities described
m;the manual are permanently includea as optional routinesyrather than as po-
tential facilities that could be used only if the system were modified suitably.
For some packages,modification is f‘airly easy,and the central core of fixed pro- -~
cedures is small,but for MACSYVA, the opposite is true.Nevertheless,if one is
going to use just one system,without frequent }nodificat.ion,then a wider range of
problems can be solved with MACSYMA than with any other systemu.ACSYMA is an enor—
mous program{written in LISP,but with a parser allowing quasi-mathematical input).
The I/0 language is similar to ALGOL GO.The’manual,which is in its ninth version,
is qite comprehensive,each procedure being documen“t\.ed both syntactically and for
applicationseThe list of procedures is expanding all the timeyand includes some
very sophisticated mathematical algorithms.For instance,the integration capability
is particularly strongeIt is in two parts;the first based on pattern matching and
table-look-up,and the second on a decision procedure due to Risch(1969),about
which more will be said in Section 12.0ther unusual facilities include a LIMIT
operation,which can evaluate several types of limits(e.g.,by applying 1'HOpital's
rule,or by using Taylor series),a routine for handling Laplace transforms and
their inverses{linked to the integration facility),determination of Taylor and
Laurantseries,and solution of certain types of differential and integral equations.
MACSYMA is an interactive system.Its output can be two-dimensional,which is impor-
tant,since user-reaction to the output at any stage determines the course of a
calculation.Apart from the detailed mathematical schemes on which its procedures
are based,MACSYMA has structural features which help to makethis diversity of
facilities possible.The evolution of the structure of MACSYMA is described in a
paper by White(1977).

One of the disadvantages of MACSYMA is its enommity,ard consequent lack of porta-
bility.Up to now,the only implementations are at MIT(on DEC PDP-10,and DEC 20's,
with ITS operating systemjand on Honeywell 6180 computers,with Multics operating
system)and at Berkeley,where a smaller version of MACSYMA has a direct FORTRAN
interface--which is useful when numerical computations are involved.However,users
do have access to MACSYMA via the ARPA Netjall that is necessary is to know the
local ' logging in' convention for the relevant MIT machinel.During an interactive
session,the system responds to the ALGOL-60 type user input with its own style of
two-dimensional output.A detailed manual on ihe use of the ITS system and a
Primer for beginners are among the other documents describing MACSYMA.The system
is desiggned and maintained collectively by the MATHLAB Group,a constantly chan—
ging collection of people whose closest parallel is,perhaps,Bourbakilfiowever,
there are some permanent members who have co-ordinated all of the design effort

during the past ten years or so--especially,J.Moses,whose improved integra—
tion routine('SIN',thesis,MIT,H1967)and other fundamental work formed a starting
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point for the systematic development of MACSYMA.

In the manual MACSYMA is described as having approximately 221,000 words of com- .
piled code(on a DEC-10,with 36-bit words).No worthwhile upper bound can be given
on the size of the system:as the hardware becomes cheaper and smller,the possi-
bility of designing systems of eéver larger capacity will present itself.From this
point of view,the algorithms envisaged in Section 15 are certainly feasible.

Although:the manual and other documents are essential for a full grasp of the
system,it is worthwhile here to sketch the layout,mode of Tunctioning and scope,
since,at the basic level,systems have much in common.After this ,it will be un-—
necessary to repeat certain details in the descriptions of other systems.

2+2 Internal representation of expressionse

Any expression read by MACSYMA is lexically scanned,parsed and then stored in a
general LISP internal form(of which there are several);i.c.,any nonatomic expres-—
sion is represented as a LISP list,whose first element is the main operator of the
expression,the remaining eiements being operands.For instance,the input expression

257" 2% X+ 3/4 has the LISP representation ( PLUS ( RAT & 4} (TIMES 2 X));
while,more generally,the function(say) F(X) - log X becomes

(pLus (F X ) ( TIMES -1 ( LOG X ))). Any function used in MACSYA has an

analogous LISP representation(and the seme thing applies in all LISP-based sys-
tems).

A form of representation for ratios of polynomials,known as CRE(Canonical Rational
Expression)is of importance.In this,the variables in use are ordered from ‘main'
to 'least main',for any given calculation,ard for each expression occurring in . it.
Polynomials have a recursive list representaticnje.ge, 3 x2 ~ 1 (with MACSYMA
form 3% X*2 ~1)becomes ( X 2 3 0 = )sin CRE.Here,X is the main variable;
its power is 2 and its coefficient is 3.The constant term(with exponent O) has
coefficient -1.0n the other hand,the MACSYMA expression 2% X* Y 4+ X -~ 3 has
two possible CRE.If X is the main variable,it is ( X 1(.‘ Y1201 )0-~3 1);
whereas,if Y is the main'variable,it becomes (Y1 ( X1 2 ) 0( X1 1 0 -3 Mo
In a CRE list,the variables need not be atomic.Another point worth noting——for
all systems—is that it is often useful to regard an expression as a polynomial
:'.:nzz;':rr“:in:’a:ibi:;nzlazyi:i:inct entities that %t is~convenien’_§.to treat as

. ple, s way,the expression sin X + €08%(x 4+ 7) 4 21log x

would become u + v3 + 2We

The general CRE represents a ratio of two mutually coprime polynomials{wi th posi-
tive 'denqninator").Inbemally,this is a list comprizing the variable ordering
list,followed by the numerator and denominator in list formeThe variable ordering
may be imposed,but if this is not done, then MACSYMA adopts alphabetical ordering.
In all of these considerations, the'coefficients' in polynomials may themselves be
polynomials,in less main variablese
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There is also an 'Extended CRE',to represent Taylor serles and more general ex-—

" pressions, in which the exponents may be arbitrary(positive or negative)rational
nunbers,the corresponding !coefficients' being arbitrary rational-exponent expres—
sions in the remaini‘ng variables.For trigonometrical series,a 'Poisson form' is
used by some program packagese

243 Some basic ooefations gor input and evaluations

The usual 'precedence laws for field operations' are imposed automatically in
algebraic computations.General MACSYMA expressions consist of nunbers,variables,
functions calls,and operators{or functions).After the coding into an appropriate-
intemal form,values are assigned to names(which may be subscripted).Functions
which produce definite values “hen acting on evaluated arguments are said to be of
verb typejwhile thoseAwhich simply return the formal function{with its evaluated
argunent( s) )are of noun type.There is a facility('DECLARE')for converting verb
functions into noun functions.Other facilities allow the suppressiaon e¢f evaluation
or the performmance of extra evaluation(which offers an alternative method of con-—
verting 'verbs' into 'nouns'--and vice versa)and the consistent introduction of
functions which themselves involve (other)functions.

The general evaluation procedure has the syntax EV{expression,arg, ss..j,arg ) where
1?°° t

the subscripted arguments,argj sconstitue arn 'environment for evaluation'——in the
sense that they prescribe the basic evaluation processes that will be applied in-
variably to expressions in the systemeThe possibilities for the argj are wide.For
instancessimplification according to specified rules;suppression of evaluation;
extra evaluationjrepeated evaluation until no change occursj;expansion of products,
etc.{possibly setting bounds on the maximum and minimum exponents to be retained);
automatic differentiation relative to specified variables(whenever an expression
contains a differentiation operation);evalutation of all numerically valued func~
tions,optionally in floating point rather than rational form,and,evaluation of all
Boolean expressions—predicates—to give 'T' or '"NIL'.Later on(in Section 14)the
question of constructing an 'envi’r"onment for investigation' will be considered.
The argJ. are picked out by the system from left to right,regardless of any order-
ing that may have been imposed on them,so care is required to avoid inconsisten—
cies.The arg, may be set either 'locally'(over a segment of a program),or else,
*globally'(over the cntire program) .However,settings may be altered at any time,
for the remainder of the program.Another,crucial facility,involves the substitu-—
_'Qc_)_rl of specified expressions into(subexpressions of)the main expression under
consideration,
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With this background,the process of evaluation in MACSYMA may be described,briefly,
as follows.First,the environment for evaluation is specified.Next,all variables

in the expression to be evaluated are put into a form suitable for the action of
'EV' .After this,all substitutions indicated in the expression are performed.Then,
the expression is subjected to all operations in the environment (un-
less one of the argj suppressed evaluation);and,lastly,if any of éhe arg; required
extra evaluation,then this is performed repeatedly,until no change is registered
in the result.This result is then ready for use in the next stage of the compu-
tation.Obviously,this description masks much complicated activity,but it does
cover the essential steps.hioreover,although systems may differ considerably in
their detailed organization,and in the 'internal languages'used,their procedures -
for reading in data and evaluating expressions have much in common on a basic
level.Thus, the remarks made here apply,in principle,to all systems;so it will be
unnecessary to discuss evaluation in the outlines of other systems,except where

very unusual features are involved.
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2.4. Dissection and simplification of expressions.

A basic problem in symbolic computation is to control the growth of expressions
generated in the course of a cacluation.,For instance,in the evaluation of deter-—
minants,the expressions generatéd in a straightforward expansion are likely to
cause overflow,unless measures are taken to eliminate redundant subexpressions at
intermediate stagesjand the 'answer',in its simplest form,may consist of a single
tem.In view of this difficulty,all systems have facilities aimed at maximizing
the available storage space and minimizing the size of expressions{at any time).
Here again,the principles involved are similar for all systems,but special feat-
ures will be mentioned for each system described.To some extent,dissection is a
necessary precursor to simplification since,in large expressions,it is rarely
possible to apply simplification rules 'globally';instead,collections of tems
having specified similarities are identified,after which an appropriate form of
simplification can be applied to those terms—this prcéedure being. repeated for
each collection of terms identified,until maximal simplification is achieved
(within the limits of possibility for the system).

There are basic rules{constituting part of the environment of evaluation)which are
applied automatically.These include such things as cancellation,imposition of

side relations,and use of the relation f—1o f = e(the identity function)for all
Elementary functionse.Other facilities,some of wiich are optional,includesexpansion
of multiple products of sums,or of exponentiated sums,using (non)commutative mul-
tiplication,with possible(arbitrary,rational)bounds on exponents of terms retain-
ed;conversion of rational expressions to CRE form,with various,optional’ split-%fl oy
tings';reduction of certain expressions containing logarithms,exponentials and
radicals(all functionally equivalent forms of subexpressions being replaced by
one common form,so that the difference between equivalent functions is always
simplified to zero:see Section 13 for more comments on this problem);and,partial
fraction decompositions for the rational parts of expressions.These are just a
few of the vast array of simplification operators available;full details may be
found in the manual(though the underlying mathematical algorithms are not dis—

cussed,and may be changed whenever a new,more efficient procedure is found).

The selection functions,.” . allow ldentification and/on,_rep_lacemeht of” any (subj~
expression,the main operaﬁor always baring the label O,and the k' th factor in ’
any product,the label k;while, in quotients,the numerator. and denominator have
labels 1,2,respectively,etc.sAny expression can be 'atomized' in this way,though
the precies details reugired to avoid ambiguity must be formmlated with care.Ex-
amples of such procedures are the tabulation of parts of an argument expression,
and the insertion or rcmoval of parentheses.JMACSYMA is particularly elaborately
endowed with selection and dissection functions(details in the manual),giving

users wide possibilities for close scrutinyof stored expressions. -
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Further internal procedures for simplification are aimed at the minimization

of all LISP expressions.For instance,the sum of A,B,C,...K(in any order)has the
representation ( PLUS A B C ... K );square roots are put in the form E1/2}
(for all suitable expressions,E);differences are represented as X +(-1) # Y,and
quotients as X ’“Y"'1 +Expressions are ordered via their subexpressions being ordered
first—a recursive procedure—all variables in the subexpressions being ordered
alphabetically;and one puts (numbers) before {constants),and (constants) before
{variables).In this scheme,functions have the ordering of their arguments(canpar—
ing first arguments first,second arguments second,etcs)If this fails to distin-
guish them,then they are compared via their names.All of this may appear sOme—
what pedantic;but it is,in fact,essential if uniqueness of representation is to be
achieved—and,without such uniqieness,effective simplification is virtually im=—
possible.Analogous strategies are used in all systemse.

Many other facilities are concerned with controlling or: processing the current
stored expressions during a program;with the printing out of storage management
information,or of the net time used.The 'SAVE' facilities allow data to be preser—
ved and manipulated in files(so that,for instance,expressions can be simplified
before being used in the next stage of a calculation.Some general reﬁarks on
simplification(especially in relation to.the mathematical problems raised) are
made in Section 13. ‘
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2«5 Basic mathematical functions.

The user may apply arbitrarily complicated operations to general functions,using
the processes of algebra ad analysis;those results " the system can simplify
are simplified.A wide selection of examples is given in the manual.Underlying
the general operations are various basic functions,many of which are found,in
Some form,in all systems.For HMACSYVA,the basic functions are as follows(vhere
expr,arg,mean,respectively,expression,and argument).

ABS(X):= IX! sFLOAT( expr)(converts all numbers in expr to floating point form);

ENTIER(X):= [X ];SIGNWM(X):= X/ lxl ,for nonzero,real Xjand :=0,if X is 0,complex
‘(not real),or non-numerical);MIN(args){gives the minimum of its--real~-arguments);
MAX(args)(gives the maximum of its--real—arguments);SQRT(X)}{ = X1/2);
EXP(X):= ex ;LOG(X) = log X ;LOGEXPAND(X)(replaces all logarithms of products by
sums of logarithms,for terms in X);LOGSIMP(X)(simplifies,if possible,all factors
in X of the form exp {f log X ] ] );DEMOIVRE(expr)(puts 18 into the form
P + iQ,if such an exponential occurs in expr) ; PLOG(X) ,GLCG(X)( these produce; res—
pectively, the principal branch of the multivalued function,'log X',and the multi-
valued function itself(as a collection of branches));BINGMIAL(X,Y):= X*(X-1)...
*(X=Y 1)/ (Y*(Y=1)*...*1);GENFACT(X, Y, Z) 2= T (X—kZ) ¢ O< k< Y-13
RANDOM(X)}( a' random integer'between O and X~1 );FIB('X)( the Xtﬁ Fibonacei number,if
X is a positive integer—otherwise,undefined);GAMMA(X)( the Gamma funztion for
argument X) ,'BETA(X,Y)(thﬁ Beta function for arguments X,Y);ERF(X){defined by
dERF(X)/dX 2=( 2/./7c)e“x »ERF(0) = 0);EULER(X)( the Xth Euler number);BERN(X)( the
Xth Bernoulli number);ZETA(X)(gives the value of Riemann's Zeta function,for
certain integer arguments);PSI(X)(the logarithmic derivative of the Gamma function

at X) sand,.aik-of the trigonometrical and hyperbolic functions,and their inverses.

Even this list is not quite complete,and,in any case,new basic functions may be
added to the system at any time.However,the purpose of‘g}.ving such a list is to
illustrate how wide the range of the system is at this basic level.By adding fa=-
cilities for operations in algebra and analysis,backed by an array of 'system
functions',the designers have built a system xmich,w;ifh skilled use,can enlarge
the scope of mathematical investigations considerably{as I argue in Sections 14
and 15 of this paper).In the following paragraphs,outlines are given of the prin—
cipal mathematical facilities in MACSYMA, together with a bare indication of the
range of system functions(aids to prograaming and the manipulation of data).
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2.6 Sums and productse.

These functions cover all of the standard manipulations for finite sums and pro- »
ducts, taken over finite sets of elements,arbitrarily indexed.Special features in-
clude Cauchy mutiplication(for the product of two infinite series—when it exists),
certain closed-from sunmations obtained by 'splitting methods'(Gosper(1976,1979)),
and the 'first backward difference operator'. ’

2.7 Differentiation and integration.

All of the standard manipulations for differentiation are covered(incuding the
use of 'formal derivatives',where the operand is given only formally,so that no
"7 7w, evaluation is involved--only the production of ‘df/dx' from f).Leib-
niz' rule for differentiation of products can be invoked.Special facilities for
differentiation of tensors,and for exterior differential calculus are available;
these will be discuused briefly later.

The most remarkable procedures are RISCH( invoking the Risch decision progedure for
indefinite integration-—see Section 12);the LIMIT procedure(with syntax

LIMIT( expryvar,val dir},to find the limit of expr as the variable approaches the
value val from direction dir.See Wang(1971),where this routine is used to study
the evaluation of definite integrals in MACSYMA--especially,contour integrals,
using the residue method.Notice that,some definite integrals give well-defined,
closed form resultseven when the corresponding indefinite integrals do not exist
at all).An alternative limit program to Wang's is based on the use of Taylor
series+Another routine,CDE2,with syntax CDE2{diffeq,depvar,indvar),solves ordin-
arydifferential equations of the first or second order,refur‘ning either an implicit
or an explicit solution—or else,returning FALSE if no solution can be found by
the routine.A battery of methods provided by a wide variety of users of MACSYMA
makes up this package.Some types ofequations of higher order can be handled, too;
and no doubt this facility will pg extended as new methods become available.

2+8.S5ubstitution functicnse

There are several of these functions,allowing a variety of basic replacements(eith-
er in conjunction with 'PART' ,which identifies the part to be replaced;or else
within a given class of expressions—e.g.,rational expressions.The replacement of
radicals by suitable rationalizing substitutlons is also possible.The facility
'ATVALUE' is used to assign boundary values at given points;and'AT' will eval-
ug?te an expression at specified arguments.These substitution procedures,used in
conjunction with other mathematical operations,allow the user to implement intric-
ate procedures;but care is necessary,since substitution does not always commute
with other operations with which it is combined.
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2.9 Functions for rational expressionse.

This covers all expressions that are representable as quotients of two polnom-
ials,in any number of variables.Distinguished variables are identified,and the
functions are treated as rational functions of a single variable,whose 'coeffic—
ients'are polynomials in the remaining variables.A listing function,'RATVARS',
list all of the variables,from main to least main,for future calculations.The

basic function 'RAT'converts its argument toCRE form{ including the replacement of

all floating point numbers by rationals,to within a prescribed tolerance,and elim—
ination of common factors of numerator and denominator).Several simplification

routines are designed to standardize rational expressions.Other functions return

the numerator or denominatorj;assign weishts to each variable(so thatyee.ge,all ex—

pressions of the same total weight may be listed,or the term(s)of maximal or mini-
mal weight may be extracted);compute quotient znd remainder of two polynomials,rels-

ative to the main variablejcompte- the greatest common divisor of two polynomials;

determine the resultant of two polynomials relative to the main variable(though
N

gsettings for other variables are possible,for all of these calculations).There
are also routines for differentiation of rational expressions-——the pointbeing

that a special method is used,which is much faster than the general 'DIFF'rou-
tine.(For integration,the 'rational case'is not treated separately from the gen—

eral routine:see Section 12 for comments).
Closely related to the functions just mentioned are others for dealing with alge~
braic integers(solutions of monic polynomial equations(over a given field)with

integer coefficients),and with extended rational expressions{truncated power ser—

ies with rational functions for coefficients).Very few explicit routines are

o designed for these objects,but a judicious use of the 'WEIGHT' and 'EXPAND!

facilitiésn,mgether with "TAYLOR'(which produces a Taylor series form of a trun—
cated powérser‘ies about preassigned base point(s),with a symbolic remainder term),
covers most contingencies.For calculations withgeneral algebraic numbers,: the
leading system is probably SAC-1,which has a comprehensive set of routines.How-
ever,MACSYMA also covers this area quite well. v

-~

. 2¢10.Solution of algebraic and transcendental equations.,

There are functions for solving implicit or explicit equations,or sets of equat-

ions.Examples include:determination of the number of real roots of a univariate

polynomial in a given intervaljof_all of the roots of a real univariate poly-

nomial;of the solutions of sets of linear equations,or of polynomial ecuations

~-phich may be nonlinear—and of the solutions for general cubic or quartic
equations.Several other facilities related to factorization,and some provision for
dealing with special types of transcendental ecuations,involving logarithms and

exponentials,are also included,Most of these routines are due to Stoutemyer(1975).
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2.41.Matrix functionse.

Anextensive range of functions for matrix calculations is built into MACSYMA.These
functions include:evaluation of the characteristic polynomial of a square matrix; .
listing all the minors of a matrix;producing the 'echelon form'of the argument
matrix;computingthe determinant of a square matrix,in symbolic form( there are two
algorithms for this;as well as special algorithms for sparse matrices);and,finding
the rank of a matrixeThere are al so facilities for generating a matrix from ele-
ments stored in the system,for doing standard matrix algebraf{ e.g. ,finding inver-
ses)j,and for handling 'Kronecker products'e.

2.12.Functions for 'Poisson series'.

The typical term of a Poisson series{actually,only finité sums are considered)is
of the form (general MACSYWA expression) x (sine,or cosine),vhere the argument of
the trigonometric functionmay be a linear combinaticn of up t six prescribed
MACSYMA variables—though this last restriction could be removed.For some purposes,
the periodic and nonperiodic parts of the series are treated separately.For ins=
tance,differentiation and integration are limited(as special facilities)to only
those variable not appearing in both parts of a term of the series.Special subs-
titutions are provided,with full reduction of all trigonometrical functions to
linear forms.The two types of factor in any term can allow substitutions only
in the variables assigned to them for differentiation,etc..General expressions
which include‘tfigonoxﬁetrical functions may be rearranged as Poisson series,and
all of the dissection or expansion facilities may be used in this setting.Var-

ious trigonometric simplificaticnroutines are available for optional use.

2.13.Functions _for Taylor series.

The manipulation of Taylor seriesg is one of the most important facilities in any
symbolic manipulation system,subsﬁming; many different kinds of operations.For
instance:determination of local power series expansions for (multi-variable)
functions( about sreciefied base points);direct analytic continuation along a
curve in the complex plane(which can be put in an effective form for approxima-
tion--see Henrici(1974));substitution of one power series into another;and,deter~
mination of he Taylor series for a {convergent)infinite product.(Of course,only a
finite number of terms of any series can be obtained,but this number can be
chosen arbitrarily--up to a high bound,depending on the machine used.Moreover,in
certain cases,a general formula can be found for 'the Nth term').
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For multivariate expansions,a technique is used which caters for possible inter-
dependence of the expansion variables,and for the occurrence of singularities,
limiting the range of validity of the expansion.Series in negative powers(useful
when asymptotic properties are studied) may be obtained directly from the argu-
ment function.This includes the possibility of finding expansions 'about the point
at infinity'.Examples of the use of all these facilities are given in the manual.

2414 :Laplace transformse

In MACSYMA,Laplace transforms may be found for functions involving(at worst)the
basic components: EXP, LOG, SIN, COS, SINH, COSH and ERF.Eventually,radicals,elliptic
functions and other,more exotic function will be allowed(when the general inte~
grations procedures have been extended adequately--see Section 12).As it is sthere
is still a wide range of problems for which the Lapce transform facility is use~
ful-~including the solution of (systems of)ordinary differential equations with
constant coefficients,and of 'convolution integral equations'.Rational functions
may be covered by the basic routine,and,by using the representations of Special
functions interms of generalized hypergeometric functions,Laplace transfoms of
‘original' having Bessel functions,etc.,as factors,may be evaluated.See Avgous-—
tis(1977)for details.Presumably,facilities for handling Fourier transforms can be
based on these algorithms,but this has not been done explicitly in MACSYMAL.It
appears to be the intention to cover all of the results given in the 'Bateman
Manuscript Project!collection of Laplace transforms(Erdelyi(1954)),as well as
others not given there.,All of this amounts to a very powerful facility,with wide
application in pure and applied mathematics. '

2415 7‘C0mbinato rial functions.

Theée’comprise mainly transformations of binomial,Beta and Gamma functions to
(generalized)factorial Torms—or, the reverse procedures.Another routine generates
the Bernoulli polynomials up to any prescribed order.

2416.Continued fractions.Number—th eoretic functions.

These functions include:generation of sequences of convergents for the continued
fraction representation of a numerical argument;conversion of a list form of
continued fraction into the standard fom,There does not appear to be any explicit
facilityfor treating analytic continued fractions( such as may arise,for ins-
tance,from Stieltjes integrals involving a parameter),but it should not be diffi-
cult to handle such problems,using other -genem routines in MACSYMA.The number-
theoretic functions return the Nth prime(with upper bound 489318) ;Tind Euler's Phi
function( for positive integer argument) ;canpute the Jacobi symbol of integers P,Q
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(of importance in the theory of cuadratic residues);and,solve Pell's equation zin

the form A2 - nB2 = 1.The l\‘th—péwer- divisor function is given,also.

2417; Tensor manipulation,

There are two levels of tensor manipulation in MACSYMA:explicit,and indicial.In
explicit manipulations,the tensors are stored as arrays,and all operaticns on the
tensors correspond to explicit{ algebraic/analytical)oper‘ations on the elements in
these arrays.In other words,the actual result of(say)covariant differentiation or
contraction on any given tensor{(s) Vmay be recovered,and displayed as a functional
array,derived fromthe original one.On the other hand,the results of indicial mani-
pulation merely keep track of operaticns performed on given tensors by manipu- _
lating( possibly,altering)their indices,and expressing them symbolically in terms
of other indexed entities.lowever,no functional forms are ascribed to any of
these symbols during the manipulations;and,at the end,the form of the resulting
tensor is also unknown.

In calculations,both types of manipulation are useful.Initially,the indicial opera-
tions may be used to effect simplifications and reductions of expressions that
otherwise would be almost too unwieldy to fit into the system at all.After this,
explicit operations may be able to produce results that are of immediate signifi-
:cance in some problem.The main area of application is Riemannian geometry, the
metric tensor being prescribed at the outsetJMany calculations in relativity(and
some in elasticity)are of this type.Indeed,all of the operations required in
typical relativistic calculaticns(detemination of the Christoffel symbols,the
Ricci and Riemann tensors—and hence,of the field equations,for a given metric)
are provided,as well as various manipulatory functions(for raising and lowering
indices,contraction,reducton to canonical form,etc.)}.See d'Inverno(1978)for details
of symbolic computingin relativity,and Section 11,for comments on special-purpose
systems for relativity.All of the MACSYMA operations are described in the manual,
with indications as to which combinations of thefn can be used to particular advan-
tage.
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2+18.Miscelleneous system functions.

~ Most of the remaining functions are used for programuing,or handling data,ard the
prospective user must,of cou:se,become familiar with these facilities.However,the
attention here is confined to giving an idea of the scope of MACSYMA,by listing
the function types,with brief indications of their principal usesywhen this is
not obvious.

There are functions for: declaring and assuming;for establishing contexts(in in—
formation retrieval);for list-handling(including several LISP-like functions);

for specifying properties(e.g.,to set-up,display or remove a property);for hand—
iing internal properties(esg.,'DECLARE',for specifying the types of variables in -

use); for handling user properties{esg.,'PUT' ,which allows any atom to be given an

arbitrary property);for type-testing(e.g.,identification of'atoms');for general
pattern-matching(to test expressions for combinations of( specified)syntactic znd

semantic patterns——e.ge,to aid in simplification;but also,more generally);for
utili ,_I_[Q and disglgx( including:de-bugging,options,output fomat,storage clear—
ance,file-referencing,ordering,translation and compilation)jfor editigg(e.g.,re—-

moval of syntax errors,interactively);for batch processing;for storage and retrie—

val(mainly,file—handling);fw glottigg(gig_.,scale plots of contour surfaces,in two

or three dimensions;and,for error detection{including tracing functions——for local-

dzing errors;identification of predicates that were not evaluated,and checking of

assignments for variables,arrays and other entities in a program) e

There are are,of course,several functions of each type,and full details and exam—
ples are given in the manual.However,this bare list does illustrate the wide vari-
ety of types of functions which{in conjunction with the math ematically oriented
facilities)must be deployed~-with some semblance of optimality—in the construc—
tion of an efficient,general-purpose symbolic computing system.The task of pro—
ducing adecuately expressions (using,e.g.,the methods mentioned in Section 2.3),
incresses the complexity of the design problem even more.It is not surprising,
therefore, that the various systems differquite markedly in their dominant charac—
teristics—which makes direct comparisons among them somewhat inappropriate.Never—
theless,it is important to have some criteria for meaningful comparison,since po—
tential users do not have the time or opportunity to try their calculations on
each system,in tumlFor this reason,soire tentative remarks on canparison are made
in Section 16.Bibliographical details relevant to IMACSYMA may be found in Section
17,and in the list of references.Samples of 1/0,and of programs,are given in
Section 13.
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3« ALTRAN

3. FProvierny
This system was developed by W.S.Brown and others at Bell Telephone Laboratories—

initially,between 1961 and 1966;the current,portable version was designed in the
period 1968~1973.1ts basic capability is to perform rational orerations on ration-
al,n-variable expressions with integer coefficients.These restrictions are not

as drastic asthey may appear at first glance,since(as it is argued in the manual).
a fullalgorithmic treatment of such expressions is possible{ see,e.g.,Knuth(1968,1971 )),
and .many practical problems may be formulated using only rational functions( and,
in any case,nany classes of nonrational functions have sufficiently good ratiocinal
approximations—even,arbitrarily good ones,in several important cases) .Moreover,
often,both simplification and evaluation problems for nonrational functions may be
studied most fruitfully by regarding wider classes of functions as algebraic or
transcendental extensions of fields of rational functions(indeed,the Liouville—
Ritt-Risch algorithm for indefinite integration{see Risch(1969))_oroceeds in this
way—as do many analyses of algorithmic complexity for processes involving non-
rational functions).Thus,the potential scope of ALTRAN is broader than one might

imagine,given only its basic specificatione

The system can be implemented on any sufficiently large computer with a standard
FORTRAN compiler.It requires about 240 K-b(270,with 'workspace'}on an IBM machine,
and about 36 K-words(44,with workspace)on a Honeywell.The syntax is that of
FORTRAN,wi th some extensions.Like FORTRAN,it is a one—case language.The collection
of FORTRAN routines on which the original version of ALTRAN was based,was known as
ALPAK,and ALTRAN allowed these routines to be called in a systematic way.llowever,
this terminology is no longer used:the current version of ALTRAN is regarded as a
self contained package,whose 'language' is an extension of FORTRAN.Direct communi-—
cation between ALTRAN and FORTRAN has been implemented partially.This is useful in
numerical phases of calculations,ALTRAN is highly portable,but it exists only in
noninteractive form(though interactive program development,and submission of
'batch jobs' is possible).

ALTRAN( 1ike FORTRAN,ALGOL and PL/1,)is a procedural language(i.e.,a vehicle for
expressing procedures,algorithms,etc.).Many of the 'keywords'(reserved express—
ions)are used to denote procedures and,as such,appear frequently in the listing of
ALTRAN programs.There are also various system functions,and a library of mathema-—
tical routines,whose underlying algorithms may be standard,but are,in several
cases,original(and reduce the running time of programs).For instance,the effective
determinaticn of greatest common divisors,for pairs of polynomials in several
indetenninates,is an important step in many algorithms used in symbolic computa-
tion;and sane of the pioneering work in this area(Brown(1971))is incorporated in

ALTRAN.(Collins{1967)also made important contributions:see Section 8,on '5AC~1").
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3.2 Overviews

The following basic features give an idea of the mode of operation of ALTRAN.
-~There is no'interaction'between the numerical(floating point)and symbolic(e.ge,
literal)data,except in the(final)evaluation of definite expressionse.

-+ Rational expressions{and numbers)may be reduced to'lowest terms'.

- Zero cannot appear 'in disguise'(i.c.,as a(complicated but)identically vanish- -
ing expression).

- All expressions generated are automatically well defined(i.e.,the syntax rules
are applied at all times).

-» The syntax of ALTRAN is essentially that of FORTRAN; but,semantical 1ly,ALTRAN has i
much in common with PL/1.

-+ No computation can yield an incorrect result,though it may be stopped for lack
of space or time.(This should be interpreted as meaning that any error will stop
the program—either at compile time,orelse,at run time;so that,if a final result
is produced at all,then this result cannot be wronge.However,machine error is not
ruled out,even if it is improbable;so,as in all computing,caution and comon sense

remain indispensablel).

-+ All syntactic and semantic rules are always enforced(as mentionegi already,for
syntax).

- All syntax errors are detected at compile time,if possible( otherwise,at run
time). : -

- A programn can regain control after all but the most serious errors{specified

in the manual)have been detected(and corrected).

-+ 'Back-reflection of errors'(from a given procedure to the one invoking it)is
automatic.Thus,even if an error is missed initially,it will be detected eventuallye.
-+ Serious errors are consigned to a 'problem-oriented dump! ,for subsequent analys—~

is,if a program is stopped altogether.

These modes of operation,some of which are overlapping,are treated fully in the
manual,where the system is described on several levels of completeness,yincluding
the full range of types of statements,with examples of their uses.Most of these
types of statement are familiar from FORTRAN sWith minimal modifications to acconmo-
date the extra symbolic facilities.Correseponding classes of statements exist in
all symbolic computation systems( though those based on LISP have some types of
statement for which the FORTAN-based systems have no counterparts).A partial inter—
face with FORTRAN is provided,and inter-procedure communication within ALTRAN is

also possible.
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3¢3 The library routinese.

A complete list of library procedures is given in the manual,with some examples.
Here,it suffices to indicate the scope of each type of procedure,and to outline

a Tew,typical facilities.There are procedures for: I/0;numerical computation;

test and conversionjalgebraic analysisjalgebraic computation;options,time and
statistics;error-handling;array operations;modular reduction;matrix computations; .
and,truncated power series computations.Brief observations on each of these types.
of procedure will be made nowe.

3e3e1 Input/Outnute .

There are two integer types,'short'(one machine word)and *long'( two—to-ten words)s
Similar conventions are used for rational numbers,and for the coefficients appear—
ing in algebraic expressions.Formally,'integer','rational®,'real','algebraic' and
'logical' data types are distinguished(essentially,accoérding to the types of num—
bers or variables of which they are composed).All variable types must be declared.
Compound objects,such as lists,acquire the type of their component parts.({Lzbels
may also be regarded as a separate variable type,when this is relevant).The 'read'
and 'write' instructions govern the actual input and output of data.Further facili~
ties allow various sorts of output to be obtained.

34342 Numerical computation.

All input(and output)here consists of integers(unless it is stated otherwise)+The
main facilities includesdetermination of the greatest common divisor,maximum and
minimun{ of tvo integers);of the numerator or denominator of a rational number;

of the quotient and reminder in the division of one integer by another{which in—~
cludes the *congruence definitions',via ¢ =d(mod r));of the ‘modular reciprocal',
dyas the solution of cd= 1(mod m);of a prime larger(or smaller}than a prescribed
integer,n—in a certain rangejand,of the values of most of the Elementary functions
amd their inverses(by invoking the corresponding FORTRAN facilities).
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Je3e4 Test and conversione

These facilities either test{an integer)for some property—-and give the value

'true' or 'false'--or else,they convert the( integer)input into some specified
type(e.g.,long,short)The forms of input may include rational or real(floating point)
numbers,each being put into some special form;but the basic facility is for integers.

34345 Algebraic analysis.

Among the main procedures here are those for:defining the 'layout' of an expres—
sion(e.g.,the size of n-dimensional arrays);for finding the number of{ distinct)
factors in an expression;the sum of the numbers of nonzero terms in all(multi- -
variable polynomial)factors in the input expression;and,for finding the degree{ in
a specified variable)of the input express ionOther facilities includetreturn of

the numerator(repsectively,denominator)of a raticnal expression;full expansion of
a product of polynomial factors,in several variables;identification( and subse~
quent removal)of factors of the form fgi from a given expressionjreturn of the
term{s) of lexicographically largest( respectively,smallest)exponent in an expres-—
sionjreturn of the term of degree O{or else,of 0);and,return of X x(sum of terms
of degees between 1 and h—a prescribed integer).One other basic facilitly invol-
ves the concept of'levels of canonical form'(pioneered in ALTRAN ),which is defined
as follows.A rational expression is canonical if its numerator an4d denominator are
relatively prime.A polynomial is normal if its leading coefficient is pesitive,and
its coefficients form a relatively prime set.The levels are:(1)normal and canon-
ical,(2)normal and 'alleged canonical' »{3)normal,but whether canonical unknown,and
(4)special(=single polynomial factor,not necessarily normal).Although these classi~ .
Tications are somewhat technical sthey do illustrate the care with which ALTRAN
has been designed.In these terms, the other basic facility is:identification of the
level of canonical form of the input.(The main use of this classification is in
specifying corresponding forms for the results of calculations;again,certain

.sorts of computation may be easier for arguments in particular forms;ahd SO On)e
A

One important matter{which must be raised in relation to every system)is its
'knowledge' of the Elementary functions.For numerical work,ALTRAN shares the
FORTRAN facilities.However,on a symbolic level,the system knovs nothing about
the Elementary functions(unlike many of the other systems),and special subroutines
must be used to 'teach the system'to apply the relevant basic rules-—e.g.,for
differentiation and integration.
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.343.6 Algebraic computations

The most useful facilities here arestransfomation of any input expression to
canonical form{level k);return of the greatest common divisor of any pair of in-
put expressions(i.e.,not just polynomials);repeated or mixed partial differentia-
tion(which may be regarded as essentially 'algebraic'vhen restricted to rational
expressions);multiple integration of(in effect)polynomials in n variablesj;and,re- )
turn of prescribed ‘blocks‘'of terms from an input expression(for separate anal-
ysis).Notice that the integration procedure is minimal,and does not even cover
general rational functions of one variable,though it would seem that such a
facility could be provided.

The other basic aspects of general algebraic computation are concerned with simpli-—
fication and substitution.Apart from the automatic use of obvious cancellation and
elimination procedures,the imposition of side relations_( such as '5.2+1 = '0,for com-
plex numbers;or,at the other extreme,arbitrarily complicated identities that happen
to be relevant to particular calculations)is possible.In effect side relations
entéil substitution of one expression into another——one of the most crucial facil-
ities in any symbolic computation system,subsuming as it does virtually all general
transformations in analysis--so that many nontrivial programs make essential use

of it.ALTRAN is less well eauipped with dissection functions than are some of the
other systems,so there is probably a fairly low limit on the complexity of expres—
sions for which it can handle substitution and simplification effectively.\oreover,
such procedureé create enormous demands on storage space,so they rust be used with
caution. '

3¢3.7 Options,time and statistics.

The'emphasis here is on the setting of 'preferred actions':n various contexts.For
instance,it may not be desirable to reduce all rational expressions to lowest
terms( the 'default setting');or,one might wish to expand allpolynomials fully in
one part of a calculation',buti to retain them in shorter forms in another parte.
Other examples of these options(or 'switches')include the choice of levels of
canonical forms,'modular bias'(for congruences),and so on.Naturally,every system
has options(they are especially profuse in MACSYMA),and they should be used rather
like the stops on an organ,if the system is to be exploited to full advantage.Sev~
eral kinds of output option are available( though,AL'I’RAN has relatively few,and
only one-dimensional output is produced).Among the other facilities are:return of
the time used(over any selected part of the program,or for the whole program),
which is useful in program optimization;return of various ‘'statistics’ ssuch as the
maximum number of words used(taken over several runs);current number of words
used;and,contents of the 'problem dump'(which contains those parts of a program
apparently causing it to stop--and corresponding output generated,etc.).These fa.
cilities are of use primarily to the system designer,but they could also be used

by programmers,trying to correct and then 'tune! a complicated programe.
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3+3.8 Error handling facilities.

This includes such things as:returning the error number of a current ﬁmcedure( it
it has an error)jverifying the consistency of use of 'workspace'(the active area
of storage space where current computations are performed);. .various syntax
checks;ond,printing out the contents of the workspace at any time(in a form rele-
vant to system designers).Details are given in the manual--and there is some vari-
ation according to the implementation concemed,since each type of computer has its
own built-in facilities for error detection{a remark that applies to all systems
considered in this paper).lowever,for ALTRAN,this kind of variation is practic-
ally negligible.Again,in general,facilities for interactive systems are more ex-—
tensive than for the others(e.g.,in the crucial matter of syntax checks).ALTRAN -
does have some checks at the input stage(as explained in Section 3.2),but interac-
tive systems make the correction of errors and the improvement of program struc—
ure as simple as possible.

23

343.9 Arrayse

These facilities,of special relevance for matrix and tensor mnipulatiohs( but not
confined to this area)may be summarised as follows.

-+ Given any n—dimensional array,where the 'j th dimension'has range r, sWith upper
and lower points uj, Lj,retum n,uJ., Lj,rj,and I}rj .

= Return the total number of elements in an array.

-+ Set-up in the store any specified,general array(the range of each subscript--or
set of subscripts—being given). V

—+ Transform each element of a given array to.algebraic canonical form(level k).

- Return an array’fomed from the descriptor block(dimension specification)of one

array and the value block(specification of the values of elements)of another array.

These are formal operations,having no direct significance for linear algebrajbut

their application to the generation and manipulation of matrices and tensors is
obvious.
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3¢3,9 Modular reductione
These facilities extend the ones already dcscribed for integer variables.

- Reduction of a given rational expression, Q.,s0 that all x-dependent factors are
reduced modulo PB(essentially,a polynomial in x)+All arguments(or their factors)
are viewed as polynomials in a distinguished variable, their coefficients being
(rational)functions in the remaining variables.

- The quotient,remainder and resultant of a given pair of polynomials,say, .y, 0,in
a distinguished variable)are returned;also,the reciprocal of v moculo O

- There are operations on the coefficients of polynomials occurring in rational

expressions,the results being reduced modulo a specified integer,m.

343410 Matrix calculationse

A very brief indicatioﬁ may be given of these facilities( though the crucial point
is the quality of the underlying algorithms——and this is,mostly,high in ALTRAN).
The routines include:transpositionymatrix product;inner and outer products of
vectors;determinant and inverse of square matricesj;and,solution of systems of
linear equations.Combimations of these facilities to implement more complicated
algorithns are,of course,also possibles.There do not appear to be any routines
specially designed for tensor manipulations,but these applications have been im-
plemented Tor many computations in relativity and theoretical physics.

3+3e11Truncated power series{TPS).

The TPS are,typically,obtained from terminating Taylor series for{multi~variable)
rational expressions(though there are many other contexts in which they can arise
naturally--see,e.g.,several of the applications in Section 15,where the emphasis
is on general approximation procedures).Although a TPS is formally a polynomial,the
two concepts are quite distinct,since rational function division is not (formally)
identical with power series division,and the TPS represents r mg_t:ely one stage in a
hierarchy of possible approximations.(See,e.g.,Knuth(1969),lenrici(1974})).
ALTRAN has a particularly wide range of TPS facilities,including the following.
Returnofsumand difference of two TPS;returnofTPSrepresentation (to given order(s))
of any rational expressionjdivision of one TPS by another;raising of a TPS to a
given(positive integer)power;jdifferentiation or integration of a TPS(all coeffic-
ients being treated as constants)j;substitution of a TPS into a rational expres-—
sion~~or,into another TPS;reversion of a TPS;evaluation of a TPS at a symbolic
value;and,return of the order(in a distinguished variable)of a TPS.
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To illustrate how effectively these facilities may combined,consider the
functional equation g( £) = f(x),where £ s a TPS in x.The formal ALTRAN solu—
tion is: ¥x = tpssbs(tpsrev(f),g)' swhich gives x in the form x = f-1(g( E)).
In other words,the TPS for g is substituted into the reversion of the TPS for f,

The documentation for ALTRAN( covering installation,maintainance and programming)
1s excellent.The manual is well produced,and deals with all facets of operation
of the system;it includes a bibliography.
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4. ANALITIK.

The ANALITIKAOR scquence of packages is being developed under the general direc-.
tion of V.M.Glushkov,at thie Institute of Cybernetics of the Academy of Sciences
of the Ukrainian SSR.Computer scientists at the Helsinki University of Technology
also play an active part in developing facilities for ANALITIK.

The systemywhich is interactive,appeared in its initial version in 1965,with a
permanent form in use by 1968.The X/0 language has some similarities to ALGOL,but
many extra Teatures.The crucial difference between ANALITIK and all other systems

is that its main facilities are microprogramned-—in other words,they are realized

as part of the harware designeThus,they cannot be varied—only agglied( as a tool) -
to mathematical problemseThis characteristic of ANALITIK persists in all implemen—
tations on MIR computers,each computer corresponding to(indeed,embodying)the lat~
est version of the language.So far,therc have been three phases of development,and
a fourth is in prospect.These phases may be described,briefly,as. follows.

Phase 1.MIR-1(1968)is a very small{and slow)machine whose main advantage lies in
the natural form of I/0 language(for instance,summation may be performed directly,
by writing 3 ...,without the use of 'loops')but the anmalytical scope is small,and
use is limited to fairly simple problems.However,the basic features of the sys-
tem are retained in the later models.

Phase 2. MIR~2(1¢69) extends MIR-1 to cover more general analytical tronsformations
and more effective interactive usej;but it is still slow{about 12,000 operations
per second--since aritlmetic is done in decimal,rather than binary form),and the

memory is extremely small(only 8 K~words).

Phase 3.MIR~3,ANALITIK~74(1974~") s Introduces several essential improverents,
including:larger memory(64Kb— still not camparable with those in the other sys—
tems),simpler semantics,more compact notation,better simplification and editiﬁg
facilities,higher speed( from 10 to 50 times as fast as MIR~2,depending on the type
of calculations),and more 'primitive instructions'(the basic tools of the package,
of which there are,essentially,only five in MIR-2;and these are too general for ty-
pical wuse inapplications).On the operating level,the main improvements are:possi-
bility of ‘stepwise running'of test programs(with automatic intermediate output);
interactive treatment of syntactic,semantic and other errors(so that the calcula-
tion may be resumed at the start of the corrected portion);and,detemination of
the status of the machine,at any time(giving,e.g.,the current values of all
variables,and stating whatoperation is currently being performed).
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Phase 4,MIR-4,is not completed.It can be expected to include more advanced micro-
Programmedelements,higher speed of operation,more flexible interaction,virtual
memory,history file,etcssIn principle,it is clear that these improvements can be_
made;but it is well known that major advances in this field tend to take years,
rather than months,so it may be a long time before this enhanced ANALITIK system
becomes available,

For the present outline,it is the unicque construction of the MIR-n range of
systems that is stressed{with the reflected versions of the language ,ANALITIX,of
vhich the computers are partialrealizations}.The basic symbols used are Latin

and Russian capitals(though an 'English'version,'E-ANALITIK,has been introduced at
the Helsinki University of Technology;and this will spPresumably,be extended to
cover the latest forms of ANALITIK,as they appear). '

4e2.Structure of the system.

There are just five basic operations governing analytical manipulations--but these
operations are very general,and may be used to construct complicated transforma—
tionseThis is in line with the design philosophy of providing fixed tools for
efficient manipulation,as opposed to a collection of ready-made routines.It is

these basic tools that are implemented in hardware.The basic operations will be
listed now.

— Simplification (into any of three ‘canonical forms').

-» Comparison of expressions (an elaborate 'pattern recognition' facility).

- Application (of transformations,subject to user-defined rules:a key facility).

- Formal differentiation.

-~ Formal integration.

For any calculation,the main program has the structure:

LET  MeYj5eesY,  WHERE M, .o

where A is.a label,the Yi are statements{or operators)and the MJ. are descriptions
{or definitions)e.Extra descriptions(cegs,initial data or boundary data for differ—
ential equation‘s;_)_qray_be introduced by means of the construction:

LET Mp;...Mq IND.  Operations are activated by a DO or EXECUTE command.
There is a wide range of mathematical symbols,together with several combinations
of special parentheses{used for separating expressions into'components' «Internally,
expressions have a 'tree representation' scorresponding to the Polish logical nota-
tion( see,c.g.,Lukasiewicz(1963)).
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4.3 Remarks on I/0 and some basic procedures.

The ANALITIK language has many attractive features because of iLts mathematically
oriented Torm.However,only one-dimensional input and output are available( though,
possibly,an option for two-dimensional output will be included in the next ver-
sion).In spite of this limitation,the formation of expressions is quite simple,for
instance,the expression '

2p n
I 3 flaz+d {ﬂx Meos(x/8)] Jdx - becomes
n=1 £=1

n(N=A,2xp (2 (L= O,N (f (axXf +3/X(/ (L)X Tm x cos(xxv{4))))dX ))))e

Any of three arithinetic modes( integer,rational or decimal)may be specified.Vari=~
ables may have as their values any well-formed expressionsjor else,they may be
defined by their descriptions.Otherwise,they just stand for themselves(atoms).
One special variable has no formal description,but is( fluctuating)value is the
current content ofthe working zone (where current computations are performed).In
ANALITIK,the contents of the working zone may be viewed on a screeny,and altered,not
only by normal editing procedures,but also by means of a Ylight-pen',for under-
lining—a form of extra identification.(As mentioned in Section O,some of the
early,experimental systems also had this device).The working zone is the operand
for all analytical transformations .Arrays may be specified formally(e.g.,as

. A[11],for a vector),or explicitly(by listingall of their elanents).There are
standard functions(e.g.,Elementary functions)and user—defined functions(of the
form F(X1see0,XN) = (expression))eThese functions may be specified at the outset,
but they could be introduced during the computation.

Substitution in a function already defined is achieved by altering its arguments
directly.For instance,if one has specified a function,f,of variables X,y,expli-
citly,then.the substitution x = g{u,v),y = h(u,v)--wvith g and h also explicitly
givens« is accomplished simply by writing F(G(U,V),B(U,V)).This notation is very
compact,sand compares favourably with that in most other sys tems.Operational nota-
tion for differentiation znd integration(and most other analytical routines)is sim-
plesfor instance,one writes S (E),or d/0x Tkl (E) ;also, V(E) , SIN (E),etc—as in
the above example.On the other hand,factorials are written in full(as products of
all integers from 1 to n),and binomial coefficients as quotients of factorials——~
in line with the use of the system as a tools kit,from which facilities should be
constructed.Nevertheless,the system does treat the Elementary functions directly
(unlike ALTRAN—or SAC-1;see Section 8——where special,miniature subroutines are
required) oConditionals have the form IF ... TIEN ... OTHERWISE ,and the lozical
connectives AND , OR ,are used,together with NOT for negation.
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Simplification procedures are similar to those in many other systems(though not so
extensive—~unless extra routines are put in by the programmer).Therc are three

' canonical forms' of simplification,the second('intermediate’ Jone being the de-
fault setting.However,all of these forms are very basic,and many additional con-
ditions must be imposed(as small subprograms)for effective reduction of complica-
ted expressions in a particular context——clearly, the use of side relations along .
with substitution plays an important role here.Details,and examples,of all 'opera‘-
tions: for ANALITIK imay be found in the vreferences given at the end of this
Section.

4+4 Operations on equations.
It is in the role of equations that ANALITIK differs most strongly(on the soft—
ware level)from the other systems.This is because,for ANALITI!\,equatlons are the

basic entities from which generaltransformations are constructedsBy allowing a
variety of operations to be applied to equations,the designers compensate to scme
extent for the lack of built~in routines.In view of this variety of operations on
equations, the user must declare all transformations ard their applications,‘_,_i‘n_
detail.Cne of the most basic operations,in this context,is the ‘USE' operator,
which effects substitutions,by replacing the left member of an equation({s say,

E‘l =E )by its right member—within another{ spec:.fJ.ed)expressmn,E,f'onta.Lmng E
as a subexpressmn. ‘ E

Three types of variables are defined:simple(which cannot be replaced by others
wi. thout invalidating the equation;paramete r{which may be replaced by any expres—
sion in a broad class—as in identities);and,separate,or *functional',(which may
be replaced by any other variable,but not by the values of variables).Typical],y,
separate variables occur in differentiation and integration operations.The qes—

tion of !'value' here,invwlves a distinction between( eegs)descriptions of expres-—
sions and the possible values they could assume after various substitutions are
madesOn the whole,such distinctions do not affect users directly,but failure to
observe them may lead to program faultse . '

There are several ways of nhaming eque‘tigzs_s,r_;g_aggirwg from the pure identifier(label)
to the explicit representation( E:JI = Ez) «Systems of equations are handled znalo-— -
gously.The very small menory of MIR-2(which,as mentioned already,is enlarged sane-
what in MIR-3}makes it essential for{collections of')...omphcated expressions to be
manipulated with minimal use of storage spaceJ.For this purpose,the 'value of an
equatmn,l:1 = EZ' is a useful conceptsIt is defined to be the resulting eqation
(say,l‘1 =F ) obtained when all evaluable parts of E1 and hz are evaluated as
fully as pos.s.xble.The equatmn,F,l = r‘z,tben forms a basis for further calculatione
Of course,many of these concepts are basic in the design of any algoritimic lan-
guage;but they appear in AMALITIK even at the system/user interface( offering vari-
ous cholces of procedure) rather than as hidden consequences of system designeThe
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of the light—pen(for selective underlining)allows calculations to be confined to
certain subexpressions,for part of a computation,and restored to cover all
terms,when this is convenientsThe screen facility(for displaying the contents of

the workspace)is useful for interactive error detection.

4e4.The fundamental operators.

The main purpose of this subsection is to outline the transformation facilities
of ANALITIK--which constitute its principal means of analytical operation.Before
doing this,however,I mention the other types of basic process which are used fre-.
quently.These comprise:operators for:conversion(is.e.,placing information in the
working zone--eegs.,'TAKE' ); for naming(for storing identifiable information,to be
used eventually in the working zone——e.g.,'NAME');and,for computing(to compute the
values of variables——e.g.,'COMPUTE' }.None of these facilities differs greatly from
those used in other systems,except in matters of detailed syntax,etc.;so they are
not discussed further here. ’
The transformation facilities include the most powerful routines in the system,
and,as there are(essentially)only five of them,they may be considered in turne
The 'COMPARE' operator makes comparisons between (subexpressions of)its operand
«.and the contents of the working zone.The operand in cuestion may be any expression
or{ s;yste.m of)equation(s).Comparison with subexpressions of the working zone may be
made to0.Tlhis is a form of pattern-matching,subsuming many of the facilities built
into other systems{but requiring full implerentation of any particular facility by
means of a subroutine--rather than by mere invocation).Notice that the operand it~
self is not changed in this process;but another operation,conditicnal on !compara—
bility',may be used to effect changes.The relation of comparability is defined
( rather elaborately)by means of recursion,and enumeration of special cases;in gen—
eral,it is not a symmetric relation. ,

The second basic operator,'APPLY', uses its argument equation(s) to'operate on the
contents of the working space'-—roughly,by imposing on the expressions in the
workspace conditions embodied in the equation{s).This idea is extended in Section
14 to cover the imposition(i.ee,assumption)of general premises and theorems,as
part of the 'environment of investigation' for symbolic analysise.The intention in
ANALITIK appears to be more limited,but the basic idea has the same implicationse
In order to accomplish this 'application',a preliminary comparison must be made,but
this is only the first stage—the second being,effectively,substitution,corres—
ponding to the equations applied,and the degree of cuamparability found at the
first stage.
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The third group of cperations,for simplification,has been mentioned already,and

it is best understood in the context of reduction of specific expressions.Cne
operator closely related to those for application,and making use of varinous
simplification routines,is the 'BRING' operator,shich transforms selected expres—
sions in the working zone to 'strong canonical form'(in effect,by repeated use of
simplification rules,vhich are generally expressed as equations).

The fourth and fifth of the fundamental operators may be considered together,as
they govern differentiation,and integration,of general or explicitly given expres-—
sions.The 'DIFFERENTIATE' and 'INTEGRATE' operators act straightforwardly on the
contents of the working zone——or on selected expressions from there.Differentia—

tion is,as usual,fully algorithmic,and is limited only »by the degree of simplifica-
tion attainablesThe integration facility,however,doe hot include a decision pro-
cedure,and integrals that the system cannot evaluate are returned in unchanged,
symbolic form.On the other hand,several standard forms and 'substitutional changes
of variable'(with associated table-look-upjare incorporatedjand this,in conjunc—
tion wit basic pattern—matching,anounts to quite a strong basic integration facili-
ty(as compared with those for other systems not using some variant of the Risch
algorithm.See Section 12 for more comments).In principle,repeated integration is
possible,too;but without a general algorithm this will be confined to relatively
simple cases.Possibly,some future version of ANALITIK will be large enough to in-
clude a decision procedure for integration.Plainly,this would be of great value in
intricate analytical problems{where formal integration is required and simple
approximations are inadequate),especially in conjunction with ANALITIK's highly
developed facilities for general transformation of expressionse
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4+5.8ystem overationse.

These functions are similar to those in the other systems.They include operations

forscontrol(to limit the use of algorithmic operators);for auxiliary tasks(e.ge,

specifying the accuracy of arithmetic operations,or provision of exact rational
arithmetic);for Qroccdures( these are similar to the ALGCL forms;they allow the
repeated use of any subrmtirie,without its being repeatedly written out);and,for
outgut( for interactive use,and specification of the form of output)e

At present,the most effective use of MIR-2(apart from small,straightforward tasks,
like forming Taylor expansions or Fourier series for relatively uncomplicated
functions}is in two areas.First,in the solution of intricate but small-scale prob-
lems arising frequently(using highly optimized programs ysspecially developed for
this purpose) ;and,second,for the experimental development of algorithms of some
sophistication{but not requiring extensive memory) for eventual incorporation in
larger—scale procedurcs.{See Section 12 for further comments on the mathematical
scope of AMALITIK). ’

Although all versions of the manual are in Russian,a detailed description of the
MIR-2 form of ANALITIK is given in the article by Glushkov et als(197;English
translation,1974) .ioreover, the latest fom of ANALITIK(for MIR-32)}is described in
Glushkov et al.(1978),though this may not have been translated yet.Further infor-
mation,and some new developments,may be found in the technical reports published
by the Helsinki University of Technology.See,especially Korpela(1976a,b;1977a,b)and
Husberg(1977).
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5. CaMAL.

This system was developed(at tiie Cambridge Mathematical Laboratory)primarily for
calculations in celestial mechanics z{nd relativity.Later,it was extendcd to fom

a general-purpose system.CAMAL is designed as a modular system,operating at several
levels.The basic level is that of polynomial manipulationjnext,there is a Fourier
series module; then,a module to handle complex exponentials,another for general )
comnutative operations,and,finally,a special facility for tensor manipulationse.
Each of these modules has its own compilersithey are not iinked during a computa-—
tion,so the user must specify at the outset which module is to be used.It is
more costly(in time and space)to use the general('H')than to use the Fourier{'F')-
or expon=ntial('E')systems,so the correct choice of mecdule is economically as well
as mathematically significant.Cn all levels,emphasis is put on minimizing the
store used—even at the expense of increasing the time-taken.This is sensible,
since a program may stop for lack of space quite often,but only in exceptional
circumstances will it run out of time(mounting costs being ignored in the interests
of science'.)fﬂo.ve\'er,tfxis attitude may have been made optional in the latest ver—

" sion--so that it is possible to optimize programs for running time and alloca-—
tion of storage. CAMAL has been implemented on IBM,PDP,CDC,and Telefunken mach-—
inessA version in the language BCPL also exists,so that,in principle,other imple-
mentations are possible,since BCPL is machine-independent.Presumably,all of the
existing implementations are derived from the one in BCPL.

5¢24General sketch.
CAMAL is a self-contained,low-level language,reneniscent of the original 'Auto-

code' It is a list-processing system as far as its internal structure goes,but
the compiler allows input of a quasi-mathematical formsThe basic elements are
algebraic variables,integer variables,and atoms--all of which may be subscripted

in various ways,and combined to build campound expressions.The means for construc—
ting these compound expressions include the usual algebraic field operations,
standard functions(e.g.,Elementary functions,and'user—functions',which play the
part of ‘arbitrary functions' in Analysis.Algebraic variables are represented by
the letters A~H,and U~Z,the remaining letters,I-T,being reserved for integer vari-
ables.All of these variables may be included in ‘ordered lists',if each component
variable is indexed by an integer variable of suitable value.All distinctly in-
dexed forms of the same(literal)algebraic variable are teated as independent with—
in a given program(vhich ensures that one need not run out of symbols in cases
where many different variables must be introduced fe.ge,A[7 ]3A[ T4 1]:4 3+ 1]])e
The other fundamental constituents of CAMAL expressions are the atoms,which may be
viewed as'abstract indetenninates! sAtomsg, too,may be subscripted,the subscrips be-
ing any integer variables(placed in angular bracketsiesgeyb<2>5;8< J[K]4L > )e
Notice that all atoms are denoted by lower—case letters—so that,CAMAL is a
two—-case language,a fact that causes some problems sbut which can be circumvented
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{albeit,rather clumsily and impractically).In fact,atoms may have any number of

subscripts(as is essential in relativity,for instance).

Arrays of algebraic variables are denoted by A[ integer expression ] ,as mention—
ed already.In spite of the apparent ambiguity between,say,A [ K] and the Kth
element of the array,A [L_] swhere L 2K, there is no confusion in practice—since,
one never assigns a 'value' to an arrayjonly to its elements.The precise rules
governing the use of atoms,variables and subscripts are given clearly in the
manual.The most essential thing is that,at he start of any program,one must
declare{i.c.,assign types and values,to)the elements in every array o be used.
(The convention is that the array A[K] has Ki1 elements—A[0], ..., A[K]).

The assignment of values to variables follows a fairly standarc pattern,e.g.,
A[J]=B[K] + C[L],vhich allows the elament(s) 'in A[J ]'to be replaced
by those on the right side of the'equation'.This is,of course,standard practices
To assign a value to a single algebraic variable,one could write(e.g.)

A = be2 + 7pqr (to denote the assignment A = b2 + 7pgr);which indicates that
raising to a power is denoted by ' . ' , and multiplication by pure juxta-
position,thoughthere are alternative notations for povers).The use of *'loops'
of the 'FOR ... REPEAT' type,and of conditional statements of the form '
'IF ... THN' ,are familiar from numerical languages.Unconditional jumps are ach—
ieved by using a 'GOTO' instruction.One disadvantage of CAMAL is that subrou-
tines do not exist{in the sense that,even when a library procedure exists for-

some Tacility,the whole procedure must be written into the CAMAL program).A
similar situation obtains for ANALITIK;but there 1s some compensation in the
relative generality of the ANALITIK transfomations.liowever,once a procedure hasg
been written into a CAMAL program,it may be activated automatically,by using the
directive '~>' (conditionally,or otherwise).This means that each procedure
must be labelled(and the:niles for consistent labelling seem very obscure!).Other-
wise,the only labels needed are used to identify segments of the program—for
(un)conditional Junps.Conditional statements governed by order relations anong
(real)variables,mke use of the usual symbols for order on the Real Line.Subrou-
tines can be invoked unconditionaily(if they are already in the program)by sand-
wiching the label of the subroutine between two'arrows',eege, ~> I [K]=— &
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5¢340utline of general procedurese

Formal differentiation,and other operations on general functions may be done by
defining the user functions to show explicitly the variables on which they depends
For instance, A = f[ X,y ]; B = d(dA/dy)/dx ;PRINT [ B ] ,produces a second-order,
mixed partial derivative of f.However,the 'short cut',A = d(df/dy)/dx ,is invalid
(and prompts an error message),since the system 'does not know that f is expllcx.tly
dependent on x and y'.

Integration is only nominal in CAMAL( though 'integration by parts',and various
results for Elementary functions,are included as basic strategies).Factorization,
and related procedures(e.g.,partial fraction decomposition)are also largely absent
(and the system is geared aminly to the efficient perfomance of manipulations
involving polynomials).

A complete prozram in CAMAL comprises a collection of statements and instructions
(separated by semicolons,or by 'NEWLINE' directives),and finishing with the words
'STOP' ,'END' ——the first ensuring that compiling is stopped,and the second that

.« EXecution of he program ceases.There are several facilities for altering the form
of output(thou"h this is always one-dimensional).Comments on the program may be
inserted between colons~-without disrupting the flow of control;they must be pre—
ceded by the word 'TEXT'.As in all systems,there are two classes of simplification
routines:automatic and optional.The automatic facilities includessuppression of
added zeros;collection of polynomial multipliers;imposition of algebraic index
laws;minimization of the number of divisions(using xm1y"1 = (xy)-1),and imposi-

tion of the identity fof_1(x) = f~1 of(x) = x ,for the composition of Elementary
functlons and their inverses.Side relations are used,too--for instance

'SET i2 + 1 = 0',ensures that i has its customary role as ( 1)1/2 «The optional sim-
plifications— all set by statements of the form 'MODE = N{an integer)'—— in-
clude use of noncommutative differentiation(es.g.,for 'unequal mixed partials') ,
linearization of products of trigonometrical functions,and various I/0 and de~
bugging devices.
Storage management( essentially, the use of internal simplification and reduction
procedures)is covered by several facilities in CAMAL.No expression is duplicated,
and a 'use-count'facility ensures that expressions that are not in 'sufficiently
regular use'are removed from the store.Other important facilities include 'SORT!
(which collects similar tenms);'SUB',znd 'FSUB' (which substitute any suitable cx—
pression for,respectively,an algebraic variable and a function); ' EXPAND' (which can
assign temns of different orders,in its polynomial argument,to different storage
locations;'LOSE' yand 'CLEAR' (which remove from store,respectively,an algebraic
variable and an array of such variables).The setting 'MAXORDER = k',ensures that
all terms in an expansion of order k+1 or more are discardede.The assignment of
weights to variables,using 'WEIGHT', allows all terms of the same weight to be
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collected; and then,if possible simplified.Other procedures for dissection and
examination are 'SELECT','PARSE’ and 'MASK',whose basic use and effective combina—
tion are discussed in the manualJFinally--and importantly--there is the 'colon
facility',which causes store to be freed as soon as the expressions occupying it
have been used.For instance, A = B: + C:; puts the 'value'of the sun of the alge-
braic variables B and C 'into A',after which B and C are erased.If this facility is
used consistently throughout a program then much space can be saved.A difficulty
is,however,that expressions may be required several times,in widely separated
parts of a progromjand ,every time they are removed,they must be put back later on.
Keeping track of this may be very hard.{There was also a 'bug' in this facility
In the 1977 version,but this may have been eliminated now).

There are very few references for CAMAL( aside from papers m‘xex‘é it has been used

_ in relativity and other calculations——see the refercnces in this paper,especially,
d'Inverno(1978)and Fitch(1979)).The manual{Fitch,1975 onwards)is available as
computer print~-out—which allows for revisions to be inserted.Collections of demon—
stration programs(and output)are obtainable similarlye
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6. FORMAC.

The original form of FORMAC was very limited in scope--its main aim being to show
that formula-manipulativé systems kased on FORTRAN or PL/1 could be constructede
It was limited to operations in which 'tidying up' was the dominant activity.How=
ever{as menticned in Section O),many of the basic problems of system design were .
fomulated initially in connection with FORMAC.The more recent versions(known as
SHARE FORMAC)are much more powerful than the original system,and are competitive
in several areas of applicationsThe essential structure of FORMAC has not changed
since 1973;indeed, the latest version is called FORMAC 73(1978 version);which under—

lines the fact that symbolic computation systems are developed over periods of
_ years,rather than monthse.

6+2.Basic structure.

FORMAC variables are of two types:atomic and assigned-—the difference being that

an atomic variable has not been assigned any value(i.e.,it has not appeared on
the left side of any executed FORMAC statemeﬁt) shence,an atomic variable stands
for itself.On the other hand,an assigned variable represents or names an expres—
sion—its current valueywhich will change,in general,as a program procéeds.There
is no special notation distinguishing the two types of variables{in contrast to
the CAMAL convention);but the default situation is that a variable is atomic un—
less it has been assigned a value explicitly.Again(unlike in CAMAL,ALTRAN or
ANALITIK,among others),FORMAC variabless-even arrays—need not be declared.Up to
four subscrips may be assigned to any variable;but,presumably,this limitation,
which could prove awkward in,say,relativity calculations,can be remcved.

The syntax of FCRMAC is essentially that of PL/1 .Neverﬂleless sthe PL/1 and FORMAC
variables arei kept quite separate during the runniﬁg of a program—even if they
have the same names.The basic method of assigning FORVMAC variables{which cannot be
used for PL/1 variables)is to use the 'LET' operatorsThus,A = 5;LET(A=7);B=A;
results in the common value,5,for the PL/1 variables,A,B;but the value of the
FORMAC varicble,A,is still 7.Apart from this,the index laws,order of precedence in
evaluation,etc.,are the same in FORMAC as in FL/1.

A general FORMAC variable is a string of special,numerical and literal symbols
(comprising froa one to cight characters,in all).Subscripts{at most four)may be
represented by any real-valued FORMAC expressions(vhose values may be rounded up
to integers).Atoms are just 'indeteminates';but assigned variables are put into
three classes,namely:LET~variables( each being assigned a single expression,which
is its current value) ; CEAIN-variables( each being assigned a whole chain of expres—
sions as its current value);and,STACK-variables(each being assigned a stack of

expressions,the 'topmost one'at any time giving the current value) .Changes of
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status of variables are effected automatically,as a program nunse.

In addition to these three classes of assigned variablies,there are two other cate—
gories.Function variables,cover all representations of functions of any number of
variables;subscripted families of functions may be included,too.The declaration
'format' is used to specify the procedure(s) to be used in any program(this is
analogous to the ‘procedure' statement used in ALGCL-based languages);and,some—
times,to define the syntax of the procedures.Most functional transformations can
be specified in this way.The otrer class of variables consists of those vhich

are neither completely free{like atoms),nor bound({like assigned variables}.Rather,
they may be bound,temporarily(during an evaluation)ond then freed again,in what
amounts to an automatic invocation of a facility analogous to the CAMAL'colon
facility',thoughthe tvoare not identicale(Special variables for referring to the
Nth argument of a functionjor to-a 'subpattern of a global pattern'are also avail-
able).

6e3.Various operational procedurese.

The list of 'reserved expressions' in FORMAC(combinations of letters used to de-
note various declarations,functions er instructions)gives a Tairly good idea of
the range of the current FORMAC systemsAll of the Elementary functions are covered,
both for algebraic operations and for basic analytical procedures.There are also
several functions for factorization,expansion of products,return of numerator or
denominator from a rational expression,and dissection of expressions;as well as
certain pattern-matching functions.However,the integration facility is weak,and
this places restrictions on the type of problems for which FORMAC is suitable.In
the manual,. . programs are given,illustrating the scope of the system in a
variety of areas,and showing how the basic functions and systen operations may be
used efficiently.

The basic FORIAC system is for batch operation,but an interactive version does
"exist«The main implementations have been on IBM computers.The interface with PL/
.‘i%s_:ggl%ained in detail in the manJal.Essent.ially,PLﬂ features are used to struc-
ture programs into blocks or procedures,to control the flow of statements,loops
and tests,t0 input data or parameters,ard to do purely numerical computations.On
the other hand,a FCRMAC program is basically a PL/1 program,to which certain extra
operations have been added-—including the special FCRMAC commands,functions,and
operators active at the ¥L/1 level.The output in FORMAC is two—dimensional—which
is especially important in the context of dialogue use,where the user reacts to
the output produced at any timee

The current manual{Bahr and Knoble(1978~ ) is available as machine print—out;occas-
ional FORMAC Newsletters are issued,to0.
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7+ REDUCE,

This system was developed by A.C.Hearn( initially,at Stanford University,now,at

the University of Utah,where an active research group has been fomed,in the
Department of Computational Physics.The original aim was to do calculations of
importance in high energy physics(especially,in quantum electrodynamics).Later,it
was decided to extend REDUCE to a general-purpose system,but the basic design has -
remained largely unchanged.The system is written in a dialect of ALGCL 60, lnter-
preted into LISP,which is the language underlying the whole system.Indeed,REDUCE
has a 'symbolic mode'{employing LISP constructions directly,and handling list-—
processing problems)as well as the 'algebraic mode',in which formula~manipulation -
is done.

The basic capabilities of REDUCE are as followse

-+ Manipulation of rational expressions;

formal differentiation;

various types of substitution and pattern-matching;

determination of the greatest common divisor of pairs of (n-variable)polymmials;
automatic and user-controlled simplification;

matrix manipulations; and,

4 P d ol

tensor operationse.

For most scientific applications,the algebraic mode is used.The user may discover
which mode is in operation by typing 'V#MODE' .This is important,since,there are
differences in evaluation proéeQures in the two modes( notap_ll,_._ip_the symbolic mode,
LISP evaluation prevails,assignment statements are handled as in LISP,and,above
all,suns and products are not defined at all).REDUCE may be used in both batch and
dialogue formseThe I/0 is two-dimensional and,as such,fairly comprhensible for
rapid user-response.lioreover,anyone experienced with ALGOL will find REDUCE easy
to use.During interactive use of the system,the 'PAUSE' and 'CONTINUE' facilities
allow extra input(e.g.,data)to be inserted before the program progresses.

7+2.8Some basic characteristicse

REDUCE is quite portable.It has been implemented on IBM,DEC PDP,UNIVAC =nd COC
amchines;the underlying LISP fomm makes it essentially machine-independent.The
arithmetic can be either exact,or else arbitrary precision,floating point.It is
enphasized in the manual that the system may be used on several different levels,

" depending on the complexity of the calculations to be doneellowever, these 'levels'
are not syntactically distinct{unlike in CAMAL); it is,rather a question of using
only limited ranges of facilities—near to minimal for particular classes of compu-
tations——and enlarging the range of procedures available(imoving to a 'higher levell)

only when the demands of the calculation exceed the capacity of the facilities at
hand.In particular,the use of the symbolic mode(which amounts to a direct use of
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LISP)ié classed as an activity at the highest level,and so on.This hicrarchical
description of the system is made clear in the manual; it is pedagogical rather
than structural.

In LISP,every variable or expression must have a )&lgg( for evaluation);so,the
operator is used in REDUCE to mirror the QUOTE of LISP—'(PGR) corresponds to
{ UOTE(PUR) ) .Assignment statements are similar to those in ALGOL——e.g.,A:=B+C;
but,as in all 'algcbraic languages',B and C must be understcod as any allowable,

symbolic expressions,whose sum replaces the expression labelled 'A'.The default
evaluation of any RiBUCE expression includes basic simplitfication routines,and
substitution from any side relation specified by using the 'LET' facility.Condit—
ional statements of various types are allowed—typically,the 'IF eeo THEN oaoELSE'
construction may be used({which is especially suitable when two distinct methods

of calculation may be adopted,depending on the outcome of some intcrmediate step)s
Loops are introduced with the syntax 'FOR < variable >£:= <arithmetic expression >
STEP < arithmetic expression > '.Unconditional jumps are made by using the 'GOTO!
instruction,in a standard way.Substitutions may be handled by using ‘LET' for
single expressions(e.ge,LET H(X,Y) = X**N 4+ Y**M)or else~—for substitution within
arguments of functions—-by using the 'SUB' facility.The syntax of REDUCE is simi-
lar to hat of FORTRAN,but with scme ALGOL characteristics,tco.The explicit use
of the LISP forms, ' CONS,CDR, CAR, QUOTE, EQ, etc.,zives REDUCE a distinctive appear-
ance.However,the cutput,when the two-dimensional form is used,is comparatively
easy to read,and has few unusual featuresj;exceptthat Greek letters are written
phonetically(e.g.,ALPHA),which can be awkward when, say,power series are involved,
(Certain other systems,e.g. sJALTRAN,share this disadvantagejsee Section 13 for
more remarks).Expressions in REDUCE are of three general types:'numerical','sca-
lar',and 'Boolean’.Strings of scalars amy be used to designate vectors,or matri-
ces(in terms of their column or row vectors).Tensor manipulation{of the indicial
type)is possible.

7+.3.Structure of prosrams.

.« Roughly,a program is a sequential evaluation of functional com'nands,compx;‘izing

deciarations,statements and expressions.These elements ars represented by se-
quences of numbers,variables,operators(sone of these types being in strings),re—
served words and delimiters.As just mentioned,all Greek letters and other special
symbols that are not part of the set of REDUCE characters are represented by their
spelt forms.REDUCE is a procedural language,with deliberate emphasis on allowing
users to create their own procedures for special purposes—which are named direct-—
ly whenever a new routine is created.As a very simple cxample,consider the cal-

culation of factorial N.The following construction may be used,
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INTEGER PROCEDIRE FAC(N);
BEGIN INTEGER M;

M=15s

L1s IF N = O THEN RETURN M
M=M*N

Ni= N-1 S

GO TO L1

END

. The 'dollar'sign is used to terminate all command lines.

The special REDUCE procedures include some for ordering,partitioning,defining,
printing,and other output speciiications.Among the ordering facilities is the
LISP 'LAMBDA operator!(cfs,Section 1)vhich caters especially for substitutions
into arguments of functions of several variables,where inherent ambiguities arise
(for a machine).Another useful facility gives the LISP equivalent of any sequence
of standard REDUCE input{but without evaluation).Dissection and sorting routines
are also built in.This combination of special,basic facilities,and the freedom

to create wide-ranging procedures makes REDUCE a powerful system.

It is worth noting that REDUCE operators are classified into two types—~—infix,
and prefix,with the subclassification into 'assignment operators'( $= );'logical
operators® (OR, AND, NOT,MEJBER) ; ' relational operators'(EQ,and its negation,and
order relations);'symbolic operators'{used only in LISP-like calculations),and
'arithmetic operators'(standard)eAlthough all systems must,at least implicitly,
adnit most of these types of operators,the structure of REDUCE(e.g.,the 'levels')
is organized cuite clOSMmund_ these distinctions among operator types.

As a second example of a' REDUCE procedure-—this time,using substitution and
differentiation-—consider the generation of the Legendre polynomials from the
formula: p (x) = (1/n%)(3/09)" § ¥2 - 2xy + 1 }—1/2| y=0 *In REDUCE, this may be
rendered succinctly as: ’

ALGEBRAIC PRGCEDURE P(N,X); _
SUB(Y=0,DF(( Y*#2 —2X*Y +1) **(-1/2),Y,N))/(FOR L:=:1:N PRODUCT I) S .

’

This illustrates again the extreme compactness of the notation,which can lead to
storage overflow unless care is taken.However,the LISP 'garbage collector! is
implemented automatically in REDUCE;and it is possible to monitor the total time
or store used at any point of a computationeThe intercommunication of the two
REDUCE modes({ in the symbolic definition of functions,when they are to be used as
operators on algebraic expressions)may be achieved through the declaration
'OPERATOR' ,followed by the description of the functions to be usedsAgain, the user
may re-name any identificr by means of the 'DEFINE' facility.This is especially
useful if shorthand symbols for long strings of variables are introduced during

a calculation. V
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Equations may be handled as Boolean variables(of the form F.1 = E2 25 in J\NALI'I‘IK)
with values 'T' or 'NIL'.These expressions may be numbered and manipulatcd,so
thatsubstitution from one into another is possible.Control of storage space is
covered by various facilities,among them,'WILEVEL'(for attaching weights to vari-
ables);'LET'(to impose simplifying side relations),and 'CLEAR'(to remove side
relations that are no longer relevant).Selective substitution may be effccted by i
using the "MATCH' function(permitting substitution only subject to specified con-—
ditions).Functions for operations in linear algebra include 'DET'(to evaluate
determinants);'MAT! ~-with syntax MAT( Tyseee ,rm)—--wuich sets up the matrix with
row-vectors r ,...,x‘m; for which the individual elements may be identified by
labels(esgesas Y(p,q),for the elarent in the pth row and qth column);and,'TP', -
and 'TRACE'(which return,respectively,the transpose of any matrix,and the trace
of any scuare matrix).All of these operations require some preliminary 'ARRAY'
declération(sjmilar to that in FOCRTRAN).Definitions required to apply to all
occurrences of the arguments of functions camnot be handled by the 'LET'opera-~
tor.For instance,'LET H(X,Y) = X **M *Y**K,would leave H(X,Z) unchanged.The cor—
rect form is: FOR ALL X,Y LET ... «A related operator which could be used in
this case is 'ARB'(arbitrary}: ARB X,Y LET ... sAZain,automatic elenentary inte-
gration routines may be built into the system{esge, FCR ALL N LET X**N=X**(N:1)/
{N+1);but note that repeated substitution—the default setting—imist be suppres-
sed,if chaos is to be avoidedi).The 'SAVEAS' and relate:’ functions allow file~
handling( e.g.,for batch use of the system).

The general facilities for practical exanination of expressions( dissection,sjmpli-f
fication,factorization.si)are strong~—in the sense that the user may asgment the
basic system functions with specially constructed proceduress.This is especially
s0 for indefinite intezration,where implementations of the Risch algorithm have
been made{ for certain classes of integrands-~see Section 12).The system is ade—
quately(but not exhaustively)described in the manual,where details of many special
facilities are given.,together with a compact'outline of REDUCE',and a list of
all of the 'MODE flags',which control the settings of the many options avail-
able to users throughout a dialogue session.The mamial{Hearn{19735- ))is comple—
mented by sporadic 'REDUCE Newsletters',and many technical reports(all of which,
up to 1978,are listed in Newsletter Noe.2),mostly by members of the Utah Computa-—
tion1l Physics Groupe
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8+ SAC.

———

This system is developed by G«E.Collins,colleagues and research students at the _
University of Wisconsin,Madison.In many ways it is distinct{in aims and construc=
tion)from the other systems considered in this paper.Its closest parallel,syntac—
tically,is probably,the original ALTRAN,as constructed from ALPAK,a collection

of FORTRAN routines(see Section 3).However,ALTRAN,even in the old form,had some
pretension to general usejwhereas,SAC-1 is strongly biased towards creating opti-
mal routines for calculations involving polynomials and general algebraic num—
‘ber fields.The whole system(including the list processing facilities)is written
in FORTI_{éN_!z_;pg all of the commands are sequences of FGRTRAN calls—minly aimed at
bringing in the various FORTRAN subroutines in suitable order.Thus,SAC~1 is not

in itself a 'language'(as distinct from the FORTRAN underlying it),and it can be
used only with a detailed list of 'operational rules' swhich have few suggestive
qualities,to aid the memory.A more user—directed "METASAC language was designed

by d'Inverno and Russell-Clark{1974),which is intended to make it easier to use
the system(for instance,in the standard version,even the erasure of expressions
must be specially programmed).A 'SAC~2' marual is due to appear soon,and this

ray incorporate significant improvements in the 'user aspects'of the designe.

By contrast with the apparent opacity of the SAC~1/FORTRAN links,the mathematical
algorithms,many of which are original,are described in exhaustive detail in a
series of technical reports.Indeed,the total SAC-1 documentation{ including mater—
ial on the syntax,range of procedures and running times of various routines)amounts
to more thah 1,000 pages.No other system is covered in such minute detail(in fact,
it is often difficult to find out what the underlying algorithms are in several
systems,while,in SAC-1,each algorithm is analysed in detail).All algorithms are
especially cleverly designed(in line with the 'optimization'aims for polynomial-
based routines),and it is claimed that many routines run in SAC-1 far more effic—
iently than in any other systemsThis claim refers mostly to problems involving
algebraic numbers,factorization and the determination of zeros of polynomials.Be—
cause of this bias,SAC-1 is less well suited than most of the other systems to
perfoming analytical calculations of a general nature.The essential facilities
are there,but they are not highly developed.For ins tance, there is a rational func-
tion integration routine,which computes the rational part of an integral,but merely
gives the intgrand of the non-rational part,making no attempt to evaluate this in
termms of logaritims and other Elementary functions.On the other hand, the means

by which the rational part is calculated is particularly efficient.This somewhat
'anom‘olous approach to symbolic conputation is typlcal of SAC-1 oEverything is done
as efficiently as possible(in terns of 'best asymptotic algorithms'},but some

tiings are developed very fragmentarily——qite deliberately.Of course,the finite
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size of computers precludes tihe exhaustive development of all intcz‘esting' proce—
dures;but the polarization of SAC-1 is extreme.In this sense,perhaps 5AC-1 should
be viewed as a(very efficient)special-purpose package.llowever,it is,potentially,
of general scope-—C.Ze.,a variant of the decision procedure for indefinite
integration is,in principle,available--so it is probably best to classify it as

is done here.One other general characteristic of SAC~1 is the unduly large number
of lines of code required to implement a procedure--which makes the initial pro-
gramming effort comparatively large;but this,too,may be remedied in future versions.
On the plus side,thers is the fact that 8AC-1 is easily portable and fairly small;
it can be implemented on any(largc enoughjmachine with a FORTRAN compiler.This has

led to experiments on the possible use of SAC-1 on minicomputers(Cioni/Aliola(1977}).

8+2s The SAC~1 subsystems. )
The system is highly modular.Each area of application corresponds to a subsystem,

contained in a 'module’,the various modules being interdependent.Each mocule is
fully described in a technical report giving listings of all of its FORTRAN sub-
programs and analysing the algorithms used.One of the chief claims made for
SAC-1 is that it is very efficient{aiick,accurate and relatively cheapjfor the
classes of manipulations on which it concentrates.The manner in which this effic-
jency is achieved is explained in the reports.By making a careful choice of sub-
v systems for a given problem,a user can minimize the storage required—storag
occupied by each subsystem is listed,in numbers of 36-bit words.iith the numbering
of subsystems used in this paper,the interdependence of the SAC-1 modules my be
summarised as follows(where (m) p{n) means 'the use of subsystem m requires sub~
system n'). (5) p(4) p(3) p(2) p(1);(6) p(5);(9) p(5);(10) p(5);(11) p(5);(7) p(6);
(8) p(6);(12) p(8);(13) p(8);(12) p(11).This was the position as of 1976; there may
be some extra module(s) by now,with various interdependencies relative to the
modules listed here--but the basic organization of the systam is certainly un-
vchanged.
The ‘following,brief descriptions(essentially confined to explaining the scope of
each module)are based on those given in the SAC-1 User's Guide(Collins and
Schaller{1976)),which also contains information on running procedures,de-~bugging,

error messages,particular implementations,running times of all algorithms,etc.

(1) eList processing(LP).

This includes all basic list processing facilities for the system,so it is reyuired
in aknost all of the gencral algorithms,as most objects in SAC~1 have list repre—
sentations.The means for invoking LP within other subsystem programs are described,

and the fundamental progsrams for LP are listede
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{2).Integer arithmetice{IA)
All basic arithmetic operations,I/O facilities and (nurerical)calculation of

grecatest common divisors of pairs of integers,are covered here—in each case,

for arbitrarily large(infinite precision)integers in list representation.

(3).Polynomial system.(PO)}

This covers:field operations,substitution,evaluation,differentiation,asd I/0— -
all for general polynomials in any number of variables,with infinite pirccision

{integer) coefficientse

(4) HModulai aritlhmetic.{iA}

These routines include:operations over Galois fields of odd{single precision)prime
degree~—e.g.,Chinese Remainder Theoremyinterpolation,gencration of lists of{single
precision)primes in GF(p),and rfactorization in GF(p},where GF{p) is the Galois
field in question. '

(5).Polynomial GOV and resultant system«{GR)
These programs are all based on "fast modular algorithms'for polynomials in any

number of variabless.They are claimed to be outstandingly efficient.

(6)«Rational function systeme(RF)
Most important here are!field operations for multivariate rational functions

with infinite precision integer coefficients.Also covered areidifferentiation,
substitution,I/0,and modular algorithms for polynomial multiplication and diwis—

ione

(7).Partinl fraction decomposition and rational function integration systems(RI)

This provides a partial fraction decomposition{relative to a 'square-free factor—
jization'~-of importance in the general integretion proceduresssee Section 12)for
any univariate rational function.Further,it gives the indefinite integral of any
such function,in the form of the rational part plus the integrand of the non-
rational part. '

(8).Polynomial real zeros.(RZ)

This computes,to prescribed accuracy,the real zeros of univariate polynomials

with infinite precision integer coefficients.

(9).Linear algebra system.{LA)

Here,fast modular algorithms are used to perform addition,multiplication and inver—
sion(of matrices),null space calculation and the soluticn of sets of linear equa~
tions—all for matrices whose clarents are multivariate polynomials over the
(infinite precision)integers.
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(10).Polynomial factorization.(FF)

This produces complete decomposition into factors irrcducible over the ring of

integers( for univariate polynomials only).Typically,polynomials of degree at

" most 25 m2y be factorized in less than one minute.

(11).Gaussian integers and Gaussian polyinomialse{GP)

This includes:field operations,substitution,differentiation,I/O,end greatest )
canmon divisor calculations~—all for multivariate polynomials whose coefficients

are Gaussian integerss

(12) .Complex zeros.(Cz) _
This subsystem computes(to any specified precision)_-q_l__]_. zeros of any univariate .
polynomial with Gaussian rational coefficientse

(13) sReal algebraic numbers.(RA)
This covers all of the standard operations in{respectively)the algebraic number

fields,Q( a.),and the algebraic function fields,Q( a) [x],vhere o is any real,
algebraic mumber.Among the oOperations included are substitution,greatest comnon
divisor computation,and comparison(relative to the order in Q{ a)).

All of these subsystems are documented meticulously in the corresponding technic-
al reports(including listings of all the basic FORTRAN programs) Jioreover,a list
of nearly six hundred algorithms(numbered,and indexed by their page numbers in
particular technical reports——e.ge.,LP 26,0or IA 17)is given in the User's Guide.
Each algoritim is also given a mnemonic describing its essential content{if cor—
rectly interpreted},and decodable by means of a further list of basic abbrevia-
tions.Several randem selections from the list of algorithms indicated that(for me,
at least)yet another list of codes to decode the original codes was highly desir-
ablelIn spite of this difficulty,it is plain that SAC~1 is very carefully organ-~
izedsA useful article by Collins(4971 )gives a brief survey of the whole SAC-1

sy stem-~including outlines of the basic mathematical algorithms used.Since the de-
velopment of algebraic computation systems is so slow a process,it is unlikely
that the form of these algorithms has altered significantly since 1971,even though
new facilities may have been added,and details of implementations changedl.Poten~
tial users are advised to read Collins' survey before deciding whether to plunge
into the technical reports.The User's Guide is all right,as far as it goes; but it
contains no examples of programs( i.e.,of input or output), though the general pro-
cedures for invoking the subsysteas are given,along with declaration and initiali-
zation procedures for global varizbles.Brief comentson the mathematical scope of
SAC-1 are made in Section 12.
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SAC-1 Technical Reports
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(ug)

Report

The SAC-1 List Processing System, by G. E. Collins. U.W.
Comp. Sci. Dept. Report No. 129, July 1971, 34 pages.
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G. E. Collins. U.W. Comp. Sci. Dept. Report No. 156,
March 1973, 63 pages.

The SAC-1 Polynomial System, by G. E. Collins, U.W. Comp.
Sci. Dept. Report No. 115, March 1971, 66 pages.

The SAC-1 Modular Arithmetic System, by G. E. Collins,
L. E. Heindel, E. Horcwitz, M. T. McClellan and D. R. Musser.
U.W. Comp. Sci. Dept. Repecrt No. 165, Nov. 1972, 50 pages.

The SAC-1 Polynomial GCD and Resultant-System, by G. E.
Collins. U.W. Comp. Sci. Dept. Report No. 145, Feb. 1972,
94 pages.

The SAC-1 Rational Function System, by G. E. Collins. U.W.
Comp. Sci. Dept. Report No. 135, Sept. 1971, 31 pages.

The SAC-1 Partial Fraction Decomposition and Rational
Function Integration System, by G. E. Coilins and E, Horowitz.
U.W. Comp. Sci. Dept. Report No. 80, Feb., 1570, 47 pages.

The SAC-1 Polynomial Real Zero System, by G. E. Collins
and L. E. Heindel. U.W. Comp. Sci. Dept. Report No. 93,
Aug. 1970, 72 pages. :

The SAC-1 Polynomial Linear Algebra System, by G. E. Collins
and M, T, McClellan. U.W. Comp. Sci. Dept. Report No. 154,
April 1972, 107 pages.

The SAC-1 Polynomial Factorization System, by G. E. Collins
and D. R, Musser. U.W. Comp. Sci. Dept. Report No. 157,
March 1972, 65 pages.

The SAC-1 Gaussian Integer and Gaussian Polynomial System,
by B, F. Caviness, G. E. Collins, H. I. Epstein, M. Rothstein,
and S, €, Schaller. {(In Preparation.)

Algebvaic Algorithms for Computing the Complex Zeros of
Guassian Pclynomials, by J. R. Pinkert. U.¥. Comp. Sci.
Dept. Report No. 188, dJuly 1973, 322 pages.

'A1gorithms for Polynomials Over a Real Algebraic Number

Field, by C. M. Rubald. U.W. Comp. Sci. Dept. Report No.
206, Jan. 1974, 224 pages.

SAC-1 User's Guide, by G. E. Collins and S. C. Schaller.
U.W. Comp. Sci. Dept. Report No. 269, Jan. 1976.
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9+ SCRATCHPAD

This is the IEM 'liouse systen'(available only to enployees of IBM-—cpart from

a few people developing the system,esgs,at MIT,Cambridge and JAC,Rome)} «This is a
pity;for,in tems of language construction,SCRATCHPAD is the most sophisticated
and innovative of all symbolic computation packages.It runs on a specially modi-
fied IEM machine at the IBM Watson Research Center,in Yorlktown Heights,NY.The ’
system was designed by JeHeGriesmer,R.DeJenks and D.Y.Y.Yun,who remain in charge
of its maintainance and extension.Many of the algoritfms and basic facilities of
SCRATCHPAD are adapted from those in cer sys tems( for instance,simplification
and pattern-matching routines from REDUCE,two-dimensional 1/0 from MATHLAB and
Moses' SIN integration package);and equally,some ideas developed for SCRATCHPAD
" are diffused to other systems(notably,the Risch algorithm).Thus,it is only the
use of the system that is limited to menbers of the IBM organisation.

The crucial feature of SCRATCHPAD as a language is its declarative powery,which

virtually eliminates procedural p'mgranuning.In other words,the user dces not have
to 'code'procedures(to be called and specified,as required) sInstead, the minimal
informmation needed to perform some operation is written into the system by the
user—in much the seme way as would be done by a mathematician doing the calcula-
tion' *by hand'.The input language uses lower case letters,numbers and special
symbols; there are 'linearization rules'to render the input one—-dimensional«.By
contrast,when output is produced,the computer 'replies' in upper case letters
(with an option for one— or two-dimensional format).This makes a dialogue session
strongly suggestive of a tconversation' between the user and the system—and this
is the terminology adopted by the designers.As a simple example,consider the
generation of a set of polynomials from a recurrence relatione.The SCRATCHPAD
formulation is as followse.

p<0>(x) =1

pet >(x) =14+ x

p<n >(x).’:=".x #*pen-i >(x) -~ p<n-2:>
p<n>(x) for n in (Oy1,ese,11)

The resulting output is the first twelve of the polynomials.No other sysiem can
match the simplicity and elegance of the last instruction,which is entirely
'natural' ,avoiding all loops or other constructions.In this scnse,SCRATCHPAD is
almost ideally suited to the develorment of 'symbolic analysis' as it is envis—
aged in Section 14 of this papers
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9.2.S0me basic conceptse

The standard mode of use for SCRATCHPAD may be called 'interactive,in a self-
styled environment'.This environment of evaluation is tailored by the user through
the imposition of 'rules of transformation'—which remin operative throughout the
session,unless they are changed explicitly.Any variable may stand foriitself,a
number,an expression,an array,a setyetc.(ieceythere is no classification into
types of variables——unlike in most other systems) JMoreover,'unset! variables are
not signalled(by default,they stand for themselves).The process of evaluation always
includes simplificationsThe system is sglf-contained; but extension by users(rather
than by the designers)has played a major role in its development.All user commands
are declarative(esge,E = oo+ )jthe envirorment is represented by a 'stack' model.
{In FORMAC,the concept of 'stack variables'is used,but these are related to the
internal organization of a program,rather than to any set of rules applicable at
the machine/user interface).Evaluation means the replaéement of an'initial expres—
sion'by a'final expression',through the continuous imposition of the rules current-
ly in the environment,until no further changes can be made.The final expression

is also called the value of the initial expression.The replacement rules have the
general fomm: 'replace L by R when C',vhere C includes all conditions under which
the replacement is to be made.The underlying language of the system is LISP,and

one facility enables users to erter a LISP mode,for certain types of computationes
In this sense,SCRATCHPAD is a multilevel systeme
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9e3.An Overview of the systeme-

The following comments are intended to give .an indication of the general mode
and scope of operation of SCRATCHPAD.

M-Cermin 'ground rules®are always operative.These include precedence rules
for field operations,properties of Elementary f‘unction_s_’,ggwer series,etc.The
user-styled environment comprises a variety of'replacement rules',covering con—
ditional replacements of initial expressions by others{as designated),until all
such rules in the environment have been applied-—to produce a final(evaluated)
expression.Maximal evaluation within a rule( €+8s,invoking basic system functions) -
may be imposed.by using a special operator.In all of this activity{which can also
include certain pattern-matching constraints),the concept of workspace( ws ) is
central.Roughly,workspace is like the 'active area' in remote access systems(and,
also,analogous to the ANALITIK working zone,etc.).Thus if one declares E,then
the result is, ws = 'E (the ' ensuring maximal evaluation of E).Normally,all
éxpressims to be manipulated are loaded into ws in advance-~-so that,a conver—
sation cantake place uninterrupted.Past conversations stored in the system may be
retrieved,if desired.In short:the enviromment for evaluation at any time is the
stack of replacement rules imposed at that time,together with the invariant ground
mles}all manipulations beiné done in the workspace.A SCRATCHPAD response in lower
case corresponds to'arbitrary'element(s);this response may be invoked by the user,
when it is convenient.

9e3e2.Various options may be set for dealing with changes in the environment during
a dialogue session.For instance,one could require that the most recently imposed
rule takes precedence over all others(and overrules any condition which may com—
flict with it);but any order of imposition can be prescribed.In any case,the
command ')giisplay rules '(vwhich may be qualified to refer only to rules about
certain objects)causes all relevant rules to be listed—the most recently imposed
coming first,etc..Evaluation of a complicated expression containing unevaluated
subexpressions causes automatic evaluation of these subexpressions(so that,no
clumsy expression is allowed to survive through out a calculation in an unsimpli-
fied form.All evaluations of expressions are stored automatically,so that they may
be used whenever a related expression is to be evaluated.These are basic facili-
ties for storage management.



62

9e3+340verwriting or dropping of rules may be accomplished by reissuing these
rules with the 'righthand parts® replaced by empty strings(e.ge, f(x) = causes
F(x) to be displayed,and any rule referring to f is dropped).More generally,the
edict ')CLEAR rules'(possibly,with qualifiers)gets rid of all unwanted rulese
Control of 'patterns'(e.gs,for standard rules related to differentiation of vari-
ous types of functions)follows the same lines as for general rules.Among the
routines here are matching(of the terms in two expressions),and splitting a complexe
valued function into its real and imagimary parts.Patterns may be cleared at any
time. Among operators useful in defining rules are thelogical operators, AND,OR,
FORALL,and EXISTS('there exists'),the 'MAX'and "MIN'operators,and,'FIND'(vhich
returns the ol?ject( s) from a given collection satisfying prescribed conditions). -

9+3.4.Flags may be set to provide options,partially determining the enviromment
and the form of output.These flags include the following operations:additive
splitting of rational expressions;reduction of expressions to 'canonical polyno-
mial form'(one variable being 'distinguished',and the rest appearing in the coef-
Ticients,which are also,as far as possible,in canonical forms:This reduction is
extended to 'forms',as well as to pure indeterminates+Thus,polynomials in,say,
sin x and cosh y are treated as though the substitutions sin x = u s Cosh ¥y =
had been made~—-and expressions involving indexed variables are treated as poly-

nomials in those variables.)juse of the 'chain rule'for differentiationjuse of
Moses' SIN integration routine( the Risch procedure is also a possible option); ex~
pansion of finite sums and products; fixing the internal ordering of variables in
{function) evaluations;and,controlling the 'weight-level'of terms( esZe,for the
truncation of series expansions).

9+3.5.Patterns for certain operations may be defined and 'put into' the system
(as user—designed functions).If no specific pattern is known for an operation,
then a'formal operation'is indicated(es.ge, df ' x f(x) corresponds to formal
differentiation in x of an arbitrary function,f--whose dependence on x must be
specified explicitly(as in CAMAL:see Section 5)).The rules for using differenti-
ation and integration are straightforward.Formal sums may be given in several
representations, the main ones being: SIM<J = i,k;n> e<j> ’

2<J =1i,kn>e<j>,md 3 <J in S>e <j>(cach of which —with the obvious
definition _of S-‘-stands for the sum of temms ej,“her‘e J varies,in steps k,from
ftof L4 k[(n=i)/k])e
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9.3.6.Among the system functions,the following are especially noteworthyeABS(finds
the absolute value of its argument);ASYMP(for truncating power series expansions);
FLOOR x and CEILING x(given,respectively,by [x ],and = [-x ]);COEFF(v,n,p)(finds '
the the coefficient of v' in the expression p)3;COFAC(v,p),where v is a vector and

p is a general expression(decomposes p,as far as possible,into a sum of products,
with the variables of v as factors);COVEC(v,p)(forms an array of powers of v in p,
with power O as 'origin');DEPEND(x) = b{specifies the dependence of the expression ’
b on the 'designator',,x);FACT(n){= n%);FACTOR(p)(gives the irreducible factors of
the univariate polynomial,p,over the integers);INTEGRATE( e, ,v,ez,ez)(finds the
definite integral,with respect to v,of e swith limits ez,es,using the SIN routine-——
or,possibly, the Risch algorithm);MAX(or MIN)POWER(v,p);NIMER(rational expression};
RI'ZVJAIL\JD.’:“.R(p,l ,p2)(retums the remainder,on division relative to a preselected main
variable,for n-variable polynomials,p, 2Py ) ;SPLIT(e,(n1,...,nk))(splits formal

sums or products at the points indicated——ie.ee,after the first n, terms, then the
next n, tems,and so on);WEIGHT(v)(used to assign a weight to variable v,to set
levels of truncation for temms involving powers of \r);and,SUBSTI‘I‘U‘T}‘:(e1 ,v,ez)
(replaces v by €, in e2) «There are also several operations designed to handle

truncated power series,including special substitution and manipulation facilities.

Oe3e7Many array facilities are provided.These includesspecification{using indexed

elements,and allowing nonatomic arrays,e.ges{a,b,{q,r,s}));arithnetic operations
{defined 'elenentwise’,e.g.,(a,b) * (c,d):= (ac,bd)),and,selection of subarrays
(using *x = x<i> for i in 8).An 'ON MATRIX'setting ensures that sums of the
form A + ¢,where A is a square matrix and ¢ is a complex number,are interpreted
as 'A + ¢I',Xbeing the unit matrix of appropriate order.All of the standard matrix
computations are covered,too,but these are virtually the same in SCRATCHPAD as in
other systems.The methods for performing the operations are not discussed,and,
plainly,it is only here that significant differences are to be found.

There are also certain array operations in SCRATCHPAD that are unusual,and offer
the user wide options in dissecting and 'moulding'arrays.These facilities include:
CATINATE( augments a matrix with specified rows or columns'along the Kth dimension
of an N-dimensional array');DIMENSICN(expression)(gives the dimensions of array
expressions in the formm of a row=vector of integers);DROP(n,v){removes the first n
(n>0)or the last I nl (n <O)elements of the vector,vsIf n:=( PERE ,nK),then DROP
operates separately relative to each of the K dimensions.};LENGTH(v){:= the num—
ber of !'top-level' canponents in V);REVERSE, ROTATE, and RESHAPE( respectively,reverse
the order of the elements in an array-—one'dimension’at a time,cffect cyclic re-
placements by a prescribed number of places,and,'give the second argument the

shape of the first':see the manual for details);TAKE(n,v)(same as DROP,except
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that elenents are selected,rather than removed) ;SOLVE(m1 ,mz)(solves the system of
n eqations in n unknowns,with coefficient matrix,m1
and ,SOLVE( p,v)(a slightly more general facility,for solving any compatible system

of equations in specified variables).Communication of SCRATCHPAD with FORTRAN is

sand 'righthand side! ,mz);

possible,for numerical phases of computatione

There are many other Procedures,providing,together,powerful facilities for sSym—
bolic manipulation.The performance of 3CRATCIIPAD in standard butlarge-scale compu-
tationshas not been examined(in relation to its effectiveness in basic calcula-
tions,time taken,maximal size of problems solved)in any general publication,and it
would be interesting to know how it compares with,say,SAC-1 sin such areas as zero-
determination.Of the elegance of construction of SCRATCHPAD,there can be no doubt:
it is really a question of how far elegance is compatible with efficiency,especi-
ally in mundane analaytical computations.The SCRATCHPAD manual(Griesmer,Jenks and
Yun(1975)) reflects the care with which the entire system has been designed.It is
brief;yet all essential information is there,with extra comments and examples for
the more intricate facilities.A set of 'SCRATCHPAD conversations',illustrating
some of the potential uses of the system,has been issued j;and there are sane
program examples in the nfanual,too,Other,relatively brief accounts may be found in
Griesmer and J enks(1971),and Jenks(1974).Current developnents are covered in the -
AQM SIGSAM Bulletin(where all symbolic computation systems and new algorithms are
discussed),and in occasional 'technical newsletters.
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10, SYMBAL.

The SYMBAL system was among the earliest of symbolic computation packages.lt has
been developed by Engeli( essentially,in two stages,(1966,1 969),and,(1975)),as a
general-purpose system,with particulat attention to aspects of language design,
allowing programs to be written concisely,with minimal declarations,virtually no
‘machine-dependent operations,and few auxiliary computations.The first full descrip-
tion(Engeli(1969)) embodies all of the essential characteristics of the language
(even,in its present form).Although the need for a dialogue mode was recognized,
right from the start,it does not seem to have been provided in the latest version
(available on.IBM,CDC and ICL machines).SYMBAL is designed to be totally machine-—-
independent—even word-lengths are not mentioned explicitly in the specification.
All arithmetic is infinite precision(rational).As a language,SYMBAL is based strong-—
1y on ALGOL,but it has several additional structural features,for handling abstract
manipulations.The full syntax is specified in 'Backus normal form',including all
basic symbols and syntactical elements{unsigned integers,identifiers,simple variables,
general variables,and functions),and the syntactical rules governing expressions,
vectors,statements,and the structuring of programs into 'blocks'.Certain standard
ALGOL symbols are not used in SYMBAL;while,there are extra symbols adjoined to

ALGOL,to cover operations on symbolic expressions.

The execution of SYMBAL is interpretive,so it is not necessary to declare the types
of variables{of which there are seven:'undefined','algebraic','vector','logical',
'label','string',and 'procedure'--this nomenclature being,more or less,self-explan-
atory).The status of a variable in SYMBAL may be 'atomic'(if it has not been assig—
ned a value,or,if it stands for itself),or,'nonatomic'(otherwise).The type of a
variable is determined completely by its value.New variables may be 'created',dur-

ing a computation,by using the new facility(e.g., 'new a,b,q ').As a result of

value-assignments during.a program,the type and status of variables can change
frequently—but the system keeps track of these changes automatically.Most of the
conventions used in the formation of expressions are similar to those in ALGOL( in-
cluding the use of ' T‘ for exponentiation,and,of the logical operators,' = '(not),
'A*(and),and,'V'(or)),and,Greek letters(and other symbols not in the basic set)
-appear in spelt forms:'omega',etc..Moreover,the handling of conditional statements

(of crucial importance in symbolic computation) follows the ALGOL 'if ... then ...

else ' scheme.The main algebraic/analytical operations are:substitution(with syn-

tax S Vi:El,...,Vn:En __L ('_l_' being a separator,used in listing programs), .

for the replacement of the var'iables,Vi,by expr‘essions,Ei;dif'ferentiation (with
syntax D VA:E1,...,Vn:En | ,for ' II( a/avi)Ei ';and the formation of(finite)

sums and products of expressions{using,respectively, for i:= E1:E2 sum E3',

—— s

and, for i:= E1:E2 pultiply E3).Here,E1,E2 and E3,are numerically-valued expres—
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T

sions(rounded to the nearest integer,in the above constructions,where 'for ' has

its invariable syntax,namely, 'for E1:E2,E3 ').The sum and product facilities are

used to define various functions and expansions(e.g.,the first n terms of the

Taylor series for 'cos x': for i:= 1:n,2 sum (--1)1‘ (1/2)*x1'i/fact( i)}; or,the

. o
first m terms of the Taylor series for '€“%5 * !:

exp:= (t:=1) + (for k=1:m sum(t:= t cos/k)) ,where "cos' refers to the truncated

Taylor expansion for 'cos x';so that,on rearrangement,a truncated power series of
order m( 2n-2),in Xx,1is obtained.The following SYMBAL expression corresponds to the
determination of part of the Taylor series for a function of twe variables,Xx,y,

about the point (xo,yo) ,with' 'increments',p,q.
for i:=0:n sum for k:=0:i sum ka/f‘actJ(k)*qT(i—-k)/f‘act( i-k)«S x:x zero,y:y zero

:L_p_ N Lr

This illustrates the compactness of SYMBAL expressions,as well as displ@ying several
of the basic symbolic operations.It compares favourably with comparable represen-
tations in other systems( though,the most 'natural' mode of expression is that in
SCRATCHPAD) .All Elementary functions,and their inverses,are covered,and may be used
in constructions such as the one just given;but,formal integration is minimal—a
serious limitation.
‘Values of the ‘entries' in vectors or matrices may be assigned simultaneously with
the definition of these objects.The generation of vector components(or,of matrix
elenents),suitably ordered,is handled using a tree structure.The subscript of the
'leftmost component'is specified.Thereafter,components are 'created',either with
values(of arbitrary type),or else,as atomic variables(of type 'undefined').To al—
low maximal flexibility,the vectors are not simply 'ordered collections of compo-
nents,with subscripts 1,...,N—for any positive integer,N'.Instead,the components
may be introduced in 'blocks, [E,‘},...,Elj‘('] ;of lengths,K, ,with 'subscripts’ sty j—
i
1 (0 <i<n),the 7 being

real-valued expressions.Matrices with general subscripts may be defined analogouslye.

subject to the consistency conditions sl»rKi < s

This generality may be useful in some calculations where it is convenient to regard
as the components of a vector(or,the elements of a matrix)entities which are not
associated in any direct way with finite sets of integers.Successive entries in

vectors or matrices may be filled by using the for clause.For instance:

—

(i) { for it= pin¢p-1 do iTk ! ,produces an n—vector with i th component { nyp—1 )k;

—— —

(ii) { for i:=1:n do §1;m ]} ,produces an (mxn)-matrix of atomic variables(since,

no values are assigned);and,(iii)construction (ii),with m=n,yields an upper-trian—

gular matrix.Again,matrix multiplication is covered by the construction:

=]

(iv) { for i:=1:n dof for ki=1ing ffor j:=1:n sum a[ i,j J«b[ 4,k] }}}.
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There are various standard functions (as in all systems),including:binomial(n,k),

delta( i,k),abs(z),denominator(z), splitpowers(P,x),round( p),and vector(z)--most

of which require no explanation.'vector(z)' is a logical function to test whether

"its argument is of vector type( there are,also functions for finding the maximum

and minimum subscripts in a vector argument).The function 'gplitpowers’,used in

the form splitpowers(P,x),where P is a general expression,and X is a variable, .
has for its value a vector,whose components are the coefficients of powers of x
occurring in P(if P is a polynomial in x);or,a vector containing the exponents of

x occurring in P(if P is a more general expression in x).If P contains expressions
in x with infinitely many different x—exponents,then,some cut-off device must be
used—analogous to "MAXORDER',in CAMAL,and to similar facilities in other systems.
(In SYMBAL,a 'mode' is set to effect such truncations).

Much use is made,in SYMBAL,of definitions involving recursion.This is just one ex~
ample of a procedure ,in which a 'quotation' is assigned to a variable.A general
quotation comprises 'parameters','declarations','statements',and,'value-assignments'.
Procedure calls automatically invoke evaluation{ quotations are assigned in an execu-
table manner).For instance,the call,'z:= Ackermann(p,q)’,assigns to z the value of

the Ackermann function'at (p,q)'—-this function being defined recursively,by:

Ackermann:= formal m,n;

= Af m = O then mi

1se if n = O then Ackermann{m-1,1)

[+

else Ackermann{m—1 ,Ackermann{m,n-1)).

Some knowledge of the Elementary functions and their inverses is built into the
system( e.g. ,derivatives,special values,symmetry relations,and 'addition theorems').
The detailed performance of calculations is controlled through the choice of modes,
which may:impose basic simplification rules(e.g.,by applying distributive laws,
delaying assignments of values,and truncating power series);or,allow the output to
be monitored during a computation;or,prescribe the maximum line-width in print-out,
~etc..All of this is much as for other systems.In the second design phase,SYMBAL was
rev%sed generally;but,the fundamental structure,and mathematical aims,remain un-
changed,as formulated in the original version.Most of the innovations result in
greater convenience for the user(an aim that is given high priority in the design
of the system).The modes may be varied by users,but there are 'default settings',
corresponding to those situations judged to occur most frequently.The formatting of
output is automatic{once options have been set),and aims at coherence and readability.
However,only one-dimensional output is obtainable.
A few examples of SYMBAL programs{reproduced from Engeli(1969)) will give an idea
of its scope,and,of the compactness of well-written programs.The minimality of for-
mal integration,nontrivial factorization,etc.,places severe limitations on the use
of SYMBAL in anatytical problems(in comparison with,e.g.,REDUCE,or MACSYMA); but,high

efficiency is claimed for SYMBAL,in all areas where it can handle the calculations.
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Within its analytical limitations,SYMBAL is compact,elegant and effective( though,
the lack of interactive facilities is a serious drawback,for most kinds of calcula-
tions).It is unlikely that SYMBAL will be extended sufficiently to accommodate the
'heavy machinery' required for the most sophisticated analytical applications(see,
for instance,the examples outlined in Section 15);but,over a wide range of basic
calculations,it 1is an excellent system.Apart from the papers already cited, there
is a SYMBAL manual,and a collection of explanatory examples:'SYMBAL--Techniques .
and Examples'(also,by Engeli).Both of these publication{and all technical informa-
.tion about SYMBAL)}are available from M.Engeli,Fides Trust Company,Zurich,Switzerland.A
SYMBAL is not freely distributed,but(unlike SCRATCHPAD,which is restricted to em-
ployees of IBM),it is offered commercially.An example of SYMBAL output is repro-
duce in Section 13'.To conclude this section,the program examples referred to above

are repoduced,without comment.
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Below a procedure is presented for polynomial interpolation over a
set of nonequidistant points. While the abscissas @; must be numbers, the
ordinates f; may be given in arbitrary symbolic form. Newton interpolation
with divided differences is used, and the four parameters arc: a is the vector
of values for an independent variable, f the vector of ordinate values,
n the number of points —1, and x the symbolic variable to be used in the
tesulting polynomial.

The lower bound of both a and f must be zero; the upper bound
then is n. :

Newton interpolation := "formal a, f, n, x; new i, k;
fori:=1:ndofork:=n:i,—1 do
JIk] :=[fk] — flk — 1]D)/(alk] — alk — i]);
i=(k:=1)*f[0}+ (for i:=1:n sum
(k:i=k=x(x—ali — 1)) = fl}))”

Taylor series expansions of the elementary functions occur frequently,
and here we shall give a small selection of them:

exp i=for i :=0:n sum x 1t ilfact(i);

cos t=(:=14({fori:=2:n.2sam (t:=—t*x4}2fi
G— D))

i 1= sqri(—1); .

sin t=Ox:i*x Lexp~Sx: —i+xx 1 exp)/(2+i);

s = {0:n:};

tanl  i=for i :=1:n,2sum (s[i}:= (~1) } (( — 1)/2)/fact(})
—(for j:=2:i--1,2 sum (—1)1 (j/2)/fact(j)
ssli—j))exti;

R :== tan(x); i

tan2  i=fori:=1:nsum Sx:0 L(R:=Dx L R[i)sx1ti

expsin = {t:=1)4 (for i :=1:n sum (t :==t*sinfi));

The program presented next applies to differential equations..of any
order n, and yiclds the first n derivatives at x = x,. The vector x holds all
the derivatives, while the subscripts of y denote the order of the derivative
of y with respect to x. In the definition of the vector v, m — 1 initial condi-
tions, which may be symbolic, and the differential equation are filled in.
This program is applied to the first-order differential equation y’ = x? 4- 32
with the initial condition y(0) = c.

begin
n :=16;
m:=1;
= {0:n:};
u:i={0:¢,x}2+y[0]12,n:};
forii=m+1:ndo ufi]:=Dx L uli—1]
d(for k:=0:i—2 sum y[k -+ 1]+ D p[k] L ufi — 1];
mode[2} :==1;
x :==0;
for i:==0:n do y[i] :=uli]«1;
end

SYMBAL programs for interpolation;Elementary functions, and ordinary

differential equations.(From Engeli(1969)).
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11.Special packages.

In this brief section,a few packages are mentioned that have been designed es~
pecially for various classes of calculations.The areas of application include
relativity,plasticity,high energy physics and (finite)group lteory. '
The first 'purpose-built'systems were intended for work in relativity(for instance,
determination of the gravitational field equations corresponding to a given met~
ric tensor;classification of metrics into 'Petrov types';and,miscellaneous pertur-
bation procecdures).The reviews of Barton and Fitch(1972a,b),Cohen et al.(1978),
and d' Inverno(1978)give a fairly complete picture of how this area of research has
developed.Recent investigations correspond to the differential geometric view of -
relativity(see e.é.,Misner et als(1973),and Pavelle(1977)). There were also systems
designed to handle calculations in celestial mechanics,e.g.,processing of Poisson
series(see,for instance,Jefferys(1970,1971),and Rom(1971)).

11¢1. Relativi tye
The LAM(LISP Algebraic Meanipulator)system was constructed in LISP by d'Inverno.A

modification(written in Atlas assembly language)was called ALAM(d' Inverno(1969)).
Although it is structurally unsophisticated,ALAM is claimed to be very efficient.
All arithmetic is rational;simplification amounts to erasure of expressions that
are identically zero,removal of all parentheses and collection of 'like terms'.Sub-
stitution and imposition of side relatioﬁs are possible,too.Extra facilities in-—
cludeteasy transfer of expressions to and from the store,for use in 'main calcu~
lations',and a range of operations for truncated power series.An adaptation of
ALAM to CDC 6600 machines('CLAM') was made by d'Inverno and Russell-Clark({ 1971 ),
using a far simpler input language than LISP(which was used in all earlier ver—
sions).An IBM 360/370 adaptation has been cons.truct@i _in Stockholm, by Frick,who
is also the designer of the latest system in this family,SHEEP(Frick(1977)),for
use on DEC PDP  machines.Unlike all of its predecessors,SHEEP is interactive,and
contains several improvements to the algorithms in LAM,as well as additional facil-
ities( €+8+ya routine for functional differe ntiation,and instructions for communi—
cating with REDUCE--so that,all oi"‘the factorization and integration routines of
REDUWCE may be used in a SHEEP program).There are also SHEEP-based facilities for
tensor manipulation(llornfeldt(1979),and references given there);and,presumably,
some routines for handling differential forms willbe incorporated(if this has
not been done already).Of course,the large,general systems can copé with all of
the relativity calculations;but,throughconstant modification and improvement,
SHEEP has become one of the leading systems in this area.The marual(Frick(1977))
offers potential users all of the essential information,including accounts of the
subpackages for dealing with particular classes of relativity calculations.
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11.2.Plasticity
Ancther special system witih potentially wide application has also been designed

in Stockholm,for handling calculations in plasticity(Mouton(1979a,b),Mouton and
Aman(41979)).This system,called PLAST 3,may be used in conjunction with certain
numerically—-orientated programs dealing with stress distributions,slip-line fields
and general three—dimensional analysiseEach of these programs is fully documented, .
and complete input and output descriptions are availablee

PLAST 3 is a symbolic manipulation system,which can communicate with both SHEEP
and REDUCE.Its individual contribution lies in the provision of special subsystems
{or modules)for.specific types of calculations.For instance,the tensor facilities
include routines for calculations in various curvilinear co-ordinate frames,and
several procedures involving the basic equations of plasticity theory,at different
levels of approximationsA FORTRAN-compatible output can be obtained if the program
is transferred to REDUCE--and this also allows . nontrivial integrations,which
occur when curvilinear co-ordinates are used.It appears to be the aim to add
modules covering each well-defined area of plasticity theory,with a link to the
numerical programs,for applications.In houton(1979b),a combined numerical/symbolic
procedure is followed to study metal-forming problems,and this close combination
of numerical and manipulative facilities is likely to remain dominant for work in
plasticity.Extensions to cover rheological problems do not seem to have been made

s0 far,so there is wide scope for further development.

11 +3oHigh energy physics.

Two more special-purpose packages(well-known to workers in high energy physics,
but seldom mentioned outside this context)are SCHOONSHIP(based at CERN,Geneva),and
ASHVEDAI( based at the Stanford Linear Accelerator Center).Each of these systems is
a large collection of symbolic/numerical routines,constantly growing,as new prob—
lems arise,but,as 'languages',remaining essentially unchanged.ASHMEDAT is FORTRAN-
driven,and can be used on any sufficiently large machine with a FORTRAN compiler.
SCHOCNSHIP,on the other hand,is not driven by any standard language,and runs only
on {DC machines.Both systems are designed to deal with large—scale calculations
involving noncommuting variables,in connection with elenentary particles,nuclear
physics and closely related fields.Full details of these packages are available
from Stanford arnd CERN(but see,also,Strubbe(1974)and Perisho(1975)).
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114, Finite gl‘OUESo

A system quite different from any other mentioned in this secion(and,from any of
the general systems)is the GROUP package developed by Cannon,and others,in Sydney,-
and currently maintained by them,and by Neublser and co~workers,in Aachen.GROUP,
a comprehensive collection of routines,is related to the group theory language
CAYLEY in a way analogous to the relation of ALTRAN to ALPAK(in the original form
of ALTRAN--see Section 3).Both batch and dialogue modes are available.The system
is written in FORTRAN,and runs on CDC 6000 and CYBER machines.Although it com=
prised about 50,000 lines of FORTRAN in 1976{and so,is probably larger by now)
CAYLEY/GROUP is said to be fairly portables

The range of GROUP is widejand,as in other systems,new facilities are added as
they become ava.ilable.A formal description of CAYLEY is given in Cannon(1976a).An
earlier outline of the project is Cannon(1973),and a full discussion.of the rou-.
tines in GROUP may be found in Cannon(1976b).These cover:investigation of the
subgroup structure of a given group(by séveral methods);study of permutation
groups and coset tables;topics in combinatorial group theoryyincluding the con-
struction of defining relations;automorphism groupsjcharacter tables;mappings of
groupsjand, the definition of various particular groups,rings and fields.

As a language,CAYLEY is strongly based on FORTRAN,but it does have some novel
Teatures,e.g.,for distinguishing among the various types of algebraic structures
(groups,semigroups,rings,fields,modules)that are met frequently in calculations
involving groups.iloreover,the system is valuable both as a research tool{e.g.,
for generating,and possibly verifying,conjectures),and as an aid to learning »
about nontrivial group-theoretic results.From the point of view taken in this
paper,CAYLEY/GROUP is important,since it incorporates many constructive routines
which may be used in conjunction with analytical procedures to broaden the mathe-
matical scope of symbolic camputation.An extensive,computer~based bibliography on
the use of computers in group theory is maintained by Volkmar Felsch( University

‘ of Aachen);it is available as machine print-out.The bibliography covers all of the
algorithms(and implementations)currently in GRCUP,and many others which may be
suitable for inclusion eventually.Apart from the papers of Cannon already referred
to,there is a manual(available from the University of Sydney).



73

412.Comnents on scope,and on some fundamental algorithmse.

In the following considerations,two facets of design are of primary relevance:

capacity for user-modification,and possession of built~in routines.Of the main
sy stems,MACSYMA probably has the most built-in facilities(end is the hardest to
modify fundamentally),vhile REDUCE is probably the most easily modified,even on
wite a basic level(but has comparatively few built—-in routines) .Between these

t extremes' ,one Tinds various mixtures of these characteristics.(ANALITIK,because
of its hardware implenentation,will be discussed,briefly,on its own;but it has
very few self-contained procedures and,in this sense,is analogous to REDUCE).The
essential point is that there are several 'language levels'in any systemJiodifi-
cations of procedures written in the'top-level mode' are fairly straightforward
(even in MACSYMA)and may be made by sufficiently experienced users,with suitable
access to the system.Indeed,this is one of the main sources of improved routines,
and of new facilities.However,the most fundamental feai;ures of systems cannot be
altered so easily(and,for MACSYMA,such changes require much work,and an intimate
knowledge of the logical design of the system).

Another consideration is the guality of the mathematical algorithms incorporated.
As usual,there iz no 'absolute ordering' of systems in this connection,but some
are definitely more mathematically-orientated than others{which emphasize manipu-
lative routines,producing well-simplified output,but of limited mathematical
scope)JIn this sense,ALTRAN CAVAL,FORMAC and SYMBAL could be said to have less
potential for nontrivial mathematics than ANALITIK,MACSYMA,REDUCE and SCRATCHPAD.
SAC,is hybrid,since its basic facilities are not amlytically strong,but its
routines for dealing with,say,algebraic nunbers,are highly developed.Again,CANAL
is said by its designers to be intended primarily for polynomial manipulations
~(and to be of little use if'genuinely rational'functions are essentially involved
in a computation);while other systems place emphasis on the efficient handling of
rational expressions(and discourage the use of series,limits or 'infinite inte-
grals') ALTRAN,FORVMAC and SYMBAL come in this category.None of these tendencies,
however,should be interpreted rigidly: there are certainly overlaps in the. capa—
bilities of systems that are ostensibly in different categories.Above all,the
effective value of a symbolic computation system depends critically on the quality
of response( even,of anticipation)of the useryas well as various facets of hard-
ware and software.For this reason,the most sensible policy in this section is to
confine attention- to a few basic algorithms(most of which have been either devel~
oped from scratch,or else,greatly extended,specially for. Symbolic computing)and

to comment parenthetically on the capacities of systems for using these algorithms.
If any sort of detailed comparison is desired, readersshould refer to back numbers
of the ACM SIGSAM Bulletin,where various !test problems'are solved on different

systems,to allow direct comparisons;but,even these tests are never conclusiveeo
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Basically,there are three typesof algorithms that play a key role in symbolic
computation,These cover:calculation of greatest common divisors(GCD's)of polyno-
mials in several variables;factorization of polynomials over algebraic number
fields;and,symbolicintegration oftarbitrary' expressions.On further examination,
these procedures are found to be closely connected (in the - sense that efficient
integration repeatedly requires both of the other facilities—=for polynomials in
several variables;while, factorization and GCD often have common ground,too).
This is hardly surprising,since any systematic integration procedure must work by
decomposing the integrand into components of 'simpler structure',for which a de-

cision procedure(including,where appropriate,effective methods}is known.

12.2.Greatest common divisor{GCD) and .factorization algorithms.

Direct extensions of the Euclidean algorithm for finding the GCD of two polynomials
in a single variable produce explosive storage demands(see,e.g.,Knuth(1969)).
Since ordinary rational function arithmetic entails the removal of common factors,
and,equally,GCD calculations may be used as one step in factorization schemes,the
importance of efficient,multivariable GCD routines is evidentesAlthough the system—
atic removal of the (numerical)GCD of the coefficients at each stage of Euclidean
type algorithms does reduce the growth of coefficients at intermediate stages,it
requires the performance of many numerical GCD calculations.Further refinements,
due to Collins(1966,1967)and Brown(1971)still cannot prevent unmanageable growth
of coefficients,in unfavourable cases.Hence,even with the improvements,this “form
of the algorithm is used only in relatively small-~scale calculations.

An appreach more in the spirit of numerical analysis also originating largely in
work by Brown(197{),and Collins(1966,1967),involves interpolation,with respect to
all of the auxiliary variables(for which integer values are substituted),using the
Newton or Lagrange formulae—the GCD calculation for the main variable being per—
formed using arithmetic modulo suitably chosen primesywhich automatically prevents
coefficient growtheIf this scheme is- followed for several primes,then a Chinese
Remainder Algorithm( see,for instance,Lipson{(19 )),may be-used to determine the-
GCD to 'compound modulus',which{if it is large enough——or,of high enough degree,if
theGCD is a polynomial) allows the unrestricted GCD to be found.It may be shown -
that,for polynomials in k variables,bthe probability that a prime,p,is'unsuitable®,
in the above procedure,is at most k/p—-—mhich isacceptably small in many practical

situations(where p can occupy almost a whole machine word).
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Another method,having wmuch in common with the modular/Chinese Remainder
Theorem approach,is based on a constructive form of Hensel's Lemma,in which,
given a congruence, f(x)= g(x)h(x) (mod p),sequneces, igk 1, {hk },of polvnom-
ials,may be costructed to satisfy the conditions £(x) = gk(x)hk(x) (mod p ),for
k = 2,3,¢00 oThus,nhen k is large enough,the exact factorization is obtained( see,

€eZe,Van der Waerden(1949)).An
22

(extension of this scheme,due to Zassenhaus(1969}, -

replaces the modulus pk by p° <Both methods use the 'modular images' of polynom~
jals;the essential difference between them isthat the modular/Chinese Remainder
Theorem uses several primes,while the other procedure uses only one prime,avoids
the Chinese Remainder Theorem altogether,but replaces it with a Hensel type con-
struction.Since the GCD,say, &,0f f and g,satisfies the conditions f = (£)d g
g = (gb)d ,it is reasonable to suppose that there is a natural connection be-
tween GCD and factorization algorithmsjand such a connection was in fact found by
Moses and Yun{1973)--~leading to the so~called EZGCD procedure.A comparison of the
modular/Chinese Remainder Theorem,and Hensel/Zassenhaus methods for factorization
and GCD calculation has been made by Miola and Yun(1974),who list various cases
in which one particular type of algorithm is preferable(one basic criterion being
whether the polynomials are !dense'--all coefficients nonzero--or relatively
*sparse’ JoThis method may be combined with 'interpolation in the auxiliary vari-
ables(at suitable integer values)to cover the multivariate cases of factorization
and GCD calculation.Most of these developments have been incorporated in many of the
current versions of symbolic computation systems,either as standard procedures,or
else,as known procedures that can be written into any program as required.ALTRAN,SAC—;
MACSYMA and SCRATCHPAD are strong in this area(with built-in routines),and efficient
implementations exist in REDUCEWCAMAL,. and FORMAC and SYMBAL appear to offer only
simple factorization facilities(eege,removal of 'obvious'common factors);but the -
iscope may: havie increased( @ege, Tecent :facilities in FORMAC seem to.cover GCD!s)..
Closely related to thAe‘se ide.as.is the problem of factorization of multivariate poly-
nomials over{arbitrary)algebraic number fields.Once again,interpolation in auxe-
iliary variables(at suitably chosen integer values)may be used,If a 'small enough'
prime,p,exists,such that the 'minimum polynomial'defining the algebraic number
field is irreducible modulo p,the both the modular/Chinese Remainder Theorem and
the Hensel methods may be extended to cover this class of problems.When no accept—
ably small prime ,p,can be found,the required univariate factorization may be
effected using a two-stage procedure.First{letting F denote the algebraic number
field),the = multivariate polynomial over F is transformed into a - ‘univariate
polynomial over the rationals(but of much higher degree);after which,this  unie
variate polynomial is resolved into factors.The final(multivariate)factorization
is obtained,in the second-stage,by using a 'p-adic interpolation' method,due to
Wang and Rothschild(1975).Examples and further explanation may be found in Wang(1976) ¢
and in a brief review article by Moses(1974). See also,llearn(1979),Zippel(1979).
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1203.Symbolic integration.

The third basic algorithm(which has been developed almost entirely for use in sym—
bolic computation)is for the integration of general,univariate functions.In spite
of some outstanding problems,this represents perhaps the greatest achievement so
far in symbolic computation—-having,as it does,so many applications.However,as
remarked already,efficient integration depends strongly on factorization,ard: the )
implementation of integration algorithms makes full use of the methods described -
in Section 12¢2.Even in the simplest cases,for rational integrands,extensive fac-
torization facilities,and a geer al routine for reduction to partial fractions are
required.In this form,an- integrationprocedure(though,not a ‘'practical algorithun')
was developed by Hermite,who showed that,in principle,integration in terms of the-
rational and Elementary functions-is- always possiblefin finite terms' «
Much earlier,Liouville(i83.3a;bj35,37,39,40),asked,more interestingly! whether one
could prove,for large classes of integrands,that the ‘corresponding indefinite
integrals were expressible as finite combinations of prescribed 'standard'functions
~and that various other classes of integrands allowed no such representation.This
was the starting point for the work which culminates in Risch's decision proced=
ure and its recent extensions and implementations.Initially,several improvements
were made in the efficiency of rational function integration(for which even
MATHLAB and SYMBOLIC MATHEMATICAL LABORATORY offered facilities).See Tobey(1967),
;2 Moses(1967) ,Horowitz(1969,1971) and Musser(4971)Muchof this work has been in~
corporated in the general algorithms,of which rational function integration forms .
a particular cases e P ,
The classical but remarkable :work. .. of Liouville uas largely ignored until it
was taken up in a series of(faulty,but suggestive)articles by Mordukhai-Boltovskoi
(1906-09,1910,1913) ,dealing,mainly,with the 'elementary! integration of first—order
differential equations(a topic to be mentioned later in- this subsection).The. next
contributions of note came from Ostrowski(1946),and Ritt,whose book(1948)gave an
up-to-date exposition of the field(including discussigns of several related topics).-
In a later book,'Differential Algebra'(1950),Ritt introduced many of the ideas that
are central to the recent work of Risch and others(Risch(1969,1970),Moses(1967,
1971) ;Mack(1975) ,Rothstein(1976) ,where many refe rences may be found;Davenport
(1979a,b,c) ,Moses and Zippel(1979),Trager(1979)).
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The . crugial idea,going back to Liouville,is to identify the integral as an element
in a differcntial field extensim(transcendental or algebraic)of a suitably chosen
! ground field'—-essentially,the minimal field containing all functionally indepen—
dent components of the integrand.This strategy entails finding methods for testing
collections of functions for{often hidden)interrelationshipso.Certain results of this
type were used by Risch(1969),and there have been many developments since. then(see,
€o8o,Rothstein(1976),Risch(1979);also,Risch(1976),Rothstein and Caviness(1976)). .
To the extent that the ground field may be chosen,the definition of !elementary' is.
built into the algorithm—but this is not a major consideration.Once the identifi--
cation of the integral as a general field element has been made,its explicit evalu-
ation may be accomplished by solving a setof ®compatibility equations®(obtained -
by comparing the derivative of the general form of the integral with the integrand,
as originally given).When no finite set of equations(orelse,only an inconsistent
set of equations)can be found by this procedure,the conclusion is,that the integral
cannot be expressed 'in finite terms*(relative to the set of functions in . the
ground field,and logarithmic extensions),and the computer will return the unevalu-
ated integral formeWith a suitable choice of ground field,it is possible to express
the integrand as a rational expression in several( functional)indeterminates;after
which various operations( €ogo ,par‘gial fraction decomposition)may be used.The _b_a_si_(_:
result is the following representationtheorem due to Limville(see,e.go.,Ritt{1948),
Po42)$if T is a function in the ground field,F,and if the integral of £ does have
an 'e_lementary form® ,then J T necessarily has the "fonn g+ c‘xlog r_1 + evo -+ chlog r.s
where g and the rJ. are rational over the ground field,the ¢, are corstants gand.  the
problem is reduced to fixing n,and then finding all of g,the rJ. and the Cpe
The flavour of Risch's methods is well illustrated in the introduction to his orig='
inal(1969)papersIf one defines a monomial , ©(in terms of the differential opera-
tion inthe field) to be either an exponential,or else,a logarithm,of a field ele-
ment, thenthe *pure monomial case*(corresponding to a field D [0]:=K [z,@_l so00 ’en—-‘l][@}

requires a decision procedure for inbegrals:of rational functions of 6,with coeffic-
ients in DeArguing heuristically,one may claim that,if such an integral is element—
aryythen it must have the fomm:

fp(e) fpge) _ R(®) +,'L+M;
Qe) = An(e-a )Xy (6~ 0. ) 1 T

vaere L;=2 ¢ log(e—- a-) s Mi=2Z d lom{» sthe product and summations being taken
over the ranz,es 1 ws. ,‘l to m and ‘i to t,respecmvely—--as determined by the given
integrandollere,Q is factorized over the algebraic (:105ur<.,D of Dyall c ,d 8 K,ihe
‘Yq & KD(f= Dywith K replaced by K) and R & D [G] oThus, the practical problen is to
find all unknown elements in this representation{which is just a special case of

Liouville's result),
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The essence of Risch's procedure is to use the above representation in,conjunction
with the identity d{ f(P/Q)dz)/dz = P/Q sto obtain a relation of the form

AR + BR+ 3 c,C, + S' E = O ,where the prime denotes differentiation in z,
A,B,the C and E are known polynomials in O,the c are unknown constants,and s! is
an unknown element of D{corresponding to dlfferentlatlon of the term M, above) s The
procedure is effective because a bound(say, p)can be found on the degree of R in Q.

On putting R( 6):=3 a GJ(where 3 =1jyeeey lLyand some of the a; may be 0),Risch -
obtains a system of lmear,flrst-—order,ordinary differential equations for the aJ.
as functions of z—the c; and S' being unknown ‘parameters'in this system(which
must be determined,eventually,from the original integrand,as given).By intro—
ducing partial fraction decompositions for both P/Q and R/ I{(6-a J.)kj Jit is -
possible to ensure that a clearly.decidable-. . system of equations is generated.
The validityof this whole,somewhat complex,procedure is established by induction on

ny,the number of monomial field extensions taking the field of rational functions
into the minmal monomial extension field containing the integrand.If,at any stage,
the system of equations is found to be inconsistent,then one concludes that the
original integral was nonelementary.Otherwise,the procedure can be completed - ef—
fectively.Indeed,it was implemented in MACSYMA by Moses,in 1969,for this case of
transcendental integrands(pure monomial extensions),to cover the integrals of vari-
ous Elementary functions.Certain improvementsand extensions of this implementation
were made,by Norman and Moore(1976),in REDUCE,and by Norman in Scratchpad(also in
1976).Some clarification of Risch's scheme,and an extension to 'affine forms'with
several parameters was made by C.Mack(1975).
There are,basically,two levels of nontrivial integration routines:those based on
pattern-matching,substitution,and tables of known results{of which Moses® Symbolic
INtegration scheme,SIN(Moses(1967))is probably the mostextensive——although the
facility in ANALITIK is of this type,and seems to be quite versatile)yand those
incorporating a decision procedure~—of.which Risch's isthe prototypee«The so~called
structure theorem,used by Risch to test for functional idependence among the com—
ponents of integrands,was implemented in SAC-! by Epstein(1975);and this gives
SAC~1 the potential for a full implementation of the integration algorithm.A multi-
level package jcombiningalgorithmic and pattern-matching routines,was implemented
in REDUCE by Harrington(1978),0ther schemes,having smeller scope,but requiring

relatively little storage capacity have been designed,too{e.g.sby Stout':emyer‘(i 975),
in REDUCE),
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All of the considerations so far adumbrated for the Risch algorithm apply only to
the case of transcendental integrands(ises,elements of fields of the form

K[z,a1,o.,.,e 1,8 ] swhere - each.... 6 _ is the exponen’tla?g flan element in
K[z,e‘l,"”e _41sfor 1 <q<j, and O; i=z JoFor this case,the basic algorithm

and its refinements have reached a fairly stable state—most modifications corres—
ponding to improvements in factorizationyor to new methods for solving the'compati—
bility equations®.(In Risch's original method,a device was used to replace the

set of first-order differential equations by an equivalent set of algebraic equa-
tions) .By contrast,the situation for algebraic integrands(elements of fields gener-
ated formally in the same way as for transcendental extensions—butwith the diffe-
erence that each Gq is algebraic over K[ z,0 " ,...,6 ] )is far from completely
settled, though there has been remarkable- progress recently( due,mainly, to Davenport
(1979a) sbuilding on ideas of Risch(1970) swho restated Liouville's theorem in terms
of modern,algebraic~geometric concepts). '

The basic problem has beenidentified as that of effective construction of rational
- functions over algebraic curves(vhose form is determined by the integrand).An al-
gorithm for this construction(which also involves finding the genus of the curve)
was found by Coates(1968),and it is essentially this algorithm(in the setting given

by Risch's reformulation of Liouville's theorem)that has been implaent ed by
Davenport.ln order to illustrate the nature of theseproblems,it is worth repro-
ducing the modernized version of Liouville's theoremyso that thefundamental link
with algebraicgeometry becomes apparent.(The meanings of the technical terms used
here may be found,for instancein Springer{1957)).

Theorem(Risch/Liouville).
Let w be adifferential in the algebraic function field §K(x,y) l F(x,y) = 0},and
let r,‘,... ,rJ be a basis forthe module(over the integers)generated by the residues
of w(so that,at each K-place,P, w has residue Ea l,with all a;p integers).Let
divisors d be given by the multiplicities a. ip at. any place P,

Then: if w is elementary,there are elements Yo
P ,mJ. such that di to the power mi is the divisor of the function v

= v, + Z(ri/mi)(dvi/vi) $leeos 0 = V4 E(ri/mi)log Vg .

seeesVy in K(x,y) and integers,m 9

i’a“d

As it turns out,the crucial( and_very deep)problem in converting. thls schene into
a practical decision procedure is to determine the .mtegers,m —~in part.tcular,to
decide when such (flnlte)lntegers Camnot befound.Drawing on results of Mam.n(1958,
1963,1966) ,Davenport has solvedthe problem almost completely:if his procedure fails

to find(some of )the m, ,th.l.s can only be because the original integral was none—
elemcntary;omenvise,ule procedure will terminate ,and produce the ° evaluated
integral'.
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Nontechnical outlines of various aspects of this work have been given by Moses(1971)
and Normman and Davenport(1979).The connections with algebraic: geometry,and the
resulting algorithm,are sketched by DavenpOPt(1979b,c),detailed results being
given in Davenport(1979a).Trager{1979)has shown that considerable simplification
occurs vhen the integrand contains,at worst,non-nested radicals.Apparently,the
great majority of integrals found in existing tables(e.ge.,in Erdelyi et al.(1954))
are of this type,so algorithms dealing with this class of integrands are likely to-
be far more efficient than those covering the general case.One other case which
has yet to be tackled systematically,is that of 'mixed'(algebraic/transcendental)
integrénds.It appears that no obvious combination of the methods already developed
is adequate,since it is difficult to 'disentangle'the algebraic from the transcen-—
dental behaviour,to produce two '‘noninteracting' components.The search for such a

procedure raises many interesting problems.

A number of auxiliary problems arise naturally in the context ofsymbolic integra-~
tion.One of these is the so-called square~free factorization of polynomials(putting
a typical polynomial into the form H(Qj)j,where each polynomial QJ. has only simple
factors).This reduction can be handled efficiently now( seeyeege yBrown(1971)) .A
more difficultconcept(already mentioned)is that of 'functional (in)dependence,rela~

tive to a specified ground field.The resulting structure the orems( see the refer—
ences given above),which test for hidden functional relationships,often lead t
significant simplification;but,even moreimportantly,they may invalidate the use of
some procedure—for instance,of treating the components of theintegrandas® indepen—
dent variables* (in factorizations,decompositions into partial fractions,etce.)as
Risch(1969)doessAnother awkwardproblem comes from the fact that,in Risch's pro-
cedure,all Elementary functions must be expressed in temsof( real,or compl ex)
exponentials and logarithms.This unnatural representation often produces incom-
prehensible results.Possibly,an 'unscrambling®routine could be used to restorethe

results to more familiar forms,but t isis unlikelyto be practicable for compli-
cated expressions.

Other problems closely related to"that of symbolic integration(as studied so far)
include the use of 'Special function3' as elements of the ground field(widening
the definition of 'elaentary'),and the solutionof ordinary differential equations
of the form q!(x,y,y“),...,y( k)) = O.The use of 'higher’ transcendental functions,
such as the error function integral,is complicated by the fact that,whereas the
behaviour of algebraic functions is dominated by the distribution of their poles,
‘higher' functions may possess essential singularitiesjand behaviour in the
neighbourhood of such singularities is hard to analyseo.Further possibilities are
provided by the inclusion of elliptic functions,Bessel functions,etc.(or,of hyper—
geometric functions,which subsume all of these typesof Special. functions——see,esgoy
Millar(1978)).
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So far,no systematic investigation has been made inthis di rection,but an
extension of Liouville's theorem allowingfor the inclusion of Spence funtions
(defined by S{(x):= -—f;( (1:--4)"1 log t dt)is given byMoses and Zippel(1979).

On the solution of differential equations,most progress has been madein the first-—
(4 )
tion problem,in which it is the algebraic rather thanthe transcendental functions .
that cause trouble).The MACSYMA . differential equation solver( initially devel- ’

oped by Kuipers(1973))is powerful,and can treatsome higher-order equations.A more
heuristic approach,designed specifically for first—~order equations,and not relying

order case i ¢(x,y,y = O,vhere ¢ is algebraic(in contrast to the pure integra-

on extensive pattern-matching facilities such as MACSYMA possesses,is due to
Schmidt(1976,1379) .Another procedure,due to Geddes(1979),uses a form of Newton
iteration.Up to now,no fully general scheme is available for higher—order equations,
though a power series package(based on the Frobenius method)for MACSYMA hasbeen -
provided by Lafferty(1977),and a method based on the uée of expansios in Cheby-
shev polynomials,has been constructed by Geddes(1977)in a fomm suitable for imple-
mentation in any symbolic computation systems(For efficient methods of treating
power series in symbolic computation,see,e.gs,Norman(1975),Fateman(1977),Brent
and Kung(1978);and,for Puiseux series—'fractional power series'—,of importance
 in the study of algebraic and algebroidal functions,see Kung and Traub(1978)).The
problem of (in)definite summation (which has obvious applications both to approxi-
mate integration,and to the solution of differential equations)has been investi-
gated by Gosper{1976,1977 ),by means of fterations of series rearrangements

determined by "splitting functions'(where the function Sk deﬁemines,durhlg the
n

k th rearrangement,what fraction of the n th term of the ;eries is to be subtracted
from that term and added to the previous term).Gosper shows that,as k—+ «,a series
will,in general,be transformed into an expression involving two new series and two
infinite products.In spite of this apparent complication,he shows,further,by means
of examples,that the result usually simplifies to a single(more tractable)series—-

and,even to explicit closed form,in many cases.
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12,5.More remarks on scope.

There are some other points about scope that are worth making.First,a system may
be designed to handle one class of calculations optimally——to the detriment of cal-~
culations of other types.Thus,CAMAL is most effective when manipulating poly-
nomials,ALTRAN and SAC-1 are intended for rational function computations,while
other systems,notably,MACSYMA,REDUCE and SCRATCHPAD,allow a wider class of func-—
tions to be treated.Again,if ultimate numerical computation is in question, then
the interface between the symbolic manipulation language and a high-level numerical
language is of critical importance.Indeed,the Berkeley MACSYMA system,although
smaller than the MIT version,is designed to produce efficient FORTRAN code.Corres—
ponding facilities for other systems should be checked in the current editions
of the manuals. -
There are,of course,many - basic mathematical procedures other than factoriz-
ation and integration(for instance,matrix operations,ahd their development in
linear algebra,to take only an obvious example);yet,the limitations in scope among
current systems stem chiefly from their performance in these two crucial areas.
Symbolic differentiation is trivially algorithmic,and was implemented long before
any general system was envisaged(see Section 1).In fact,most systems have extensive
facilities for matrix manipulations(including,in some cases,special packages for
sparse matrices(Rl-fDUCE:useful in finite element computations),and Kronecker pro—
ducts and indicial tensor manipulation(MACSYMA)).This is one area where even the
less analytically—directed systems perform comparatively well.
On the question of quality of algorithms,only tentative remarks may bemade reliably,
since all sytems incorporate new implementations of facilities as imprOvements
become available.However,as far as the built—in routines go,SAC-1,ALTRAN,MACSYMA
and SCRATCHPAD maintain a very high level MACSYMA and SCRATCHPAD are under con-
stant development,and REDUCE(which is relatively easy to modify)has a large collec-
tion of algorithms contributed(and implemented)by users——which helps to keep the
level of efficiency higheAgain,many of the mathematical algorithms are implemented
in several different systems,so their relative efficiencies depend on the effects
of various basic design characteristics.As time goes by,there is likelyto be a
tendency towards equalisation of performance in the most fundamental procedures ——
as far as is compatible with differing general design aims.This is especially so
becauseof the availability of extremely small,comparatively cheap micro-processorse.
Some comments in this direction are made in Section 1207.
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12.6Mathematical scope of ANALITIK.
In Section 4,an outline of the ANALITIK system,with an indication of its principal

facilities,was given.The Tollowing brief remarks are intended to show how the
design philosophy of ANALITIK(and its realisation)affects its potential scope in
mathematical applications.The limitations due to small storage capacity and slow
operating speed are certain to be greatly reduced,eventually;though,even if the
current version,ANALITIK 74,is improved in these respects,it is unlikely to be
competitive with the other systems;on the otherhand,its unique structure(and conse-
quent procedural flexibility)offer many alvantages.In particular,the approach adop—
ted in this paper,to the mathematical use of symbolic computation(see Section 14)
is well suited,structurally,to ANALITIK.However,the principal amalytical weakness
lies in the lack of a decision procedure for integration(even if some relatively
complicated standard forms are included,for !'table look-up' and general pattern—
matching).The crucial matter in the potential implenenﬁation of such a facility is
the quality of factorization procedures realizable in the system—which,in turn,
depends fairly strongly on size and speed;so it is doubtful whether ANALITIK 74
could inélude a Risch type decision procedure.Nevertheless,the next generation
of ANALITIK systems may well be able to allow effective integration,while reta.uung
the other features that make it attractive mathematically.
The basic capabilities of ANALITIK are listed by the designers as including:treat—
-ment of standard problems of(analytical and numerical)linear algebrajsolution of
nonlinear equations(mainly,by iteration);determination of extremal points of func-—
tions;integration of systemsof linear differential equations({essentially,only those
with constant coefficients);and,approximate solution of nonlinear ordinary differ-
ential equations(mainly,by iterative methods),and of the'differential equations
of mathematical physics'(using Fourier's and related methods).In spite of this quite
general scope,it is clear that,for standard( numerical/analytical)procedures,invol—-
ving linear algebra,differential equations,etc.,ANALITIK cannot compete with,say
REDUCE or MACSWA,both of which run on much faster,larger-machines:its value lies,
rather,in its approach to the construction of mathematical procedures.(For the
record, it may be noted,however(see Korpela(1977a)),that ANALITIK,on MIR-2,solved
the equation % 4 0 = ef(x,%),with a general function,f,in 5 minutes,48 seconds;
while FORVAC,on IEM 360(a much larger system)took 3 minutes,twelve seconds—even in
the special case where f(x,%)= (1-—-x2)>°c e
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1207.Implementation of algorithms:sequential and parallel computation.

With the mass production of extremely small(and increasingly cheap)microprogranmed
elements,the possibilities for designing highly modular systems(microprocessors)
are being explored widely.The impactof these developments on symbolic computation
seems not to have been investigated.In the present comments,some basic questions are
1dentified,and their significance for symbolic computation is indicated.On a mathe—
matical level ,thé fundamental problems hinge on the optimal combination of the ’
_sequentialand parallel('concurrent')modes of calculation.In relation to general

implications for symbolic computation,the following matters seem worthy of study.

124702« Identification of,and measurement of,parallelisme.

This is a question of the automaticdetection of segments of existing algorithms
(presently implemented only in sequential form)for which parallel computation is,
nevertheless,the more natural(and more eff‘icient)mode.ln these tems,ones seeks
useful measures of 'intrinsic parallel content!,which can be applied to programs
in existing libraries of subroutines.In such areas as linear algebra,much work has
been done on implementing ‘concurrent procedures® for use in microprocessors( éee',
€egoyHeller(1978)for an extensivereview;and,for a more theoretical approach. to the
structure of parallel algorithms,Kung(1979),where many references may be found).
Thus,the key problem here is to devise effectively applicable measures of parallel-
ism.For one approach,see Gonzalez and Ramamoorthy(1970). )

12.7030.Capacity of existing high—level languages for parallel computation.
Methods have been developed recently(using techniques of mathematical logic)for

studying this question—which has obvious practical importance.It has been found

( see Jones(1977) ,where many references are given)that the main languages(FORTRAN,
PL/1 sJALGOL)are on the whole poorly suited to concurrent modes of programming.lt
follows that most of the symbolic computapignlanguages {which are modelled,syntac—
tically,on these high-level languages)cannot be very well atuned to the use of
parallel schemes(though I know of no specific results about this)eWork in this area

has been done by members of the Programming Research Group at Oxforde.
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1247+4.Design of speciallanguages for efficient parallel computation.

In view of the conlusion in 12.7.3,the need for languages in which the concurrent
modeof computation is in some sense the optimal mode is apparentyand several stu-
dies of the :array st:,ructures of parallel computers have been made( notably,by
members of the Computer Science Department at Carnegie-Mellon University:see,e«8s,
Kung(1979),and references given there).However,the emphasis is on realizing
certain algorithms in hardware(as in the ANALITIK system——see Section 4)rather
than on analysing the linguistic peculiarities of concurrent computation schemess
For this:aspect. of the problem,see,e«ge ,Hoare(1978a),where several references to
language construction are given.One special language intended for the description

of parallel processes .is Concurrent Pascal(Brinch Hansen(1 975)).

.41247+5.Use of parallel schemes in symbolic computation.

Quite apart from the need for special languages in which parallel modes of compu-
tation are ‘natural’,there is a need to design algorithms having high parallel
content( so that there expression in the new languages is as simple as possible).
It remains for such algorithms to be tested in symbolic computation.In this connec-
tion,it is notable that a parallel program/parallel data LISP machine is being
constructed at the University of Utahj;and this,when it is fully operational,should

advance research into parallel algorithm design considerably.

1247.6.Stochastic models of systems with intercommunicating components.

When computations are done concurrently,it is useful to have models of the ' flow

of calculation'through the system,in which the transient state of each component

is monitored.The manner in which successive stages of the process are triggered
(various components are activated,stopped,re-activated,etc.)suggests that stochastic
models may be used to describe the evolution of the whole system.These models

are general enough to cover symbolic parallel computation,and may be helpful in
pinpointing probable causes of 'blockages' in various classes of calc.ulations..(See
the paper by Kung,in the conference proceedings edited by Traub(1976)for a survey
of this area,together with some specific models).
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12.7.7.Logical descriptions of intercommunicating subsystems.

The successful design of languages adapted to parallel computation depends strongly
on obtaining a sufficiently detailed logical description of a callection of -
intercommunicating components.This requires thedevelopment of novel logical tech-
niques and semantical structures.See,for instance,Hoare(1978b,1 979),Hoare and

McKeag(1977).

12.7.8.Relative complexity of parallel and sequential algorithms.

Much work hasbeen done in this area,since it is vitally important when matters
of cost are in question.In problems of linear algebra,the results are quite
extensive(Heller{1978)contains many references).However,for morecomplicated algo—
rithms,only isolated results are available—though a general theory of optimal
algorithms and analytic complexity(mainly for iterative solution of nonlinear
equations in Banach spaces,with various measures of ‘data information')has been
constructed by Traub and Wozniakowski(1980)~-including a long,annotated bibliogra—
phy.The task of comparing the sequential and parallel algorithms in terms of
complexity remains largely open.

12+.7.9.Automatic conversion of sequential programs into parallel programse

This facility is essential if the vast store of library routines(almost all of
wiich are implemented insequential mode)is not to be duplicated—often,with great
difficulty(and waste of time)if the algorithms have tobe designed from scratch.
Certain theoretical procedures to accomplish this conversion have been given(see,
e.g. ,Mazurkiewicz(1975));but the development of efficient methods of !translation®
for mathematical use is far from being realized.Plainly,it is a matter of para-—
mount importance.

Taken together,the aspects of parallel computation mentioned in this . subsection
could have a marked effect on the design of the'next generation' of symbolic
computation systems.
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13« Remarks on I/0 and simplification.

Most of the following remarks on I/O are implied in the descriptions of the individ-
ual systems.The purpose of this section is to make them more explicit--and to
discuss briefly some of the deep mathematical problems that aris when systematic

,‘ ‘_g‘ijttempts are made to reduce general expressions to canonical foms.To give an

“Tidea of the range of types of I/0,and of the varicus forms programs can take,ex-

tracts form programs are: reproduced at the end of this section.-

13.LeQuality of I/0.

This is of great importance,because a symbolic manipulation system. should allow -
the user to approximate as closely as possible the ‘usual' mathematical activity.
For this to be feasible,the cutput must be easily recognizable as mathematics,and
the result of any-operation on the current data should be discernible immediately,

- so that a suitable!'response'can be evoked.These requirements imply that systems

should have two-dimensional I/0,and that they should operate in a dialogue{inter-
active)mode.However,poorly produced two—dimensional output may be less useful than

well-organized one-dimensional output;so there is room for compromise.

Of the systems discussed in this paper,FORMAC,MACSYMA,REDUCE and SCRATCHPAD have
(an option for)two-dimensional outputjand facilities for converting their one-dimenw—
sional jnput to two~-dimensional form on the display screensAll other systems have
purely one-dimensional input and output.Again,ANALITIK,MACSYMA,REDUCE and SCRATCH-
PAD are all interactive,while CAMAL and FORMAC have specfal dialogue implenentas
tions( though their standard versions are for batch use only);and ALTRAN,SAC~1 and
SYMBAL allow only batch operation.The relative quality of output and ease of pro-
grammning among the systems may be judged partially from the examples reproduced
later in this section.Plainly,SAC-1 does not give high priority to the 'readabil-
ity'of its input or output;but all of the other systems do aim for this.Ease of
programming is enhanced if the program instructions are fairly close in appearancs
to the usual mathematical forms.In this respect,all systems except SAC-1 are
quite easy to use,each having its syntax strongly based on that of some high-
level numerical language.Specifically,FCRMAC and ALTRAN are based on FORTRAN;
ANALITIK,MACSYVMA,REDUCE and SYMBAL all have ALGOL-like syntax,CAMAL is based on
the -original ‘Autocode';and SCRATCHPAD is a'conversational!system,in which the
language of communication has no obvious antecedent,but is very easy to 'write'.

Other criteria include:whether all variables must be 'declared'(as in ALTRAN,
ANALITIK,and often in CAMAL);whether the system 'knows' the rules for handling
the Elementary functions(in ALTRAN and  SAC -4 sspecial rules must be included
to cover these functions);whether syntax errors are diagnosed during the input
and construction of a program{rather than only after the program has been run) ;
whether 'loops'are required for summation routines{e.ge. ,ANALITIK and SCRATCHPAD
allow direct summation);and so on.Generally,when a basic facility is missing in
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sane package,it can be provided,with'comparatively little programming effort.How-
ever,the need to insert even a small subroutine whenever a particlar construction
or type of function is used is certainly a disadvantage in calculations where
the construction is required frequently{ and,often invarying forms,so that one can-
not keep calling the same subroutine).All of the relevant information on syntax,
basic declarations,quality of I/0,etc.,may be found in the' latest manuals, -
13.3.Quality of information in the manuals.

The ALTRAN manual 1s excellent,including several levels of description,with ex-
planations{but almost no details of the algorithms used).For MACSYMA,the manual
offers a complete description at wuser level,with brief outlines,and examples of
all routines that were current at the time of printing,and instructions for call-
ing these routines;there is even a glossary of programming terms.Other manuals
are less comprehensive.In the case of FORMAC 73 and CAMAL,the mmuails are stored
on disc,and so may be updated falrly simply.Both manuals are adeqate for the
most basic information,but neither contains any description of library rout.ix;_es-—-
insofar as these exist at all.As explained in Section 8,SAC-1 is not a 'language'
in the same sense as for the other packages considered.Conseuqnen};ly,there is no
need for a manual--only,for instructions as to how the various FORTRAN subroutines
of SAC~1 may be called.Each subsystem is documented meticulously in a technical
report.Indeed it is only SAC-1 that gives complete information on all of the algo-
rithms used.To get even partial information of this kind about the other systems,
one nust write to members of the design groups--and,even then,they may not know
precisely what algorithms are in current use.Moreover,detailed timings and storage
requirements are given for each of the SAC~l facilities;jand here,again,the treat-
ment of other systems leaves much to be desired.On the other hand,although the
SAC-1 User's Guide is adequate for its state purpose,it is unlikely to attract
casual users,since it conveys little meaning on its own.The REDICE manual gives an
outline of the general facilities in the system,but many details are lacking{even
on an operational level).Thus,it is desirable to use REDICE frequently to get a
realistic appreciation of its scope and power.In particular,there are several
possible'modes' ,which may be used in different parts of a calculation:these are
indicated,but not fully explained';in the manual.To compensate for this relative
sketchiness,there are fairly regular REDUCE Newsletters{edited by A.C.Hearn,Univer—
sity of Utah Computational Physics Group),and frequent research reports{often con- 4
taining new facilities or implenentations)by members of the Utah group.

The care with which SCRATCHPAD has been designed is reflected in the manual.(There
are also occasional newsletters).SCRATCHPAD exhibits an economy of notation and a
coherence that it would be hard to surpass.All facilities are documented concise-
ly;both input and output formats are very clear—-and about as close to 'hand=-writ-
ten'mathematics as one should expect in a computer languagej;and the 'conversational

mode' comes close to simulating human mathematical activity and communication.low
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ever,if one recalls that SAC~1,though inelegant and clumsy in 1/0,1s pmbably the
most effective of all systems in certain concrete analytical procedures( e.g.,
detemination of the zeros of polynomials),then it may be surmised that outward
elegance of construction,naturalness of X/0,and high efficiency are{at least,
partially)incompatible attributes.In this connection,a fundamental study of symbolic
computation,on the level of languages,metalanguages and interfaces,would be val-
uable.Current research into the theory of computer language syntax and semantics
makes a useful contribution in this direction,but it is likely that the special
demands of symbolic computation will require some new concepts before significant
progress is made. ,

There is no translation of the ANALITIK mamual,but the article by Glushkov et al,
(1971 )gives a full description of the language construction,the various modes of
transformation and evaluation,and other specialized constructions.The latest ver-
sion,ANALITIK 74,is covered in another article by Glushkov et al.((1978)),vhich
has not been translated yet.Much information on the practical use of the older
form,ANALITIK on MIR-2,is contained in various technical reports issued by the
computer science department of the Helsinki University of Technology.Although

they are dealing with an old version of the system,almost all of what they say
is still valid for the latest machines.

13.4Mathematical problems of simplification.
This is a central problem in symbolic computation,and one that has been solved
unevenly,in various contexts.All systems include routines for the most basic sim-

plification;many of these are mentioned in the system outlines.However,without

constant vigilance and resourceful use of reduction procedures,even apparently
tame calculations ceate explosive storage demands(for instance,naive versions of
the GCD algorithm:see Section 12.2).The simplification problem is essentially
equivalent to that of finding canonical forms for classes of expressions;and of

designing effective procedures for reducing general expressions to collections of
canonical entities. '

The formalisation of these procedurcs has proved to be a very difficult problem.
Even if canonical forms can be defined unambiguously,they need not be unique—yet,
how is one to decide which is the simplest of several fomms?Such a decision may

be strongly context-dependent,as is easily illustrated by examples.If one attempts
to analyse the thought processes of a mathematician confronted with an unwieldy
expression,it becomes evident that 'intuitive reactions'cannot be ignored.Certainly,
such reactions are( somehow)derived from experience;but it is possible,often,to
reject a strategy without{in any conscious way)first testing it--and it is this
faculty that is so hard to formalise.(A similar situation is met in designing chess~
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playing computers:sthe intuitive rejection of all but a minute proportior; of the
legal moves,in a given positition,cannot be emulated by the machine,which must
'consider' all legal moves,even if,subsequently,it rejects many of them,after ap—~
plying fixed rules).

The most remarkable general result(comparable in its depressing effect with Godel's
results on the incompleteness of formal syst,qm“gl;ti the theorem of Richardson{(1968).,
This states(roughly)that the problem of 'identifying zero' ,within a sufficiently
wide class of expressions,is formally undecidable (see,e.g.,Hermes(1969),Chapter
Six,for an explanation of this term).In a modification of Richardson's argument,
Caviness(1970),by building on the result that the decision problem for solvability
of multivariate Diophantine equations is itself recursively unsolvable(Hilbert's
Tenth Problem:see Hermes(1969)for the meaning of 'unsolvable'),constructed func-.
tions,F (using standard field operations,the number,x,and the 'sine' and 'modulus'
functions)such that the problem:'Is F(x) identically zero in x* »is recursively un
‘sokvable. (The solution of Hilbert's Tenth problem is due to Matijasevic(4970).Some—
vhat in the same spirit as Richardson's result-—~though having nothing directly in
common with it——is the fascinating work of Jones et al.(1976),vhere,also starting
from the solution of the 'Tenth Problem',a polynomi.al,ﬁ'(a,b,’.{._.",.bz)_,ofz degree 25
(over the integers)in 26 variables,is constructed,the.set of whose positive values
coincides with the set of all primes—each of aybyeeez,ranging over the set of
positive integers).

Richardson's result shows that no !perfect! simplifier can be designed.However,no V
definite bound is implied on tk potentially atainable efficiency of simplification
procedures;it is just that they will remain inadequate in the face of sufficient~
ly complicated expressions of certain ~types.Thus,the quest for wore effective
simplification routines is not doomed to failure,as long as the class of expressions
to be handled in each routine is defined precisely.Indeed,Richardson himself pro-
vided a 'zero-equivalence algorithm'{based on successive reductions to problems of
decreasing’ complexity®)which{ see Moses et ale(1972))uay be extended to include
functions defined by firsb—order,ng;naxyidiff_e'rervxtialjequations.

In most of the systems considered here,cancellation(additive of multiplicative)is
attempted,identities for Elementary functions are incorporated( usually,as side
relations)and these functions are assigned canonical forms.Further, the relations
for . identity = ™o f,are imposed for all Elementary functions,and in any
other context where they can be applied unambigucus‘ll._h_‘lgre elahorate gtrategles
include the attachment of 'weights' to monomials(so that all terms of the same
weight In any expression may be collected sand simplified),and the use of selection
and parsing routines to dissect expressions.All of these ldeas are discussed,in
context,in the system outlines.The canonical form problem 18 linked strongly with
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that of proving'structure theorems'(which aim to reveal all possible-—algebraic or
transcendental--relations among the elements of given classes of functions).In this
way,automatic tests for equality of expressions may be designed,covering even situ-
ations where the equality s hidden,and far from obvious 'to the naked eye'.(Re-
call that,same versions of Risch's integration algorithm require a preliminary use
of structure theorems,to ensure that the component functions of the integrand may
be treated legitimately as 'independent variables',in partial fraction and factore -
ization procedures).

One key problem{of special significance in relation to algebraic functions)is the
canonical representation of expressions containing 'nested radicals'.Progress here
has been made by Fateman(1971 ),Shtokhamef(1975)and Zippel{1977).See also,Caviness-
and Fateman(1976).In fact,the work of Caviness,and of Fateman,is concerned with
un-nested radicals;but the basic ideas are of general value in studying the more
involved situations.Shtokhamer defines a canonical form for expressions containing
nested radicals,and gives an algorithm for reducing expressions to canonical
fom.His procedure is analogous to Risch's,in that successive field extensions are
constructed to 'remove' radicals,until the original expression can be simplified
to a polynomial in quantities which are algebraic over the field of rational
functions.The corresponding algorithm is,however,very inefficient(but improvements
are indicated,and,by now,the procedure may be useful in practical cases).Zippel
emphasizes the concept of the 'nesting level'of a field;the main force of his
results is to reduce the problem to the case of a single radical,by means of a
Yde-nesting routine'.Another approach to simplification ié taken by Hearn(1975}),
who tries to preserve the structur: ;h*erent in physical problems{as this often
makes possible 'hand calculations' that otherwise would be excessively laborious).
Several schemes for basic simplification are embodied in the various system de-
signs;most of tkse are based on some kind of 'tree representation' of expres-
sions).

A useful outline of work in this area has been given by Moses(1971b).Moses classi~
fies simplification strategies into ‘political types'(the radical ones imposing all
of their rules invariably;the liberals leavring some room for a user's choice;
and,the conservatives allowing users complete freedom to devise rules).In these
terms ,MACSYMA has a 'catholic' strategy( incorporating all types to same extent,
and allowing users to vary the modes of simplification adopted).Simllarly,SCRATCH—-'
PAD has several levels of simplificationj;and all of the other systems make provig-
fon,in varying degrees,for adding or removing simplification routines(by setting
‘flags' for the appropriate options).Ostensibly,ultraconservative systems offer
the widest choice,but the extra programming effort may be substantial,and the run-
ning time may be prohibitively long.The radical systems are the most efficient,but
their inflexibility imposes undesirable limitations—-compromise fs essential here.
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A problem closely related to that of simplification is to control the size of
expressions( especially,in the form of 'intermediate expression swell',generated in
the course of a calculation--for instance,of eligenvalues,where the final result
may be very short,even thoughbulky expansions of determinants ne involved).Although
there is no general solution to this problem,all systems include some facilities
for mitigating it.These facilities are typified by the SELECT,EXPAND,PARSE and )
MAXORDER operators in CAMAL,and by some form of regular storage inspection(for i
providing,at all times, maximal free storage space,so that new expressions can be
accomodated without causing programs to stop on account of overflow).In all
LISP-baged systems,this inspection is realised through a 'garbage collection' facil-
ity,which erases,at any time,all expressions no longer required in a calculation, -
Other systems have their own means of storage management( though,mostly,these are
not invoked automatically,as garbage collection is).Other means of simplification
are properly regarded as editing operations,and details of these may be found

in the manuals.Of course,possibilities for editing are far more extensive in dia-
logue systems than in those having only batch mode—which makes it essential for the
batch systems ‘to have comprehensive,efficient built-in simplifiers,if they are to

. be competitive.
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This pfogram solves certain types.of ODE.Two methods are -used.
MACSYMA - Ml Hustrative Examples

(C6) SOLDER(EQN,U,X) := The routine is code—named SOLDER

BLOCK([8,C,F,DISC,R1,R2,ALPHA, BETA], ) . .
IF SOLDE(EQN,U,X) = FALSE THEN RETURN(FALSE), All of this code

DISC: B2 - 4xC, ALPHA: -B/2, is for rgnning
JF DISC=0 THEN RETURH(%E"(ALPHMX)*(AMAZ*M), ' the rc.putll:le.'e, )
BETA: SQRT(DISC)/2, ) ' setting initial

values,etc.

IF DISC > o
: formzl solu—
- THEN (R1: ALPHA + BETA, R2: ALPHA - BETA, E‘Lfn g? the char-
RETURN(AL#ZEN(R12X) + AZ%E~(R2%X))) - acteristic eguation
ELSE (BETA SQRT(-1)%BETA, is also covered

* ° RETURN(XE~(ALPHA%X) = (AI*COS(BETA*X) here.
.. "+ AZxSIN(BETA%X)}}))8

(C7) /x AN EXAMPLE - THE METHOD OF UNDETERMINED.COEFFS; FOR
OBTAINING THE PARTICULAR SOLM. AS WELL %/

DE: “D(Y,X,2) - “D{Y,X) - 6xY = SIN(X); The / symbol suppresses evaluation.

2
! . . DY pY .
(67) o i T 2 A sm(x) ———m—the dlqnlayed form of the ODE.
-2 BX .
DX
(C8) YH(X) := 77(SOLDER(%,Y,X)); w——— # causes evalustion and max1mal simpli-—
fication; % refers to previous expn.
. -2X 3 x ‘
(08) YH(X) := A2 ¥E .+ Al ¥E —-——-—thls defines the LHS
(€9) YP(X) := BIxSIN(X) + B2:C0S(X)% -——=YP is 2 'particular integral®
i i ' . | | '
{C€10) YG(X) := YH(X) + YP(X)8 —-——-=YG is the general soln.('complimentary fn).
" (C11) PLUGIN: EV(DE,DIFF,EXPAND,Y=YP(X)); ——-—sets verious switches.

(DI'1) B2 SIN(X) - 7 Bl sirx(x) - 782 tosm
- Bl COS(X) = SIN(X)

(C12) EQH1: VCOEFF(PLUGIN,SIN(X));
compares coeff1c1entq of SIN(X),

(012) - B2 - 7B1=1 " then,of COS(X).

(From' the MACSYMA Reference Manual(December,1977)).,
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(C13) EQN2: COEFF(PLUGIN,COS(X));
(p13) - 7B2-8Bl1=

(C14) GLOBALSOLVE: TRUES

(C15) SOLN: LINSOLVE([EQN1, EQNZ] [81 B21);
SOLUTION

7
(E15) Bl: - --
50
. 1
(E16) B2 : --
o 50
(D16) {E15, E16)
(C17) Y6(X);
. 7 SIN(X)  C€OS(X) 3X
(D17) . oo PO + Al %E
59 50
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MACSYMA

the default setting is

. FALSE; hence it must be set

to T, whlch coauses the vari-
ables SOLVED for to be set

to the values found by sol-
ving the simultaneous- equns.,
using 'LINSOLVE'(C(15)). .

-2X

+ A2 %E

((218) />'< PLUGGING IN INITIAL CONDITIONS OF Y(O) 1———commentq are prefaced

AND Y/(0)=0 */

EQN1: YG(0) =
1
(0-1.8) A2 + Al + «- = ]
' 50
(C19) DIFF(YG(X),X); -
SIN(X) 7 COS{X) 3 X
(D19) = ~-eden m e + 3 Al %E
.50 50
(C20) EQN2: EV(%,X=0) =
. 7
-2A2 +3Al - ~-- =

(D20)
‘ 50

by the symbo1 /*

-2 X

- 2 A2 %E
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MACSYMA lif Hlustrative Examples

(C21) SOLN: LINSOLVE([EQHI, EQK2],[AL,A2]);

SOLUTION
. 21
(E21) Al : -~
. 50
14
{E22) A2 : -~
) .25 . _ .
(p22) [€21, E22] - these values are stored as shown.
(€23) Y6(X); :
| . S 3X -2 X
7 SIH(X) COS(X) 21 %E . 14 %E ]
{D23) L LT T S, + memecena R
’ 50 50 50 25
{C24) /*AEESETTIEQG OF OPTIONS =/ ————311 options(switches)are returned to

their default settings.
GLOBALSOLVE: FALSES' : '

(025) ' ' BATCH. DONE

(C26) "SOLUTION BY LAPLACE TRANSFORMS"E ——w0only rationsl fﬁnctions are
» ' i considered here,but the strong
(C27) SUBST(Y(X),Y,DE); integration fecility in. MACSYMA
. o _ would sllow for more general .
2 . ) ’ functions.
D D . :
(D27) . === Y(X) = == ¥(X) - 6 Y(X) = SIN(X) ~—(C27)causes the ODE to
.- 2 DX : ) be disvplayed. ’
DX ‘

(C78) [ATVALUE(Y(X),X=0,1), ATVALUE(/DIFF(Y¥(X),X),%=0,0)3};———5ets the boundary

A ' 7 conditions.Note the

(028) [, 0] suporession of evalu—
) tion a2t this stage.
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(C29) LAPLACE(D29,X, S). ———~this instruction causes the loading
of the corresvonding disc.

LAPLAC FASL DSK MACSYM being loaded
loading done

2
(D29) s LAPLACE(Y(X), X, S) -§ LAPLACE(Y(A), X, 5)-————+hn Leolzce +trens-—
form of both sides
of the equn.is
.. 1 . teken.
"= 6 LAPLACE(Y(X), X, S) =S+ 1 = =rmcu-
' 2
S +1
(C30) LLNSOLVE(L%J-[’U\PU\LE(Y(X) %,5)1);i —~——the LT is determined
Solution : explicitly 2s.a fn of 5.
3 2 )
: S -8§ +8 R . :
(E30) LAPLACE(Y(X), x ) R -g result is disolayed;
4 3 2
S -§ «58 ~S-6¢
(D30) _ [E30] N — arid stored.
(€31) I'LT(E30.S,X); -_--——-‘bhe inverse LT is taken. ) .
- . 3X -2X M
: 7 SIN(X) COS(X) 21 %E -14 %E .
(D31)  Y(X) = =~ -=eeoee- PO T T finsl result.
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(a) procedure main
algebraic altran tdiff
algebraic(x:10, a:10, b:10, cos:10, sin:10, j0:10, j1:10, j2:10)

# cos = cos(bx?)
# sin = sin{bx?)

-

# ‘0 = Jo(ﬂx)
# j1 = Jiax)
# j2 = J,Gx)

# indeterminates which depend on x

algebraic array(6) vars = {(x, cos, sin, j0, j1, j2)

# their derivatives are

algebraic array(6) derivs = ) 3
(1, —2*b=*x*sin, 2*b*x*cos, —a*j1, a*j0 — j1/x, a*j1 — 2#j2/x ) !

# we also need
integer i
algebraic array{(0:3) f
# now define the function and compute its derivatives
1{0) = j2 * cos
doi=13
(i) = tdifi{t(i— 1),vars,derivs)
doend L

write |
) end .
The output of this program is
#1
(cos*j2,
— { 2ax**2xb*sin*j2 — x*a*cos*jl + 2%cos*j2)/(x), )
— {daxardrhx22%cos*j2 + Axxx*xJxgrhrginej] —
X**2%3x%2200S5*]0 ~ Gaxx*2xhrgin*j2 +
3*xrarcostrjl — 6*CoS*j2 ) / (x**2)
o1 {BaxxaBrhe*3agine2 ~ 12%x2*5xq0h**4cogHj1 —
 Brxaxdrgra2absin¥[0 + 124x*¥4xhreDrcosH|2 —
| xx#*3xa#x3xcos¥il 4 12xx#x3rarbrsin*jl —
Bxx*#2xaq2%24C03*]0 ~ 24*x**22phrsin*j2 +
T 12#%xxaxcos*jt — 24%cos¥j2 ) / (x**3))
(b) procedure picard (f, x, y, yO, n)
integer i, n
_algebraic x, y, f, yO, p = y0
doi= 1,
yO + pint{ fly=p), x)

i

o]
doend

return(p)
end

Then the following rﬁain program solves
y'=ay , y(O)=1 /
to tenth order

procedure main .
aigebraic (x:10, y:10, a:10) p
algebraic altran picard

p = picard{a*y, x, vy, 1, 10)
write p

end

The result is the Taylor expansion of the solution y=¢*, accurate to tenth
order in x. The output is

#p .

(x*%10%2#210 + 10%x*202a#»0 + QQuax*+Bran28 +

‘ 720*x**7‘-*a?*7 4 5040*x 2262226 + 30240*x2*5xa*#5 4
1512002x*#4*gax >4 + GOABOO*x**3*a**3 -}
1814400*x**2+a%22 + 35238800*x*a + 3628800 } 7 3628800

ALTRAN programs:(a)differentiation of J2( ax)cos( bxz);(b)Picard iteration(y'=f(x,y)).



98

hypergeometric equation.{From Geddes{(1977)).

Qutput for Problem f#11:

Q;DIFFEQ A
- ( X*%24DY(2) + X*D§(1)*nu(1) + X*DY(1)*MU(2) + X*DY(1) - X*DY(2) +
YAMU(1)*HU(2) ~ DY(1)¥MU(3) )
# CONDN(1)
“QJ
# CONDN(2)

YX(1) - 1

CoYR(2) + 1
§ XSUB(L)
S
#rxsux(zyi
i 1:3 : |
¢ serup rIME'Iﬁ SECONDS WAS
# TNEW ;‘:“.
. 2.60425
#iHALfN::f
. 2\ ‘
¢ EQﬁ13 ;
- KMA3RCR(-2) - 2%RARIACK(-1) + 2XKA%3XCK(0) - 2AKHRIXCK(1) +
R#*3XCK(2) + K*#2%CK(-2) *MU(1): + K**2#CR(-2)#MU(2) - 3*K**2%CK(-2) -
QRKANZXCK (~1) *MU (3) + L*RA*2ECK(-1) + 2%K##2%CK(1)*MU(3) -
4KHH2HCK(1) ~ KA*2XCK(2)*MU(L) - K#*2ACK(2)*MU(2) + 3*K**24CK(2) +
K*CK(=2) *HU (1) *MU(2) = K*CK(-2)*MU(1) - KXCR(~2)*MU(2) + 2%K*CK(-1) -
2#K#CK(0) *MU (1) ¥MU(2) + 2#K*CK(O)*MU(1) + 2%K*CK(0)*MU(2) - 4*K*CK(0) +
2%K*CK(1) + KHACK(2)*MU(1)*MU(2) - K*CK(2)*MU(1) - K*CK(2)*MU(2) +
CK(~2)#MU (1) *MU(2) - 2*CK(-2)*MU(1) - 2*CR(-2)*MU(2) + 4*CK(-2) +
2XCK(=1)¥MU(3) = 4%CK(-1) = 2%CK(1)¥NU(3) + G*CK(1) - CK(2)*MU(1)*

MU(2) + 2%CK(2)*MU(l) 4 2*CK(2)*MU(2) - 4*CK(2) ) /
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In the following, we shall compute the first few derivatives

of the function

£(x) = J,(ax) cos (bx?)
where Jzis a Bessel function of the first kind. The
informative is pretty short, and it can be used for
computing the n first derivatives of any function composed -
of elementary functions and Bessel functions Jk with
k=10,1, 2,... We only define and use one additional

differentiational rule:

2
3x Jk(®) =) () -§ J (x) if kK #0

—J{x) "if k=0

(with a trivial generalization). We use the notation
J(K,X) for J,(x).
*IYCT”BD.”IN”T=1"0"{" 10" N"Bill”
("B3"9/X(P3) ;L. " IH” ;" IPUM™D ., F ;" IPUB" 11 ;" FA™L;
F.”RIB*”3H""CTP”, *D(*,1,*)=",P3)
"TIE"D. (E,K)3/8X(J(X,E) )=C"E"K=0"T0"-J(1 ,E)"HHA"J(K-1,E)-K/ExJ(K,E))
xd/dX(E)
*KOR"0

Now we can easily compute the first five derivatives

(we only give the beginning of the output):

"Bl B3A”J (2, AxX)xCOS(BxX42) :N=5;"HA"BD"KOH"0
D(1)=J(§ , AxX)xAxCOS(BxX42)+(~2)x X4 (~1)xJ (2, AxX)xCOS(BxX42)+(-2)
xX xBxSIN(BxX42)xJ (2, AxX )0
D(2)=J(0,AxX)xA+2xCOS(BxX42)+ (=3 xX4 (=1 W J (1 ,AxX)xAxCOS(BxX12)+
(—8)xXxBxSIN(BxX42)xJ (1, AxX)x A+6<X4(~2)xJ(2,AxX) xCOS(B*X42)+6xB
xSIN(BxX42)xJ(2,AxX)+(~1)xX+2xB+2xCOS (BxX42)xJ (2, AxX)0

ANALITIK.(From Korpela{1976)).



100

"[YCTL"PICARD.

" A" I=1 "IAD” 4 ” 10"N” Bl OAHUTD”
("B3ATB"Y0+5 (T=X0,X,F(T,H(T)));
"HHTETPUPOBATE" - ;
. *IPUEECTH" 11 ¢

 "EASBATE"W(X))

» BIBOL”” CTPOKA™ , W(X)

Qi

. WQ)=Y0
»ROHEL"0

In the following we solve

y'r = ay, y(0) =1
by ten iterations.

"MIYCI"F(X, ¥ )=AxY ;X0=0 ;50=1"KO0H"0
PRI IPO"” E™" IE” ;N=10 ; HA" PICARD"KOH"0
H(X)=1+AXH /2xA42xX 42+ /6 AABxXATH /2l AAUXX 44 +1 /1 20<AASX4S .
1/T20%AAEXA6+1/50U0X A TxX4T+1 /40320xA4Bx K48+ /362880 A4 xX 42+
1/3628800x4410xX 3100 '

ANALITIK.(From Korpela(1976)).
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Id0.
sfractions""not"*divided® 3
*take® ‘Ux(I1xKO-IOxK1)‘ 3
*for' I=1 "ster" 1 ®"until® 3 *"do°
(*take" d/dZ(F=) ¢
.. "differentiate®
*gimplifu® 1} §
*arply® We—-rl2
*goto”® L &
L2, "out® 35 v "line*r P2)
*where" :
udczy #
I1¢2)
KO(Z)
10(2Z)
R1(Z) 3
We d/dZ(10)
' d/dZ (KO)
d/7adZ(I1)
d/dZ(K1)
3/dZ(U)
‘end*®
$

-y . .

I1CAXZXU-A)

(- (K1 CARZXU+AI I ) »
I0x{ARZHU~A)+I1xnlUy

(= (KO (AXZrU+AI I I -K1xU»
(~-CZxU"3))

B R UK.

J/new
/7t int P

//come
SYNTAX OK ¢

Va4

Pro=(ZxU 3T 1xK0 ) +ZRUNBHIONK142x I OxAXZxUT 2RO+ I 10UT 2% KO+ (~2) X
KInxARZRUT2xI1+R1#U"25%T10%

Pz=3x2"2xU"5xI1#K0+(~6)x10x W27 20U 4KO0H (-3 ) 311 HUT 4 KORZE 6K K
Afo?gU"4ﬁIifj—3)MZ“EHUTSﬁIOxK1+(—3)NNIHU"4MIOfoﬂE}lyﬁfngfgx
Un3xKO+(~4 ) K1xA™2%Z 72U 3InI0H{~4 ) uK1xARU™2I1$

Pr=3uZaU” 98I 18RO+ (—~15) 2 Z 73U 75T 1 KO+ 300 T 0AKZ 3" 6xKO+ 10T 1
UT68KOKZ 24 ~30) RKIMAMZ " IRU"6MT 1+ (24 I 1 AT 2HZ 7 3xUTEHKO+4xI1x
ATRNZTARUT 4RO+ (=8 273U 4KOI0xA+24A0K1 AT 2 Z 7 3xUT G I0+26 1K1 %A
WZU " AMI 14 (=3 ) KOs U™ 4% I 1+ (-3 42U 5 I 0K I+154Z7 33U 74 TOK1+1 5%
KixUEMIONZ 2+ (~3)InI0xU"4xK1+8HI0OHATIHZ " 3xUT4RO+1 2% Z U™ IR0
T1AT2H(-8) MR IHATIRZ " 3nU "4 I 1 H4uKIxUTARZT2RI0ORAT2H (=12 xZxU"3x
JOXKIxAT2HAXKOXAT 25U 2K I1H4RIOKAT2xUT2XK1S

A program cxample in 'English ANALITIK'.(From the Helsinki University of Techqology).

il
-
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1 AlSteot 1o gsaldo )iCled iz cidjibeia)
- Mlue=4
4 1
o Tnal . L
¢ hBeitize Llduaivilior
/
o A\l,LLy Sysaivric Kstric
k) ———————————————————————
1o
1 : .. .
1z FOL 1=0:71:318; S[LJ3Y; brid=u
15 U G0 A
14 o :
15 nLu,—u[34 Al jEvi 1) Al 23=Ew(1d; kL 3]=1
1b EUL L=V
17 IS u 1:L R ‘ o
1o ) b]L*HJj SLTJALI IS 6pbi+vdj=ef =+4d]
1o i...n...ab- ’
<0 nbibil
21 Colei (&1 3)) .
2L GpUj=uL v °£L]J -
<3 Ly SJ—oLaj-ELI 4117
fg GL A0 j=el 10G7e0 1 iEC 1]
Z
<t b0=E-1/ri1]
<1 ﬁL41=uH1j/tLll
& hSE=1/1pL i)/t
“9 “17{=VL11/1L11 )
Sy hL1,J=-}/SpL4 /¥51J) .
31 of leg=ul o d; {13 )=EL7]); o1 14 =c511]
sa s 15 9=1/x0 01 - (uL15uL;j+vl1 L{7j+w  TIELTITD)
oo
34 Fei 1=0:1:3
S FOR Jd=0tid )
3% =>. 1F o[ 1+4d])=0 o _
37 B . _Tzki:sL:;khZﬁ;(l);ri;ﬂi(d);ifXE:]:;PﬁINi(GLI+uJ])
St L. J PN WY
39 nePoal
40 » _
41 Fok I=0:1:3
4z o J=G:l:d
b3 n=1l+47
i S{KJ=¢5U6 {FSUE (GGLK] et, 0,90t 3),Corit])
b5 Ly 8410 J=UCGLR Iy
oy ol h+32 =gGLnj/uy
L7 5 K+de=u
4 —)4 i¥i=d
49 =J+d )
LU n[&]—gtn], SLL410 )= K916 )5 EL1v32)= bLK+JLJ, gL L+ 48 ])=0
51 §; rafshl
e KeFEAT
55
o4
55 ) ,
So FOK I=0:1:3
57 Poa g=0:1:1%

Part of a CAMAL program for relativity calculations.(J.P.Fitch).



(a)

BEER

133
134
135
136
137
138
139
1o
141
1482
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

(b)

‘b] =
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CLEAR(W[ID

B 01=u;

¥l 11=utanl v1; Several different sets of
®f 21=x; %l ¥j=arctanf y/x 13 co-ordinates are ured in
~>1 I¥ T=5; succession,via loops.

CLZAR(YI 3D
E={u(a.?2v.2+b.2) .2+ (1+v,.?)) /2uv. 23

Fou. 2({a.2v.2-b.7) .2+ (14v.2) . 2420 (1+v.2) (a.2v. 2¢b.2) -2C. 2Vv.2) /Hu. 2w, b

SFCI=(E+FI(1/2)) 1 {1/2) ;

W 11=vW[01:
W[21=(x.2¢y.2-c. 2} /(x.2-a.2) (y.2-b.2):
W 3l=vy/x:

T=XT:This is one possihle se* of co-ordinates for stuiying stress:
problems for a rect,plate with a certral circular hcle:;

->1 IT T=5:

CLEAR(UI 3D 0M 17

ure1=9:0f11=2: - A generzl TPS(vosccibly revresenting sn 2pprox.
FOR I=2:1:11: coniormsl meDYing in.ior o given domsinlis used.
FCR J=2:1:1; A Tormrl reversion rontine ic annlied 1o compute

uf 21=5] ' 1+add>z.J; en avdroximrte inverce o this mepoing.

U 01=SUR({SUB({I 0], x¥IV¥,2), EkJI3¥1aJrra<dsryy

PRIRTIUT 011:REPZATS i .
TEXT:U[ 01 represents,eq,an approx.ccnformal mapping functicn::

: K+1.

2: Y=w;G=%.2: This is 2 subroutine for avvroximste reversion.lote
FOR L=2:1:K+1; tha{ subroutines csnnot be colled direcsly in CALWAL:
Y=Y+a<L>G; . Tiey mASt pe writiten ins0 the orosreém s inout.
G=uG;
REPEAT;
RIPZAT;
RETURY;
X=X+v-Y;
PRINT X1
X=SUB (X, u+iv,w);
FRINTIX 1

EXPAND(X,1,67T 1) ; This sevarates the real and imaginery varts of a fn,.
PRINTIGI D1)V;eRINTIGI 11 T;

EXPAND(UT Y, L, H[ YD) ;

PRINTIEI YL PRINTIHM 1175

!e Laplacian is now:l 6] = =2yxdA<T, 1> (x 24y L2y L {- (1/2)) /(XL2;Yl2)

$2y4<T, > (X W4y 2y L (= (1)) /{y L2/ (x) +X)
+2d<1, 0> (xL24vL2) L (= (1/2))

+(x2d<2, 0047 L23<2, C0) (xt2+yL?) L(-1)

= {xt24C1, 05 ev 24T, N5) (xL2+yL2) L (- {3 /2))
42yx4<0, D>/ (x LU +2yt2x 124y L)
+d<0,2>/(x L2+ v L)

=2Y4<0, 1>/(y L4/ ) ¢ [x 1342y 20 )

i

~d<1,0>(sinf vIt? +cosf viL? YL (~(3/0)) sinf vIv2 /(u) Agos ins +3 1

i +d<€2,0> (sinf vIL2 +cesl vILt2 yuL(-1) sinafv]t? ! ) ig;i?ésgz ?2:;Zggulow
=2d<, 1> (sinf vIt2 +cosl vIt2 Yu(-(1/2)) sin[v]éosrv]/(USLn[V]Lz*Idcégfj]ng
=d<1,05(sinl vIL2 tcosl vIY YL {={1/2)} cosl vIL? /(u) : ’
$4<2,0> (sinf v L2 tcouf vIL2 YL(-1) coslv ]2 i
424<Y, D (sial vIL2 +cosf v ) L{-(1/2)) coslf v1/{usin[ v1+uce L2 s .
#24<1, 0> (Sinf V12 +casf vt ) L= (177)) /(u) { {v] sfvi /fsinfv
+24<40, Dsinl vicosl v/ tutlsinf vy +20125in0 ¥ 12 cos[v]t2 +utlcos[ vt )
=2d<0, 1>cosl v I/ (usinl vILY +20W0g0in] v cos viL?2 tutcos[ viLd /(sin{v]))
+d4<0, 2>/ (ut2sinf vIL2 +uldcosfvit2 )

bse are bipelarsi¥[ 0] = asinklv1/(-cos[ ultcosh[v )

: (a)Part of a CAMAL program.(From Elvey(1978)).(b)A sample of CAMAL output.
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o1

X 95276819

. X 952/568608 -

X S21/75%06% ¢ X $2T/51061 =~
»

X 962/69%¢ = (01)d

s ° 2
&
X GZ1/SS1Z1 & X 26/5€%5 ~ X %9/6006 ¢ X 2€/6S11 - X 821/6T¢ = (6)4d
" s t
QZI/%E + X GIN/SEY9 + X 20/C00C = X 99/69%C + X 26JSlC = = (8id
14 9 * 2
L X 9M/62y ¢+ X S1/€69 = X OT/SIE ¢ X O1/5€ ~ = U1)d
: s t
916 = X 91/1€2 + X 91/slf = X 91/901 = (93d
’ v 2
X 8/€9 ¢ X %/SC - X 8/61 = (Sid
s ¢
$/€ ¢ X 9/5C ¢ X ¥/S1 = = {4)d
v F
SRS e X UC - = (€14

¥oT7 wesdead wory ling

€

e

1 - X I/E = (2)d

4

X = {1}d

P

1 = (034

SIVINONATDd 38ON3ID3T

o/

4937 ON3

tuN3

teGLS 3513

BEINIGILNOTINING NIHL C(INIDI(NIG}INIOL sl

1 whewN 1131

101 UL O=N OO

SECIGINS QNG U +SIVIWONATIG IWANID3T » BLSET 2Nd
Je SLINS3Y AN0 INJYd ONY (NIL = (N)d 1¥ML ¥D3HIe/

. $GN3
X1 (Z=NIOSN/t1=N] = (T=NIOeneN/(1-NeZ)7 (NI
tuNuth 1453%
100 01 Z=N Gy
${ X«{¥10 tIeiCIA MDY
/e 2 QOMI3ZN AB SIVIRUNAIOG Ju0NIDIT FIVUINIDe/

tUN3

3l Lluhn)IVdenNueel)/ {aNu X uNuse {1-20s X3 IAIY U TuhLldiL3T
. t01 Ul O*n UG

Je 1 GOHA3W AW SIVIWUNATUG IVONIOIT 3IVEINID e/

t39vd 1he
1{0Nax3)135160
: $(2L=M19NITINTNEL3S 440
tSNOILaGT VRN
TINIYHISAQLLdD 30NC30Cad 3937
¢ ag NISAS/Z
IVauld 2323 1
CI0=aSIG I MINNI I WILSAS ISASIRYNSG  Cg  wllQCr//
= 13A3 195K  SVnuUI* IVRE04  BUE ¥04T//

¥ P29 jo Amasty

FORMAC.(From the 'FORVAC-73' Manual).
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CALL I0DE: /¢ CNUPUTE APPRNXIMATE SALUTION o7
PUT SKIP (2}
NO T=x1 TN N: PRINT_PUTIY(™E")): FNN
PUT SKIP({2): oYY LISTUCTIME AT FNA*Y: PUT LISTITINF):
60 TN START;
END: PUT LIST (*ENN 1F Jnge);

1% v/
/7% THE DIFFFRFNT VERSIONS NF [DF APE [NSFRYFN HERF oy
/¢ ./

1D€: PROC:
DO I=1 TO N3 LET(Y(™I»)=¥O("I"));: END:
DO KK=1 Y0 M3
B0 K=zl YO N3 LET (K="k")} 3
/% CONPUTE THE INTEGPAND s/
LET ¢ Y=EVALLF{KI 8X,X )Y}2
DO =1 TO N LEY (Y=FVALLY,SY("In),y(%]")) s END;
7* INYEGHATF #/
CALL InRAL:
/% YY 1S THE INTFGRAL. DNLY KEFP THE NEA APPROX[MATION ¢/
/% AS FAR AS THE FIaST NF4 YFRY +/
LETLYY={YQUIK) oYY )-Y(XK)] L=LOWPORL{YYyX) )2
. LETIVIRK)=YIKI+COEFF{VYY,Xse )vxssp )3
END S
IGRAL: PRAC; /% THIS RCUTINF CALCULATFS THF INTEGRAL OF THE &/
7& POLYNAMIAL Y W.R, T, X AY REDLACING Xee] AqY */
7% Xre{lel)/UTe1), Ix210y,, s/
LET-{YY=EXPAND{XSY ) ML P"=HIGHPOR({YY X} )3 . .
N I3l T 2 8Y =13 LEYT (1= [0 YY=QFPLACEIYY, ,Xe o[, v&s /1)) ENDS
END IGRALS
ENDS
END IDE:

IYIIR=Xe*24X62D: ¥Y{X=N) =0

Z 2
ttl) = s»x ¢ syl )

yeely = o
[} 7 11 1%

Yt} = t73% x ¢ /0y X 212019 ¢ + 137213295 x ¢ An/l74428)5 X
19 23 217 T
¢ 12174 /70m1 24676508 X + A04720489242755 ¢ + ISCRTYI/Z215163

3l IR
193536725 £ * HRSEI22/7136919951 640 1andTs X + 19274647754 /552
w T

74291 LA2T2938T125 X

Part of a FORMAC program for iterative solution of differential
equations;and a sample of output for a simple case.{ FORMAC-73 Manual).



A Sample Program

The follouing shous an example
RECGUCE on a PDP-18. Note that the asterisks
printed by the system to indicate that the
anc are NOT part of the REDUCE syntax.

REDUCE
REDUCE 2 (<system data>)...

«COMMENT A SAMPLE PROGRAM;
*X:u(Y+Z)*ﬁ2:

2 2
Xse VY 4 2a¥0Z + 2

»DF (X,2,2);

2

»PROCEDURE FAC N;

) BEGIN INTEGER M,N;

ve H:-l:

¥ A IF N=8 THEN RETURN M;
”° H:=H*N;

ve NeeN-1;

v GO 70 A

W END;
w2vevFAC 3;
64
»FAC (129);
<yes. big numbers do work!s>
»SYMBOLIC;
NIL

»CAR (' (A));
A
:ALGEBRAIC;
A3

2 2
Y + 2vYeZ + 2

*ENU;
ENTERING LISP..,

of the interactive use

load the program

comments are allowed

set X to (Y+Z)yn2

here’s the result printed
because He used a semicolon
as a terminator
differentiate X urt Z tuice

here’s that result

hou define the factorial
function

us can omit the parentheses

or put them in with unary
operators

enter symbolic mode

106

in the first column are
program is ready for input

value returned in symbolic mode

compute the CAR of (A)
here's its value
return to algebraic mode

evaluate X again

it's stitl (Y+2) 2

return to LISP
so that uyou know

An illustrative prograa.{From the REDUCE-2 Manual).
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OFF ECHO,MSG:TIME;
E(@)e- A*Y*(Jl(Y)*POQ(Q*Y)+J°I(Y)*SIW(A*Y))F3*QIH(A*\)*JX(Y)
AKX (JICY)ACOS (A*Y I +JA(YI*STN(A*Y) )~ =2%J2 (Y I*#COS (A%Y) - L?9*4(Y)'
LET DF(JI(Y),Y)=C05 (AKY) Y4 (Y),
DF(J2(Y) Y) SINCARYY*H (Y) ,DF (J21(Y),Y) = 3r(J°(Y) Y,
DF(J3(Y) Y)—riFﬁa(A*Y)*”(Y)
DF(J4(Y),Y)= {*JIW(A*Y)*H(Y)'
FOR ALL X LFT SIV(X)12=1-C0S(X)12:
FOR I=1:4 D0 E I«DF(E (I-1),Y):
E(5)-E()+ar2%2(2) 12 (S)PV(A) “ATARE(DISE(TI«Z (3) - ?*L(S)'
HCYD =21 (S*Y )3 FACTOR S WBeE(T) /E1(5%Y)
TIME;

Fig. 1. Differentiation program, with a translated to A, § translated

to D, A translated to L.

OFF ECHO,MSG;
700 Ms

o 2 '
EC(B) 2=« (L .3HY) + Y*A%JI(YI*COSCY*A) + Y*A*J21(YI43IN(Y*4) - Ax

JICYIHCOS (Y%A ~ AxJACYI*SINCY*A) = DxJ]CYI*SIN (Y*A) +
D*J2 (Y )*COS (Y*A) ) ‘
2 4 2 2 2 3

ECT) sz L %A *H(Y) + 241 %A #DF(H(Y),Y,2) + L *DF (H(Y),Y,4) - A D%
3 A '
HQY) = A #H(Y) - A*D«DF (H(Y),Y,2) + A=DF(H(Y),Y,2)
(1*S) ’
HOY) iz E
4 2 2 2 ) 3 2

E(B) t= S 4L + S #A%(2%xL %A -~ D + }) #_A #(L %A -~ D ~ )

1350 MS

Fig. 2. Output from Fig. 1; E(7) is the differential equation and E(8)

-

the characteristic equation,

From a REDUCE routine for. solving integral equations(Loos(1971)).



Power Series

We obtain the solution of the differential equation
y'' 42y /x4yt =0
which is known as Emden’s equaticn. using the formal power series package written for
SCRATCHPAD by Arthur C. Norman. Here with, say. { declared to be a power series in x.
Statements of the form “f=E" cause the automatic definition of recurrence relations for successive

coefficients f; in f=X;f;x. The initial conditions at x=0 are y=1 and y'=0. The term y'/x
involves a removable singulagity at the origin.

SCRATCHPAD Conversation

“Declare x to be the independent variable”
psindvar=x

PSINDVAR= X

“"Declare [ and y to be power series variables"
(f,v) ps~

F PS
Y PS

“Emden's equation”
E=df<x; 2>+ 24 (dE<x>Y ) /x=y**n

(PS) F= d ? + ~m=——mmmn .y
2 .4 X

YAsk for the Jirst five terms of the power series for [=0 in x"
{f<i> for i in (0,...,4))

'2Y. MUST BE ZERO
1

“So. let y;=0"
7<i>=0

Y =06
1
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“isk again for the first five terms"
(£f<i> for i in (0,...,4d))

N N
NsY Y + 20Y Y N*Y Y + 30Y Y
N 0 2 40 o 3 50
(1) (Y + 8Y ,12Y ,~===-==——oo—=mmm- g ————m e oo e)
V] 2 3 Y T Y
0 0
"For each fj to be 0. yg can evidently be any censtant: choose yo=1I"
y<0>=1
Y=1

“Re-evaluate the first five terms”
(f<i> for i in (0,...,48))

(2) (6Y + 1,127 ,N*Y + 20¥ ,N*Y¥ + 307 , . . .}
2 3 2 s 3 5

“Ler y; be the result of solving fi2=0 for ¥; i 2 a”
y<i>=solve(f<if2>,y<i>) , 1 in (2,3,...)

¥ = SOLVE(F LY ) WHEM 1 IN (2,3,...)
i i-2 3
“Display the first 9 termns in the power series expansion of y"
{y<i> for i in (0,1,...,8))
2 ’ 3 2 .
. N - - 8N + 5N 1228 - 1834 + 70N
(3) (1,0,-1/6,0,----- B e )

-

_ “Check by displuying the first 7 terms in the expansion for ["
(f<i> for 1 in (Q,1,...,8))

(ay) (0,0,0,0,0,0,0!
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Generation of a Sylvester Matrix

The Syivester matrix of two polynomials p and q of degrees n and m, respectively, in a *main”
variable x. is a square matrix of order m+n. formed using the coefficients of p and q. The
determinant of the Sylvester matrix is called the resultant of p and q with respect to x. The
resultant is of interest because of its connection with the greatest common divisor of p and g, and
because of its use in {inding common roots for pandq. .

SCRATCHPAD Conversion

"Clear the environmem”

jciear

"Define q"
g=sum<i=0;2>d<i>*x**}

2
-—- I

=> DX
- I
1=0

"n is the dezree of p"
n=lnaxgceweri x,o)

N= MIXPOWER(X,P)

“m is the degree of ¢
m=maxnover( xX,q)

M= MAXPCWER(X,Q)

“u; is the coefficient of xi in the polvnomiul p. for i < n+l.
anid 1, otherwise”
a<i> = if i <= {n+1) then covec(x,p}) . (i-1) else O

A& = COVECLN,P) . (i - 1) WHEN i <= N + 1

"0 OTHERWISE
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"b; is the coefficienr of xi in the polynomial q. for i € m+l,
and 0. otherwise” . B
b<i> = if i <= (m+1) then covecix,q) . (i-1) else 0

B = COVEC{X,Q) . (i - 1) WHEN i <=M + 1
i
0 OTHERWISE

Ca=lepC o 0. 00"
a=(a<i> for i .in (1,2,...,m+n})

A= (A FOR I IN (1,2,...,M + N))
1

*b=ldpdy,....dp,0.....0)"
b=(b<i> for i in (1,2,...,m+n))

B= (B FOR I IN (1,2,...,M + N))
I

YForm the m by m+n mairix z, each row cousisting of the vecier a shifted one
Surther place to the right”
z=(rotate(1-i,a) for i in (1,2,...,m))

Z= (ROTATE(1 - I,A) FOR I IN (1,2,...,M))

“Form the n by m+n matrix y, each row consisting of the vector b shifted one
Jurther place to the right" ) ’
y=(rotate( 1-i,b) for i in (1,2,...,n))

v= (ROTATE(1 - I,B) FOR I IN (1,2,...,N))

“Form the Sylvester matrix consisting of ihe catenation of the rows of =
with those of y"
catenate<i>(z,v)

*C T C C O

£0 1 2 3
*
*0 ¢ C C C
* 0 1 2
* B

(1) *D D D 0 O
=0 1 2
* .
*0 D D D O
* 0 1 2
*
*0 0 D D D
* e 1 2+

w

HOROR R R R R R KR F RN
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Example 2: The Kepler Equation

The jterative solution of the Kepler equa-
tion

E = u + e-sin(E)

is a simple but nontrivial formula manipu-
lation task, and is therefore often cited
as an example. With E = u + A, the itera-
tion based on the equation in the form

A = e-sin(u+aA)

requires the expansion of sin(u+Ad) into a
series. In the program below, this is
accomplished with the standard function
“Taylor". 2t the same time "fmodil; := 1"
forces the linearisation of the sin/cos
terms and "smod i4! := i+l" guarantees ap-
propriate truncation.

»

L R I R A I I e A A R R RN RN,
KEPLER EQUATION EE = U + E*SIN(EE)

‘BEGIN
A z= (B: o, 10:};

1 ¢ ¢ 0 »

} . . - . (FMOD{1} := 1);
FOR° I := 90 : 7 "DO° °BEGIN

o 0 8 9 8 2 0 0 0

. (SMOD{4) := T + 1);
. . A[I+1] := TAYLOR(E*SIN(U+X), X, I, A[I]};
. END ;
1+°END’;
* F k& * * & £ * KA & X Rk & Kk & X *k * * k * * ® & * 2 Xk * 2 * kX & # R * £ &
START EXECUTION
A = {0: @, 18:};
Afl}]  := E*SIN(U);
Af2] := E*SIN(U) + 1/2*E"2*SIN(2*U);
Af3] 2= E*SIN(U) + 1/2*E"2*SIN(2*U) + 3/B*E"3*SIN(3*U) - 1/B*E"3*SIN(U):;
Af4] :=  E*SIN(U) + 1/2*E"2%SIN(2*U) + 3/B*E"3*SIN(3*U) ~ 1/8*E"3*SIN(U)
+ 1/3*E"4*SIN(4*U) - 1/6*E"4*SIN(2*U); i
AfS) 2= E*SIN(U) + 1/2*E"2*SIN(2*U) + 3/8*E"3*SIN{3*U) ~ 1/B*E"3*SIN(U)

+ 1/3*ET4*SIN{4*U) ~ 1/6*E"4*SIN{(2*U) + 125/3B4*E"S*SIN(5*U)
- 27/128*E"S5*SIN(3*U) + 1/192*E"5*SIN(U):

A{6] s=  E*SIN(U) + 1/2*ET2*SIN(2%U) + 3/B*E"3*SIN({3*U) - 1/8*E"3*SIN(U)
: + 1/3*ET4*SIN(4*U) - 1/6*ET4*SIN(2*U) + 125/384*E"S*SIN(5*U)

- 27/123*ETS5*SIN(3*U) + 1/192%E"5*SIN(U) + 27/B0*E"6*SIN(6*U)

- A4/1S*ET6*SIN(4*0U) + 1/AB*ET6*SIN(2*U);

Al7]

.
1

E*SIN(U) + 1/2*E"2*SIN(2*U) + 3/8*E"3*SIN(3*U) - 1/8*E"3*SIN(U)
+ 1/3*E"4*SIN(4*U) - 1/6*E"4*SIN{2*U) + 125/384*E"S*SIN(5*U)
~ 27/128*E"S*SIN(3*U) + 1/192*E"S*SIN(U) + 27/B0*E"6*SIN(6*U)
- 4/15*ET6*SIN(4*U) + 1/48*ET6*SIN(2*U) + 16807/46D32*E"T*SIN(T*U)
~ 3125/92)16%E"7*SIN(5*U) + 243/5120*E"7*SIN(3*U)} - 1/9216*E"7*SIN(U);

A{8) := E*SIN(U) + 1/2*E"2*SIN(2*U) + 3/B*E"3I*SIN(3*U) - 1/8*E"3*SIN(U)
Y/3*ETA*SIN(4*0) ~ 1/6*5”4'51N(2*u) + 125/384*E"S*SIN(5*U)
27/128*£"5*SIN(3*U) + 1/192*E"S*SIN(U) + 27/BO*E"6*SIN(6*U)
4/15*E"6*SIN(4*U) + 1/48*E"6*SIN(2*U) + 16867/46880*E"T*SIN(T7*U)
3125/9216*E"7*SIN(5*U} + 243/S5120*E"7*SIN(3*U) - 1/9216*E"7*SIN(U}
128/315*E"B*SIN(8*%0) - 243/560*E"8*SIN(6*U) + 4/45*E"8*SIN(4*U)
1/728*E7B*SIN(2*U) ;

1+t 11 4

SYMBAL program,with sample output.(From Engeli(1975)).



This problem and its solutions are de-
scribed in the SIGSAM Bulletins No. 32,33
and 34. The first solution shown here with
the complete listing uses straightforward
Taylor series expansions for exp(t),
exp(~-t), sqrt(l+t), 1/(1+t), (l+t)tn leav-
ing only multiplications and additions of
series to do the rest. The program is
quite straightforward but not particularly
fast.

In a second version of the program, the
series are represented as lists of coef-
ficients. All of the operations, including
additions and multiplications, are pro-
grammed on a power by power basis using
available algorithms (e.g. Knuth vol. II).
Only the program-listing is given for this
version.
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The second version is faster by a factor of
three as may be seen fram table II below.

Taylor series version | Series in list form
m Timi for Time for | Time for Time for
Computation | Printing { Computation | Printing
3 1.703 0.043 0.791 0.062
4 4.345 0.202 1.777 0.247
5 11.169 ©.469 3.885 0.499
6 - - 9.197 1.013

Table II: Times for computation of SIGSAM Problem
No. 8 on CDC 6500 using two program
- versions

*t.ﬁtﬁtt*t.ﬁtt*ittitiititt.ﬁ'.ﬁ.tﬁﬁ‘t.

. SIGSAM PROBLEM NO 8 {TAYLOR) .
. - - i ‘.
.'BEGIN" . -
. ‘NEW® T, U, N, Q, T1, T2, T3, HN; .
- (PMOD[1] := B); .
. M= 5: . -
. . SMOD[4) := M; -
. Tl := TAYLOR(EXP(T), T, M);: .
. T2 := TAYLOR(EXP(-T), T, M): .
1+ B = (1 - 0+ Q*U)*T1 + (1 - Q - Q*U)*T2; .
. R := 2*Q*TAYLOR(SQRT((1+T)), T, M, (B"2 - 4%(1 - 2%0))/(4*Q"2) - 1};.
. X = (B + R)/2; ) ’ .
. SMOD[4] := M-2; -
. H := DELAYED(((1l + U)*T1 + (1 - U)*T2 - B + R)/2); e
= =D = H/{2*Q)*TAYLOR(1/{1+T), T, M-2, DELAYED(R}/{2*Q) - 1); e
. SMOD[4] := M; .
. E := TAYLOR((1+T)"N, T, M, X-1); e
. T3 := TAYLOR(EXP(T), T, M, -N*U*T); .
. E = E*T3 - 1; ..
2+ HN := COEFF(D*E, T); et
o » . SMOD[1] := 1; ‘o
. SMOD[2] := 10; ) e
. . . . (PHOD[1} := 1); T e
. FOR" I := 2 : M “DO’ HN[I] := DELAYED(HN[I]):; T e
~“END"; o
L2 NN I IR R B R N N IR SN T R 2 ) *titttttl‘tht..k.tt.t.

HN[2] 1= <-1/2%(U"2%N - U"2%N*Q - N + N*0)/0:

START axacurronﬂ‘fif;fife.‘é;bégfp_
S 9L11.912

HN[3]  := =1/6%(3UPN — 6YUPN*Q + 2*U*N*Q"2 - 3%U"3%N + 6*U~3*N*Q - 2*UT3*8*Q"2) /0™ 25

THN[4) :=  1/24*(244072%N - 72*U'2‘&'0 + S6%UT24N*Q"2 ~ B*UT2#N*0"3 - EAUT2ANT2%Q

0.21.969 . -

+ 12*9“2ﬁn"2~o‘2 =~ 6*UT2*NT2%Q"3 - 1B*UTA*N + 542UT4*N*Q - 42%UT4*N*Q"2
+ 6%UTA*N*QT3 + 3UTAFNT24Q - 6*UT4*NT2%Q72 + 3I*UT4TNT2%Q"3 - 6*N + 18*N*Q

=~ 14*N*Q72 + 2*N*Q"3 + 3*N"2%0 - 6*N"2*Q"2 + 3*N"2#%Q"3)/Q"3;

8.12.143

HN[S] = ~1/60%(135%U*N - 230*%U*N*Q + 100%U*N*0 2 - B*U*N*Q™3 + IS5*U*N~2 - 4575EN"2*Q
‘4 4B*U*NT2%072 - 109*U*NT2*Q"3 ~ 368*073*N + 618*U"3*N*Q ~ 260*D"3*N*(Q"2
+ 20*UT3*N*Q"3 - 30*UT3YNT2 + G0+UT3EN"2%0 - 8B UT3I*N"2%0°2 + 20°073*N" 72073
+ 225*UTS5*N - 38B*UTSAN*0 + 160°UTS*N*Q"2 - 12*U"5*N*Q 3 + 15*U"S5 N2

~ . 45%*U"5%*N"2*Q + 487U S*N"2*Q 2 - 18*U"5*N"2*Q"3) /0" 3;

0.12.35¢

SYMBAL program with sample output.{From Engeli(1975)).
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44, Symbolic analysis(the mathematical use of symbolic computation).

The object of this section is to offer some suggestions for the use of symbolic
computation in an intrinsically mathematical context,as compared with the usual
approach which,though undoubtedly of great importance in many calculations( J_tnvol-
ving perturbation,1teratlm,reversion,etc.),d0es not make anything like full use of
the very powerful facilities now available.Symbolic computation is inherently mathe-
matical as a form of computing;but,for the most part,it has not been developed by
mathematicians.This is reflected in the visions of what is * desirable® ,both on the
level of internal implementation,and in projected applications.Indeed,tbe dominant
design criteria are concerned with economy of storage,flexibility of editing facil=
‘jties,de-bugging,and elegance of data-handling.All of these facets of manipulation
are,of coiu*se,basic for the mathematical operations,but often they are treated
as ends in themselves.Even when mathematical matters are considered,the greatest
effort has been devoted to dealing effectively with 'largescale problems of stan-
dard type'(such as the solution of systems of linear algebraic equations,or of
ordinary differential equations with constant coefficients).An inspection of the
lists of ‘'library routines' confirms this( understandable)preoccupation with stan-—
dard technicques. One should add,however, that MACSYMA offers an increasingly wide
range of basic,built~-in facilities,while REDUCE,which offers relatively few fixed
routines,has,nevertheless,an impressive collection of procedures contributed by
users,and potentially available( provided that the corresponding programs have
been distributed generally).Other systems fall somewhere between these two posi-
tions.In spite of this,the'analytical use of packages',in the sense to be outlined
in this section,has hardly been exploited at all-—even implicitly{but see the
papers by Stoutemyer listed in the bibliography,for a step in this direction;
and the agenda for the next 'SEAS/SMC' meeting,to be held in Antwerp,January,1981,
where a further trend towards 'controlled abstraction' is noticeable).Again,there
are very few analytically nontrivial algorithms in regular use{ only those for
factorization,GCD and formal integration being of appreciable sophistication,com—
plexity and depth--see Section 12).

The great progress made in the. -ciesj.gn of hardware(and of the most basic algor-
ithms,on which all of the more elaborate constructions rely)suggests that a new
phase in symbolic computation sbuld be inaugurated.The computational activity in
this new phase may be called,aptly,symbolic analysis(which covers techniques custo-
marily associated with 'Alegebra','Geometry' and 'Analysis',as well as other
fields).The term 'inferential analysis'was used by Wang(1960)in connection with
"mechanical theorem-proving',the idea being to derive theorems of the propositional

calculus,and other deductive systems,using general procedures for forming  conclu~
sions' from 'premises'~-and to identify cases where such deduction cannot be made.
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In this way,Wang was able to produce proofs for most of the theorems in the first
five chapters of Principia Mathematica(Russell and Whitehead{(1910)).His aim was
to extend these methods to more sophisticated domains such as number theory,or even
calculus.This approach to 'symbolic mathematics' is very different from that to
be developed here,since there is no interaction of programmer and machine.The
'axioms' and other basic rules are 'given' to the machine—after which,it sifts
the propositions it is offered into 'theorems' and 'nontheorems'.The pioneering
efforts of Wang(1960),Burks et al.(1954),Collins(1957),Davis(1957)and Newell et
als(1957)were stimulated by the advent of fast calculating machines; bgj; work on
automatic theorem-proving still continues(see,e.z.,volumnes of the IEM Journal for
Research and Development,and of the Journal of Symbolic Logic).

j_thg_._ s t'ez ~ Although . 'mechanical theorem-proving' and 'symbolic analysis' are
very different,certain ideas raised briefly by Wang,for general consideration,do
have some relevance here.These ideas include:scope for investigation(as deter-
mined by a combination of 'capacity for abstract analysis',and 'capability of
handling large expressions') scentrality of a concept or theorem{as typified,e.go,
by its 'frequent occurrence in proofs'or its 'range of application'—more formally,
for a concept(resp.,theorem),by its existence as a short expression(resps,state-
ment), for which all known equivalent expressions(respe.,proofs),are 'far longer®} 3

_ and,notions of approximate proof {for which no candidates are suggested by Wang,
though he claims that various formalizations could be given).Although it seems to
me most unlikely that nontrivial,yet logically rigorous modes of approximate proof
can be found,the idea of various'stages of (in)completeness' of proofs,and of other

intuitively appealing concepts,is of relevance in symbolic analysis as I envisage
it——indeed,such .'exploratory activities' ‘play . an essentialythough subsidiary,
part in it}so, a few tentative remarks in this area are made in Section 14.3+The
qestion of scope is very important in symbolic computationelt is plausible that
the development of mathematica techniques has been conditioned strongly by man's
limited capability of handling large expressions.The tendency is,almost always,
condensing information into 'tractable forms!.Of course,in many instances this is
very desirable;but not invariably.The most striking counter-example is the 'com—
puter-assisted proof' of the Four Colour Conjecture{Appel and Haken(1977a,b);but it
is probable that many more problems which have defeated all conventional attacks
will succumb,eventually,to this partnership of powerful abstraction backed by com~
paratively unlimited computational capacity -Moreover,this consideration applies
Just as well to the use of routine tools 6!‘ Algebra and Analysis as to the testing
of 'exotic methods'.For example,in amny contéxts,the mere application of some basic
inequality is ruled out by the size of the expressions involved;yet,after due sim—
plification,the result may well suggest a further analytical strategy quite un-
motivated by tle forms of the original expressiong.Thus,0ne aim of symbolic inaly=-
sis 1s t0 Increase the scope of 1nves§_§qation associnted with abstract procedures,
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The notion of centrality seems to have a high subjective content—e logicai'defi--
nitions' notwithstanding;but its possible uses in symbolic analysis serve princi-
pally as a guide to the selection of results that are 'especially relevant' for
the problem under investigation,so precise definition is not essential.This 1is
discussed further in Section 14.4.

34.3. Plainly,no unimpeachable definitions of 'approximate proof' are to be expec~ .
ted,since there is,in: many contexts,substantial disagreement over what costitues an
tabsolute proof' .Nevertheless,in relation to dialogue investigation involving mathe-
matician{s) and machine(s),several variants of this idea could be valuable.On this
understanding, the following suggestions for types of anslrproot‘::are}orfel_"ed-one‘_
aim being to stimulate(or goad)readers to produce more satisfactory definitions.(All
of the f'd_}-lowing schemes for investigation-and many more—-are covered by the
vague term,'heuristics’;but the use of 'quasi-proof' seems to have the right con-
notation for the present work).

1443.1. Quasi-proofs based on the use of®probability logic'e

Xt is possible to construct systems of logic in which truth values may be assigned
arbitrarily within the interval [ 0,1 ],subject to natural consistency requirements.
(See,e.g8e,the book. by Rescher{1969)):.It may be shown that countably-valued =nd
finibely-—yalueq logics are included in this scheme;they are obtained by in;roc_h.v{v_-_
cing suitable step functions.The usefulness of many-valued logics has been called

in question more than once{see e.g.,Scott(1978),who proposes an interpretation in
terms of ‘'degrees of error').Since mathematical theorems are tautologies,there is
no question of assigning fractional truth values to the proofs of theorems.For,if
such a theorem,say 'p » q'constitues a valid inference of p from q,then this val-
idity is independent of the truth value(s) of . the( components of the)premise,psHow-
ever,even though the theorem has this - tautological form,the 'respect' éccoMed to
its conclusion,q,as a 'known property of speéii‘ied mathematical objects' does de-
pend on the status of its premise( ;3) swhich may contain conditions whose validity is
unknown—even, suspectsIt is for such 'theorems' as this that it could make sense to
assign a truth value,say v,other than O or 1,to(i:he collection of premises} p-—in
vhich case,since 't;_hé} inference itself is tautological,the conclusion,q,'inherité -
the truth value,v,frcmi p'e If p comprises n propositions,for each of which the -
truth value i3 known to be »1- g,then it may be shown(see Suppes--p.54 of Hintikka
and Suppes(1966))thatthe truth value of q,the conclusion,is »1=n g;thus,the truth
value,v ,need not be(and generally,is not)known precisely;and,indeed,the systematic

" estimation of such 'compound truth values' is the major problem in a full develw
opment of this schemeJ.Notice that,in this simplistic approach,truth values and
probabilities are used almost interchangeably,no distinction being made between
merely assigning probabilities to statements,on the one hand,and calculating their

truth values within a system of 'probability logic,on the oth er.towever, there are
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many subtle(and contentious)arguments involved.Several attempts have been made to
analyse the properties of 'valid inference',usually,on a probabilistic basis.Some
of these ideas are considered in Hintikka and Suppes(1966).Apart from the bounds
on the validity of statements inferred from imperfectly known(compound)premises——
as above—they include:measures of 'strength of evidence';consistent assignment of
probabilities to arbitrary logical formulae(within a given probability system);the
Jogic of conditionals;and,notions of 'reasonable consequence'{an inference being
‘acceptable',if it is impossible for its premises to nave ‘high' probability,
vhile its conclusion has 'low' probability.Yet another approach,this time to the
problem of assigning probabilities directly to mathematical statements,has been
made by Jeffreys(1257,1961),who uses a weighting procedure to rank differential -
equations by their 'complexities'(defined as the sum of the order,degree and all of
the moduli of the coefficients).This idea is used both in the calculation of proba~
bilitiqa,‘gpd in an attempt to justify the basic laws of physics by the relatively
low complexities of the corresponding differential- equations.Although Jeffreys'
scheme is incomplete and speculative,it is mést. suggesiive,and raises fascinating
questions,some of vhich are of general mathematical interest. o

From these arguments about probabilistic logic(and fractional truth values),it
follows that a'conclusion' can have any truth value in [0,1 ],depending on the

truth values of(the components of)its premise(s)—asswming the deduction itself

to be valid;and this seems eminently reasonable,even if it may not be convenient!
One obvious exanple of this kind of situation is given by the proofs of various
statements,q,in analytic number theory,'on the{generalised) Riemann Hypothesise
Another example{but of a different kind)concerns statements involving the '(general-
ised) Continuum Hypothesis'(though this was shown,by Cohen{1963),to be independent
of the axioms of set theory,as usually formulated).However,it is clear that count~
less instances are met even in routine investigaticns,where conclusions about
objects of principal interest depend on unproven hypotheses( subsidiary conditions
involving 'parameters'—-which may be numbers,functions,matrices,... )oIf a com—
plicated proof requires the use of several of these 'condition-dependent theorems',
then it is desirable to be able to estimate the validity of p,the 'final re-
sult' ., If this estimate is favourable,then further analysis(using p as a condit-
jfon-dependent hypothesis)my be worthwhile,Ultimately,if some conclusion of
sufficient(practical or theoretical)interest is reached,with *high validity',

then attempts to find a rigorous prool may be made.In shortithis approach should
be seen as an ald to the discovery of interesting theorems.As such,it is well

suited for use in symbolic analysis,provided that an adequate level of consistency
can be maintained;jand this can be ascertaired only' by  experiment',
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14.3.2. Quasi-proofs using occasional probabilistic estimates.

This mode of quasi-proof is exemplified by the Appel/Haken investigation of the
Four Colour Conjecture(1977).Recent remarks by Haken(1978)on the isolated use of
‘averaging procedures',combined with rigorous arguments,amount to interpreting
ignorance of the value of some entity by its being(uniformly)randomly distributed
over an appropriate domain of 'possible values'.Other forms of (nonuniform)dis—
tribution may be indicated when extra information is available(but,insufficient
for the precise determination of the object in question).As Haken says,one has the
alternative of either making no prediction ai all{about a property),or else,of

making some 'plausible assumption',on the basis of which qualified predictions may
be madeosIn same cases,fairly straightforward probabilistic estimates yield stri- -
king results(for instance,Haken's estimate,based on properties of the sequence of
integer Kth powers,that Fermat's Last Theorem has probability < 3-N of being
false—where N = 425001 is the least integer for which the 'Theorem' has not been
proven yet).A less crude probabilistic analysis bearing on Femmat's Last Theorem
was given by Erdos and Ulam(1971).Their arguments suggest that,even if the result
3s true,there are,in general,only finitely many solutions(which does not seem un-
reasonable,in view of Baker's remarkable bounds on the number of solutions of
certain Diophantine equations in two variables:see Baker{1974)).For other celbra=
ted problems(esgs,the Riemann Hypothesis),no simple,but credible,est.iqnates seem to
be obtainable.Of course,all results of this type depend on various 'randomness
assueptions',and,to this extent,they lack logical force;though they are of great
value f»or‘deci;ding whether it is whorthwhile trying to prove a result rigorously(or,
to find a counter-example),either by further analysis,or else,by direct computa-
tion,

A somewhat different use of probabilistic assumptions is embodied in the concept
of'statistical metric spaces®,introduced by Menger,modified by Wald,and develop-
ed by Scweitzer and Sklar{1960),among others(they give references,and a brief
history of the subject).A recent contribution to this theory is by Morrel and
Nagata(1978).The basic idea is to replace the notion of a single metric(_o_x: dis~
tance function)by a probability distributlon,lzn_,vhereA and B denote poin'ts,and,
for x 30, Eg(x) := Prob.{ distance({4,B) < x } .This leaves the concept of 'exact
distance' uhdei‘ined;but it does assign a probability to the statement:'distance(A,B)
lies between x~6 and X + 8,for any(small)positive number,d.'There are,undoubted-
ly,circumstances in which the concept of a 'point' cannot be well-defined;and
others,where 'exact measurement' has little meaning.Xt is in such cases that cal-
culations performed within the framework of statistical metric spaces could be
valuable in constructing quasi-proofs,in the sense of this subsection.
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Somewhat in the same mould(though not using statistical ideas directly)is the
large literature on so~called fuzzy topological spaces,and on fuzzy subsystems
(based on an idea of Zadeh(1965),which has given rise to 0 a _gr_reat variety of abstrac-
tions and applications—-see,e.gs,papers in the Joumalv of Mathematical Analysis
and Applications,and in Information and Control),For the most part,the abstrac-
tions are concerned with recreating parts of general topology,measure theory and
probability theory,with fuzzy objects replacing the usual ones.Corresponding no-—
tions of convergence,compactness,continuity,etcej are defined,ard their special
properties are studied.The original idea was fonmulated in the context of electric-—
al engineering;but a simple mathematical definition is as follows{see,e.g«,
Hutton(1977))tlet 1* := (L, <, ') denote a completely distributive lattice,with
order-reversing involution, ' «Then,an L*-fuzzy set on a setyXsis any map,AtX-L,

where L is interpreted as a set of truth values and,for each x in X,A(x) is taken
as the degree of membership of x in the fuzzy set,A.(Thus,when L = {0,1},the col-
lection of fuzzy sets corresponds to the characteristic functions of ordinary sets).
Once'union','intersection' and 'complement' have been defined for fuzzy sets(using
the.'bas.}(;-operationsmin-vl.“'.),f‘uzzy*topological spaces are defined 4in the obvious
way-—-a specified collection of 'fuzzy-open sets' being called a (fuzzy) topology
for the wnderlying set.Two recent papers,giving references to some of the other
ramifications of fuzziness,are Hutton and Reilly(1980),and Lowen{(1979).A journal,
Fuzzy Sets and Systems,has been published by North-Holland since 1978.For the pur-
poses of this paper,it may be possible to formilate some of the concepts of quasi-
proof precisely in temms of fuzzy sets.Although this will not achieve any direct
results,it will pinpoint the'zones of incompleteness'in a systematic way,so that
the logical experiments I have advocated can be performed with maximum safetyb(It
is worth remarking that many 'applications' of fuzzy concepts to more or less
practical problems seem neither necessary,nor convincing:most of the nontrivial
ones could be handled without introducing fuzziness at all.However,the purely
mathematical developments,though of doubtful interest in some cases,are dealt with
rigorously).

Quite different in origin is the circle of ideas and methods which are studied.
under the collectlve name,interval mathematics.This subject first emerged as a

separate area of research as a result of the fundamentalwork of Moore(1968) .Recent
work may be found in the Karlsruhe symposium{Nickel(41975)),and in another book by
Moore( 1979).The basic ideas emanate from attempts to formalise error-arithmetic in
digital computing.Among other things,this entails defining a metric topology of
intervals,and using intervals as the basic entities in matrix computations,mnd in
jterative methods for the solution of nonlinear equations.The theory has reached
a high level of sophistication,ad,even though its emphasis is on numerical work,
it is certain to play a useful r?ile in symbolic camputation,where various forms

of indeterminacy are present.
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140343+ OQuasi-proofs based on simplifying assumptions.,

This m‘;:i; of quasi-proof is very cammon in some parts of theoretical physics,vhere
precise information is unobtainable,and exact structural relationships are either -
unknown,or else prohibitively complicated,computationally.The relevance of this
kind of 'proof'within mathematics is comparable with that of arguments in which
(somehow)all premises are assigned probabilities.However,the idea is quite distinct,
-since,once the assumptions have been made,all deductions are rigorously correct——
and,most importantly,no attempt is made to as sign any probability to the(correct-
ness of the)assumptions adopted.{An excellent example is furnished by the 'proof?!
of the '"Prime Number Theoren' due to Courant and Robbins(i969),where it is
assumed that there is a smooth density function governing the distribution of -
primes—-all subsequent deductions being totally respectable.It is interesting to
note that the 'density assumption' was suggzested by Gustav Hertz,an experimental
physicist;&_?.loreover,almost every 'model' used in theoretical physics incorporates
some assumption designed purely to render it mathematically tractable--ranging
from crude 'replacement' to highly sophisticated approximation schemes).In spite
of the obvious shortcomings of this approach,it should be used more often in the
preliminary stages of mathenatical investigations.The use of symbolic analysis
would allow a variety of assumptions to be tested in an exploratory manner,at
comparatively little cost{in time and money);and this could well give valuable
indications for an eventual rigorous analysis.

14.3.4. Quasi-proofs with ac!awwledgéd'gagsﬁ_

The idea here is to consider 'sketches of prbofs' »in which gaps are closed succes—
sively,until a complete,rigorous proof is attained.This situation(but with many
unacknowledged gaps)is encountered frequently in scientific applications,where
'common sense'(that most unreliable of guides)dictates that certain results are
'obvious;,y'tme' sand the so-called proofs try to formalise this conviction.For all
the,deser?ed,disreputability of this strategy,it does contain a germ of usefulness
in relation to symbolic analysis.For instance,a sketch—proof may tigj_gr,\’xcturally
sound,even if it has several gaps.These gaps constituté‘_results which must be
obtained to convert the sketch into a full proof,.There is no reason why such
controlled speculation should not be valuable if used with caution.Of course,if
more direct methods are available—and tractable-~-then they are to be preferred,
but it 1is hghly desirable to have some lower-grade procedure in reserve.
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14¢3+5. Rigorous proofs of weak forms of propositions.
This idea has many variants.The aim,for a given proposition,p,is to formulate{and

then prove rigorously),pmpositions say,'ii,whlch are,in a specified sense,'close to
P'.In favourable cases,p itself may be derived from a sequence, {'i') } yof weaker
propositions,where each pk is relatively simple to prove.At worst, this should yield
arbitrarily good 'approximations to p';and,when only a finite number of pk are
required,the exact form of p can be established.This strategy is used in factor-
ization algorithms of the 'modular' or 'Hensel' types:see Section 12.Examples of
the use of weak forms of 'classical procedures' abeund in mathematicsjmuch of
functional analysis may be viewed in this light.A few obvious,but seminal examples
include:the replacement of classical differentiability by weak forms( leading to
the theory of generalized functions,Sobolev spaces,etc. );replacement of the
Riemann integral by the Lebesgue integral( allowing a rigorous development of the
theory of stochastic processes,among many consequences) sand, the introduction of
various nonclassical topologies,in tems of which,continuity,compactness,etc. sCan
be formulated in contexts far more varied than the original definitions permitted.
The relevance of all this to symbolic analysis is that it offers models for pos-
sible modes of reasoning which may be used to attack problems otherwise inaccesg—
ible.One more variation on this theme amounts to modifyin the domain over which
a problem is defined,and then solving the problem fully--an excellent example being
the proof by Weil{19 ) of the Riemann Hypothesis for finite fields,though this
'has not so far contributed directly to solving the problem for the general,complex
number field(the best' qum\ﬂtatlve result' is due to Levinson(1974)). For a system—
atic use of ‘'p-adic methods' in number theory,see,e.g+,Borevich and Shafarev.lch
(1966).There is wide scope in symbolic analysis for experimental exploration of
weak forms of propositions,and their relation to stronger formse.

None of these noticns of quasi-proof is claimed to be more than suggestive——
either of conjectures offering topics for fruitful investigation;or else,of pos-
sible methods of attack _on problems whose importance is known already from earlier,
rigorous results.In spite of this,all of these concepts of quasi-proof must be
analysed and fomulated  with precision before they can be used with confidence,even
as peripheral aids in large-scale studies.The only imprecision that is tolerable
iIn this context is that contained in the randomness,simplifying or weakening
assumptions injected deliberately.All subsequent must meet the highest standards
of rigour.Thus,although there would appear to be little hope of constructing

a rigorous calculus of 'partial implication®,with direct application to mathemati-
cal proof,considerations such as these outlined here could be of value as aids
to the ultimate,rigorcus proofs of results that,probably,would never be identified
otherwise.
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14.4+ Theorems as 'onerators’.

Any mathematical theorem may be regarded as a 'processor' of its premises——the
*oucput' being its conclusions.Taken in isolation,this observation is trivial;it .
is made here because this view of inference fits well with the operational scheme
of symbolic amalysis,as I envisage it.In these terms,procedures 'act on' expres—
sions(such as vector‘s,mtrices,tensors,groups,anlaytic functions~~and, in gexxera;,
on arbitrary,well-formed expressions within the underlying logical system) swhereas,
theorems 'act on'statements(or logical formulae,such as,'let the condition,C,hold).
As remarked in Section 14.3,the truth value of "p = q' is independent of that of
pP;and this is unsatisfactory,especially in the context of hypothesis-formation in
scientific research(including applied mathematics).Even in 'pure math ematics' .
there is room for the use of nonstandard logical frameworks(see,e.g.,Davis(1977) H
also,Luxemburg(1969,1972,1973)),and this may be combined,in symbolic analysis,
with the application of standard theorems and techniques.The successive application
of theorems corresponds to composition of operators,and converse theorems,to
inverse operators.wan analogy which can be helpful in describing complicated pro-
cedures.. _
My main proposal is to extend the 'environment of evaluation' to an 'enviromment
of investigation'.Apart from the collection of simplification rules and side rela-
tions usually imposed,carefully chosen theorems,deemed especially relevant to the
problem in hand,should be incorporated(as data),for optional use on current ( sub)--
expressions,at any stage of a computation.It appears that SCRATCHPAD,with its
deliberately conversational mode of use(see Section 9),is structurally suitable

for this approach;indeed,its design seems to have bg&en motivated partially by such
aims.However,for my purposes,it is a matter of employing this strategy widely and
systematically;allowing,eventually,the most sophisticated techniques to be
'imported® ,before a dialogue inveétigation is comenced.There is also potential

for this kind of activity in several other systems—though,it may be that none of
the existing packages combines flexibility and analytical scope adequately for the
applications sketched in Section 15.0ne recent development that. may play an
important part in making analytically complex investigations feasible(in the
fairly short temm)is the design of MODLISP(Jenks(1979)),an extension of LISP
intended to facilitate the construction of a modular system that is easily
enlarged to accommodate extra facilities =nd changingz environments,’ Presumably,
this may be adapted for use on thke parallel program,parallel data LISP machine
now under construction attheUniversity of Utah,which will enhance the facilities
for symbolic analysis still further,In particular,MODLISP can form appropriate,
underlying domains 'dynamically',during a computation(rather than 'statically',
at compile time),vwhich is of great importance in complex calculations,where
the'most natural' environment amy alter radically from one phase to another.
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14.,4.2. The basic 'aim,then,is to give the environment far more structure than
has been assumed up to now.If a problem can be formulated sufficiently clearly
for closely related background results to be imposed as 'constraints',then its
effective solution is facilitated greatly.For,the more narrowly a mathematical
field of investigation is defined,the more precisely is the form of 'typical
proofs determined for it.In other words,the environment for investigation may
be tailored to suit a given class of problems,to a greater .extent than seems to
have been recognized in the design of current sysi;gns_.ln symbolic analysis,the
emphasis is on imitating,as closely as possible,a cdllaborative dialogue betwe-n
two{ well~informed! )mathematicians,one of whom happens to have a remarkable talent
for intricate calculation,often involving many tedious repetitions;and,who never -
forgets information,unless specially asked to do so.

Every problem has some 'natural location' in the vast superstructure of mathema-
tics.In fact,there is a whole family of such locatiol\nélgng even this is not deter~-
mined absolutely;but,all that is necessary is for _gm location to be associated
with each problem encountered.This idea of location is subjective:it reflects the
personal approach of the investigator,including as it does the selection of con- -
cepts and results thought to be especially pertinent to the investigation at hand~-
which is(logically)'located' in relation to these results.For a mathematician,

the location of any proposition is strongly time-dependent;but,even this aspect
can be simulated,provided that new premises(e.g.,recent results in any field,or
even chnged 'attitudes' to various faces of the calculations)can be incorporated
into the system without undue labour.This framework for investigation is particu-
larly appropriate for interactive symbolic computation,since the user is free to
impose on the system whatever constraints(in the form of assumptions(e.g.,conjec—
tures,hypotheses),and theorems)are considered important.Thereafter,the system may
be used to study the problem{often,under changing constraints,as the ipvestigation
proceeds),until a satisfactory conclusion is reached{either as an'approximate
solution',if equations or inequalities are involved;or else,as the statement
of sone result,deduced from t_hge; pr_qhises with the help of the machine).Naturally,
this approach to dialogue compuﬁng is adopted already to some degree;but it is
possible now to extend it to cover a wide range of mathematical procedures.The
demands that such a scheme makes on the designers are considerable,and should not
be underestimated;but the rapid progress made in the past decade in the design of
both hardware and software augers well for the increased sophistication required.
Thus,it is certainly necessary to examine various mathematical fields vhere the
potential for constructive procedures is high(if the additional manipulative power
of computers is invoked).This is done in Section 15,and,in some cases,'environmen—
tal constraints' are identified,and tentative 'flow diagrams' are given.The aim is
to show that symbolic analysis could be a standard research tool,in n@ny areas so
far largely remote from computational activity. ’
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1464+3. As a foretaste of what can be done,this secticn is concluded with some
observations on the use of inequalities,in 'operational form',which enables a user
to generate compound inequalities--and these,in tum,could be used in forming
error estimates for various approximation procedures(for instance,in the construc—
tive solution of nonlinear operator eqations).Before this can be done,however,it
Is necessary to ask an‘apparently naive question,the answer to wiich turns out tq

be far from trivial!nanxe]y:'.mat is an inequality ?

It would appear tha£ ’inequalities may be studied on many different levels of
abstraction.For their use,only the most concrete representations are adequate;
but,for classifying them,or investigating the interrelationships anong different
types of inequalities,more general frameworks are appropriate( especially,if one
wishes to usé arbitrary,partially ordered sets as a basis,rather than the field
of real numbers).For this reasen,a basic definition is given now,which,although
straightforward,does allow for the possibility of inequalities among the elements
in any,suitably-ordered set.

Definition.Let 8 be any set,and T,any totally ordered set(with order relation, <
Thentan inequality on § is an ordered quintuple,( o, B,G,O‘,"I‘),where,':it"" ZS
denotes the set of all cauntable,ordered subsets of S,then owo'e 2 ,end each of @
and B is a mappinz from . Bg into T,such that a(o) < Blo! Yo

T)'

(Notice that one could take T to be merely partially ordered--e.g.,a lattice.This
possibility can be accommodated here,with fairly obvious modifications,which can '
be formulated as they are required).In the special caseswhere it makes sense for
one,or both,of iy B to be(equivalent to)the identity mapping,-or for ¢' to coin-
cide with O,various inequalities between(the values of)real-valued ﬁmctions may
be obtained.Again,some familiar inequalities have the form: [Vo £K <34 » vo'eL= 3¢ ]
a(c) <o B(o');but in each individual instance,the inequality is generated by the
basic construction given here.Moreover,S may be finite,or else countably or un-
countably infinite:what matters is that appropriate mappings ¢, 8 can be defined.
In the context of metric or normed spaces,the ordering, <T,may( but need not)take
an obvious form;but in other cases,the definition of suitable orderings is often
far from clear.However,the essential point is that a general definition may be

used to describe{and generate)inequalities of all possible types which could be of
importance in symbolic analysis.Inequalities should be incorporated in such a way
that their application to specific expressions could be effected through substi-
tution into the general forms.Plainly,all of the standard inequalities of ‘'hard’
analysis are easily accammodated within this scheme( and they would be available for
routine use in analytical procedures).

¢
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As a very simple example of this idea,let S be LZ(I),for some real interi'al,l,md
let £ eLZ(I)(but regarded as an elenent of ZS) be given.If the system splits f
into{ algebraic and transcendental)'factors': f = g1... & h,‘ ...h.N ,then one
could define a(f) to be |ff |,and B(r), as. v} HJ‘g IIfh } ythe ranges for
the integrations and products being I;1,+..,M;and 1,...,N respectxvely.From this
it is clear that any classical inequality can be handled in this kind of way;and
that $ could be,for instance,a set of square matrices{for whose elenents various
inequalities involving their traces,ranks,determinants,etc.,may be obtained),and
s0 on.On the other hand,if S is,say,a lattice,over which some extra condition
holds(e.g.,the *modular’ inequality-—see,for instance,Birkho{'t{1973)),then this may
! induce' nontm.v.tal inequalities,if the elements of 2 are napped suitably into Te
" In conjunction with the GROUP system(Cannon(1 976)--see Section 11),and with analo-
gous packages for other algebraic structures,the inclusion of order relations
other than that for the real numbers offers intriguing possibilities for compara-
tively abstract cperations,and broadens even further the potential scope of sym—
bolic analysis as a research tool.

For most of the applications to be outlined in Section 15,only ineqialities betiween
real numbers are used;but the variety of sets,S,vhose elements give rise to these
inealities( through the mappings ¢ and 8),is very great—-and the fact that such
mappings may be defined and incorporated in symbolic computation systems is of
crucial importance for the effective use of these systems in sophisticated
mathematical constructions,

The inclusion of procedures applying inequalities presents no problem in principle,
since all tht is required is to name the procedure,its arguments,and all parame-
ters.For instance,one could write: HOLDER( CPS,I,E1,EZ;P,S),t0 cause Holder's
inequality for integrals over a set,I,with positive parameters,r,s,r-1+ s~1= 1,

to be applied to the 'splitting' (E,;E,) of some basic expression.The 'output'
would be §{ f |E1| r }1/r { S IEZI 51 /s,simplified as far as possible within the
system,Further,the Landau ' 0 , 0 , ~ ' notation may be included in this scheme,
provided that the conditions(all,as x- a,say): f(x) = Of g{x)},f(x) = of g(x)} ,and
f{x) ~g(x),are forrulated in terms of inequalities(or limits).In any case,there
are operational rules governing the use of the Landau symbols in most situations;
and these rules may be implemented fairly sirnp{;‘(__._é‘s“_fxn example,suppose that E is
any function bounded in a neighbourhood of «.Then one has(as x- a);

511‘8152 = Of fE E t = o{xxowm(c*rs,x,rz1,52;r,s)} »€tCeo
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If the user has a ‘catalogue' of procedures that produce upper bounds for expres-
sions(using ' €'),wile other procedures give lower bounds{using ' >'j,then,in a
typical calculation,procedures may be applied successively({along with other
analytical and algebraic routines)until some acceptable bound is obtained(or else,
the calculation is shown to be intractable).In other words,the system may be
used to investigate expressions in ways that parallel closely the activity of a
mathematician alone-~but,with the( possibly,crucial)advantage that expressions
too cumbersome for ‘hand calculation' may be analysed comparatively fully,Of
course, the apt choice of basic procedures can shorten a proof considerably;but,
since the machine is not working alone(in contrast to the situation for 'auto-
matic theorem-generation'),this problem-solving aspect of mathematical activity
is not lost.The great complexity of expressions({ and,often, inadequately simpli-
fied output)may limit the effectiveness of this humary/machine collaboration;but,
in principle,extremely high efficiency is attainable(aé simplification routines,
and clarity of I/0 are improved).Thus,in addition to using the standard inequali-
ties,one can introduce more specialized conditions(e.g.,for various types of stab=
ility associated with ordinary differential equations--see,for instance,Reissig,
Sansone and Conti(1974)-~or,for conditions ensuring the convergence of certain
approximation procedures for elliptic partial differential equations—- the so-called
coercivity conditions(see,e.g,Showalter(1977)).The opportunity for innovation in
this area is very great.Moreover,if symbolic analys{.ws,;‘_” ;i :used in conjunction
numerical computation,then many algorithms of considerable complexity can be applied
to obtain approximations to the solutions of difficult problems~-and these effective
solutions will be produces,initially,in symbolic form{ often,with error estimates),
so that their analytical properties may be studied,as well as their predictions
of numerical values.

The remarks made in the present section sbout mathematical uses of symbolic
computation are intended mainly to indicate possible lines of development.In
Section 15, through several nontrivial examples,I try to convey my own vision of

how a wide variety of constructive procedures canh be implemented( approximately).
This entails using allof the strategies outlined so far,as well as others;and,al-
though only tentative procedures can be given,the enormous potential scope of this
enterprige should become clear.In terms of the current capabilities of systems,I
may be sanewhat over ambitiocus( and,unreasonable in my demands);but I am sure that
the great bulk of the schemes I sketch will become feasible in the very near future.
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15« Mathematical Applications.

The object of this section is to discuss briefly a wide range of topics for which
symbolic analysis routines could be developedsThe treatment of these topics is
very uneven,depending,amongst other things,onthow 'uncomputational! they are at
the moment;how far I have studied themjand, to what extent current systems seem
able to cope with the demands that nontrivial calculations would make.However,no
topic is included for which it is not clear{to me,at least!)that substantial
applications—immediate,or 'strongly potential'——have been identified.Thus,in

some cases,a fairly definite scheme is described(on which experimental programs
can be based);while,in others,no attempt is made to do more than give a bare out-
line of the topic,sufficient to indicate the sort of calculations that could be
done( possibly,on systems of the next technological generation).Of course, the list
of 'suitable cases for tfeatment' is virtually endless:every mathematician with a
constructive turn of mind could add to my selection of topics(and may disagree
with some of them).My aim is simply to encourage the use of effective mathematical
procedures—and the development of such procedures in areas where they are rare.
Symbolic analysis provides a powerful incentive for this activity.

Before the examples are discussed,it is necessary bo'explain,as clearly as possg-—
ible,the sense(s) in which 'solutions' are obtained,with the aid of symbolic anal-
ysis.In problems vhere algebraic manipulations,expansions into finite sums, and
other exactly realizable operations suffice,a correspondingly exact solution is
to be expected.Very few of the calculations mentioned here are of this type
(but it should not be imagined that such calculations are trivialjon the contrary,
they make high demands on both programing skill and simplification facilities).
Next,there are problems vhere most of the steps in the solution can be performed
exactly,but a few nust be approximated in some way.Typically,this involves the
truncation of infinite sums or the use of a quadrature formula to evaluate inte-
gralseIn most of these cases,reliable error estimates(in symbolic form)can be
given,and the solutions obtained are fairly complete,for either analytical or
numerical purposes.Lastly,there is a whole spectrum of calculations in which——to
varying degrces—essential components can be tackled only by inveking a succession
of diverse approximation procedures,for many of which the detemination of symbol-
ic error estimates is a major problem(as is the ultimate Justification of the cal-
culation as a whole).Most of the applications discussed here are in this category;
but,in several instances,rigorously derived algorithms are avai lable,often,of
great subtlety and complexity;and it is on these algorithms that the treatments
given here are based.The crucial point is that,under various conditions,vhich

mist be adumbrated,adequate symbolic approximations can be obtained,even after

a whole range of approximation procedures have been used at intermediate stageg—-
provided that theconvergence at each stage is 'strong enough'(relative to a sult-
able topology).In certain eXamples, these questions are not resolved completely,but
all gaps that renain are identified.
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18e2Implicit functions of one complex variable.

Let F: D~ C be any function defined on a domain in CxC{the cartesian product

of the field of complex numbers with tiself).This function may be studied for its
analytical properties,e.g.,various types of continuity or differentiability;but,it
may be used,also{in the form of an identity,F(z,w) =0 over D)to define 'implicit
functions',W(z),or Z(w),through the relations: F( z,W(z)) =0 ( vz eD1),and
F(zZ(z),w) = O ( Vw eD,),respectively,vhere D, and D, are domains in C.This problem,-

1
which,for real-valued functions of two real variables,is treated in basic anal-

ysis courses,assumes great importance when complax variables,and complex-valued
functions are considered.If F is arbitrary, then very few useful results are ob-
tainable.llowever,for several classes of functions F,the theory is extensive,
and covers many significant types of implicit functions occurring in mathemati-
cal physics and other fields,

For this paper,a 'convenient starting point is the so-called Weierstrass Prepara-
tion Theorem(see,e.g.,Saks and Zygmund{1971 );and,for a more abstract treatnent,
Grauvert and Fritzsche(1976)).This provides a factorization in the form:

Flz,w) = (z-zo) pl-‘1 (z,w) ZA}:—r( z)(w..wo)k o (*)
0<r<k ‘

where F is holomorphic,and does not vanish identically,in a bi~circular neighbour-
hood of the (finite) point,(zo,wo) »F( zo,wo) = O,and the relation (*) holds in
some( generally, smaller),bi-circular neighbourhood, say, &(zy:0)x A{wq;p )——over which
F1(z,w) is nowhere zero.Moreover,the 'coefficient functions' JA j(z),ar‘e holomorphic
in A(zo;p). For the rest of this subsection,it is assumed that such a decompo-
sition is possible,in all situations considered.(For computational purposes,one
should note that,when F( zo,w) is not identically zero in a neighbourhood of Yos
the integer,p,in formula (*) is O,ard k is the multiplicity of Wy as a root of
the equation F( zo,w) = O.Further,replacement of z=Z,W=w,, respectively, by 2z R
W sallows (*) to be used when Zo Or W, is e

If F has the decomposition (*),the AJ. being general holomorphic functions,and if
P = 0,in (*),then the identity F(z,w) =0 (over D)determines algebroidal functions,
w(z),or Z(w);see,e.g.,RgﬁoundosU927),Selberg{1934).1f,however,the Aj are poly-
nomials,then algebraic functions are determined.In either case,the identity defines
k holomorphic function elements in a neighbourhood of zo( the branches of the
k-valued function corresponding to (*))3and,such functions are associated with
Riemann surfaces--over which they behave as single-valued analytic functions( see,
eog-:SPPinge!‘("957))-According1y,the following problems appear suitable for



computational investigation(using symbolic analysis).
Problem 1. Given (*),find the essential characteristics of the Riemann surfaces
for the functions W and Z.

Problem 2. Develop an algorithm for the effective representation of the bran-
ches of Z and W.

Problem 3. Apply the results of Problems 1 and 2 in 'interesting cases'(e.g.,
in the determination of expansions for various transcendental and algebraic
functions of interest in practical situations).

For Problem 1,the crucial matter is to find all critical points of W(or,of Z),
where o is critical for W if at least one function element,W jois mot arbitrar-
ily continuable in some neighbourhood of ..This problem has been studied exten~
sively(see,e.g. ,Nalsh(1950)).0f special significance for Riemann surfaces are

the branch points,whose locations and orders essentialiy fix the structure of the
k-sheeted surface corresponding to (*)~~see,for instance Forsyth(1918),for many
detailed,specific examplessThus Problem 1 may be formulated as followssto develop
effective methods for the (approximate)determination of critical points,to find

the nzture of these points,and to use this information to give a concise descrip—-

tion of the Riemann surface so determined.
Notice that,in this procedure,the type and order of the critical points must be
determined exactly:the approximation—if there is approximation-——refers only to

the locaticon of the critical points,since this may be determined as a zero of a
transcendental functiom,or in some other way that precludes exact calculatione.
bThe necessity for approximation does not,however,affect the characterisation of

the topological properties of the Riemann surface. '
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Problem 2 has been studied fram the angle of computational complexity by kung

and Traub{1978),for algebraic functions.They mention several possible extensions,
including a general use of Puiseux series{fractional power series),and the
case where the coefficients of the expansion series are expressed explicitly as
functions of the input coefficients.No definite results are given for these and
other extensions,but it is certain that symbolic computation can play a basic
role here.The most important aspect of this work is that 'fast algorithms' are
given for general algebraic functions,reducing the worst-case result of O(Nk)
!'elaven tary operations',for computing the first N coefficients in the expansion
of. a‘bmnch,wj,of W,to O{kM(N)),nhere M(N) is the minimal number of oOperations
sufficient for computing the product of two polynomials of degree N{over a
specified ground field).For direct multiplicationM(N) = O(N?),but this may

be decreased to O(N log N),if the Fast Fourier Transform is used({ see,e.ge,
Knuth(1969)).Kung and Traub study various types of itération to find the un-
known coefficients,and they cambine this with a symbolic version of the 'Newton
Polygon' scheme (see,e.g.,Bliss(1932)),which can be implemented effectively within
symbolic computation systems. Although simple cases are treated by Kung and
Traub,the algorithm they give——or an adaptation of it--should be generally appli-
cable.Thug:fast,effective,symbolic computation of expansions for branches of
general algebraic functions is possible~-znd procedures could be developed for
several of the systems considered in this paper.The most urgent matter for applica-
tions is to Provide similar facilities for algebroidal functions;which should not
present major difficulties.
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Problem 3. It is easy to see that the Nth root,reciprocal and reversion of a

polynomial are obtainable in terms of expansions of algebraic functions(corres-
ponding results for power series would involve algebroidal functions.Again,all of
the inverse Elementary functions could be treated on the basis of algebroidal
functions;and,Kung and Traub show how Special functions may be treated(using the
algebraic conditions satisfied by their generating functions)--and that elliptic
integrals may be included,too.Even without a general procedure for algebroidal .
functions,certain transcendental equations may be treated(when the transcendental
terms have known expansions).Another important application is to computational
algebraic geometry(which has become central to the symbolic integration of alge-
braic functions--see,especially,Davenport{1979a,b)).More general extensions,in .
which (one,or ‘both of) z and w are finite-dimensional vectors,occur in one approach
to branching phenomena for nonlinear operator equations,vhere(an extension of)
Newton's Polygon method is used--see Section 15 ,It-will be obvious from the
examples given in the present sectijon,that calculations with algebraic/algeb—
roidal functions have exceptionally wide application,so no more instances will

"~ be cited here.Further,the extensions(to Puiseux series,vetor variables,finite
ground fields,fully symbolic input)mentioned by Kung and ‘Traub{1978)are met

in a great variety of contexts;so,the basic aim is to develop general proce-
dures that canbe adapted,as required,For functions outside the algebraic/alge~
broidal class,only isolated,special methods are known,and thesé are,mostly,unsuit—~
able for symbolic analysis.
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15+3+ Computational function theory.

Many techniques in function theory are capable of effective formulation.Obvious
examples are:manipulations with power series(see Brent and Kung(1978)for a com-
plexity analysis,covering composition,reversion,evaluation of Elementary functions
‘at power series arguments' ;solution of certain differential equations with power
series coefficients ~—even some nonlinear equations,using iteration;evaluation of
hypergeometric and Bessel functions of power series;miltivariate series) ;calcu--
lations with analytic continued fractions;asymptotic analysis of Special functions,
and of integral transforms;and,solution of ordinary differential equations,using
contour integrals.Other topics found to be suitable for symbolic computation in-
clude the solution of differential equations,using expans:.ons in Chebychev poly-
nomjals(Geddes(1977)),and calculations involving Pade approximants{Geddes({1978)).
Moreover, the basic theorems of local function theory( and some of their direct
applications),may be given constructive forms.A great var'iety of constructive pro-
cedures,treated from the algorithmic point of view,may be found in the books by
Henrici(I(1974),I1(4978),I1X(in preparation)).It is enough here to observe that
many of Henrici's procedures are suitable for effective implementation in symbolic
computation systems(for instance,a method for analytic continuation along a curve,
unified treatment of Special functions in terms of hypergeometric functions,
zero-determination for polynomials,and function theoretic representations for

the solutions of certain partial differential eqxations).l‘-lorcover,even some of the
more abstract constructions(see,e.g.,Tsuji(1959),Goluzin(1969))are accessible to
effective treatment using symbolic analysis( for exanple,certain extremal problems
and ‘distortion theorems! arising in the theory of conformal mapping,calculations
involving hamonic measures and capacities--especially in relation to approxima-
tion problems).See also,Garnett(1972);and Smirnov and Lebedev(4 968),vwhere a wide
range of approximation problems in constructive function theory is considered.

In all of these instances,the aim is to obtain approximations in symbolic form

for all objects of primary interest.Although these approximations may be far from

optimal where numerical results are required,there are many situations in which
R caamamte s g

only analyticalrepresentations are relevant-—since,the aim is to study the proper-
ties of functions obtained by using these representations in earlier phases of
calculations(see,e.g.,Section 15 on boundary value problems in elasticity).It
is precisely in areas of this kind that the interplay of symbolic and{ultimate)
numerical computation is so important.One particular problem vhere symbolic anal-
y6is may be able to play a major part stems from Levinson®s(1 974)attempts to

verify the Riemarn Hypothesis by direct estimation--essentially using Rouche
theorem, in the form of the 'argument principle',certain 'mollifier' functions be-
ing introduced to smooth out irregularities,By using symbolic analysis,it may be
possible to test many different mollifiers sand so to improve Levinson's result

(that 'more than one third of the zeros of the Zeta function lie on the 'criti-
cal line', { z | Re(z) = 1/2 1)e
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15.4. Calculations involving Patil's(end analozous)representation{s).

Possible alternatives to the classical theory of functions are furnished by cer-
tain representation theorems for functions analytic in the Unit Disc,D1,and satis—
fying various conditions on parts of the boundary, aD1 oOne formula of this kind
was found by Carleman,and extended by Goluzin and Krylov(1933) in connection with
problems of analytic continuation.Other formulae are given in Zin(1953),Picone )
(1254) and Patil(1972).Here,attention is confined to Patil's work,and some of its
jmmediate consequences.

Patil proves(using functional analytic techniques involving Toeplitz operators)
that if,for 1 Sp< e, f¢ Hp( the so-called Hardy class of functions,f,regular in
the interior of D,,and such that ,as r- S If(re )]d 6 = 0(1)~-uniformly

in 6),then f{z) may be found,for z interior to D‘l ,from the boundary values of f
on any set E © 501 spbrovided only that E has pOS.’Lt.lve( one—dimensmnal)measure.More
precisely,if 7\(2) t= exp { ~(1/4t)log(1 + \) j‘[e + z ][e - z]~ 14 0} (z €D, )

and 81( z)ia (th 7\)(z),where K, is the 'weighted Cauchy operator',defined by:

(Khhl)(z) =Ah 7‘(z) + 1 J‘ (w-z) ( ) Y(w) aw,,

" the bar denoting complex conjugation,and <y the'boundary function'for f--defined
over Eyin the present case,then jas A -0, g )»(Z) —+f{z) ,uniformly,on compact
subsets of{ the interior of)D1——and,if P £eo,then | gy =T ”p—' 0o

The idea ¢f such a representation is suggested by the result(see,e+g.,Duren{1970)),
 that, if f¢ Hp »D 21 ,and f(ej‘e) = 0 ,on a B-set of positive measure,then {z)
vanishes identically over the interior of D1 <Another representation corresponds
to Privalov's uniqueness theoremsif f is analytic for I z]<1 sand the nontangential
limit of f(z),as z—» eis,is O,over a O-set of positive measure,then f{z) is O

at all points interior to D1.
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For possible applications of Patil's(or an analogous)formula,one seeks analytic
approximations to g)\(z) for large,positive values of A.Although the basic for-
mula refers only to subsets,E,of the Unit Circle,E may be disconnected,having any
number of cocmponents.Moreover,the procedure may be used in oconjunction with con~
formal mapping,in some cases,to produce more general results.Consequently,the
technique outlined here may be combined with various methods for approximating .
conformal mapping functions(see Section 15. ,for some of these methods ——especi- ’
ally,in relation to the mapping of general,n-conrected domains onto 'canonical
domains' ).Young(1974)shows that both the Riemann Hypothesis and the Goldbach
Conjecture may be given new formulations in terms of Patil's representation(and
that the subset,E, may be chosen so as to exclude the 'minor arcs',as used in

the original work of Hardy and Littlewcod(1920);see,also Ayoub{(1963))}.In a less
specialized context,it seems likely that asymptotic representations of this

kind will be useful in studying boundary-value problems; vhere the boundary behavi-
our is specified only on part of the boundary--or,perhaps,where the boundary
function has singularities.Thus,there may be nontrivial links of this approach
with methods for solving certain types of 'ill-posed problems'{see Section 15.i0)e

Young(1974)gives an elenentary account of Patil's formula for.the special case
vhere E comprises a finite collection of disjoint arcs? E = UYX . ,and f is regu--
lar in a domain containing D, .By defining wj(z):.-: c+ 1 log((z—-aj)/( z-bj)),md
then,W(E,z) =% + Ej w-j(z),where aj,bj,are the end points of the arc X joone
constructs a function,W,whose real part eqals O,on E,and equals 7t,on E*~~the
complement of E relative to aD1 If the ordinary Cauchy integral formula(with 801
suitably indented around the points aj,bj)is used to represent £ z)exp| ~ki( z)} ,
for z interior to D,,then it follows that f(z) may be written in the form:

{z) = Ik(E,f,z) + Ik(E"",f,z) = Ik(E,f,z) + Of exp [ -k Re( n-w(z))}},
vhere Ik(A,f,z):= (21\21)"'.]'(5—-2)"1 £(% )expf =k [ Wz )-(z)]} dZ .Since it may be seen

that O <Re(W(z)) <1 sat j.ﬁterior points of D, ,the proof of Patil's formula for
this case is complete(with k replacing the continuously varying parameter, A ),
Moreover,if the points aj,bj,are specified, the order of the error term{as k— o)
may be determined explicitly.If the asymptotic formula for f{z) is differentiated
n times 'inside the integral sign'{which can be justified),then the formula

(s - wId, 1) (W) [ expf W) D)} a5+ o)

is obtained(for k— os),where,as before,the o{41) term may be determined explicitly
in various cases.There are many opportunities for using symbolic analysis here.
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15,5, Sunmability procedures;tauberian theorems:asymptotic analysis.

Although the range covered by the topics in this subsection is very wide,from

the viewpoint of symbolic enalysis,they have much in comnon;so it is appropriate
for them to be considered together.Essentially,all of the methods mentioned

here amount to the application of various transformations(on sequences);or else,
of certain’operational rules',with associated analytical cqnditlons(usuaﬂ.}_{._x,}_z_wo_l—
ving the asymtotic behaviour of sequences,or of more general functions).The poten~’
tial applicability of symbolic analysis to this area will be evident from an
examination of the references cited later onjbut the variety of possible proced-
ures is so great that there is no point in singling out particular examples.

It is well known that,for a wide class of functions on.real domains, several types
of 'summability' may be defined.The standard summation of series,and the evalua-
tion of{Riemann or Lebesgue)integrals may be accompl ished only for relatively
restricted classes of functions(series corresponding to countable sequences-—which
are just functions on(subsets of)the set of positive integers).Consequeptly,methods
have been developed for attaching{unique)to the results of summation operations
involving more general classes of elements.There are many procedures available
for sequences ard series(sometimes yielding identical results),but only a few
for handling(classically,divergent)integrals.Mostly,a method of summation for
‘series may be characterized(at least,partially),by some asymtotic condition{s)-—
among these being the so-called tauberien conditions.However,the detailed speci-
fication of interesting summation methods often requires the use of (infinite)
matrices;and the potential use of symbolic analysis in this area hinges on this
mode of representation.(See,e.g.,Petersen(1966);and ,for general accounts of
summability methods,Knopp(1928) ,Moore(1938) Hardy(1949)discusses some delicate
analy_tical questions,and Cooke(1950)zives a general treatment of infinite matrices
and their associated sequence spacesl.Fairly recent references,and an account of
the principal tauberian theorems.for summability,may be found in Peyerimhoff
(1969)).

The use of general summability methods in applications is clear:it allows rig-
orous results to be obtained(foar subsequent use)in situations where the classical
techniques are inapplicable.The rdole of tauberian theorems is to extract infor—
mation about  mathematical objects from various 'partial averages' of them.The
tauberians conditions built into a symbolic computation system may be applied in
any problem where such partial averages are under consideration-—the 'output' usu-
ally being some ‘'dual' asymptotic condition—either,as a final result,or else,
for later use in a complicated calculation.Thus,the broad aims for symbolic anal-

ysis in this domain include:to incorporate various summability procedures for
(approximate)implenen tation;to allow the evaluation of certain(classically
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divergent)integrals;and,to examine the use of a wide range of tauberian theo-

rems in 'operational form'(see Section 14).

In this paper,remarks are confined to the most easily implementable schemes:
matrix limitation methods(on the vector space,5*,0f all real sequences).The

field of definition of a linear transformation, % ,on sequences,is a vector sub-

space,say,DT,of‘ s* .The convergence f‘ield,C,c,of"f,is defined as the set of all © .
in §* such that TO is classically convergent.(Thus,in an obvious notation,CO = S5*%,
and C1 = C*—-the subspace of all classically convergent sequences).When 0 eC—,z-nd
the sequence T0 converges(classically)to t,one says that O is T-limitable to t.

A regular linear transformation is one that acts'naturally'on classically conver-
gent sequences;i.e.,for‘ such a transfomation,’? sone has C*C C,v,and every"f-—limit

of an element of C* coincides with its C*~limit.

Notice that,in spite of the fact that the r‘epresenting matrices are infinite,
limitation methods can be useful in symbolic analysis.This is because:{ i)necessary
and sufficient conditions for the existence of the transformed sequences are
known,and involve only concepts of ordinary convergence( for which several tests
may be implemented--—e.g.,using a LIMIT facility);(ii)the matrices for well-known
methods(Holder ,Ngriund,Riesz,..» },have specified elements,and so may be incorpora-
ted for symbolic computation(in the sense. that any giveh number of terms may be
taken in evaluating the matrix operations corresponding to infinite matrices).
Consequently,arbitrary!finite sections' of all relevant matrices may be used to
form approximations,when the summability methods are applied;and,since all of
these methods depend,ultimately,on the classical notion of limit,in principle,any
desired degree of approximation can be attained{within the constraints of the
size of the computer used,etc.). ,

For example,if {pk I is a sequence of nonnegative numbers,and p1 >0,then the
Ndlund mean, it },0f is 1,is defined by t i= P (p + P 48, + eee DS, )s
where P i= p1 + soe +pk.The corresponding 1unitatlon matrix has elements a o’

given by. an = P p ,for n €<m,and=D,otherwise.For the Riesz mean,one has,

m-n+1

instead, the Pesults' tm =P (p,ls1 + PyS, + ees pmsm),and, o

and = O,otherwiseMany mterestmg forms of sequential behaviour can be handled by

= P"1p ,for n <m,

using suitable summability methods;and the approximate implementation of such meth-
ods is quite feasible in symbolic analysis.In the present context,theorems which
prove that 'generalized swmmability plus extra conditions implies classical con-
vergence' ,are called tauberian theorems(the 'extra conditions' being tauberian
conditions)"’l‘his terminology is used more generally,too,e.g.,in relation to asymp-
totic analysis,where no questions of swumability,as such,are involved(see,e.g.,
PLtt(1958),Wiener(1933),and,for a more abstract formulation,Loomis(1953)).The
scope for using diverse tauberian theorems in symbolic analysis is wide,provided

that these theorems are treated as indicated in Section 14.
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For the 'summation' of{classically divergent)integrals,fewer methods are available.
Those most widely used determine the Cauchy principal value( see,e.g. ,Levinson

and Redheffer(1970)),the finite part ,and the logarithmic part(for both of which,
see,e.g.,Bureau(1955)).0ne further type of summation that may be implemented fairly
directly is that corresponding to asymptotic series{ in the sense of Poincare' )y
for which a formal calculus exists.All of these techniques,together with many de-
vices for obtaining the asymptotic develorments of functions defined in various
ways(e.g.,as integrals with 'large parameters',or as solutions of( systems of)

differential equations),are very suitable for the intelligent use of symbolic anal-

ysis.For instance,fairly general routines could be implemented to produce,as
'output' ,asymptotic expansions of functions specified(implicitly or explicitly).
as 'input'.This kind of routine would be of great value for calculations having
a numerical phase.A good reference for asymptotic procedures on this' level is
Sirovich(1974),which includes many routines potentially adaptable for symbolic
computation.The theory and application of gingular perturbations is also poten~
tially adaptable for the use of symbolic computation,in systems where advanced
analytical facilities are availablejand this is especially important in connec-

tion with the asymptotic solution of nonlinear boundary value problems for models
of practical interest.See,e.g.,0'Malley(1974).



138

1546, Differential calculus in general spaces.

Several notions of ‘differential',and of 'differentiation',have been defined

for finite-dimensional and infinite-~dimensional linear spaces.The most familiar

of these are probably the Cateaux and Fréchet differentials(with corresponding
derivatives),but there are mmy more.The spaces for which such objects can be
defined include Banach spaces,and even linear topological spaces.There is no

need to give details here(beyond some basic definitions),since the comprehensive’
review by Nashed(1971 )--on vhich most of this subsection is based—contains a
very large bibliography;while,in the contiguous area of 'generalized inverses',
the conference proceedings edited by Nashed(1976) contains an annotated biblio-
graphy of over two hundred and fifty pageslThe object of this subsection is just
to identify some uses of calculus in abstract settings where the( potentially)algo~
rithmic nature of the calculations would allow some procedures to be implemen-—
ted for symbolic computation.Examples of such procedures includesevaluation of

Frechet,Gateaux(and other)derivatives—-with representations of the corresponding

differentials {as linear mappings);evaluation of functional derivatives,using

routines suitable for applications(c.g.,in statistical mechanics and quantum
field theory:see,for instance the paper by Stell,in Frisch and Lebowitz(1964),
and Visconti(1969));approximate solution of various optimization problems(e.g.,

in control theory or math enatical economics);and determination of implicit func-—

tions defined by nonlinear operator equations.(Certain applications of the abstract
techniques to problems in concrete,'hard',analysis have been made,tooj;but these :
are not discussed here,since they are,for the most part,not amenable to algorith~
mnic pr'esentation)_.Differmtials play a basic ®le in the study of nonlinear
mappings between general spaces(especially in the approximate solution of the cor-
responding nonlinear euqgations,using iterative methods).Routines for this class of
calculations may be covered,too.There are several cases to be considered,and these
should be treated separately,as far as computation goes.llowever,the fundamental
definitions may be formulated quite generally:it is in the specification of norms
(or topologies) that the distinctions arise—and it is these possible choices

of norms,etc.,that may be programmed for symbolic computation,with provision for
basic operationfsuch as'differentiation' of composite functions,'differentiation
along a subsp'ace' yand the formaticn of higher-order derivatives and differen-
tials).As in the case of summability procedures,many of the generalized calculus
operations and their applications may be formulated in an essentially finite—dimen-
sional context,so that effective algorithms for approximation can be developed,

Yt is in this sense that all of the following remarks should be interpreted,
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Let I be an open interval in R(the real line),and ®:I- X ,where X is a normed
linear space over R.Then the derivative of ¢ at t €I is defined to be the limit,
as t- t, of (t -t )—1( 2(t) -<I>(t )).When this lll'\it exists,it is denoted by
q"(t )-—the sense of the limit being that the norm of the difference of the two
elements tends to O,as t-+ tgs Il d?'(t ) - (t~t, ).-1( o(t)- Q(t N | +0.The

$ateaux variation , dF( xo,h),of a mapping F:X-Y,with increment h,is defined as .

lim t_ (l’-‘(x +th) - F(x ));and this definition is meaningful even if X is not
t-0

normed.Moreover,if OF(x h) exists at all,then so does OF(x.; Ah),for all realX,
It may be shown that,if F X D U~Y and X, €U, then o!-‘(xo,h) exists IFF whenever h
isinX and h + Xy is in U,one has I’(x +h)-F(x ) = H(x ;h) + r(xo,h),“here
r(xo,th) = o{t),as t tends to Oyand H is homogeneous of degree 1 in h.If,in addit-

icn, OF(x.;h) is linear and continuocus in h,then the convention is to write
bF(xo;h):.—; DF(xo;h),and to call this the Gateaux derivative of F at XgyeVariants
of this definition are obtained if 'F(xj + th)-F(xO)' is replaced by

F(x0 + Y (th))e F(:vc0 +x(th)), ¥ and X being operators defined in the neighbour-
hood of 0 in X,and such that max { y(th)y x(th)] +0 as t-0.All of these variants
may be covered for symbolic camputation,provided that the 'actions' of ¢ and X

are specified explicitly.Next,if the condition L r(x +th) = o{1),as t-0' is
replaced by:' [ r{x;n) fl = o{llnll),as h-0 *,and ir H(x ;h) has the form
H(xo,h).__ df(x ;h) = L(xo)h swhere LiX—Y is linear and continuous,then '
F‘(xo) h—»dF(xo,h) is called the Frechet derivative of F at X, If F'(w) exists,
for w in W < X, then the operator, F‘ : wn».e(x Y) is called the Frechet derivative
of the operator F.(Here,&(X,Y) denotes th e space of linear operators on X into Y).

Since both of these derivatives,and others,to be mentioned,are defined(as they
must be) ultimately in terms of limits of quotients of real numbers--these real
numbers being th emselves determined by basic analytical/algebraic operations,depen-
ding on how the norms are defined,etc.~--their{approximate)representation,and
manipulation for symbolic analysis is quite feasible,in terms of the LIMIT opera-
tion,and others.Indeed,it is this relatively sophisticated analytical capability
that allows the use of symbolic analysis in most of the diverse applications
discussed in Section 15;though there are a few cases where purely algebraic opera-
tions suffice.

Clearly,if one defines @(t) as F(xO +th),then ©'(0) coincides with (')F(xo;h).
Weakertypes of'variation' and 'derivative' may be obtained,for instance,by using
the 'Schwarz derivative (analogous to the Cauchy Principal Value integral),defined

by: Q‘"(O)-- lim (2t) (2(t) -&(~t)),instead of ¢'(0).The following points
t-»0

are worth noting.(__aﬂ) .The Frechet differential is invariant to equivalent changes
of norm in X or Y;so that,in particular,all possible choices of noms,vwhen X and
Y are both finite-dimensional,produce the same collection of Fréchet differentials
(and the norm most convenient for calculation may be chosen at all stages)s
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jb!.'l'he most general differential that obeys the 'chain rule',and reduces to the

elementary form of differential for real-valued functions of one real variable,

is the so-called Hadamard differential,say, AF(xO)::: lim +(F o g)'(t)=:Lg'(0"),
} T t-0

for the ordinary derivative,',of the composition of F and a suitable function,g,
such that g(0) = Xyrand g3 [ 0,1 ] =X has a derivative,g',for which the limit as
t tends to 0" exists.The existence of the Hadamard derivative (ie.e.,of L) is
equivalent to the representability of F(xo +h) - F(xo) as L(xo)h + r(xo;h) ,with
r(xo;th) = o(t),as t tends to O. (c) Other notions that arise quite naturally in
applications include: emqui~diiferentiability (where the limits defining differen-

tials are attained uniformly over families of functions);differentiation along a
subspace(a generalization of standard,partial differentiation) ;and,potential
operators(modelled on the classical relation, df(x;h) = Vfsh ,and defined by:

di(x ;h):= ¢ n s grad f(xo) > ,where the angular brackets denote an inner
product,and,for f: X @ U= R, grad f{( xo) is the Frechet derivative of f at X,e
{d)Many of the notions of differentiability(say,( a),( B)yeso ) satisfy the
nonimplication conditions (@) ¥ (8) A (8) # (a).Moreover, functions differentiable
in some general senses are not even classically continuousl-—and there are many
unobvious snags and limitations.Nevertheless,once the basic framework for a pProb-
lem has been specified,the appropriate forms of differentials and derivatives
may be manipulated unambiguously,provided that the underlying conditions suffic—
ilent for their existence,and their basic properties are incorporated(as®theo-
rems' )as part of the 'environment for investigation',as discussed in Section 14.
(e).For mppings F: X— Y vhere at least one of X and Y is a( non~normed)linear
topoiogical space,the possibility of defining species of differentiability for F

wﬁ?ﬁ?&s on the definition of sets,A,N,comprising,respectively,"approximating maps' .
and "neglegible maps' ~-after which,F may be called A/N differentiable at Xg IFF
l‘-‘(xo +h) —-F(xo) may be written{uniquely) in the fomm -‘?h +Ph ,vhere { A,

3 €Nyand ¥ is a linear operator.This definition,however,is too general to be of
much use,so extra conditions are imposed--mainly,to ensure that the general
notions reduce to the corresponding classical ones,for real-valued functions of‘
one real variable.In this way,forms of differentiability are defined which,in
certain concrete realizations,may be useful in symbolic analysis.(See Averbukh

and Smolyanov(1967,1968) for details.Various results for higher-order differentials
and derivatives may be proved,too,along with several 'mean value theorems'( even

for some classes of mappings into non-nomed topological spaces),and variants of
'Taylor expansions'with'remainders'.
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In applications,a central problem is the determination of extrema of linéar‘
functionals{and,in more general cases,where one considers mappings into ordercd
sets different from R).The basic result here(originally proved by Weierstrass,for
mappings on subsets of Rk into R1 sand extendable,directly,to mappings into R1 of
compact subsets of normed spaces)is as follows.If U is a compact subset of a
normed linear space,and f‘:U-+R1 is continuous,then f attains both its supremum
and its infimume{with obvious modifications when f is merely——upper or lower——
semi-continuous).The further extensions of this result--suitably reformulated-- to
general topological spaces,mitlgates somewhat the awkward fact that scme of the
most 'matural' sets(e.g.,convex sets) in infinite-dimensional normed linear spaces
are not compact in the norm topology.liowever,by exploiting weak topologies in
reflexive Banach spaces,one can establish the existence of extrema,over bounded,
closed,convex subsets,and some noticns of finite-dimensional approximation may
be introduced--which offers possibilities for developing symbolic computation
routines for such problems.Other facets of this work include the use of various

‘implicit function theorems',for which the (approximate)}determination of the

implicit functions may be reduced,often,to problems involving mappings between
finite-dimensional spaces(indeed,the Liapunov/Schmidt procedure,as extended for
use in solving nonlinear operator equations,is based on this idea-~see Section

15. };the study of generalized boundary-value problems in Banach spaces{via

reduction to correspording constrained variational problems;and,the solution of

nonlinear operator equations,using a variety of iterative schemes,well-suited to
symbolic computation~-especially,where extra ‘parameters' are involved--but aimed
at eventual numerical results.(See,e.g.,Rall{1969),where detailed flow-diagrams

and programs are given --same of which are of immediate use in symbolic camputa-
tion,as well as - in numerical calculation).Lastly,there are diverse methods for
handling nonlinear programming,and other optimization problems,over normed linear

spaces.These include iterative schemes(e.g.,'gradient','descent',and 'steepest

descent' procedures—which may involve the estimation of'domains of attration'—
relative to various norms);least-squares approximation (where'generalized inverses'
play a basic part:see,e.g., Campbell and Meyer(1980),for many detailed,iinite-

dimensional procedures);and certain problems in optimal control,where constrained

optimization in function spaces is required.A unified,algoritimic presentation of
much of this material is given by Beltrami(1970).Another rich source of potential
effective procedures for symbolic computation in problems bordering on thisg area,
is Karlin(1959a,b),where a wide range of methods of use in mathematical economics
and game theory is analysed in such a way that approximation schemes for many
types of problems cculd be developed comparatively simplye.
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1507 Constructive conformal mapping of general,n~-connected domains.

The problem of mapping a given domain conformally onto another domain has many
facets,ranging from the most practical(e.g.,solving the boundary value problems of
classical mathematical physics—--see,for instance,Bateman(1932)),to the highly
abstract(such as the classification of Riemann surfaces--see,e.g.,Tsuji{1959)).
Although it suffices,in some contexts,merely to establish the existence of suit-
ahle. mappings,their detailed structures—especially,in relation to boundary prop; -
erties—have implications which are not covered at all by existence proofs;and,
In practical épplications,explicit repregentations are essential.Consequeﬁtly,
effective methods of approximation have been developed,mostly,with ultimate nuwner-
ical calculation in mind.However,some of these methods could serve eocually well to
determine sm@lic approximations to mapping functions,in comparatively simple
aralytical forms(e.g.,using polynomials,rational functions, truncated power-series
expansions)and various 'closed forms',from which the relatively simple approxima-
tions may be obtained by means of interpolation,uadrature,asymptotic expansion,
etc.—~all treated symbolically,as far as possibles A fundamental distinction must
be made between the cases of simply-connected{n=1) and multiply-connected{n >2)
domains.For 1-connected domains,the basic result is Riemann's mapping theorem,
guaranteeing the existence of a function mapping the given domain,D,one~to-one

and conformally,cnto any other specified,i~connected domain,D',in such a way that
a preassigned point in D(and a 'direction' there) is mapped to a preassigned point
in D'(with its chosen direction)--provided that each of D,D',has more than one
boundary point.The most convenient version of the theorem is obtained by taking
for D' the closed unit disc,and some of the proofs(see,e.z.,Bieberbach(4952) jcould
form the basis for constructive schemes,though not for efficient ones.From the
viewpoint of symbolic analysis,the crucial results(for determining mappings of
general n-connected domains)hinge on necessary and sufficient conditions for the
(uniform) approximability of functions of one class by(sequences of) functions in
‘analytically simpler' classes.Adequate results of this kind may be found in
Davis(1963) and Walsh(1966);more general cases are treated in Smirnov and Lebedev
(1968) «The possible use of amalytic continued fraction representations(e.g. sin the
guise of Pade approximants~--see,e.gs ,Geddes(1978) ,where ALTRAN is used)should be
borne in mind,too.For most of the techniques to be mentioned in this subsecticn,
see Beckenbach(1952),Kantorovitch and Xrylov(1958),Gaier(1964),Goluzin(1969),and,
Henrici(1979),where the use of Fast Fourier Transform algorithms is emphasized.
(See,also,the forthcoming book,*Volume III',by Henrici).
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The main result for n-connected domains(n>2)is as follows( see,eeg. ,Bergman(1950))
every domain of connectivity n may be mapped conformally(and one-to—one) onto

each of eight 'canonical d(mains—-say,D"l soos ,Dé,respectively(namely,concentric
circular slits annulusjconcentric circular slits disc;concentric circular slits
plane;radial slits plane;radial slits discjradial slits annulus;exterior of several
discs;and,parallel slits plane).Note,however, that many other 'image domains' may
be used in special cases;see,e.g.,Goluzin(1969).oreover,analytical procedures
may be given to determine the corresponding mapping functions in terms of the

Bergman kernel functions ,which are,in turn,constructible,for an n~connected

damain, 4 ,as KA(w,z):= EPJ.Z wiPJ.( z)-—subject to convergence criteria--vhere { PJ }

'is a relatively complete system of polynemials,mitually orthogonal over A (resp;,
over A)-—see,e.g.,5zego(1939).For 1~connected domains(for which the method was
developed first),the mapping functions,say,f and g,respectively,have the represen-

tations f(z) = I (AazA) and, g(z) = I (A ) ,vhere A i= K (Cb?f,)/!( (q,q),

@d I (H)._.f H( q,t)dt. These formulae are obtained from the following varia-
tional principles:(A).Of all functions f regular in D,with (0} = O,and £'(0) =
the( unique)function mapping D conformally onto the unit disc minimizes f l f'(z)l dz,r

and,for (B),replace the integral to be minimized by J‘I g‘”’(z)l dz, Either of these
oD

principles (and the resulting representations for f and g) could provide the basis
for an approximation procedure suitable for symbolic computation.

In the case of multiply-connected domains,there is still only one 'area',and one
'boundary' kernel function;but the various mapping functions,say, \IIJ. sonto the
canoni.cal domains,Dji sare deteminable from conditions of the form:

‘(w) )S(w) + J' (?;)Ks(w,&)d?; ’
where the ¥ j? I:].,depend suitably on parameters characterizing the canonical domainse

In principle,these relations may be used to generate approximations to the \13 ’
but several types of intermediate approximations would be required-—e.g.,for the
integrand,or for the eventual integration of the wj'(though,the powerful facilities
offered by variants of the Risch algorithm could be used here).The relations for
the V' may themselves be derived from variational conditions of the form(cfa,

Neh?ri(1952)):“'r,he function,f,with values [Ejo hjl{{l. 1(2z; @) maximizes the func-
tional of f',given by F¥{ '} :- lélz‘[HjoB](t)f'(t)dt L2/ r0) £ (1)] 2a0 v,
Q

He 1 i

re,the EJ. are memnmg_wtlons(mosuy,'log'), ¢ is a vector containing all
characteristic parameters,and the "j’ YJ and hJ.,are all known functions.Although
these conditions have the potential for providing'schemes to approximate the

mapping functiong,there are more efficient ways(at least,for n-connected domains,
if n >2) some of which will be mentioned nowe
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Apart from quasi-practical methods,based on 'relaxation',analogue computation or
graphical constructions{see,e.g.,Southwell(1946),Kantorovitch and Krylov(1958)),
which may be indispensable if,for example,the boundaries of domains are determined
only through experiment,and cannot be 'fitted' by analytical expressions,there are
several( interrelated)procedures in which the (real part of the) mapping function
is found from a (system of) integral equation(s).All of these schemes are covered
by Gaier(1964);but it is worthwhile studying one scheme here,to illustrate a
possible implementation for symbolic analysis.A particular application occurs in
extensions of the Muskhelishvili/Kolossoff{and,related) method(s) for solving
boundary-value problems in plane elastostatics--see Section 15.9 ,for this and
other methods. '

Let D be bounded externally by Lo,and intemally, by L1”"’Ln-;1 sa1l of the Lj
being piecewise smooth,closed curves.Suppose that a function,f,is sought ,mapping
D conformally onto the plane with slit;s,so,...,sn_1 sall of finite length,in such a
way that f(LJ.) = Sj,for' J = Oys4syn-1,and a preassigned point,zo,is mapped to oce
Then it may be shown that,if u (s} denotes Ref f{z)} ,for z on L, sthen the follow-

ing( 'Gerschgorin® )system of coupled integral equations is obtained for the u

n~4 »
uls) = e olzz) ™+ (1) 2, (1) G0 i[‘.rAcos(n,r)uJ.( c)ao,

J

where ¢ is the residue of f at zgsk = Ose0uyn-1, 8 is the 'Kronecker delta'

If Lk has the parametrization x = f‘k( t),y = gk( t), 0<k<n~1,for piecewise smooth
functions,f, ;8 ,on some interval, [ a,b ] ,then,in the general case,where 's' and
't' refer to points on Lj ,Lm,respectively(where J and m may be distinct),one
obtains the system of equations:

N4 b A
uj(s) =nf'=0{z ij(t,s)um(t)dt.f- ‘nj(s) swhere

ij(t,s):-.:[{fj( s)-f ( t)} g(t) - {gj(s)-gm( t) f;n(t:)]/(p.2 + B%) ’

Al= fj(s) - fm(t) s Biz gJ.(s) - gm(t).
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The structure of a program to implement this scheme for determining f may be
indicated,as follows.

Step 1. Specify the L _as parametrizations of some interval,say, [ a,b]e

Step 2. Determine thekkernels,ij,from the representations given in Step 1.

Step 3. Set up the system of integral equations for vu;e—uk.

Step 4. Specify an approximation scheme for'evaluating' the integrals in Step 3.

Step 5. Obtain a resulting system of approximating algebraic equations.

Step 6. Solve this system of algebraic equations(to obtain the values of the uk
at a finite number of chosen points of the boundary.

Step 7. Apply some interpolation scheme to determine an approximation to the real
part of the '.mapping function on the boundary.

Step 8+ Use a 'complementary integral relation'(and limiting operations)to approx-

imate the complete mapping function within the domain,and its imaginary part,on

the boundary. '

The storage and manipulation of these entities is falrly straightforward in most
of the systems discussed in this papef;thus,Steps 1,2 and 3 require no coment
here,though variocus care is required to ensure that the most favourable represen-
tations are realized.Notice that all of the kernels must be evaluated before the
equations can be set up,and that the parametrizations must be specified in a
convenient way,etc..The choice of possible{ symbolic)approximatiocns for the inte-
grals is a complicated matter(see,e.g.,Krylov(1962)),but,just to illustrate what
could happen,let the parameter interval be equipartltloned at P points, s (—a),...
seesSgseessSp 4(=b},and make the trivial approximation J‘ f(t)dt =(b-a/P) Ef(s ),
the summation over g ranging from O to P-1.With these prelmlmames,the follorwj_ng
system of nP equations in nP variables is obtained for the values ?f the uk 3:
the points sq: qu = ?n%ij;qumr' + nj ,\\her-e,KJm I ij(ai-P" gl b-a),arP  r{b-a)),
etc..From the {known)existence of a solution to the original system of integral
equations,it Tollows that the derive system of algebraic equations is{uniquely)
solvable.This step is by no means trivial,but all of the symbolic computation
systems have highly-developed routines for this procedure,so there is no point‘; in
discuusing it further here.The final problem is to retrieve(approximately)the
values of f within and on the boundary from the approximations found so far.It may
be shown(see,e.g.,Kantorovitch and Krylov(1958))that this may be done by means of
the formula:

41
f(z) =clz ~ z ) 1, tvg + (2mi)” E .I'fr: -z)" u"(?;),
J
where Yo is a constant,and u‘;'c denotes the approximation to Uy determined in the

preceding steps.This representation of f{z) is valid only for points z interior
to the boundary:to obtain boundary values,limiting operations must be used,This

is quite feasible,with the LIMIT facilities available in the more sophisticated
systems.Thus, the whole procedure is potentially viable,with a choice of approxi-
mation subroutines for which symbolic error estimate are known.
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Symbolic computational treatments of other systems of equations for determining
mapping functions may be developed analogously.

A quite different method,based on 'potential theoretic representations in terms

of boundary densities',was introduced by Symm(1966,1 967,1969)analysed more rig-
orously by Gaier{1976,1979),and by Henrici(1979).The crux of the method is that,

if f maps the 1-connected domain,D,onto the unit disc,and O&D,then,since | o z¢v )]
has the constant value 1,it suffices to determine ¢ ):= argf f{zf ))} ,for = eJ,
vhere the parametrization of 3D has the form T —z{t )--so that ¢,a so-called
boundary correspondence function,depends on the parametric representation of aD,_
as well as on-f,It may be shown that the solution,say, g yof the integral equation

JLog | z(0) -zt )£ )at = Log| z6)| , for ced,
J

has the unique solution £(7T) =¢'( T ).An extension to 2-comnected domains has
been given by Galer{1964),and numerical experiments have been performed; but,as
yet,there 1is..no. :_effective .. analogue of this method for general,n-comected
domains.Henrici's treatment assumes that ¢'(T) has a Fourier serie expansion,
and derives a set of recurrence relations for the coefficients,for which an iter-
ative solution is obtained.Even though no direct generalization of the method has
been found for n-connected domains,there could well be scope for interesting
exploration of this approach,using symbolic analysis~-especially,since Gaier{1979)
has shown that the existence theorem for the integral equation does hold in the
general case,

All of the methods mentioned so far involve linear integral equations(or else,
direct representations,e.g.,in terms of kernel functions);but there is another
technique,based on the use of 'conjugate periodic functions' ywhich leads to
Theodorsen's honlinear integral equation,from which the boundary correspondence
function may be detemmined for the function mapping the unit disc onto a given
domain{note the 'reversal of direction' of the mapping).The Theodorsen equation
may be put in the form(see,e.g.,0strowski,in Beckenbach(1952); also,Henrici(1979),
for a slightly different form):

$(0) =0 = «2x)7 [ [P($(047)) = B $( 0-7)) cot( T/2)dTw (),

where,assuming that 9D is 'starlike relative to the origin', 3D has the quasi-
polar representation: w = p( 6 )exp{ 1 $(0)} ,the point z = ei 0 son the unit circle,
being mapped by ¥ ,say,into pej' son 0D,so that, ¢ is any function continuous on
[ 0,2%] such that ¢(6) = arg {Y(ei e)} yand P is the single-valued,2 7 -periodic

function corresponding to the 'full parametric representation' »p(0) =expi{P(0)].
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The obvious iterative scheme for solving (*),namely,calculation of ¢k+1('6) by
using qSk_ on the right side of (*),has worked very successfully;but its rigor-
ous analysis is far from trivial.To give an idae of the sort of results obtained
(cf.,0strowski,and Warschawski,in Beckenbach(1952)),consider the following pair of
theorems which,together,constitute tools for the comparison of the exact solution
of (a generalization of) equation (*) with the Nth iterate,and with iterative
solutions of discrete systems of equations derived from (*).

{T1).The iterative scheme =b+ AG(v ) ,for the solution of the equation

v
k1
v = b = AG(v),where A is a . square matrix, v a real vector,and IAV { }vl sglves
a unique solution,for which l Vi~ v l <(d /1 -d) Iv - Vo l sprovided that G is

continuous,differntiable almost everwhere,and satisfies the condition lG'(t)|<d<1.

(T2).If the equation $(u) - h(u) = ~(1/2q) J ¢ A+ (Fo ¢ u)cot(t/2)dt ,
o

(in. notation for which the integrand corresponds to that in (*),but with 'P*
replaced by 'F'),is solved by a combination of 'discretization' and iteration,
and if myE and T are,respectively,the root mean squares of the functions ¢6. ’
h',and 'gs',l—'g'bo,relative to the mean Mfi= q"1 J;)q f{ A)dM, then one has

the inequality: | ¢, ~9 | < 204 -x)"1[ (m+ (4 ->c2)"1'r)3]1/2 ,(d being as in

(T1), and with the ' assumption lF'( ¢)| <1,for all values of ¢ )ePlainly,
there is an opportunity for the use of symbolic analysis in this scheme.

It is well known that,for a finite,n-connected,plane domain whose boundary is the
union of n disjoint Jordan curves,the Green's function,G,exists(see,e.g.,Tsuji(1959}).
Moreover,the conformal mapping function,g,of the domain onto a radial slits domain

is linked with G by the relation: Ref log 8(z)} = 2%G(x,y),for z:= x'+ iy;and
this,too offers possibilities for approximation procedures which could be apt

for symbolic aralysis(see,e.g.,Kantorovitch and Krylov(1958),for one simple scheme;.
also,Mikh1in(1957),for a useful dicussion of Green's functions,and of the general-
ized Dirichlet problem,for n-connected domains --on which effective procedures
might be based).In Gaier(1964),many methods are treated in detail,with error esti-
mates--some of the analyses being suited excellently to the development of symbolic
computation routines,in which the(symbolic)error tcrms are retained,and revised,
throughout each calculation.An application of finite elanent mehtods to coﬁformal
mapping may be found in Weisel(1979),where mapping problems are formulated as
(singular) variational problems,and studied with the methods of Ritz and Galerkin,
in a Sobolev space framework(including error estima_-tfg-s_)_;_
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Next,mention should be made of 'function theoretic,iterative techniques'('see,e.g.,
Gaier(1964),Chapter V), the comnon theme being the substitution of n successive
mappings of(in genefal,different) 1-connected domains,for the mapping of a given
n-connected domain.Although these methods—due to many different people,among them,
Koebe, Komatu, Hubner,Landau,Grotzsch,Goluzin,and Galer himself—are not efficient
for numerical calculation(at least,for n=2),their strongly function~theoretic
orientation,and the consequent rigorous error estimates,suggest that they may be
capable of adaptation to symbolic analysis(again,with many intermediate approxi-~
mations),even for general n—i.es,allowing n to be specified,along with any n—con—
nected domain to be mapped.The various schemes,and their associated error estimates,
are somewhat intricate,so no details can be given here;but the analysis presented
by Gaier is very adequate for further exploration,

Finaily,in this subsection,variational properties are summarised characterizing
conformal mappings of typical k-connected domains onto the canonical domains DJI ,
”"DS sas defined above.See Tsuji(1959) and Goluzin(1969),for more details.Al—
though it is not obvious how these results should be used,they could form a basis
for interesting symbolic analytical studies.First,let D* be an unbounded,k—con-
nected dom},&,_vxgh bounda\ry(Joxr'dan)cur'ves,c1 ,...,Ck,and let the univalent,mero-
morphic function,f,have the representation: f{z) = a5 + 2, z.'1 + eeeyin a neighbour-
hood of 2z=os. (In the interests of simplicity of statement,'max’ and 'min',are
used,sometimes,instead of the strictly correct,'sup’ and !inf').The expansion of
f(z) near z=0 need not be specified.The results will be labelled as propositions,

Playees,P6

Pl. Let £ oo-) = O.If D* is mapped conformally on D' by f,then Ref a} 2A/2% yuhere
Adsa p051t1ve lower bound on the total area enclosed by the curves C 5 «Moreover,
that function f for which a, has maximal real. part maps D* onto D' swith slits
parallel to the real axis.

2. Let £{0) = 0.If f maps D* conformally onto Dy(resp.,D}),then | £'(0) > 0
(respes, €0).In each caseyequality obtains only for the identity mapping.

P3. Let A be as for P1, J:= A/27K%,where Ki=max{ |4 ¢ ze Uy, } oI £ maps D*

conformally onto D% (rwesp.,D"L),then I f"(O)f >eJ (respe, € e"J). Further,if 1£{0)=0,
then the mapping f tor which l f'(O)’ is maximal (resp.,minimal),takes D* con-
formally onto D}S (r‘esp.,D,_'}).
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The next results refer to the conformal mapping of a domain,say,D,onto bounded,
" k-connected, canonical domains(i.e.,onto D} ,D'2,0’5 and Dé).It is assumed that D is
contained in the closed unit disc, that OeD,and that the unit circle and a

finite number of continua within it costitutethe boundary of D.

P4. If T maps the origin and the unit circle into themselves,and if f also maps
D conformally onto D'2 (r‘esp.,Dg),then | £1(0)] > exp( /2% )=-hence,also >1
(resp., <€ exp(~0a/2%)--hence,also <1),vhere o is any positive lower bound on
the total area enclosed by the internal boundary curves of D.

P5. Let T map the interior of D into the open unit dimm f(0) = O,and
suppose that some(free)component of 90D is mapped onto part of the unit circle.’
If,in addition,f maps D conformally onto D'2 (resp.,D's),then | f"(o)l is minimal
(resp.,maximal).

Lastly,consider mappings onto the 'annular domains' ,D; and Dé. Slightly more gener-
ally,let D be bounded externally by the unit circle,and,internally,by a concentric
circle of radius r,0<r<i,and by a finite number of continua between these two
circles.Let f map the unit circle onto itself,and the circle of radius r onto a

concentric circle of radius p.

P8, If f mapsD conformally onto D; (resp.,Dé) then o >reJ~-hence,also >r

(resp.,Sre'J-—-hence,also €r),for J:= B/2% ,vhere B is a positive lower bound .
on the total area enclosed by the 'continua'{assuming that at least one is a
closed curve).

As a parting shot,let it be remarked that,any domain bcunded by k continua may be
mapped conformally onto the exterior of k circles(see,e.g.,Bergman(1950)).
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15.8. Branching analysis for nonlinear operator egquations.

The behaviour of solutions of nonlinear operator equations involving 'external
parameters' can be extremely camplicated.Not only is it far from trivial to find
representations for the solutions;it happens,also,that particular solutions'split!,
or branch(or,bifurcate—a term with varying technical definitions)into two or

more separate solutions,as the parameters pass through certain values.The basic_
problem of the field is to identify all of these sets of ‘'critical values',to
characterize the type of branching behaviour associated with each critical set,
and to develop effactive methods for thel approximate)representation of the cor-
responding solutions.This,in its most general interpretation,is a vast undertaking,
covering many mathematical fields,and requiring a wide range of techniques.,Al-
though the subject was founded,essentially,by Lyapunov(1906),and Schmidt(1908),
its rigorous develoment is of much more recent origin,the main thrust coming from
Soviet groups centered on Vainberg,and on Krasnosel'ski (broadly,emphasizing 'series
expansions',and explicit operator calculations over Banach spaces),and from funda-
work by Hale and several co-workers in America(where concepts of singularity theory
are basic,and the structure of the 'zero-sets' of differentiable mappings is
monitored,by means of certain,effectively constructible functionals).Questions of
(perturbational)stability of the resulting 'bifurcation diagrams'( showing how the
~solutions branch,as functions of the parameters)have been studied in depth by

meny people(see,e.g.,Golubitsky and Schaeffer{1979),for a full treatment,and for
additional references).Practical aspects of bifurcation theory are considered in

a symposium edited by Rabinowitz(1977).A large bibliography of items bearing on

the singularity-theoretic aspects of bifurcation theory may be found in Poston

and Stewart{1978).There is much scope for symbolic computation in both of the

main approaches to branching theory.In particular,the papers by Chow,Hale and
Mallet-Paret(1975a,b),0f fer immediate possibilities for constructive schemes(see,
also,Hale,in Knopps(1977)).However,in the present subsection,attention is focussed
on the other approach,following the methods of Krasnosel'ski et al.(1972),and

of Vainberg and Trenogin(1974),which are especially apt for symbolic enalysis.Only
the barest outline is attempted here;I hope to study some of these matters in
future papers.



151

The method to be outlined here combines the original Lyapunov/Schmidt reduction

of the branching problem from an infinite-dimensional one to a finite-dimensional
one,with systematic use of (an extension of)the 'Newton polygon construction'( see.
Section 15.2,also)for the determination of the fractional power series correspon-
ding to the branches of algebraic and algebroidal functions.It is claimed(see
Chow,et al.(1975a),that this method cannot deal campletely with braching phenomena
in some casés where there are several parameters,rather thanjust one--this being )
one motivating factor in their work.However,the situation seems not to be clear-
cut,since Vainberg and Trenogin(1974) state{para.?4)that such extensions are poss-—
ible.A more serious problem arises from the essentially docal for of the solutions
produced by series methods,algorithms for'global continuation'being difficult to
fornmulate, though properly chosen transfonnations te new parameters may offer help
in this direction(see,e.g.,Rosenblat(1979)).The principal aim of this subsection is
to sketch the forms of several symbolic computation raitines required to cover
applications of the series method to a wide variety of problems;detailed implemen—
tations of these routines would be quite feagible,using some of the packages
described earlier in this paper,though they present a formidable challenge to
designers and users alike.

~ The Lyapunov/Schmidt and Newton polygon methods may be combined to provide a power-—
ful,general procedure for determining the 'small solutions'(i.e.,those sclutions
that are continuous,and vanish at the'origin')associated with the following types

of problems:systems of implicit functions; systems of nonlinear integral,and integro-—

differential equations of the Lyapunov/Schmidt type; integral equations of general

type; singular integral equations; periodic solutions of nonlinear{ordinary)differ-

ential equations; problems in perturbation theory; and,nonlinear ecuations invol-

ving operators beween Banach (sub)spaces. All of these classes of problems are

treated,formally,by Vainberg and Trenogin(1974),using a uniform method.The result-
ing computations are,however,so vast and unwieldy that only with the intelligent
use of symbolic computation can they be accomplished at all,in nontrivial cases.
Thus, this area furnishes an excellent testing ground for the power and versatility
of symbolic amalysis systems,When a single parameter is involved,all of the above
classes of problems may be subsumed in the the:following,general problem:

Find all small solutions of the equation Eﬂj.kx'i ?sk = 0 ,as(fractional)power series,

say,xj( A),the sum being over all nomnegative integers,i,k,such that i + k21.It
o1 7and F, 2= = B,and to write Fip Jitkl ,for
Hik' In these terms,B is a linear operator between Banach( or,topological )spaces

is convenient to separate the terms F

E and E, ,Fme E1, A is a scalar parameter,and the Fik for i + k22 are the(F;echet)
partial derivatives of order i in x and k in A,at x = 0, A= Oj;this generalized
Taylor series is studied in Hille and Phillips(1957),and Lyusternik and Sobolev
(19 ),for instance.



152

Let the basic equation, Bx = F01 N+ ZFlk xikk (i + k22),be denoted by (*)+The
main problem for the solutions of (*) may be reduced(by means of an extension of
the Lyapunov/Schmidt procedure) to that of finding all small solutions of the
corresponding ( system of) branching equation(s),which have the form:

(1 k i k
(e*) 2, L(’Jro (g )r + 2, LsJ;rk ( E,j)rh =0,

where (p)P - denotes the nmlti-index,p1_ see P, (0 q)r stands for the product

% | o
1 ...ngr ,211'\33 K1+ooo+kr >2,and 22 haSJ1+ooo+JP 0.A11

realisations of (*#) will be subject to these conventions,which will not be repea-=
tedsIt is for (**) that the methods based on Newton's polygon are developed.The
connection between (*) and (**) is,explicitly,as followssthe multiple 'power series',

defining a function of A by wih)i= 3, T (E’h)r AKX (where 35 is subject to
A o

the condition hy + ee0 s h.+k >0, and the ES are (fractional power series)
solutions in A determined from (**) scontinuous,and vanishing for A=0) gives all
small solutions of (*),provided that all combinations, ( Eg‘})... R E:‘,E,i)) of small
solutions of (¥**) are used in forming w(A)yand the superscript,(i),takes the val-
ues,1,ese,r,in turn-~so that (**) is,in general,a (finite) system of equations.

The plan now is to outline the symbolic computational programs which(in principle)
 could implement the compound procedure just described,in various contexts.First,it
is necessary to explain the Newton polygon method,as it is used here.let I be a
function of two canplex variables,locally expressible as a dcuble power series in
these variables——about any chosen point,(a,b): f(zy) =EAOB(z-a) & ( g-b) 6,t,he
minimal value of 8 being >2.Then,the standard implicit function theorems give no
information about the solvability of the relation f(z4) = O,for either of the
'variables' in terms of the other.Instead,a method originally due to Newton(1 969(1)),
having a distinctly geometrical flavour,may be used to derive all possible expan-
sions for the required solutions.If all of the pairs of exponents, a.f3 are plotted
as points in the plane ,then a polygon is determined by the convex—down hull of the
points ( a, B),relative to the origin.Thus, this is,in general,a polygonal line,
rather than a closed polygon;but, together with the two axes,the hull does define
a closed polygon,provided that only the 'descending' part of the hull is takene
As it turns out,only this part of the hull is relevant for the determination of
small solutions(and it has always only finitely many vertices) «By convention,if

several of the points are colinear ,the maximal possible number of them is taken
to define the side of the polygon in cuestion.
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Let ( Gys 61) and ( Qos Bz) be the end points of a segment of the Newton polygon,

( a, B) denoting extra points on this segment,and { a*, B'),all other points
corresponding to the series expansion of f(z/%).By expressing the expansion

as a sum of three parts,corresponding to this system of labelling,writing the
equation of the segment containing ( &, B) as ra + sP = p,and setting(if B>B,)

A ubi-By + 2 Acﬁu B‘ﬁz + A tm %{u),one may show that the equation

a4 @3B
defining the implicit relations,namely,f(zZ) = O,takes the form L y(t,u) = 0,

where Y(t,u):= X(uu 52 + t®(tyu),where m{t,u) is a polynomial in t,u.Xfx is
any simple zero of X ,then the usual form of implicit function theorem ihplies

that u has a unique expansion of the form u(t) = % + et + «.. (assuming that -
the substituions z = a + t's 'C:b;-;-u_ts Lhave been made to obtain the form Y(t,u))e
In this event,one hag, L= b +x%t° + et™

zero of % ythen the whole procedure nust be re-applied to V(taken to be expan-

+ ees oIf,however, ®x is a multiple

ded about the point (0, ® )~-this process being repeated until a simple zero is
encountered.(See Bliss(1966) for this version of the construction,together with a
proof that it covers all possible solutions).Vainberg and Trenogin analyse the
polygon procedure in considerable detail,in order to identify special cases for
use in applications.In what follows, various - schemes,sk,are given as outlines
on which symbolic computational algorithms could be based.Taken together,these
schemes cover the full range of applications of the central method.The potential
algorithms are either treated directly(albeit,fommally)in Vainberg's work,or else,
they may be constructed,using fairly straightforward procedures-—the more urgent
matter being their efficient implementation in a symbolic computation systeMich
must awalt future experiments,

81 tSome preliminary reductions.

This,and the next,scheme refer mainly to the determination of sets of implicit
functions from systems of nonlinear equations.,When the implicit functional rela-
tionships are expressed in terms of functions analytic in all of their arguments,
the corresponding branching systems may be put into the form

(") @j.( E,,‘ poo ey Em;x1’n.o’xs) = 0 ’for i = 1,000,“ 2

where m,s and n are determined by the conditions of the problem,theuzrl“are
analytic in all variables near the origin,and vanish there,Although this is a
somewhat specialized version of the general type of branching system,it turns

out that many of the apparently more complicated cases may,eventually be reduced
to this formMoreover,the case s = 1 occurs more frequently than the rest.For ("),
the basic problem is to deternmine the E’j as continuous functions of the xk »

vanishing at the origin.When 3 = 1,it is convenient to put X =t A,
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For the application of Newton's method,it is useful to transform the & i into

certain special forms.Firststhe system (") is said to be regular relative to & . ,
if (for n = 1),the terms independent of M may be put into the form g, 3 g Joj +

cee + 51...., g },where Q contains no power of Ej alone,and €5 £ 0. A func-

tion of the form G( Efrenes Em, M) is a pseudopolynomial in Ej,if' it may be

written as Eg-g- Hq__1 E:'.;.H + ees + H EJ. + Hy,where ¢ 2 1, and all of the H_ are
analytic at the origin,in the variables gh .for hyfor h £ j.If,further,all of the
Hr vanish at the origin,then the(pseudo)polyncmial is called distinguished {of

degree q) in E_,J.--any choice of j from the numbers 1,...,n being allowed. It may be

shown that 1he;‘e exists a nonsingular,linear transformation of the vector, é >
taking the system (") into regular form relative to all of the & 3 ;and this
transformation is constructible,in many cases.Thus,the first step in scheme S1 is: )
To construct({if possible)a 'regularizing transformation’ for the given system,{'").

Next,two functions,F and f,are called equivalent ,if F = fg,where each of F,f,
vanishes at the origin,but g does not vanish there.Clearly,the systems of func-
tions fi and Fi,i = 1,sees,n,are equivalent for small solutions,provided that f‘1
is equivalent to Fi,f‘or each i,in the sense just defined.If a regular branching
system is transformed into an equivalent form,in which each function is a distin-
guished (pseudo)polynomial (relative to the same variable,say, E,J.),then the trans-
formed system is said to be in normal form (relative to & j)‘A constructive version
of the Weierstrass Preparation Theorem(see,also Section 15.2)may be used to
effect this transformation,and this is the second step in scheme 5, .Several vari-
ants of theseprocedures are possible,and the case where n>1{so that all of
the E’j mist be detemmined :as functions of n variables,instead of just A) may

be treated algorithmically,in certain circumstances,though the critical case is

n = 1,for general aprlication,and,in what follows,it is assumed that algorithms
to effect the necessary transformations have been implemented. ‘
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82: Evaluation of the resultant in the case:m = 2 = n.

This a special case,but it is of interest for potential symbolic computation rou-
tines.One starts from the system of equations <I>1( 51 , Ez, A) = O,for i = 1,2,
where the ‘bi are analytic near O,and ord d?i( 51, EZ,O) 22 (i.eq,that

o g1 , E,z, A) = o 7\2),as A ~0,the "O-constant' depending on the other variables).

Assume that the system is reduced to normal form Gi( z, ,22, A) = O,for i = 1,2,
where the Gi are distinguished polynomials,and form the resultant~-say, ‘1’(22, A)Ye
of the G;,relative to z,,over the ring, X[ zy» M ]] which is a unique factoriza-
tion domain.As is well known, this resultant may be represented as a deteminant,
whose entries .’ are the 'coefficients' from the ' polynomials' Gi,together with )
zeros,all in prescribed locations(see,e.g.,Van der Waerden(1949)) .(Since several
of the packages discussed in this paper have a ‘resultant facility',this step
should not cause undue problems—--except,as usual,in sirﬁplif‘icationv.momover,it
may be necessary to introduce approximations at some stages of this evaluation; -
but,this is in line with the philosophy adopted here,provided that adequate esti~
mates are available for the errors incurred).In order to produce tractable out-
put,it may be possible to represent ‘I’(zz, A) as a(double) truncated power series;
for,only small solutions are required,and the relevant properties of Newton's
polygon,as applied to ¥ ,are fixed by the terms up to some finite order{ determined
by ord ‘F(zz,o),and ord¥(0, A).Thus, the aim of S, is to produce output of the
form:?’(zz, A)a Zpkh zg Ab »for k = 0,...,K and h = 0,.,.,H,say.In the applica-
tions,the highest(nonnegative)power of A that can be removed as a factor,say, ?xo,
is used to define a 'reduced'resultant: 7\01?"(7.2, 7»)::‘?(22, A )--s0 that,the approximaw .
tions introduced to write ‘?(22, M) as a truncated power series produce correspon-
ding approximations for R*(zz, A

The importance of R* in the analysis of solutions of the ox_*iginal operator equa-
tion(which takes the form of a pair of functional equations in the present case——
call them (+))is as follows. (a)The system (+) has only finitely many small solu-
tions IFF R¥( Z,, A) does not vanish identically:(b)If R*(0,0) = O,then the compo-
nents,z1( A) ’22( A),of all small solutions of (+) have convergent( fractional)power
series representations of the forms:

z,(A):=3 b(v‘;.)xj/'{: of\here Z:(z“).(v’.?\..);;:: b auili is the standard

power series representation for 22( A),the T, are integers,and 1€ v < h $5aY,
for p=1,ees,L,and each of 4 , Jd» goes from 4 t0 oo (c)If R*(zz,l) vanishes
identically,then (+) has one or more families of small solutions(together with a
finite collection of small solutions sassociated with the splitting of‘ithe d'?i into
nontrivial factorg—which the vanishing of the resultant guarantees),
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The role of scheme 82 is to test whether R"(zz, A) vanishes identically(by finding
a suitable representation where cvery tem is demonstrably Ojor else,by verifying
that this occurs”f‘or all tems up to some prescribed order—-though this is not
conclusive);or,al ternatively,to identify a pair zps ¥, for which R"‘(z'z, AY) is
nonzero.Again, the value of R*(0,0) may be found,and,if this is O,and condition (a)
-holds,then one knows that there are only finitely many small solutions of (+),

and that each has the representation given in {c¢)--from which,in some cases,the

_ unknown coefficients may be found,recursively(in conjunction with the infommation
obtained from consideration of Newton's polygon:see scheme 83).‘,&hen a;)proxi.mate
solutions can be obtained from (c),they must be cast into forms suitable for use
in other stages of the calculations.Since several packages have good facilities
for handling truncated power series,full advantage must be taken of this mode of
representation.

SS: Special cases of Newton's nolygon,

The main task of this scheme is to test for{and then apply) certain conditions on °
the coefficients of the (truncated)power series associated with the &iven operator
equations--and with entities derived from them as a result of various types of
approximation procedures.These conditions are analysed,briefly,but systematically,
by Vainberg and Trenogin,and it is a straightforward matter to incorporate expan=—
ded versions of their results into a general scheme, in such a way that the jimpli-
cations,for numbers and types of small solutions,are readily available.It

should be possible to include additional examples whenever this seems desirable,
so that the potential range of application of this scheme is maximized.Further,

it should be noted that,when the given conditions involve coefficients of the
branching system other than the veéry eurly ones, the corresponding number of
possible configurations for Newton's polygon becomes large;so it is necessary to
construct routines for deriving the properties of sgolutions associated with

each configuration.This,too,my be acco_mg_l_ished( at least,up to a fairly high

order of coefficients);though much experiment will be required to arrive at satis-
factory routines covering nontrivial cases.As mentioned before,even the 'low-
order configurations' yal though apparently simple,have important impl ications for the
solutions of sorhisticated problems(e.g.,those involving integro-differential eaia-
tions),since such problems give rise to approximations for which the basic configur-
aticns determine the behaviour—-with regard to the nunber,and type of solutionse.
Consequently,it is highly desirable to have efficient implementations of the

basic routines corresponding to conditions on the low-order coefficients.This,
then,is the primary objective of scheme S3



S4= Formation of branching systems for sets of implicit functions.

In S3»it was remarked that the application of 'special cases of Newton's polygon'
gives vital information about the number amd form of small solutions,in all types
of operator equations—but,especially,for operators corresponding to the solu-
tion of a set of implicit functional relations.However,the problem of actually
obtaining the branching system must not be overlooked,as it is one of consider—
able complexity,in all but fairly trivial cases.Indeed,most of the other schemes
to be mentioned in this subsection involve,principally,the formation of the bran~
chi_rlgggsually,in some approximate representation) for various classes of operator
equationss In the present case,the general form of the branching system—Aif the
functions determmining the implicit relations are analytic in a neighbourhood of
the origin--i.s: <I>1( 5’1;""’ Em;x”...,xs) = 0,for L = 1,.se,n;and the case of
greatest application has n = ‘l,x\1 s=A.However,for the purposes of a symbolic compu~
tational scheme,the general case should be covered(the aim being to obtain,ultimate~
ly,a collection of truncated Taylor series representations involving all of the
above variables--to prescribed orders);after which the deductions based on special
cases of Newton's polyzon(scheme Sz ) may be made-~along with attempts to determine
sufficiently many of the unknown coefficients associated with the expansions

given in scheme Sz(c).Ultimately,trumated fractional power series are obtained
for the various possible solutions indicated by the results of applying S3 in
this case.,All of this may be accommcdated naturally within a symbolic computation
package,

In what follows,an idea is given of how the branchiné systems for various types of
nonlinear operators may be obtained in approximate forms suitable for symbolic
analysis.Details are kept to a minimum,but a certain amount of notation is inescap-
able.There are,always,two separate stages:first,the formal specification of the
branching system,with unknown coefficients,and second,the {approximate)determina~
tion,using recursive procedures,of these coefficients.Only after.  this is it
possible to analyse the resulting branching system({using,e.g.,other schemes,s )
in order to discover the number and nature of its small solutions—-and hence,of
.the small solutions of the original operator equations.In all cases,the problems
encountered are very suitable for symbolic analysis,and t_he treatment offered by
Vainberg and Trenogin,while totally impractical without symbolic computation,is
yet excellently fitted for development into approximation routines.The notions
of Krasnosel'ski et al.(1972)~-especially,those revolving around the idea of
approximate branching sys tems--may be used,too,in arriving at satisfactory ver-
sions of these routines,
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SS:Branching systems for { sets of.) integro~differential ecuations.

'As for all of the rore general classes of equations,the aim is to bring the bran-
ching system into a carionical form,so that its small solutions may be identified,
and then detemined,appr'ox.imately,using Newton's polygon method.A crucial part is
played by the linear part of the nonlinear operator, through the distribution and
muliplicities of its eigenvalues.For linear operators, the bifurcation points
coincide with the eigenvalues;and,for certain classes ofnonlinear operatoi‘s,it
may be shown that every point of bifurcation is also an eigenvalue.A technique
introduced originally for dealing with linear integral equations,may be used to
modify a linear operator,A,to AA,in such a way that a given eigenvalue of A is
Dot an eigenvalue of A ('Schmidt's Lemma').In the case of integral equations, ’
where Al means [Kf,for some kernel,K,an eigen value, |t ,of order N sWith correspon-—
ding,linearly independent eigenfunctions, ¢ ETLY ¢N,orfthonorma1 over the given
domain,and ‘'associated eigenfunctions' , 1111,..., WN,of the the adjoint operator,A*,
for the same eigenvalue, [4,0ne replaces K by K,where K(u,v)i= K(u,v) - Eui(u) Wo
For general operators,an analogous procedure is followed,This representation of

the modified operators is basic in the formation: of their branching systems,as the
following sketch indicates.

The equation to be studied may be written in the form:
(*) (I -Au =I".01(s;v) +3 I‘mn(s;u,v) ’ A
where I is the identity operator, Aui=[Ku, I'O,I(s;v):.—. KO( s)v(s) + fK1(s,t)v( t)dt,

and l‘mn(s;u,v):= ﬁj‘ ...J'K(v)(s,t,l,...,tr)u(s)av(s)bnu(tj)aj V(tj)l?j dt1...dtr, .

all integrations being over a basic domain,say J,the product going fromt to r,

and the sum over v from 1 to some value Nr.If,in addition, the conditions a + a1+...
oot B =Ty bt by 4 oees b, = n,hold,then I'(s;u,v) is called an integral

power form of order m,in u,and n,in v.The sumation in equation (*) is taken over

all myn such that m +n #2;and this constitutes an integral power series.The exten—

ston of these ideas to the case of several functional arguments is direct;and
substitutions of such forms and series into each other may be effected in the
obvious way--subject to convergence requirements,The kernels,Ko,K1 ,K(v ),are
assumed to be continuous,real~valued or complex-valued functions over appropriate
cartesian products of J with itself.



159

With these preliminaries,the method may be summarised briefly.If 1 is not an
eigenvalue of the operator A in (*),then,it may be shown that {*) has a unique
solution,continuous over J,expressible in the form U(s) = ZVl(s;v),wl'\ere
V1=1‘01,the other VJ. are integral power forms in v,and it is assumed that

the condition |V1(s;v)l < & holds,for a suitably small number, & .Suppose,now,
that such a solution has been analysed,and justified rigorously;and that an equa-
tion of the form (*)Nis given,for vhich 1 is an eigenvalue of order N of the
operator A.There is no problem in constructing well-regulated approximations to

the unigue solution when 1 is not an eigenvalue of A,and this is the first task

to be included in scheme 85.11; is camplicated,but poses no special problems of
principle,so it will not be discussed further here,beyond saying that a recursive
scheme may be given for detemining the Vi,and that this scheme may itself be
adapted for effective symbolic computation. Let the kernel in (*)N be modified
(using Schmidt's procedure)so that 1 is not an eigenvalue of the modified kernel,
say, K,derived from K,and denote the corresponding modification of ("‘)N hy (*)5’,

and the eigenfunctions associated with 1 for (*)N,by th, "l’h (as before).Next,
define parameters Ej,by EJ.::J'u( t) ¢ (tldt,where u is now the unique solution

of (*)5’-—which depends,in turn,on all of the Eq,and may be obtained(approximate-
ly)by treating (*)('; as linear equation in u (i.e.,ignoring the occurrence of u
on the 'RHS',to a first approximation),introducing the corresponding Fredholm
resolvent,and using this to represent the solution,say U,as a function of s,
with 'parameters' &q.By substituting U into the defining relations for the—%& q"

(and by putting v{s) =: 7\.v0(s) swhere v, is any suitably chosen,'fixed'function)

one derives®consistency cenditions' of the forms
&y S [ 2ERTE) + hgls) 2 ) AMIEN T De (+0),

where 2' is from 1 to p,and 3",for R+ oo+ np 2 2.The equation from which

U is derived by successive approximation may be written as:

wWs) = Z2E. ¢ (s) +rgls) + = APsg (s,t)d™(t)dt
"R M +m+n>2 5rm“ ’ ’

after the introduction of A(so that only the power forms in u are involved,
effectively).
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The conditions (**) may be rearranged to assume the form of the general bx)‘anchlng
(i

system;in particular,all of the'branching coef‘f‘icients‘,L(i) n 0,and Ln n K
1... p

1 s e p
may be identified.Accordingly,the basic steps in approximating the branching
system in this case are as follows.(1i)Reduce the givenkernel in the 'linear

part of the equation' to a kernel for which 1 is not an eigenvalue.This may

involve several types of approximationguut the techniques are familiar,and should-
not present serious problems for symbolic computation.Call the new( approximate)
kernel so obtained K*.(ii)Form the resolvent of X*.This also,requires the use

of various approximation procedures-~tne final result being a truncated double
power series.Again,no special problems should arise,though the determination of
error estimdtes is essential).Moreover,the 8 MYy not be determinable exactly,
and, in any event,only finitely many of them can be used--which introduces certain
approximations even befor the resolvent of K* is formed; but,all of this is OK, too,
provided that adequate error estimates are obtaingd_.( :tii) Use the approximate

form of (**) in the defining relations for the E,J..This is a matter of substitu-

tion and simplification,making high demands on any system handling it.The 'coef-

ficient functions',a .n k( s)ymay be found recursively,and the approximations

ny

involved here may include those required to evaluate the integrals,as well as
others inherent in the recursion procedure itseif.Even if these integrals can be
evaluated exactly,esg.,using a variant of the Risch algorithm,the results may be
too complicated for further calculation to be practicable.Consequently,some kind
of approximate integration may be desirable~-—either by using a quadratue proce-
dure,in 'symbolic form' sOr else,by approximating the intezrand,and then perfor-
ming the integration exactly( see,ee8e,Ng(1979) for some comments on this idea).
(iv)Denote the approximately determined branching system by (**#),This will have
the form of a truncated multiple power series in the If;j and A ,for which the

coefficients are the 'approximate branching coefficients'.It may be seen that the
Newton polygon method{used in conjunction with scheme SS) yields information as
to the number and type of the small solutions of the original equation.Thus,the

next step is:apply SS'

In the interests of simplicity,all of these steps have been summarised very brief-—
Jy.towever, the detemination of the (approximate)branching coeffricients,although
straightforward mathematically,constitutes a major computational problem, for
which very large resources are required.Basically,one must detemine the functions

a
n
1

ponding sets of functional recurrence relations are given in some detail by
Vainberg and Trenogin,but they are not solved-~even partially.It is here that

veesD k,recursively,before the branching coefficients can be found.The corres—
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symbolic computation is indispensable.The possibility of recursive determination

of the a, n is assured because each'coefficient' depends,in a suitable way,
1000’ p

only on those with 8lower sets of subscripts'.All of this may be adapted for sym—
bolic analysis,fairly directly.

(v)The next stagze of the solution procedure consists of substituting formal( frac-

tional)power series in N —one collectjon for each set of values of the EJ. -

into the original eqation(s),in order to find the unknown coefficients in these
fractional power series.It is here,above all,that the information derived from
Newton's polygon,used on the branching system,is crucial,since it guarantees that
a golvable system of recurrence relations is obtained.Without this prior infor-
mation,it is by no means clear that any set of relations obtained by uninformed,
' sausage-machine tactics' would be solvable at alljand it might be necessary to
do a great deal of computation before this unsolvabiliﬁy manifested itself.Thus,
in spite of the fact that the mere detemination of (approximate) branching sys-
tems involves much calculation,without this preliminary activity.no rigorous mode
of solution is possible.It follows that,th_e___gssential task,for all sophisticated
symbolic computation in this area(and,indeed,more generally) is to find sufficient
conditions for the compound approximations used to provide adequate information
for the meaningful characterization of small solutions of operator equations.

The extengion of these methods to certain types of integro-differential equations
is comparatively direct.If only the first derivative,Du(s):= du(s)/ds is involved,
then the introduction of extra integral power forms,say ¥{(s;u,Du,v),allows the
previous calculations to be imitated to the point where(approximate) branching
systems are derivedsIn principle,by using terms of the fomm A(s;u,Du,...,DpU:v),
a formal theory analogous to the one already given may be obtained;but there are
analytical difficulties hidden in this prescription,which must be investigated in
each case separately.Again,the original equation may be 'Djtx_(s) = »os ',2and this,
too,may be included in the scheme outlined here.Many variants of the procedures
Just described could be given.In particular,Krasnosel'skii et al.{1972) offer a
more succint presentation( though,an equivalent one),and(as mentioned above),a
formulation of 'asymptotic approximations of branching systems',which will be
valuable in the general investigation of branching phenomena for nonlinear equa=-
tionseIn the resﬁaim'.ng 'schemes' of this subsection,a much briefer sketch is
given of applications to other types of equations.
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Ss:Brancmng_sxstems for periodic solutions of(sets of) differential equations.,
Only a very brief outline is given heres.The basic equation is of the form:

dx = £(t,x) + Aglt,x, A) (*)

dt
where each of f,g and x has n components,and f,g are jointly continuous in all
variables,and w-periodic in t;while, f is holomorphic in x,and g,in x and
so that,each has a (multiple) power series representation.It is assumed that (*)
has an w-periodic solution,say ¢ ,for A = O;and the main problem is:to find
w=periodic solutions, ¥(t, A),such thatx,;(t,o) =@ (t)sThe branching systems fTor
this problem are derived from Poincare‘ 's solution of the initial value problem
corresponding to: x(0, a,A) = ¢(0) + a,in the fom

xtya,) = 6(t) + x(t,a,N) (**) ,
with X holomorphic in the components, Oypeeey a.n,of ¢ —and,hence,representable as
a {truncated) power series,whose coefficients may be found by equating the coef-
ficients of 'like' monomials in Gyseses Gy K.Th.l? produces a recursive system of
differential equauons for the x—coeffic.ments,ch knk ,wiﬂj the initial con-
ditions. s . ck,-n,khk(o) =1,iT k, =1 and kJ o rfgr _J-,é i,k =0;and =0,0ther-

wise.Since the solution (**) is periodic in ®w IFF % is,it follows that (**) is

w=periodic IFF each component of %X satifies an initial condition,namely:
xi(w,u.,l)-_-qS_i(O) -a; =0 (ve2),

If the maximal nonnegative power of A is divided out of (***),then the resulting

system,say,(***)',has the form ‘P’l( Gypeessr @ yA) = Oyuhere & = 1,0ee,n,and the

functions V¥ 1 are holomorphic at the origin.The following result may be used now.

Theorem: the small solutions of (*) and (***)' are in one-to-one correspondence.

In order to derive a branching system,let M denote the Jacobian matrix of the ¥ 3

relative to the o.k-—evaluated at the origin,and let r be the nullity of M,so that,
n~-r unknowns may be el iminated,nontrivially,from the conditions (***)', to procuce,
after redefining,and,possibly,relabelling, the variables,the 'reduced system'

& (Egperes o) =0 (sre)0

for J = 1,eee,r ywhich,if put in tems of a (truncated) multiple Taylor series,
has the canonical form for a branching system.
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Thus, scheme S6 must include routines to perform the following tasks(with adequate

error estimates at each stage).(1)Given (*) and (**),determine(approximately) the
functions ¥,.(1i)Construct the matrix,Ms(1ii)Find the nullity of M.(iv)Perform

the elfmination converting (***)' into (***)".(v)Convert (***)" into a form suit~-
able for the application of the other schemes,sk.

This sort of treatment may be extended to . ~{nom)autonomous systems;qasi-lin-

ear systemsjequations having singular solutions(in the sense that 1imll x(t, A )|l wco);
’ -0

and,solution of equations involving Banach spaces(see,also,scheme S.I).Somc Ques=
tions of stability of solutions may be considered,to0.All of these procedures are
-amenable to interpretation in forms suitable for symbolic analysise.

s.,: Branching systems for operators between Banach spaces.

Here,there are two cases to censider:those of Fredholm operators,and of (singular)
Noether operators.In both cases,certain finite-~dimensional subspaces play a basic

part,and the use of bases in these spaces makes it possible to derive branching
systems analogous to those found in less abstract settings.Thus,a full,approxi-
mate tretment is feasible.This general framework may be shown to subsume many
special problems of practical interest,including:singular(nonlinear)integral
equations with 'Cauchy' or 'Hilbert' kernels;second-order elliptic boundary-value
problems with parameters,subject to 'Dirichlet’ ,Neumann', or ‘directional deriv-
ative' boundary cixxditions;md,certain Nth~order elliptic boundary-value problems.
The symbolic routines from Section 15.6(calculus in Banach spaces)may be used both
in this work and in 88( perturbation calculations),as well as in several other
types of applications dealt with in this paper.Indeed,this 'cross-application' is
one of‘ the prime aims of symbolic analysis.For instance,in Section 15. ,some
possible routines involving bases in Banach spaces are ccnsidered;and the poten-
tial use of these routines in studying nonlinear operators between Banach spaces,
and in finding 'best' approximations for functions into such spaces,is of great
interest.Moreover,each of the special problems just listed has an associated
branching system,which may be put into a form sufficiently concrete for computa-
tion.The details are somewhat technical,and are not given here;but the defini-
tilons of Fredholm and Noether operators are worth giving,since they include defi-
nitions of the associated finite-dimensional subspaces,on which the computational

treatment 1is founded,for S7 and 38‘



164

Let ¥ be any element of the Banach space of bounded linear operator between the
glven Banach spaces E; and E,,and denote by N(¥) the kernel of ¥ (i.e.,the
inverse image of the zero element in E, )eIt may be seen that the dimension of
N(¥) equals the number of its linearly independent elements.The operator Y is
called normally solvable if either{a): the equation yYx =h is solvable for any
h in Ejjor else,(b): & N (y) < EY (and 4 {0} ) such that 'yx =h ' is solvable

IFF VY& N(y) < ¥,h> = O,vhere the angular brackets stand for !the value of
¥ at h ',and E“é denotes the space adjoint to E,eIn these terms,y is a Fredholm
operator if dim N(y) = dim N*( ¥) = n,say,shere n is finite .In this event,each
of N{ v ),N*( ¥ ) has a basis consisting of n elements.If,instead, the dimensions
of N( x.),N*( v) aAre,nespect.Lvely,m and n—-finite but distinct Invegers—then ¥y is
called a Noether operator .

As is well known,many of the classical results involving implicit functions may
be extented to 'calculus in Banach spaces,and branching theory is concerned with
monitoring the solutions of equations of the form F(x,y) = O ,for suitably anal-
ytic functions, F: E x E -»52 swhere all of E 1 »E and Ez are Banach spaces.In this
setting,Frechet derivatlves are prominent,and the most basic result is a natural
exténsion of Taylor's theorem,There are,also,'implicit operator theorems' ,vhich
guarantee the existence of a unique solution,say, x{y),under specified restric-
tions(analogous to the classical ones).In view of the part played by the finite-
dimensjional spaces N and N*,the routines in 57 must cover aspects of both linear
algebra and snalysis.As usual,the primary aim is to obtain reliable approximations
to the branching systems,in varicus cases,in representations allowing the applica-
tion of routines fmm other .,chemes,s ,vshich means that the representations must
be as ooncrete as possible,with readily applicable error estimates.
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SB: Branching sygtems associated with problems in perturbation theory.

The principal problems of interest here are of two types.(a)To study the pertur-
bations of a linear operator by a'small (non)linear tem'jand (b):to investigate
the branching behaviour of eigenvalues and eigenelements of Fredholm operators,
Both of these topics may be (_levelopecg constructively with the help of Jordan
chains of (Fredholm) operators,whose essential properties are as follows. Let y,
with:-associated spaces N , N* (gee § ) be a Fredholm operator,and ¢=¢(1)e N

{Unless it is stated expllcitly N and N* always refer to < ,here).Let a finite
sequence of elments ¢ (5) be defined by the conditions:

(*) Y ¢(” =0 ; ¥ (¥ = aglit) sk = 2,000,p yvhere <A¢(p), ¥ A0
Here,the 7{:1 span N* yand the ¢(j) are called A-associates of ¢ (of order j).

When N(and hence,also,N*)is one-dimensional,the A-associates may be made uniquey .
and one writes J( ¢,v, A) = p ,and calls p the length of the A-Jordan chain for
the element ¢ relative to Y sthe uniqueness being achieved by imposing the extra
conditions < ¢(, = 0yfor j = 2,e4.,P,and any fixed p in E*.More generally,
if dim N »2,then the set of all A-associates(of any order)oi‘ basis elements of
N,is called an A~Jordan set( relative t,o ¥ )=-such a set belng cmplete,if

det( a.”) = Oywhere Gy = < Ag} pi ,1}3>,where the 9} (3 e = 1,...pi,are the

elements of the Jordan chains for the basis elements, g_,of N.The relevance of
these definitions for the present work may be illustrated by a basic theoreme.lLet
a8 normally solvable,Fredholm operator, ¥ ,be given,such that Y- ~OJA has a bounded
inverse,provided that the modulus m‘o is sufficiently small.Then,all A-Jordan
chains of N have Tinite length.!doreover,a complete A-Jordan set exists IFF the
above invertibility condition on ¥ holds.

The relation of these results to perturbation theory is clear if one considers

the equations(for y):yy = h +CAy (**) , ¥ ,A map the Banach space E, into Ez

and ¥ is a Fredholm operator--all subject to the invertibility condition Just
given.If n:= dim N, then there are three cases:n = O;n = 1,and,n >2,For n =0, ¥
is invertible,and (I -0y A) ~ has an{absolutely and uniformly)convergent
series expansion,form which y{ 0) may be found in the form Zyk k,through the
terowise evaluation of (I -0y A) h.This procedure could be adapted to a con-
crete alsorithm for symbolic computation.
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When n =1,the only branching behaviour of solutions occurs for the operator, ¥,
where ¥y =Yy + <¥,It >z , 1 being the elament used to 'normalize' the A-chain
(as above) Xf p is the length of the Jordan chain defined by the(unique)element
of N(since n = 1),and q is defined as:qs 0,if <h, ¥ > = Ojand,q= min{s < T°h, (> £0),
where T:= AY-1 yotherwiseythen the case 'p = «,q <oc ' may be chown to corres-
pond to a one-parameter family of solutions: y{ o) =?"1h +E(0) ¢,for an arbi=
trary functj.on,_}E oHere,z is an elenrent of Ez,and the procedure may be framed in a.
concrete form,Lastly,if n 2> 2,then the analysis &s more complicated,but still
potentially amenable to symbolic computation.It turns out that the equation (**)
does have a solution,y{ 0),and that this solution is anélytic in a neighbourhood
of the origin--unless certain conditions hold on the mmbers,pl,qi,analogous to

p,q for the case n = 1jin which case,the solution is analytic only in an annular
neighbourhood of the origin.

The second major problem{ branching behaviour of eigenelements of Fredholm opera-
tors)gives rise to branching systems,which may be approximated in much the same
way as has been indicated in more concrete situations.Let O eC, ’Ul % p,and
consider an operator A{ 0):E-+E,the elgenspace corresponding to an eigenvalue, A,
having dimension n >1.Assume that Y= A =AI is a Fredholm operator,and that

A( 0) is continuous,in the uniform operator topology,with A(O) = A——a given opera-—
tor.Basic problem: find the eigenvalues, A +u( G),of A( G),vhere p —+0 with o}
and find the corresponding eigenelements.If one puts A-A( 0 )i= H( 0),then the
eigenvalue -equation may be whitten as: Yy = HO)y + 1{ 6)y +By introducing the
operator, ¥ ,defined as vy + 2‘; <.gltpz,  pwhere,if ("¢1) is a basis for N( v),

(p J) is orthogonal to ( ¢ i)',ar\d ,(zk) is . orthogonal to ( ¥ 1),and by putting

I for ‘?"1 sone may define elements a, (a,p) ass
2{ Os)i= < [H0) +pI] [T ~Fo)-uT]™ 0, >,
Then the branching system has the form : A( U, 0):= det( aik( L, 0)) =0 (+).

Accordingly,the first task for scheme 88 is to form an adequate approximation to

the equations (+);after which,a method for approximating the resulting elements,
I j( O ) must be found.If A( O) is analytic,and one postulates a representation

r_s r.s .
aik( C,Uu)u 3 Oirsh O sthen (+) takes the form ELrsp. 0% = 0 ,the summation
being subject to r¢s e ne
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If Newton's polygon is used to study this branching gystem, then it may be shown
that (1)For all small enough,positive ©,there are only Tinitely many eigenvalues
A o):=X +p(0),with p(0) = 0;(and there may be no such eigenvalue).(i1)Each
eigenvalue of this type corresponds to finitely many eigenelements,y{ O ).( 1ii)Every
eigenvalue,or eigenelement,has a convergent series expansion in{integral or frac-
tional)powers of G.The various possible cases are determined by properties of
Jordan chains of I-associates of basis elements, ¢ j00f Ny

When n = 1,0one has W 0) = [I ~-TH O)~pT ]'145 swhere |1 i3 to be replaced,
successively,by the }j( G)e It p = 1{e.g.,if ¥ is a hermitian operator on a

Hilbert space)then A( O),reducing toA at the origin,is determined uniquely as an
eigenvalue of A( 0),for'smallc';and each of A( G),¥ 0),is analytic.Next,if
P >1,finite,then,with proper multiplicities,there exist exactly p eigenvalues
reducing to A for O= 0,for A{ G).Cne such eigenvalue has an expansion in integral
powers of Ojwhile,the remaining p-i eigenvglues have fractiona) power series
expansions,all based on the same fractional power of O--namely,on 014) s In fact,
on the assumption that A(0) = A - ZH ol “{ sutmed for 131),and that L01 =
= <H $o¥ > £ 0,it may be proved that:

plo) = [~L,o0 ]:{/p +o(aV/Py;

»(o)= ¢+ [-Lmo]:c/PnpS + of on) R
J27ri/p)

where [ ]k /» denotes the k th value of the p th root({e.g., w,for w ).

All of these procedures may be elaborated into algorithmic forms,for which sym-
bolic computation is feasible.

Lagtly,in this subsection, the .scope of computational procedures will be surmarised,
so that the objectives of anygeneral branching package will be clear.The sequence
ofﬂ operations is as follows.Formation of the branching systemjqualitative '
analysis of the branching syste'n,comnutation of series solutions(in several stages);
descrintion of local behaviour of solutions near branching points;enlargement of
the domain of definition of solutions(this could lead to another scheme,say,sg,

where conditions for{ the absence of )secondary bifurcations,and related matters,
would be covered,along with methods of continuation-—see,e.g.,Rosenblat{1979)for
some  examples relevant to hydrodynamcs,also,hmbley( 1969),for detailed results

on certain types of integral equations);and,symbolic/numerical interface(routines
for performing the numerical components of calculations for which all of the basic
analysis is done symbolically).Although there are many aspects of branching pheno-~
mena only barely mentioned here( and, some omitted altogether)--e. g+,the methods based
on singularity theory{ including catastrophe theory), their potential sultability for

Intelligently directed symbolic analysis should be evident to anyone studying them,
I hope to investigate specific algorithms in these areas eventually.
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15,9 JFunction-theoratis methods in elasticity.

In this subsection,the methods of interest are all related to the use of contour
integrals——either in conjunction with conformal mapping,or else,with 'potential
distributions',whose assoclated 'densities’ over the boundary are to be deter—
mined.Only one method will be treated in any detail,but this gives a good indi-
cation of the general possibilities.Naturally,very similar methods may be used -
for other types of problems than the elasticity boundary-value problems for which
most of these techniques were developed.The basic references for this wérk are
Sokolnikoff( 1956} ,Muskhelishvili(1953},Green and Zerna(1968) ,Timoshenko and
Goodier{1970),and England(1971).These works include many references to the origi-
nal papers.,All of this work refers to two-dimensional problems;but some construc-
tive('potential theoretic' methods have been given by Kupradze(1965),and they
offer scope for symbolic computation. Another useml reference for function theo-
retic methods is Mikhlin{1957),where several types:of problems are considered.
The main difficulties arlse from the adequate determination of the mapping func-
tions--especially,for general,n-connected domains,and in the possible extension
of these ideas to cover anisotropic materials.In this connection,it i{s clear that
the procedures developed by Lekhnitskii(1963),involving the use of functions of
several complex variables,offer. -excellent possibilities for symbolic analysis,
and,as such problems have not been solved effectively up to now,even for gener—
al 1-connected domains,the effort involved in constructing procedures covering
this class of problems will be worthwhile.Ae far as detailed algorithms for the
classical problems are concerned,Kantorovitch and Krylov(1958) contains interest~
ing material.One other idea stems from Muskhelishvili's result that,if the unit
disc is mapped conformally onto a given domain by means of a rational function,
then,the fundamental boundary-value problems of elastostatics may be solved exact-
Llyyin terms of Elementary functions for that domain.Since,however,quite general
types of functions may be approximated{sufficiently uniformly)by sequences of
rational functions(see,e.ge,Smirnov and Lebedev{1968))itmay be conjectured that
the corresponding solutions tend{in some sense)to that for the general domain.
'I"hls ldea is very suitable for exploration using symbolic computation.Remarks on
the possible use of symbolic computing for problems in plane elasticity may be
fou nd in an unpublished report by the author{Elvey(1978))-- on-which the rest of
the material in this subsection is based.This deals with one method(due to S};er\-
man{1940)) for solving the fundamental boundary-value problems of plane elastosta-
tics,for isotropic bodies.Although the method is so old,and many calculations
have been done,the possibility of its effective implementation within some sym-
bolic computation package does not seem to have been considered.Since the method

covers n~connected domaing,its approximate implementation would be valuable.As
usual,many intermediate approximations would be required to realise the complete
algorithm,but this aspect of the problem is not stressed here.Again,it may be
feasible,eventually;to include anisotropic materials;but this,too is ignored,hereo
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The equations due to Sherman refer to the boundary value problems in V\;hich (a)
the stresses are prescribed on the boundary(of the given,n-conrected domain),
and (b) the displacements are given on the boundary.A basic idea in the application
of complex analysis to problems of elasticity is the representability of a bihar-
monic function in terms of a pair of analytic functionsjand it is these analytic
functions which are,in turn represented as Cauchy integrals,for which the ' _‘bgunda_ry
density functiong' are to be determifed.In fact,a single density suffices in each
case,the form of the corresponding amalytic functions being known(by'analogy'),
and the (generally distinct)constants associoted with disjoint components of the
boundary being expressed in terms of this same density function--call it I ,If the
total boundary be denoted by L,then the basic equation may be written as: .

(*) X WT) +(%/278) Si (t)d log O (t,")‘—(1/2’11).f.m d Y t,7) = X(T) ,

subject to the representations of the:funetions,say,f and g as expliclt express—
ions involving the density function{there is no need to give them here).It will
be indicated how an effective reduction of this problem to a succession of
approximation procedures may be accomplished,provided only that the boundary
curves are known in suitable parametric forms, the curve LO containing n-1 curves,
Lj +The steps in this procedure may be surmarised as follows.

(A)Representation of the boundary curves in parametric form,{B)Specification of
the kernels appearing in (*).{C)Formal representation of the fboundary constants'
in terms of the unknown density function,using contour integral forms,and making
use of the parametrizations of the curves,Bearing in mind that there are n boun-
dary curves ,and that T is regarded as 'fixed',while t varies on these curves(e.g.,
for purposes of integration),one may obtain,eventually,a  pair of Fredholm integ-
ral equations{discrete variants of the ones give,e.g.,by Muskhelishvili(1963)),
which constitute a system of 2n equations for the values of the real and imaginary
parts-—say u,v,of the density function on each of the curves L oThis system has
the form.¢step D):

o 20 4
(%), Wylhy) + 77 ZS{w sin® 0, & W, sin20

Jk ;E dh 4+ ose
I 6'th)an & 2 FC _ A0
L HJ(I')IJ(h) JG. ) k - J

J

(“)2 Interchange j and nij,k and m+k on all sirghy-subscripted variables in (*")1o
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If one defines elements Ym,Er,for I'y5 = Oyeesyg2n~i,by:s

¥j{hoh) = mc"‘smzajk O + blq_'rk P Yk = «ain 285, e"k + kg T s

-4 . ; y
Yok = = tstn 295 Ve gomek = 22 o2 0y O 3
0 0 ' '
E, =A - 20 . 0- .
U e L Eng= Ayt BR

(where the dependence of all of these functions on h, h has been suppressed),

then the following ‘canonical system'of integral equations is obtained (step E):

(#ex) wihy) + 2J Y (h,h )W _(h)ah = E (hg)

where r varles from 1 to 2n-1,s is summed over the same range,and the integration
Is over the basic parameter interval,say from a to b.

If,now,the displacements (rather than the stresses}are given on the boundary, then
a slightly different equation is derived for the density function.,After similar
'discretization' procedures( again,using the parametrization of the boundary } ,one
"gets  another pair of Fregholm integral equations for the real and imaginary
parts of the density function—in terms of which the pair of analytic functions
is determined,for the representation of the binarmonic function solving the
original problem.Once again,if cognizance is taken of the fact that there are

n~1 boundary curves,and if suitable changes of variables are introduced sthen,a
canonical form,analogous to (#*%), say,(#** )'g:nay be derived <A comparable treat~
ment for 'mixed' boundary-value problems is possible,toof see,e.g. Mikhlin(1957) ),
though there are some extra complications in this case,

The potential use of symbolic computation in this kind of calculation{as well as
in the calculations based on the prior determination of suitable conformal maps),
should be evident.All of the procedures involved are quite capable of adaptation
so that approximations can be made,error estimate incorporated,and approximate

symbolic representations of the relevant stress and displacement functions can be
determined.The aim of this subsection i3 merely to demonstrate the feasibility of |
such an enterprise,and to show how an approximation may be obtained in terms of
the solutions to standard systems of Fredholm integral equations~~for which many
different types of procedures have been developeds All of the remaining steps in
any of these procedures involve various specific types of approximations in the
evaluation of the integrals,etc.,which occur;but the optimal choice of these

depends( often,strorgly}on the particular analytical properties of the functions

to be approximated,of the integrands encountered,and so One
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15.10. Approximate solution of ill-posed problemse.

Until fairly recently,problems modelled by differential(or other types of) equa—
tions for which the solutions were not continuous functions of the data—-rela-
tive to specified topologies—were discarded as inappropriate or meaningless( in
much the same way as complex numerical solutions of equations were ignored in an
earlier era).Of course,this situation arose,principally,from the observations of"
Hadamard(1902,1932) ,who introduced the concept of 'well-posedness' in order to
delineate those types of boundary data,etc.,which were acceptable in the formu--
lation of problems modelling physical processes.No doubt,there has been an over-
reaction against problems which are not well-posed in Hadamard's sense.This is )
most unfortunate,since,it may be shown that 'ill—posed' problems span a substan-
tial body of{pure and applied )mathematics,so that it is essential to devise
methods for'solving' them in some mamner.This subject is dealt with elegantly by
Tikhonov and Arsenin{1977),who demonstrate that there are several ways in which
the concept of 'solution' can be modified,in order to restore the property of
'stability against small changes in the data'.In the following sketch,the sources
of ill-posedness in a number of basic problems is indicated--after which some re-
marks are made on the possible use of symbolic computation in forming approxi-

mate( generalized)solutions.

(a)Solution of Af:=[Kf = u,for a function f with given u.Let u*:= u + Ay .Then,
one has, || u*— ul| 12 = s lAI}J l 2 }1/2.If,for' instance, ¥{(t):= N sinwt,then
(AUt} = ofl1) as ® - oo (Riemann-lebesgue Lemma),whereas, || f*— || c(3) = [ N l

can be made arbitrarily large,by suitable choice of N,where C(J) is the space
of functions continuous on the interval,J,over which the integrals are taken.

Moreover, it is easy to see that || f*- fu L2 = O(N);so the instability persists

in this case,also.Again,it may héppén that u is known exactly,but that A is such
that criteria for the existence of solutions of 'Af = u' cannot be applied.In
this event,since the existence of a classical solution cannot be guaranteed,a

quasi-solution ,T,is defined by the requirement that pU(lff,u) be minimal, p

being some metric on U,the set of all 'given functions',u.
’ g ]

(b)Differentiation of partiallv-known functions. Since the problem of finding the

n th derivative of a function,u,may be reduced to solving(for f) the integral

) n-1

. t
equation: fO (t -7 f{ v)dt = (n-1)lu(t),as may be verified by induction on n,

the ill~poéedness here follows from that covered in case (a)e

{(c)Numerical sunmation of Fourier series. Here,it is simply a matter of allowing

the{ Fourier)coefficients to be ‘perturbed' by(arbitrarily small)terms,whose sum
diverges for some value of the argument of the function being represented as a

Fourier seriese
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(d)The Cauchy problem in the plane,for u(x,y),with u(x,0) = g(x),and uy( Xx,0)= h(x),
is unstable under'small changes' in g and h.(This is Hadamard's original example;.
for the proof of instability,note that, for the.lLaplace equation,with g(x) =0,
and h{x):= o sin nx,the solution is u(x,y) = n"?sin nx sinh ny,in 'y >0°;whereas,

the solution is u(x,y) =0,if h(x) =0).

(e)Analytic continuation from an arc into a domain. Let f be given on an arc,S, .

within a domain,D,where the distance from S to 90D is doThen,it is easy to see
that function elements differing(in the 'sup nomm')arbitrarily little on S,may

produce analytic continuations whose difference has unbounded sup norm over D,

(f)For the éo-—called inverse gravimetry problem,it may be shown,on certain
assumptions,that the 'boundary curve' separating materials of different densities
(under the earth's surface)may be determined from the 'gravitational anomolies
produced at the surface,through the nonlinear integral equation Bf = v,where
(BE)(x) = Slog { [ (x =)+ b*] /[(x~ €)%+ (b~ 1(£))2] ] 4 ;and this

equation may be shown to be unstable against perturbations in ve

(g)Among niany other problems giving rise to instabilities,are:the solution of

singular systems of linear algebraic equations(because the precise evaluation of

a numerical determinant is ruled out,in general,by ®round-off,and other errors——
so that,arbitrarily small changes in the coefficients can change the nature of
the system. .When equations with symbolic coefficients are given,this difficulty
camnot occur;but the verification that a determinant is(or,is not) zero,may

demand storage beyond the computer's capacity);certain(linear)programming prob~

_l_grﬂg swith imprecisely specified datajand more general optimization problems for
functionals{where the sequence of elawments producing a minimal value for the
functional need not,itself,converge to a solution of the problem for which the
functional is déf‘ined).

These,and many more problems are discussed in detail by Tikhonov and Arsenin
(1977) cEven though the instabilities are manifested,generally,in numerical
calculations,the possibility of forming meaningful symbolic approximations to

the 'solutions' of ill-posed problems is of great interest——the definition of
'solution® being so framed that stability is re—established,The proposed methods
of constructing generalized solutions include the techniques of:' quasi-solution',
'selection’,rcplacement' ,and 'quasi-inversion®(all used when the set of' possible
solutions' is compact);and the method of ‘regularization’,for problems where the
potential solution-set is not compact.The dominant modes of approximation amount
1o minimization of suitably-defined,smooth functionals——and prior restriction of
the domains on which operators act.These procedures( almost all of them due to

various Soviet mathematicians)are formulated in a functional-analytic manner,very
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apposite for the development of symbolic--analytic algorithms.The posseséion of
symbolic approximations to generalized solutions,which exhibit desirable stabil-
ity properties not shared by the classical solutions,could prove just as valuable,
in certain cases,as for the solutions of well-posed problems.Purely numerical
solutions cannot encompass the same range of analytical behaviour as can their
symbolic counterparts;nor can they reflect adequately the instabilities inherent
in the original problems(especially,when 'extra parameters' are present).In short,
there appears to be considerable scope for symbolic analysis in this area——though
great care must be taken to ensure that the irregularities in behaviour are

not lost in oversimplified approximate representations.For applications of these,
and related,concepts,to questions involving partial differential equations,see, -
€+8e ,Knops (1972 ) «In general,the class of 'inverse problems'( typically, the
determination of various operators from . functionals of solutions of the corres—
ponding..operator: equations—e.g.yto find the coefficients in a differential opera-
tor)tend to be ill-posed;but they include many important applications;so,once.
again,the need for systematic methods of solutions is clearoA good treatment of
this subject(mainly,in relation to ill-posed problems for partial differential
equations in mathematical physics)is given in Colton(1976a,b),where several con-
structive procedures(involving 'Bergman integral operators')may be found-—many

of them suitable for effective implementation in symbolic analysise.
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15011+ Design of switching circuits,using Galois fields,

The main reason for including this topic here,is that some of the methods adduced

( especially,by Romanian researchers)for the synthesis of complex switching circuits
~—@egsfOor the control of complex traffic systems—constitute direct applications
of ffunction—theories in prime-power Galois fields(including,even,analogues of the
Lagrange interpolation formulal).As such,they offer excellent opportunities for °
productive symbolic computation.More generally,it is evident that many problems in
the constructive analysis of(finite)automata are amenable to symbolic computational
treatment( see,for instance,Kobrinskii and Trakhtenbrot(19 ),where several poten—
tial algorithms may be found;and,also,Wang(197 ),for other examples).The compara-
tively simple problems associated with switching circuits are emphasized in this
subsection because of their accessibility to symbolic computation;but there is no
doubt that analogous treatments can be developed to cover a wide range of prob-—
lems in this area.

A very full exposition of the 'Galois field method' is given in Moisil{(1969),
where the computations(many of them carried out in detail),have,already, the
appearance of output from well-tuned symbolic analysis routines.It is certain that
similar calculations(but,to much higher orders)can be done automatically;and,that
variants involving other types of algebraic structures can be explored—possibly,
having applications in the design of the intricate micro~chips upon which future
generations of symbolic computation systems will depend(especially,since a com—
plete ftime~evolutionary description' can be given,for each component of a 'network’,
which is of fundamental importance in some models of parallel computation~—see
Section 12.7).These remarks are not intended to denigrate the efforts of the many
people who have brought this theory of circuit synthesis to such a sharply algo-
rithmic state(introducing a variety of subtle concepts,in the process).It is
regrettable,however,that so much of the repetetive work had to be done in full,
when a few,properly-designed computation routines{one for each Class of circuits)
could have produced so much more—and,allowed the 'interactive development of
optimal designs',This reaction is familiar in relation to any area of research
where symbolic analysis has been(or,can be)successful; the early symbolic computing
applications in relativity superceded,in a few seconds,calculations that required
the ingenuity and perseverence of several people,over a period of months—even
years,in some cases.Thus,for switching circuits,it would seem that the algebraic
theory, though ‘attractive as a construction,is sui table only for computer implemen—

tation—even if this was not envisaged ~when the theory was developed}
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In this theory,a typical problem has the form: determine the characteristics of

a circuit consisting of‘contacts',c1,...,cL,where ¢, has s possible 'settings',

t
and the mode of interconnection(i.e.,'series',or 'parallel')of the contacts is
prescribed.A k—position contact is associated with the cartesian product of the

Galois fields Gpi,where the numbers pl are the prime—power factors of k;and,a

collection of contacts having different numbers of possible settings may be
handled by including in the cartesian product all relevant prime-power factors.

In many important applications,however,the structures are comparatively simple,
and the results are obtainable in explicit forms.Of particular interest is the
occurrence of various algebras corresponding to many-valued logics(see,also,
Section 14,for some comments on this).The variety of networks that can be covered
by this theory is considerable,and includes:networks with k-position contacts;with
polarised relays;with 'slowly-acting'relays,and,combinations of these types.With
each network,a 'working function' is associated.The construction of working func—
tions for specified circuits involves combinations of(generalized)Boolean and
Tield operations.The most basic question,for any network,is:When does a current
flow through the circuit?(i.e.,for which arrangemsnts of settings of the compon-—
ent contacts does the working function take the{Boolean)value 1?).In this sense,
the analysis of' a circuit is accomplished when its working function has been
determined in an accessible form—and, this would be one major task for symbolic
analysis.Other fundamental problems include the reduction of networks of multi-
position con contacts to 'equivalent' networks of two-position contactsj;and, the
synthesis of networks exhibiting prescribed operating characteristics.(Plainly,not
every set of proposed operating conditions can be realized--many problems are
'ill-posed' .Conditions for 'well-posedness',in this sense,may be derived by using
known compatibility criteria;and this aspect,too,may be covered in symbolic compu—
tation routines).Apart from its obvious importance in practical applications,the
algebraic theory governing circuit synthesis offers many attractive opportunities
for studying,in a practical setting,certain parts of number theory,field theory,
and formal logic;it provides,also,an excellent grounding for the systematic attack
on design problems for more sophisticated automata of deterministic type.With
suitable modifications,some of these techniques could be used in the study of
automata having some stochastic elements,too.Lastly,it is notable that circuit
synthesis may be studied{predominantly)by any of the following methods(apart

from the Galeis field procedures):'Boolean algebras';'many-valued logics',and
'graph theory'.Some of these methods are used in the algebraic approach,but only
peripherally.There may be scope for symbolic analysis in the other approaches,
too, though it seems unlikely that they would so ideally suited to symbolic compu~
tation as the'Galois method'.
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15.12. Stability analysis for{systems of) (non)linear differential cquations.

Here,again, the invitation for systematic symbolic analysis is an open one,as,the
the field has reached a point where many types of behaviour of solutions(e.g.,
asymptotic boundedness and stability)may be analysed on the basis of various
crieria involving function(al)s of the coefficients——and certain procedures are
framed explicitly in terms of approximations.Although a vast literature exists _
on these matters,a most convenient starting point is proovided by Sansone et al.
(1974)(which includes mény references to the original papers),where a diverse
collection of constructive procedures is given—often in forms easily adaptable
for symbolic analysis.The possibility arises,also,of solving 'inverse problems', .
" in which a( system of)nonlinear equation(s) is constructed,whose solutions exhibit
specified asymptotic behaviour,or stability characteristics.There are also varied
applications to problems in control theory.Indeed,constructive treatments of
asymptotic and stability analysis for automatic—control systems are given by
Zubov(1962) ,including a detailed study of Lyapunov functions(with some emphasis
on effective methods);transient processes in (non)linear systems;construction of
solutions(with estimates of the influence of perturbations on their behaviour);
and,studies of almost periodic oscillations in nonlinear systems.All of these
procedures are excellently fitted for investigation using symbolic analysis.There
are,also,problems associated with the design of networks of nonlinear electrical
devices( transistors,etc.),which lead to systems of differential equations,for the
analysis of which some of the above-mentioned techniques may be useful( though,

variants of' implicit function theorems' play a dominant role here:see,e.g.,
Willson(1974)).

In another direction, the analysis may be pursued of the time—evolution generated
by (quite simple) nonlinear transformations( e.ge , those associated with various
'oscillators'),having practical applications in such crucial fields as the study
of vibrations in certain buckled structures,and the stability of floating ‘oil
platforms' .Here, the theory of'almost periodic systems'is relevant.However,the
potential value of symbolic analysis in this area lies(principally)in the fact
that some of these 'oscillator ﬁransfonnations' are either known to possess

(or else,suspected of possessing) so-called strange attractors( subsets of the

phase space having a very intricate structure,and producing apparently chaotic
behaviour in the solutions of purely deterministic problems)whose {non)existence
depends ultra-sensitively on the'initial conditions‘imposedo(See,eog.,Holmes(1979),
where the equation %* + a'% ~ p X+ ¢ x3 = A coswt is studied in great
detail;and,Ruelle(1980), for a recent expository paper).The 'fine structure' of

the strange attractors cannot be clucidated adequately by numerical conputation

alone{ indeed,certain constructive procedures arise naturally here--see,for instance,
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Melnikov(1963)).A sccond,comparatively elementary source of possible strange
attractors is furnished by certain nonlinear algebraic transformations,which,wien
repcatedly iterated,produce phase portraits associated with strange attractors.
It is notable that an extensive study of iterated nonlinear transformations in
two,or three variables was undertaken long ago,by Stein and Ulam(1964);and that
the first identification of a strange attractor seems to be that of Lorenz(196$),

in a hydrodynamical context.However,Stein and Ulam do not pursue this idea.

One further area where symbolic computation could prove to be of great value is
the systematic study of of bifurcation phenomena descr;‘.bable by variants of the
Hopf' bifurcation.See,e.g.,Marsden and McCracken(1976) ,for constructive procedures
to test whether the Hopf bifurcation theorem applies in any given situation—and
whether,if it does apply,the resulting periodic orbits are stableoThe algori thm
for testing stability is given in considerable detailyand it appears to be imple-
mentable within some of the systems discussed in this paper.As usual,the gain
accruing to the use of symbolic computation is twofold:analytical interrelations
may be examined reliably,and whole families of cases may be studied at a stroke-—
by varying suitably defined parameters.The highly constructive nature of many

of the criteria pertaining to the study of asymptotic states of dynamical
systems(which covers all of the topics mentioned so far,as well as several others,
related to the solutions of more general operator equations)suggests that symbolic
analysis could be most valuable here.There are salso,other aspects of the quali-
tative theory of operator equations than the ones emphasized in this subsection;
in particular,the investigation of equations in which the 'coefficients' are
almost periodic functions raises many fascinating problems,and requires new tech-—
niques(see,e.g.,Fink(1974)where an extensive list of refererces is given——along
with several potentially effective procedures).Since most 'apparently periodic'
phenomena encountered in applications are in fact(at best)almost periodic,it is
important that the analysis for this class of equations be developed as con~
structively as possible.If the resulting methods are combined with the general
procedures(of which Lyapunov's method is the most familiar),and with techniques
designed specifically for handling bifurcation problems( seeyalso,Section 15.8)
then a package of wide applicability will be obtained,which,in view of its ulti-

mate aims,must be provided with direct access to a high-level numerical language.
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15.13. Basic calculations in(algebraic)topology.

The main aim of this subsection is to mention some procedures in topology which
are prohibitively complicated for 'hand calculation'(in all but essentially
trivial cases),but which are of great importance in almost all constructive
topological investigations.It is highly probable that the GROUP system( see
Section 11),and some of the procedures listed in the computer—based biblio-
graphy maintained by Velsch(1978-~)at the University of Aachen,would allow many
types of calculations other than the ones suggested here to be handled in symbol-
ic analysis;but the proper consideration of these matters must be undertaken by
experts in (pure and applied) topology.Here,only one type of application is cited:
the use of topological methods in the analysis of electrical networks.There is -a
large liter‘atu'r‘e even in this single area,but an idea of the sort of clacula—
tions that may be attempted may be gleaned from Kim and Chien(1962),and from the
remarkable set of papers known collectively as the RAAG Memoirs(see Kondo( 1955,
1958,1962,1968)) in which comparatively sophisticated topological techniques are
used to analyse networks containing several species of components.One other appli-—
cation of topological methods( to the location of fixed points of mappings)is
treated,briefly,in Section 15.16.

Three types of calculation are considered here :(i)identification of triangulable
spaces,and determination of appropriate simplicial decompositions of the corres—
ponding polyhedra(as well as,'assembly’ of polyhedra from collections of simplex—
es);(ii)effective implementation of the constructions embodied in the simplicial
approximation theorem(in "both its 'weak' and ‘'strong' forms),for use in other

procedures;(iii)calculation of some groups of basic importance in certain non-
trivial cases(including the 'fundamental group' ,and the {singular)homology
groups).

Notes.(a)The 'simplicial fixed point algorithms' correspond to hypotheses weaker
than those required for the various'contraction-mapping principles'(vwhich incor—
porate simple error estimates).(b)The essential task(once the simplicial approxi-
mation theorem has been used)may be reduced,often,to the reconstruction of a

group from its set of generators and relations—which can be implemented for
symbolic computation,in many caseseThe most general reconstruction problem may
be only incompletely soluble:the existence of such a group is guaranteed; but
there may be no effective procedure for deciding whether it has any elenent
distinct from the identity.Moreover, it may not be possible to decide(finitely)
whether two given 'words' of a group,G,are transformable into each other by

inner automorphisms of Gs;and this has implications for the design of simplifica—
tion procedures in symbolic computation( see,also,Section 13).However,it is un—
likely that these extreme cases would be encountered in routine topological

calculations;so,it should be possible to give an effective reconstruction scheme,
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(i)Triangulation and simplicial decomposition.

A (geometric)simglex is just the direct,k-dimensional analogue of a tetrahedron

(for k a nonnegative integer).A (geometric) simplicial complex ,K,is any collec—

tion of simplexes{all contained in some Euclidean space R™) such that ( a.) each
face of any simplex in K is also in K,and ( B) the intersection of any two simplex—
es from K is itself in K.The dimension of K is the maximum of the dimensions of"
its'member simplexes'.Any subset of K for which property ( o) holds,is called a

subcomplex(say,L) of K.A simplicial n—ple consists of an{ordered)collection,say,

(K,L1,...,Ln~1),\vhex*e the LJ. are subcomplexes of K.IF K is given the induced

topology of R'.", then K,regarded as a point set,is a topological space(say, l Ki )—
the so-called polyhedron of K (in which case,the LJ. are associated with subpoly-

hedra, [le s0f K).For any simplicial complex,H,denote by VH the set of vertices

in H (a typical k-—simplex being determined by k+! vertices).Then,a simplicial
map , f: | K > |1] ,satisfies the conditions:(s1) f(Vy) =V ;(s2)If 0 eK,then

f(VG) spans a simplex in L(possibly,with repeats);(s3) f acts linearly(relative

to the vertices of any simplex).A simplicial map,g,'from K to M',subject to the
extra condition,g( lLl ) l N1 sis called a simplicial map of{simplicial)pairss

that is,g: (lKl ,I LI ) —->(I Mj ,[ NI )o

In these terms,cei‘tain basic results may be stated conciselyzbut ,it is useful to.

introduce a few more definitions in order to allow a complete statement of the
simplicial approximation theorem.If X is any topological space,then a triangula-
tion of X, is any pair,K,h,such that K is a simplicial complex,and h: lK{ -»X is
a homeomorphism.(This allows one to treat'like polyhedra' spaces which(geometric—

ally)are not polyhedra).It may be proven that:every simplicial map between simplic-

ial complexes is continuous.The simplicial approximation theorem states( roughly)

that every continuous mapping between two polyhedra is approximable by simplicial
mappings(this will be made more precise in a moment).Thus:every simplicial mapping
is continuous,and every continuous mapping is 'almost simplicial' (the mappings
being beween polyhedra).For general calculations,where it is inconvenient to embed

all complexes in some Rk,an abstract simplicial complex,say,K*,may be defined to

be any finite set of elements( the vertices of K*) together with a collection of
subsets, O’f‘j,of K*( the simplexes of K*) such that:(i)any subset of a simplex is
itself a simplex;and,{ii)the dimension of a simplex is one less than the number
of vertices in it—-the dimension of K* being the maximum of the dimensions of
its simplexes.It may be shown that,all realizations of an abstract simplicial
complex are(sjmplicially)homeomorphic;and thatyevery abstract n-dimensional

2n+1

simpl icial complex has a realization in R «In general,a given geometric simplic—

ial complex may have several 'abstractions'.
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The 'assembly' of polyhedra,generation of simplicial decompositions and ;manipu—
lation of simplicial objects' are all tasks for which symbolic analysis can be
valuable.In order to understand the significance of strong simplical approximation,
one must specify procedures for the systematic decomposition of a given complex
into 'arbitrarily small pieces'(such decompositions are known as subdivisions).
Before this is done,however,it is useful to define what is meant by:'g is a simplic-—
ial approximation to f'.The basic sense of approximation here is that of homotog_z.'
Let K,L be given simplicial complexes,and f: Ild - ILI a continuous mapping.If o
is any simplex in K,then,the star of ¢(in K} is the union of the interiors of all
simplexes in K of which ¢ is a face( including,as a special case,the star of a
single vertex,regarded as a degenerate simplex,etc.)._'!‘_l_xgx_l: g8 IKI - ‘Ll is a

“simplicial approximation to f IFF ( Vv aVK) £( stK(v)) c stl(g(v)),where st,K(u)

denotes the star of u in K.It may be shown that,the composition of two simplic—
-ial approximations is -also a simplicial approximation;and(more importantly)that

every simplicial approximation of f is homotopic to f.

Subdivisions,K',of a simplicial complex,K,are obtained from the decomposition of
the simplexes of K (most commonly,by decomposing each simplex, 0,of K,into the sub—
simplexes formed when the barycenter of O is joined,by segments of straight
‘lines,w the vertices of ©).This procedure may be iterated,to determine the r th

subdivision, K( r)

20f Kyfor r = 2,3,.04 JIf L is a subcomplex of K,then,the derived
complex, (K,L)',of K relative to L (i.e.,leaving L 'fixed®)may be defined,induc— ’
tively(on n) for the complexes (K' U L)* ,where K" denotes the n-skeleton of K( ie€ay
thé set of all simplexes of dimension at most n,in K).Thus,derived complexes of
the form (K,L)( q),involve subdivisions K( q)1eaving L fixed.The details of this
procedure are somewhat intricate;but it may be made effective,and adapted for use

in symbolic analysis.Next,a star covering of K is the collection of stars of its

vertices( each regarded as a O-dimensional simplex);and the mesh of such a cover-
ing is the supremum of the diameters of its stars.It is easy to see that:mesh( K( r))
tends to O,as r tends to o.It 1is possible,now,to state two versions of the main
result,

Weak simplicial approximation théorem.Let K,L,be simplicial complexes,and let

f: IKi - ILI be continuous; then ('\H'I‘)l f: IK( r)l - IL[ has a simplicial approximatione

Strong simplicial approximation theorem.Let K,L,be simplicial complexes,and let

f: ll{l - IL[ be continuous.Suppose that M is a subcomplex of K such that the

restriction of f to |M| is a simplicial mapping.Then:
r .
ao)ae: | k™) 5 [0 | g =1 A gt ren (*).

In (f*),hM stands for the restriction of h to M,and 'x' denotes homotopy( the' rela—

tive' qualification meaning that the 'homotopy function' sFysatisfies:F(m,t) = (m)

and F(m,t) = g(m),for all m in M,t in I,where I is the 'parameter interval').
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The strong simplicial approximation theorem provides a powerful means of‘ develop—
ing effective procedures for the construction of various groups associated with
topological spaces.Indeed,using this theorem,it is possible to determine a finite
set of generators and relations for the fundamental group of any domain homo topy-
eugivalent to a polyhedron.The procedures are complicated,but,undoubtedly within
the scope of properly-directed symbolic computation.The major task,for the appli-
cation of symbolic analysis in this(and related)area(s),is to introduce computer ~
representations of various topological objects in an optimal way for their manipu-—
lation within the system——and for the production of intelligible output.For ins-
tance,one routine would accept,as input,the analytical specification of a given
domain,and try to determine for it triangulations(if it is not known to be a poly-
hedron) ,associated simplicial decompositions,and(repeated)subdivisions of the
corresponding simplicial complexes.Another general routine would constitute an
effective implementation of the procedures underlying the strong simplical approxi-
mation theorem—so that these procedures may be used to obtain(eventually)a finite
set of generators and relations for the fundamental group of the domain.All of
the intervening stages would have to be covered by additional routines.It is not
possible to discuss these here,but they raise no problems of principle,as far as
symbolic analysis is concerned.A comparable situation obtains with regard to the
calculation of(singular)homology groups(for spaces homotopy-equivalent to poly-
hedra) with the help of'exact sequences of chain complexes'(and,in certain cases,
of 'simplicial homology methods').It appears that the techniques required in these
approaches, too,may be framed in effective foms,so that some calculaticns may be
made amenable to symbolic analysis.More generally,it is clear that many of the
basic procedures of homological algebra offer potential opportunities for the use
of symbolic computation(see,e.g.,MacLane(1963) for a conspectus of these pro-
cedures) .

Of course,this whole undertaking requires the development of highly nontrivial
routines,of a kind hardly envisaged up to now;yet,in principle,there would seem to
be no insuperable obstacles.As mentioned earlier,the computer—based bibliography
maintained by Velsch(1978~)contains many examples of implementations of sophis—
ticated algorithms,and the GROUP system(see Sectio 11) is well-developed.If vari-
ous algorithms from these sources were adapted for use in topological procedures,
and transcribed into th. language of a powerful,general-purpose,symbolic compu-
tation system,then a collection of routines could be assembled,covering several
types of basic calculations.As a 'test case',some of the computations could be
performed for 'triangulable 2-manifolds;and it may bec possible to include some
less simple schemes for the classification of manifolds.The stréeng simplicial
approximation theorem is due to Zeeman(1964);and the effective methods of calcu-
lation to Tietze,Scifert,and van Kampen(for Homotopy),and to Mayer,Vietoris,

Eilenberg and Steenrod(for 'exact sequence techniaues').All of these methods{ and
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many more,covering a wide variety of calculations)are expounded in Maunder(1970),

which would provide an excellent starting point for this work.

The applications to network theory,also,are susceptible to direct( symbolic)
computation.It is worth remarking that many of the procedures suggested in the
'RAAG papers' require the use of differential geometry for non-Riemannian
spaces( especially,in relation to electrical machines,in which contacts are 'made'.
and 'broken' repeatedly).Computational procedures in Riemannian geometry are well
covered by existing systems(because of their relevance to relativity),but there

are certain characterizations(e.g.,of 'flatness'--see,Gray and van Hecke(1979))

that could be incorporated most effectively within symbolic computation schemes, .
and these,even for Riemannian spaces,do not seem to be covered at the moment.A

basic treatment of non-Riemannian spaces is given by Eisenhart(1927)-~though,his

treatment is not aimed at computational procedures.Thus:routines for - basic

analysis in non-Riemannian spaces would form a valuable package,both for indepen-—

- dent use,and for usé in conjunction with topological procedures.
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15.14, Operational calculus:gencralized functions.

One of the central propositions put forward in this paper{see,especially,Section
14) is that an attempt should be made to implement constructive(or,operational)
procedures from all areas of mathematics,for use in symbolic analysis.Naturally,
the degree to which this objective 1is attainable depends strongly on the nature
of the calculations involved—and,on the realizability of genuinely constructive
procedures.However,even when only very partial realizations are available,it is
worthwhile giving tentative schemes,which may be improved,as the capabilities of
systems are enhanced.This is the situation in the case of generalized functions
(and their associated operational calculi),which form the basis for this and the.

next subsection.

There are several approaches to the definition of ‘generalized functions',but,only
two of them are fundamentally distinct—namely,the methods of 'convolution
quotients'( .as used by Mikusinski(1959)),and, of 'linear functionals on spaces

of test functions'( as introduced by Sobolev(1936),systematized and extended by
Schwartz(1950~51),and treated in great detail,for theory and applications,by
Gel'fand et al.(1964-68).Given the operational definitions of certain,basic gener—
alized functions{as determined,tor instance,by their effects as factors in inte—
grands involving suitable 'test functions'),it is possible to 'catalogue' a

wide range of formulae,for possible use in the course of other investigations;
and ,these formulae may be incorporated in symbolic computation packages.Moreover,

if the test-function framework is adopted,sequential approximations to general—

ized functions may be defined and manipulated.Consequently,there are,essentially,

two levels at which symbolic analysis could be used in this areas

Level 1:manipulation of known formulae.This covers the solution of certain( systems

of)differential equations; the routine use of specified generalized functions
(especially,of the Dirac delta distribution,and its(weak)derivatives);differen—
tiation and integration of generalized forms of complex powers.and Elementary
functions;manipulation of generalized Fourier transforms; formal solution of
boundary-value problems,etc..Some of these schemes would involve the use of

basic function-theory (e.g.,residue calculus),and of the properties of differen—
tial forms-—both of which are covered by existing systems.The use of approxima-
tions to generalized functions(e.g.,as members of sequences defining these func-

tions)is easily handled in symbolic analysis;but the interpretation of such

approximations must be considered carefully,if comsistent results are to be
guaranteed.On the other hand,the formal relations may be implemented exactly(with
provision for substitution,when they are applied in concrete representations).The
admirably clear summary given by Gel'fand et al.(1964)could serve as a starting
point for the development of procedures at Level {.For the complete implementa—

tion of 'an operational calculus! for (systems of)ordinary differential equations,
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with various types of initial and boundary conditions,the scheme discusséd in detail
by Liverman(1964)seems to offer excellent possibilities.A comprehensive package,
based on an effective(approximate)realization of this scheme,could be of wide
practical use(since the existing symbolic computation packages for solving differ-
ential equations are not designed to deal with distributional solutions( though,
some of them can handle the analytical singularities associated with applications
of the Frobenius series . method).Once again,many facilities from other routines -
would  be required—for instance,in the formal solution( by 'Kramer's rule')of
systems of linear 'algebraic' equations,whouse ‘coefficients' are linear differen—

tial operators;but this should not present undue problems.

Level 2:geperal,formal manipulations. Here,the emphasis is on the manipulation 0%
formal relatibns corresponding to the 'sequential representation' of generalized
functions~—the aim being to make possible certain procedures involving 'weak
derivatives'—e.g.,in relation to analysis in Sobolev spaces{with extensive appli-
cations to the study of variational problems;see,e.g.,Ciarlet(1978),Fairweather
(1978) ,Weisel(1979),and Wendland(1979)).Among other things,one must:deal with
'trace operators'(for specifying the boundary behaviour of functions);introduce
norms appropriate for the definition of Sobolev spaces of fractional and nega-
tive orders;and,above all,formalise the basic interrelations of the objects typi-
cally generated in thecourse of calculations,to a point where 'operational rules'
may be established,and incorporated in the system.This is not an easy task,but
(subject to sensible initial limitationc)it does merit exploratory investiga-—
tion-~starting from the simpl est possible analytical situations,and extending the
procedures,gradually,to cover problems of greater complexity.

In another direction, the methods of Mikusinski{which may be used in some cases
where the 'functional' methods fail)could be formulated effectively, too——since
they are designed specifically for operational use.The approximations introduced
in such an implementation would stem,not from imprecision in realizing the opera-
tional relations themselves,but,rather,from the spectrum of analytical problems
emanating from factorization,expansion in series,indefinite integration,etc.;in
other words,from the problems of approximate determination of functions,and of

the results of applying analytical operations to them.In Section 15.15,a sketch
is given of the method of Ehrenpreis(1970),in which the operational technigues
developed for ordinary differential equations are extended{in a specified sense)
t systems of partial differential equations with constant coefficients,using
techniques of considerable sophistication and complexity,which,even in their
simplest realizations,would require many of the other potential symbolic computa-

tion routines outlined in this paper.
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15.15. Operational methods for partial differential equations.

After the remarks,in Section 15.14,0n the possible implementation of operational
calculi for (systems of) ordinary differential equations,it is appropriate to
consider now how certain operational procedures for the (formal)solution of partial
differential equations might be realized within a symbolic computation system.
Two general approaches are considered here:the treatment(aimed,primarily,at sol— )
ving equations with constant coefficients) due to Ehrenpreis(1970),whose central
concern is the extension of the notion of 'Fourier transform' to cover!functions
of exponential growth at infinity';and,the more formal,operational scheme develop—
ed by Maslov(1976),to attack diverse problems in theoretical physics,which may be
reduced to the solution of partial differential equations over Hamiltonian mani-:
folds.On the fa-ce of it,neither of these theories looks very promising from the
viewpoint of symbolic analysis;however,because of their ultimately practical ob-
Jectives,each of them has a core of constructive procedures whose approximate '
implementation would be,on its own,of potential value( especially in the construc-
tion of asymptotic solutions).The intricacies if these theories are so great that
only the barest sketches can be presented here;but,since detailed accounts are
given in the references cited,my objective may be limited to showing that there

are opportunites for the creative use of symbolic analysis in this area.

The evolution of Ehrenpreis' theory may be summarised conveniently by examining
the domains of validity of successive theories of 'Fourier integrals'(for func—
tions of n variables).The classical theory(see,e.g.,Titchmarsh(1948))applies
only to'functions of small growth at infinity'(typically,to elements of the
function space Lp,for 1 <p<2).In the next stage,functions of'essentially—polyno—
mial,but non-exponential,growth at infinity' were included(see,e.g.,Schwartz
(1950-51)).The third stage({Ehrenpreis) allows for functions of exponential
growth at infinity;but this is possible,only if the 'frequencies' appearing

in the Fourier-type integral of such functions may be complex (so that convergence
is assured).If this is accepted,however, then problems of nonuniqueness of repre—

sentation arise,since{by 'Cauchy's integral formula' yone has: expf{izz'} =

| -
={(2x%1i) {(w - z') 1exp {1Zw]dw .Even so,it may be possible,in some cases,to

restore the crucial uniqueness property by restricting the'permissible values' of
the frequency to suitable subsets of C" (n>1).A subset of this kind(when it
exists)is called sufficient for the definition of a Fourier-type integral of a
given function.A particular subset may be sufficient for a whole class of func-
tions:indeed,several results of this kind are known.Of ten, the dimension of a
sufficient set is found to be half of that of the basic space(i.c.,it is n,when
Cn,-t'.R:Zn is involved);but,there are also many situations of practical importance

in which the sufficient sets have dimension O,and it is in these cases that symbol-
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ic analysis may be used most effectively.The central concept of Ehrenpreis'
theory is that of 'analytically uniform spaces'(roughly,the most general frame-
work within which Fourier-type integrals 'make sense',and can be manipulated);and

the main result(the so-called fundamental principle) asserts that:if V is the

subspace of an analytically uniform space,W,of distributions,defined(for a given,
linear partial differential operator,P) by Vi={feW|P(D)f =0} ,then the sub-
set of C",say, 6pi=§ 4 I P(%Z) =01} is(essentially) sufficient for V (where,the

meaning of 'essentially' can be made precise).The importance of this result is

that,anv elenent,T,in W,may be represented as a Fourier—type integral:

*) T =Jol2)( +]4)* 22/ ,
. Cn ’

where p is the Radon measure on C" defined by dp(z):= (1 + | 4 )" F2) | af »
Here,F is the ‘'Riesz function' generating a specified linear functional on

L2(Cn),and k is a 'majorant function'(i.e.,a positive-valued,continuous function
on C").In particular,if T is a function,or a (Schwartz)distribution,then,the
integral in (*) may converge as a Lebesgue integral,and w{z) may be replaced by

iz g

e sgiving a standard 'Fourier representation'.
In the case of a system of partial differential equations,PJ.(D)f = 0,1 <j <N, the

(essentially)sufficient set, ép,is to be replaced by the cartesian product of the
sets 6P. detennined from the polynomials corresponding to the operators PJ.(D).
J .
The solutions 'ignored' in obtaining this ,over—simple result are the so-called
exponential polynomial solutions.For ordinary differential equations,these are
associated with multiple zeros of the operator polynomials.In the present case,
a proper treatment of the extra solutions requires the introduction of a new
concept:that of 'multiplicity varieties(basically,collections of algebraic,or
algebroidal,varieties,each with its own 'differentiation operations').Although
this is an extremely technical subject,and it is far from clear that even the
most basic calculations can be made fully effective,the potential power of these
methods is so great,that 'experimental work' in this area must be worthwhile.The
fact the support of the measure | may be chosen to be an algebraic variety(at
least,as a'first approximation} if T satisfies a suitable system of 1linear,par-—
tial differential equations,establishes a deep link between Ehrenpreis' methods
and some aspects of constructive algebraic geometry(which is,already,of crucial
importance in the development of algorithms for the integration of algebraic
functions—see,Section 12,and Davenport{1979a)).Morcover,it turns out that, for
the treatment of 'multiplicity varietics(and a limited extension of the theory to
linear differential operators whose 'coefficients may be polynomials,local analy-

tic functions,algebraic functions,or algebroidal functions)a very general study of

algebroidal varieties is necessary.The occurrence of algebroidal functions in
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algorithms for determining the ‘'small solutions' of (analytic)operator equations
(see Section 15.8)is also suggestive of the potentially wide applicability of
constructive procedures involving algebroidal functions and their associated
varieties;and this adds weight tothe claim that such procedures merit intensive
study,even though,superficially,they may appear unpromising as objects for use in
symbolic analysis.The dominant problem is to develop effective formulations of )
all these concepts and techniques,so that they may be applied to concretely-repre—
sented systems of partial differential equations.This is a formidable task;but,the
remarkable progress made by Davenport in the highly abstract field of algebraic
geometry shows that the implementation of methods such as these is by no means
impossible,apd should be pursued seriously.All of the(expository and technical)
material required to embark on this program may be found in Treves(1967),Ehren—
preis(1970),and Brenstein and Dostal(‘l972),which,toget?her,give references to
most of the original papers. '

The operational due to Maslov are directed towards thé solution of problems
involving functions of noncommuting operators,over Lagrangian manifolds.It is
the systematic treatment of algebras of formal,multiple power series in noncom-
muting operators,arnd the development of a calculus for noncommuting operators,
that that formthe most distinctive features of this work.Most of the current
applications lie in fields of theoretical physics—and this is quite sufficient
to justify efforts to introduce symbolic computation in this area,even if exten—
sions covering other applications cannot be found.Apart from the questions of
solvability(in the sense of existence of solutions)for various(systems of)
(non)linear,partial differential equations,potentially effective methods for
obtaining asymptotic representations of solutions are derivable from the general
theory.In spite of its diversity of application{many subfields of physics are
coveredie«g.,plasma physics,solid state physics,nuclear physics,and electronic
optics),and of the possible levels of analytical sophistication at which it
may be presented,the essential result for the entire theory may be formulated

comparatively simply,in terms of so-called quasi-inverses in al gebras endowed

with p—structures,

A p-structure is analogous to(a particular specification of) Church's'lambda-
symbol'(sece Section 1).Each of these devices determines ordered n-ples of'vari-
ables',for substitution as arguments of functions{ the main difference being that,
the lambda symbol is intended to remove possible ambiguities in the mechanical
assignment of variables to functions,as represented in a computer;whereas the

J-operation imposes a mapping of ordered sets of indeterminates into sets of
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noncommuting operators with specified 'locations';so that,in effect,an ordering
of application of the operators,and a prescription of their mutual separation
by collections of unit operators,is specified). In general,an algebra,A,is en-—

dowed with a p-structure IFF
+ L
( @M < A) l{o,j eM A n, eZ(1<j<J; n, £ n ,unless a  and a_ commute) } =

s (uf)la)y = R <a:1;n1>,o..,.<aJ;nJ>)] 2= [ <a;n>);] (~), i

where the operators oy act in the reverse order to that of the nk(which are,

by convention,increasing in k),and f( <a;n>) J has the formal power-series

representation: f( <«ain>)y = 2}))(01)J I § c,;:k I
i

(**),
< J=
3 0<k<J- .

Nyt Mgk

each symbol I Py indicating a 'row of unit operators,filling the places between
2 .

the p th ard the q th'. Here,one works within the framework of an algebra of
formal power series in{arbitrary)finite numbers of indeterminates(chosen from an
infinite set),and an associated noncommutative algebra of operators.The square
brackets create a 'barrier’ against the imposition of ordering on operators inside
them,as a result of any ordering imposed on terms outside them—that is,they are
'insulators against externally-imposed ordering' .Such brackets must be used in

a full development of the mnoncommutative calculus.In particular,an axiomatic
definition of the pu-—operation may be given,and the axioms are adaptable for use

in symbolic analysis.

To define 'quasi-inverse',let A asbe 2 (noncommutative) algebra with a given

>
K —structure,let 0.1,..., Gy s B ;be operators from the algebra,and denote by L

a module over A<u>o Then: f is a quasi—-inverse el ement (with associated right~ ,

and left~,quasi-inverse sequences, {S'B » {8, } srespectively,each contained in L)

+ + - - - ;
IFF ) =1+ pk('<ai;l>’<§;Jf1 >)J S =1+pk( <0 ;30421 > 5 <B 51 >)J,

’

+
where,as functions,the p;((x)J, B8) are O(| (x)J i “k) sas |l (x)J | - o0 .Thus,

given f,there exist sequences S¥,57,and 'remainders', p*, p ,interrelated as above.
The principal problem in the theory is to find effective methods of calculating
quasi-inverses in a variety of concrete settings.In these terms,the 'Main Theorem'

may be stated as follows. Let Oy » G g5 B, generate a nilpotent Lie algebra,

and define the Hamiltonian function,H , ,of an operator A = % <o 3i>, <B I+l > )J
to be the'leading tem’',say, HA(_( Y)J,n),obtained when all of the ai,nnd B,

are given concrete representations(e.ge,in terms of 'position' and 'momentum'
operators)sThen (a) A = f(...) is a quasi-inverse clament{whose associated right-,

and left~,sequences are to be determined in terms of the oy and B) IFF
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IFF H A satisfies certain'absorption conditions'(governing the 'time—evolution'
of solutions of the 'Hamilton equations' generated by the 'Hamiltonian',HA)-—-

modelled on Sommerfeld's ‘'radiation condition for problems in electrodynamics.

(These conditions may be specified precisely).

(b)Effective procedures may be given for the (approximate)construction of quasi-

inverses.(Usually,this amounts to showin that,effective approximations to the

quasi—inverse sequences of fA may be constructed by solving 'sufficiently regular'

integral equations—for which task a whole range of possible procedures is known,

and accessible to symbolic computation).

In general,it may be shown that the determination of a quasi-inverse converts a
given partial differential equation into an asymptotically equivalent( Fredholm or
Volterra)integral equation,with a smooth kemel,decreésing 'rapidly. at infinity's
This integral equation may be tackled by various methods,to produce approximate
solutions of the original equation.The details of procedures for constructing
quasi—inverses are very complicated,and involve(in general cases)extensive use of
results for operator algebras and Sobolev spaces——and,even topological techniques.
Nevertheless,the procedures are quite explicit,and potentially effective(since
error estimates amy be obtained at each stage).A central rfole is played by
analogues of Hamilton's and the Hamilton/Jacobi equations(in separating the solu-
tion into ‘rapidly OScillating' and 'well behaved' parts),the 'Hamiltonian func—
tion' for a given operator being obtainable constructively from the representation
of the original operator in terms of the generators of a suitable,nilpotent Lie
group.{The operator ' 8' which appears in all of the above definitions,corres—
ponds to operations relative to various 'extra parameters',depending on the prob-
lem under consideration).

As for Ehrenpreis' scheme( indeed,even more so)there are enormous problems in dis—
entangling the strands of Maslov's theory to fashion feasible approximation routines
for use in solving certain types of partial differential equations involving non-—
commuting operators.In particular,the systematic treatment of multiple power-series
of noncommuting operators requires(for symbolic analysis)a means of handling corres—
ponding truncated series.Again,integrals involving operators must be applied to
appropriate operands( e.g.,in the construction of quasi—inverses).Some work rele-
vant to these matters has been done.The 'symbol calculus' studied by Voros(1977,
1979)includes valuable basic relations,and offers possibilities for adaptation
and extension to the present,more general framework.Moreover,frequently,operators
have( finite)matrix representations,and may be handled in this form without undue
difficulty{cven if their elements are,themselves,operators).The determination of
concrete representations of given operators(in the sense requrcd to obtain their

'Hamiltonian functions')proceeds in several steps.First,the given operator,say, A ,
in a noncommutative algebra,is(formally)expressed as a function,say,f]\,of the
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generators, a,i,of‘ a selected,underlying,nilpotent Lie group(and,of the 'external
operator, 3 ) .Next, the G’i themselves are expressed(using an effective procedure)

in terms of" prescribed( concretely realized)operators—after which, the resulting

expression is put into a {well-defined)canonical form,where the leading term can

be identified(again,in an effective way).This leading term is the Hamiltonian

function of A.The absorption conditions refer to solutions of the "Hamiltonian

equations corresponding to H A® Consequently,one basic symbolic computation

routine would determine(as output)the Hamiltonian functions of operators given as
input(along with all of the data required to convert operators to concrete form).
Another essex_ltial routine would .deal with calculations in Lie algebras(especi-— )
ally,with the formal manipulation of{iterated)commutators).Certain formal anal—
ogues of Taylor expansions(with 'remainder')must be covered,too.(Similar types of
manipulations are necessary in many parts of mathematical physics~—for instance,
in the statistical mechanics of' ‘'spin systems®,and other 'lattice models! ;so, -

. e_ff'i'cient symbolic computation routines of this kind could be of wide application,
quite apart from their use in the present context).The basic analytical problem

is to identify operators{formally expressed in terms of specified generaors) with
symbols(symbols of ‘rank k' being C*®functions on R¥,which,along with all of
their derivatives,grow 'at worst,polynomially' as the norms of their arguments
become infinite).Although Maslov's scheme is intended to be of fairly general use,
it would not be easy to transform arbitrarily given partial differential equations
into forms suitable for the application of the 'Main Theorem'.Nevertheless,the
challenge of extracting from this maze of formulae and functional-analytic tech-
niques,some comparatively transparent( and,effectively implementable) approximation
procedures,is one that should be met,since such procedures would be of poten—
tially wide application to problems of practical importance---and there are,appar—

ently,no other approaches of comparable scope available.
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15,16, Topological approximation of fixed points of mappings.

Brouwer's(1912) proof of his fixed-point theorem,for mappings between finite—dimen—
sional spaces,was framed in a constructive manner{in line with his advocacy of
effective procedures,and the criticisms of 'existence proofs',which grew,ulti-
mately,into 'Intuitionism':see,e.g.,Beth(1968) for a readable account of these
matters).However,variants of Banach's fixed-point theorem( based on the existence .
of 'contraction mappings'between normed spaces)with their concomitant error esti-
mates,were,until recently,the only 'fixed-point results' used by numerical anal—
ysts—even though the premises for contraction theorems are more stringent than
the premises for Brouwer's theorem,and for later,topologically-based results(see,
€ego ,Edwardé(1965) sSmart{19 )).The vast range of applications(in econometrics,
game theory and nonlinear programming,as well as in the solution of (systems of)
(non)linear algebraic/(functional-)differential/integral equations)makes it impor—
tant to develop as many effective versions as possible of fixed-point theorems,
for ultimate use in numerical calculations.On the other hand,the determinantion of
symbolic expressions,giving rise to these numerical approximations,is of great
interest for symbolic analysis——and may be accomplished in essentially the same

way as for purely numerical computations.

The Brouwer theorem(which states that,if K is a compact,convex subset of Rn,and
f maps K continuously into:itself,then f has at least one fixed-point{'fp'))was
singled out by researchers as being of basic importance in any attempt to furnish
effective proofs of the more general(weak) fp theorems.The first 'topological
‘procedures’ .developed especially forthe approximate location of fp's of mappings
of an'n-simplex into itself,proceeded,roughly,by constructing a seuqence of sim—
Plexes,with diameters tending to O,each containing the desired fp.Several variants
of these methods were given(with the aim of increasing the’efficiency of the
basic algorithm).The crucial idea underlying current methods of topological approx—
imation of fp,is that of homotopic transformation. of the original problem,into

another problem which is trivially solvable.More precisely,let f map R" continu—

ously into itself,where f(R") is compact,and define Hf: [0,1]x R Rn,by

H(t,x):= (1 -~ t)E + tf(x) o Then,H (1,x) = f(x) ,and H(0,x) =x IFF x =f. In
this context,if one defines Fix(Hf):= { (tyx) l Hf( tyx) = x} ,then it may be
proven( Browder(1960) ) that Fix(Hf) contains a continuum linking (0, £) to (1,x*)——
f{x*) = x*.Apart from these 'simplicial fp algorithms,there are the so-called

homotopy continuation algorithms(which have been used,amongst other things,to iden-

tify branches in multi-parameter bifurcation problems--see also Section 15.8).In
these methods, the idea is to 'travel along a homotopy curve' in the set }1;1(0)

1 . . -
€ R ——this curve being determined as the solution of an initial-~value problem ,

namelys (%) (6/50)Ilf(c(s))é(s) =0; les)] =1 (ssR1) s c(0) = 11 ,where

the operation 86c¢ denotes Frechet differentiation , and 71 is a point on'the

curve {c(s) l s €R } —-assumed known;or else,guessed- For purposes of symbolic
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analysis,equation (*)may be integrated using a quadrature formula 'in symbolic
form' ,with rigorous error estimates.(In exceptional cases,some combination of the
Risch algorithm(see Section 12)and other facilities,may produce an explicit,
closed-form solution;but this happens 'almost never'),If no branching occurs(i.e.,
if there is only a single branch of the homotopy curve,for all parameter—values)
then,the fp may be located,approximately,by monitoring the values of I £(c(s))—(s)
until one of them is less than d (a preassigned 'tolerance')——the cor‘responding.
value of s,say s*,giving the approximate fp,c(s*).Both types of algorithms have
been investigated intensively,by many people,and the versions currently in use
have a sufficient degree of permenance to constitute a sound basis for approximate
symbolic procedures. )
An excellent survey of the theory and diverse applications of all of these methods,
is given by Allgower and Georg(1980),on which most of the preceding remarks are
based.They include many references to the literature,and emphasize the develop—
ment of effective procedures(with some analysis of efficiency and stability).In
particular, they present 'prototype algorithms' for eéch of the basic methods,with
detailed consideration of various modes of triangulation,and,of techniques of
inotir_lg(ioe.,changing( repeatedly)from one simplex to another,in the course of
a calculation--which is equivalent to the replacement of certain columns of mat—
rices corresponding to the simplexes).Moreover,several other algorithms are-'given
—in adequate detail. for their adaptation to purely symbolic forms( indeed, they
are,essentially,already symbolic:it is mainly a matter of implementing them,opti-
mally,within a symbolic computation system). The routines required here would
make use of several other procedures outlined in this paper{ notably, for the mani-
pulation of Frechet derivatives,the subdivision of simplexes,and the use of impli-
cit function theorems).The ultimate aim is to incorporate effective forms of the
theorems of:Brouwer;Kakutani;Leray/Schauder,and Borsuk/UY am( and,certain,less
well known results),so that any of them may be 'applied',as appropriate,in the
course of an investigation(see Section 414).Some algorithms allow the sinulta-
neous approximation of several solutions;while,others cover unbounded or non-
compact mappings(subject to ‘coercivity conditions',which ensure that the se—
quences of ‘approximate fp' generated are bounded).The potential applications
of effective routines for the determination of fp are diverse,and make this an
attractive field for symbolic anélysis.MOSt of the procedures may be studied in
terms of (differentials of )mappings between finite-dimensional spaces;and there
are close links with some aspects of singularity theory--for instance,the fun-
damental result of Sard(1942)( that,the set of ‘critical values' of a differenti~
able mapping has relative Lebesgue measure 0),is invoked to show that for 'al—
most all'starting points,certain algorithms will converge, to admissible fp;and,
(topological)degree theory is the basis for several nonconstructive proofs of 1p
results.Other uscful refcerences for this subsection{ and for Section 15.13)are
Balinski(1974) and Todd(1976G).
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15.17. Calculations in singularity theory.

The procedures envisaged here refer,primarily,to three aspects of singulariy
theory.(a)The automatic performance of'determininacy and unfolding' calculations,
for given 'input functions'(with applications to 'catastrophe models' of various
phenomena).( b)The detailed analysis of 'critical points of functions on manifolds'
(based,in part,on the use of 'Morse inequalities').(c)The calculation(and use)of
'integer~valued characteristics of vector fields'(e.g.,the 'rotation').As far as
topic (a) is concerned,the essential step has been taken by Olsen et al.(1978),
who have produced(nwnerical)computer programs to test{ for 'strong',or!local',
determinacy,and transversality)any input 'k—jet' involving polynomials,and non— )
polynomial Elémentar‘y functions,in several variables.Codimension calculations are
done, too,and the corresponding 'unfoldings' are obtained.If determinacy cannot be
established for a particular value of k,then another value is selected,and the
procedures are repeated.The general situation is that some multivariable func—
tion,F,is given,and one seeks the minimal value of k for which the (Taylor) k—jet,
Flk,satisfies the determinacy conditions.When this value of k is finite(say,k*),
s0 is the number of 'control parameters' required in an 'unfolding'of F(i.e.,in a
characterization of all possible types of behaviour realizable by F +ng,for
'small 7 and arbitrary functions g').Poston and Stewart(1976,1978)give elaborate
'rules for determinacy and unfolding calculations'.(The work of Olsen et al.(1978)
seems t0 be based on these rules,and a listing of their ALGOL programs is inclu-
ded,as an appendix,in Poston and Stewart(1978)).Although the programs given are
numerical,there is much scope for symbolic computation in this area.(It is men-
tioned as a possible option in treating non-Elementary functions,but no systematic
use has been made of it,so far).Again,the diverse applications discussed in
Poston and Stewart(1978)are amenable to symbolic computation,provided that their
associated 'models' are suitable for analysis using the basic 'determinacy rou—
tines' «Mathematically,what is involved here is a mixture of multivariable calculus
and linear algebra(subject to 'rules of procedure and interpretation' sbased on
deep results from differential - topology—see,e.g.,Trotman and Zeeman(1975)).In
practice, the extent to which the resulting modes of 'catastrophic behaviour! may
be attributed lig_itimately to the phenomena modelled,is a subject of some contro—
versy( see, for instance, the review,in the Bulletin of the American Mathematical
Sociely,of Zeeman's(1977)'selected papers' in this field).There are,moreover,many
other parts of singularity theory(even for 'smooth maps')than those dominant in
catastrophe calculations(sece,e.g.,Golubitsky and Guillemin(41973) for an account of
the main results);and it is in this broader framework of differential topology that
potentially effective procedures for symbolic analysis should be sought{for instance
in more general Investigations of transversality,of various species of stability,
and,of the classification of singularities,where,e.go. ,much of the work of V.I.
Arnol'd has,already a constructive flavour—offering interesting possibilities for

symbolic analysis(see the bibliography in Poston and Stewart(1978)).
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"Topic(b) is concerned with the implementation and potential applications' of those

results known,collectively,as 'Morse theory',as a result of the fundamental work
of Morse(1934) and the monograph by Milnor{1963),where many applications are dis—
cussed.Essentially, the topological structure of a manifold,M,may be related to the
location,and type,of critical points of functions defined on M,through the so-

called Morse inequalities,and other conditions.(For a remarkable application,tq

'frequency density functions' in lattice dynamics,see van Hove(41952)).Much of the -
basic material here is required also for the catastrophe~type calculations; S0,1it
would be possible to incorporate both of topics (a) and (b) in a single symbolic
computation package.The(uniform)approximability of smooth, bounded, real-valued
functions on M,by sequences of functions having only nondegenerate critical points,
is a basic result with wide implications;so,an effective procedure for this mode

of approximation would be one desirable aim.Another area of interest is the use of
Morse theory to determine the ‘homotopy type' of a manifold.Fhesetechniques may be
viewed as tests for homotopy-equivalence.As such,they are useful in applications——
- for instance,in relation to the routines outlined in Section 15.% 3,which are valid
only for spaces homotopy~equivalent to polyhedra; but,they are are also far more
generally applicable{and strong enough to establishye.g.,that,any compact mani-
fold admitting a differentiable function with only two critical points,is homeo-
morphic to a sphere).For the purposes of experimental symbolic analysis,d routine
for analysing the 'level sets',f~1(w),for‘ Morse functions,f,on a manifold,M,to
obtain information about the topology of M,would form a useful basis for further
work in this field.If this were successful, then,more advanced applications(e.g.,
some of those discussed by Milnor(1963),and by Morse ard Cairns(1969))could be
attempted.

The third type of singularity calculation considered here is centered on the con-
cepts of index,of a singular point,and,rotation,for a vector field.The study of
plane vector fields is especially interesting in the context of symbolic analysis,
since there are many applications in function theory( e.g. ,location of zeros; study
of harmonic functions),and to (non)linear boundary-value problems——as well as,to

the investigation of periodic solutions of n th-order (systems of){non)linear equa-
tions.The use of topological ideas in function theory was pioneered(in its modern
form)by Morse(1946) ,where references are given;but the applications(developed,
mainly,by Soviet mathematicians)are of more recent origin.A readable account of
work in this area is given by Krasnosel'skii et al.(1966),and there are many oppor—
tunities here for symbolic analysis.Indeed,most of the applications are framed in

a 'quasi—constructive'manner,and it would not be hard to produce from them fully
effective routines for symbolic computation.Moreover,many of these results have
implcations for the study of phase curves('tirajectories' Jof dynamical systems,and
may be applied in conjunction with the methods mentioned in Section 15.12(on stabil-

ity analysis of solutions of nonlinear differential equations).Among the basic
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routines for symbolic analysis would be those for calculating the rotétion of

a 'given' vector field;and,for finding theindex of a singular point in the field.
Other ratines would cover various applications(as indicated above).Apart from the
applications to relatively 'practical' problems in function theory,and in the study
of differential equations,there are,also,investigations of a more fundamental
nature,on the use of topological methods in (classical) analysis-—see,e.g.,

Wnyburn(1964) ,where references to the original papers are given.

Téken together, the three topics mentioned in this subsection offer wide scope for
symbolic analysis—not least,because they have many applications to problems of
practical significance.Lastly,one should remark that Krasnosel'skii's(1964) approach
to bifurcation theory,for nonlinear integral equations(also based on the concept

of 'rotation'),is an alternative to the more direct,analytical methods discussed

in Section 15.8—and may complement them,in some circumstances;so,effective mutlnes
- based on these topological criteria would be ‘valuable, too.
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15.18. Finite elanent { and related) methods.

This is a vast Tield( the computer—based bibliography maintained by Norrie and

de Vries(1976- )contains over 7,000 citations!);but there are certain types of cal-
culations for which fairly general symbolic routines could be developed.Indeed,
some preliminary work in this direction has been done already,and this work will
be mentioned later.Moreover,not only are there many levels of abstraction at which
variational problems may be treated,but there are,also,two different approaches
to the approximate solution of boundary-value problems——cor‘responding,respectivel_y,
to dissections of the whole domain(standard finite element methods),and, to dis—
sections of the boundary of the domain{'potential',or' boundary el enent' methods).
Roughly speaking,the finite elenent schemes tend to produce large,sparse systems of
(non)linear (algebraic) equations;whereas »the boundary element approach yields
relatively small,dense systems of equations.Again, the matrix elements associated
with these schemes are,in general ,determined by integriation——over the whole domain,
or over its boundary;and this,too,is an important consideration,where numerical

work is involved.

The rigorous approach to variational analysis makes use of general Sobolev spaces,
'weak solutions' being defined with the aid of suitable sesquilinear forms(see,e.g.,
Showalter{1977)).In the case of finite element methods for elliptic partial differ-—
ential equations,a definitive account has been given by Ciarlet(1977);another good
treatment,covering all types of boundary/initial value problems is Fairweather(1978)..
The general situation may be summarised,very briefly,as follows.{1)For certain
(elliptic) boundary value problems,there exist genuine variational principles,giving
the unique solution(e.g.,via the Ritz or Galerkin methods).In such cases, the

weak solution(defined in relation to a bilinear form)coincides with the 'classical'

solution.(2)Each solution is computed over some finite-dimiensional subspace of

the space of exact(weak)solutions.{3)When the (boundary) data and the coefficients
are 'sufficiently smooth',then the weak solutions are also classical solutions——
that is,they satisfy the partial differential equation,and the boundary conditions,
and they are suitably differnetiable,in the classical sense( whereas, the weak solu—
tions are,in general,(continuously) differentiable only in the distributional sense)
(4)For cach class of boundary conditions(i.e.,'Dirichlet’ ,.‘Neumann',etc.)there is
a corresponding 'quasi-variational principle'(detemnined by an associated bilinear

form,B,satisfying so-called coercivity conditions,which ensure convergence of the

algorithms for approximate solution——and should not be confused with the coerciv-
ity conditions imposed in simplicial/homotopy fixed-point algorithms( see,Section
15.15).If these conditions are imposed over an'base space',S,then the unique solu-
tion of the boundary-value problem satisfies the condition B( uo,v) = F(v),for a
suitable functional F,and for all v in S.(5)As indicated above,this formulation
can be extended to cover even those cases where no genuine variational principle
exists~-and the resulting quasi-variational problem is solved by means of Galer—
kin's method( to specified appoximations).The finite element method may be viewed,

then,as an interpolation method,with associated approximation procedurcs.



Following Strang and Fix(1973),0one may list the essential approximations involved

in the finite elemnt method,as follows.Interpolation of the original numerical

data( typically,obtained from experiments);simplification of the geometry of the

domain,by means of dissections into subdonains of simple shape( polygonal elements)—
some of which may have 'curved parts' ,near the boundary of theoriginal domain,a

possible cause of eno r.Next,choice of finitely many polynomial(or more general)

trial functions,satisfying prescribed boundary( and,other)conditions,at the vertices

(or,nodes)of the dissection;modification of the original boundary conditions,to

fit the simplified donain;approximate evaluation of the integrals occurring in the

underlying (quasi-)variational principle,on which the analysis is based--and subse-
quent approximation of the system of (non)linear equations to be solved..Finally,
inluence of round-off (and other) errors on the actual solution of the resulting
{non)linear system.Plainly,some( at least) of these sources of error could be re-
moved if symbolic analysis were used both in formulati'ng and in solving such prob-
lems.

Against this background, there are several types of investigation where symbolic anal-—_

ysis could be most valuable.(a)Routines for deriving the (quasi~)variational prob—

lems corresponding to 'given' { uasi~)variational principles.{b)Routines for pro—

ducing {compatible) finite el ement dissections of specified domains--along with the

associated matrix descriptions interrelating the local and global co-ordinate
systems.The most common modes of dissection approximate the domain by unions of
(hyper-)rectangles and (hyper-)triangles(with disjoint interiors).However,the resul-—
ting lack of accuracy near the boundaries can bg significant;so,various types of
'curved elements' have been used( e.g. ,50-called isoparametric el ements--see, for
instance,Strang and Fix(1973)).Estimates of the errors introduced by inadequate

matching at the curved parts of boundaries,are given by Ciarlet,in Aziz(1972).

(c)More generally,as the demands for accuracy in solutions increase,it may be
necessary to produce dissections fitting the boundaries far more precisely than has
been demanded up to now.If the boundary is not of a simple geometrical form,it is
by no means clear how such dissections can be effected( subject,also,t0 a variety
of inter-element/boundary conditions on the 'solution' ard its (weak) derivatives).
One systematic approach to this problem,due to Wachpress(1975) ,envisages the ele—
ment boundaries as 'algebraic curves'(to be detemined),cach el ement being associ-
ated,now,with rational--rather than, polynomial—trial functions.Although this
cheme may be over-refined for many practical applications,it is of theoretical
interest,because of its formmlation in terms of basic concepts from algebraic geo—-
metry;e.g.,intersection properties of algebraic curves,resolution of singularities,
and the determination of curves from finite sets of points on them.(This 'deter-
mination problem'—g gencralized interpolation--has wide application.For instance,
one method of conformal mapping of n-connected domains onto canonical domains,in-

volves the approximation of g suitable Green's function,which is 'known' at a



finite number of points(see,e.g. ,Kantorovich and Krylov(1958),and,also,Section
15.7).This is almost identical to the problem encountered for 'rational finite
elements').Among the results basic to Wachpress' approach are Bezout's theorem,
and Max Noether's theorem(characterizing those curves passing through all points
of intersection of two other curves).Algorithms are given for the construction of
sets of basis functions,satisfying specified conditions on certain algebraic
curves( parts of which coincide with inter-element boundaries).All of these proce-’
dures could be implemented for symbolic analysis--which would enlarge the scope
of the method considerably,both in allowing boundaries of complicated structure,
and in dealing with solutions that become singular at certain points.(Note that,
when several different media are present,there may be internal boundaries,as well

as the boundary enclosing the whole'system').

(d)Applications of symbolic computing to finite element analaysis have been made
in a series of reports by Andersen and Noor{see,e.g. ,Andersen and Noor{1977),
where more references are given).They consider( for instance) the vibrations of
laminated shells,and,by exploiting the underlying symmetry group,and using MACSYMA
to evaluate exactly all integrals required in forming the matrix elements,they
reduce considerably the total number of evaluations (since,repeated,numerical,opera-
tions are avoided).Further,they increase the accuracy of the solution(by post-—
'poning,as far as possible,all numerical procedures).The numerical calculations

are facilitated by means of a (notational) device for translating symbolic code
into (efficient) FORTRAN code.Naturally,if 'rational elements' were used,and a
variety of problems investigated,it would not be possible,in general,to evaluate
the integrals exactly(even with Risch's algorithm--see Section 12).Nevertheless,
substantial gains in accuracy(and insight)should accrue to the use of symbolic
computation,since,analytical approximations to integrals,etc.,could be used,any-
way(giving much more infomation about the analytical properties of approximate

solutions than could be obtained from purely numerical approximations).

One other significant step in the symbolic analysis of finite element procedures
has been taken by Hall(1980),who has developed a collection of routines(using
REDUCE) for obtaining symbolic representations of the 'Galerkin systems' corres—
ponding to various types of boundary¥alue problems(over comparatively simple do—
mains).Once again,all integrals are evaluated 'as analytically as possible’ sand
there. is,apparently,some hope of allowing more complicated dGmains in later
versions.

Lastly,in this subsection,it is worth noting that there are many variants and
extensions of the basic finite element approach—-as originally developed for
elliptic equations(where there is always a genuine variational principle,and the
operators obtained are positive-definite).Among these variants are several 'collo-—

cation methods(see,e.g. ,Fairweather{1978),and references given there).There are
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also several methods for the construction of trial functions——for instance,

schemes involving the use of so-called spline subspaces.llere, too, there are many

potentially effective procedures,suitable for implementation.For information on
spline approximation,see,e.g.,Ahlberg(1967),and Rice(1969).Applications specific-
ally to finite element approximation are given by Schultz ,in Schoenberg(1968).The
most impotant facet of all these methods,as far as symbolic analysis is concerned,
is that they permit rigorous error estimates,at all stages,so that,the symbolic
approximations obtained in any calculation,could be appraised in the light of
both their efficiency and their accuracy.

The boundary el anent method,referred to briefly,above,has become very popular -
recently,for certain types of problems,where the restriction of the operations

to boundaries offers many computational advantages.Although there is,as yet,no

fully rigorous analysis of this method{ as regards convergence,sources of error,
influence of irregularities in the boundary,etc.),the method is by no means new,
since,it is an extension(suitable for numerical computing)of various 'potential-—
theoretic'methods,originating in electrostatics,and in elastostatics,where functions
of ‘interest are expressed as contour integrals involving 'density‘f‘unctions'-- .
which are to be determined.Usually,the end result is that the densities satisfy
certain integral equations;and they are approximated using standard techniques

for such equations.This approach is covered,at a fairly elementary level,by Jaswon
and Symm(1977);and,at a much higher level--but with some obscurities-—by Kupradze
(196 ),who treats a number of three~dimensional elasticity problems;see,also,Kup—
radze et al.(1979),where a variety of three-dimensional problems in several areas

of (static and dynamic)elasticity are ccvered in great detail,and'algorithms' for
the solution of problems in thermoelasticity are discussed; the work of Oden(1972)
is of interest in this respect, too.The boundary element method is covered,at an
engineering level,in Brebbia and Walker(1980).Recall that Sherman's method( for the
solution of the boundary~-value problems of elastostatics over n—connected domains)is
a boundary element scheme;and,that the Cauchy integral representations used by
Muskhelishvili have much in common with this approach.It is only in the systema-—
tic dissection of the boundary,and in the use of 'weighted residuals'and similar,
devices , that the boundary element method proper exists as a distinct approxima—
tion technique.Until it has been formulated(and amalysed)rigorously, there will not
be many opportunities for symbolic analysm--though,eventually,lt could pla\y a
valuable r'ole here.
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15.19. Calculations involving bases in Banach spaces.

Many procedures which,in relation to finite-dimensional spaces,have a natural for—
mulation,become problematical(or ill-~defined) when the underlying spaces are infin—
ite—-dimensional.However,if the spaces are separable,and possess bases, then,more or
less direct extensions may be given,of routines for the finite-dimensional case-——
and,such routines are amenable to symbolic analysis.Thus, this subsection comple—'
ments Section 15.6,where ‘calculus operations in general spaces' are discussed.
Mostly,the concept of base is associated with Banach spaces;but there are possible
extensions, to which reference is made later.There are several uses of bases in

' best—approximation theory',and these alone would justify the development of
symbolic analyéis routines in this area—-but there are,also,many other applica;
tions.The encyclopedic treatise of Singer(1970a) offers a comprehensive treatment
of theoretical questions about bases.The 'Volume II' referred to(in the Preface),
has not appeared,up to now.It is intended to cover both generalizations of the
notion of base—e.g.,t0 nonseparable Banach spaces,or to topological linear
spaces——and,properties of bases in concretely represented Banach spaces( of special
importance for symbolic analysis).For the present remarks,it will suffice to iden-
tify salient procedures,and to suggest a few possible applications.

A basis,in an infinite~dimensional Banach space,B,is a sequence,say, {xn {cs,

such that every x in B is representable,uniquely,in the form X = 3 o X, (*),

1
¢

3 kK'k

and {<1k } is determined uniquely by X.The norm is prescribed in the definition of

m
in the sense that {|x -3 a.x h» o0 saS M — oo .Here, § oy { < K( the' ground field'),

B.One question now arises naturally:given iyn }C:B,is there a decision procedure
for the problem:'Is {y 1} a basis for B ? '.7In other words,are there effective

methods for deciding whether a given sequence is a basis in B?(Call this,problem
(a)).A brief account of the most elanentary aspects of problem (a) is given in
Higgins(1978),which,although only touchng the surface of the subject,could provide
some 'test routines' for initial computations.

(b)It is very difficult to establish basis properties 'from scratch';but, there

are various results pertaining to the 'transmission' of(say) completeness,from a
complete,biorthogonal sequence, to some (nonorthogonal) sequence "sufficiently close'
to it--in specified senses.Here,\{xn } is complete if the set of all finite linear
combinations( over K) of its elaments,is dense in B (in the norm topology).Results
of the 'transmission' kind are certainly implementable in symbolic analysis,offer-
ing a powerful tool for testing for completeness any 'input sequence' .Notice,how—
ever,that a complete sequence need not be a basis—-even though,a basis always cor-
responds to a complete sequence.Nevertheless, there are characterizations of bases
(and so-called Stability results)which would make it feasible to construct routines

for the identification of( some types of)bases--and this one important aim.Indeed,
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there are many results giving sufficient additional conditions for a complete
sequence to be a basis—~-as well as,more general results,not assuming completeness.

All of these procedures could be handled in symbolic computation.

Another ‘obvious' routine,would accept as input any element,say, & ,of B,and
attempt to express & 'to order N',in terms of all explicitly—-known bases for B.
_ (Exceptionally,a 'general formula' might be found,for the k th coefficient in such
a. representation;but,mostly,the coefficients must be determined in turn—-so that,‘
only approximate representations,using partial sums,can be found, though, frequently,
this is adequate for applications).In connection with completeness and biorthogon-—

ality( ixn} is biorthogonal IFF & {fm}c B* | <TiaXy> = 6 ;; swhere the angular

brackets denote the evaluation in the dual,B*;of B,at elements of B} numerous cri-

teria may be found to test whether a sequence is a basis,and many of these tests
are potentially effective.For mutual orthogonality,certain variants of the stan-
dard definition are useful insome circumstances{and each of them has a simple

geometrical interpretation).For example: x_L,( yIFF(vaed) Ix+ayll >l xll;
x1,y wF vaed | x+ayll = Mx=ayls x 1,y 17 lxs yll =llx~yll;
x__L4y IFF ||x--vy”2 = |lx||2+ "y"z; and,lastly, x_LsyIFF x_]_sy for

all elenents X,y,of unit norm.All of these definitions may be implemented straight—
forwardly for symbolic computation.Of course,approximations would appear in the
evaluation of the coefficients a K1as well as,in the restriction to partial
-sums-—and the approximate evaluations would require the use of othe_r' syinbolic
analysis routines;but this raises no special problems.Several(interrelated) crie-
teria for species of stability (for bases,and other sequences)may be implemented
effectively.Examples include:conservation of linear independence in finite sub-
sequences;or,of minimality;or,of completeness——-all,in sequences 'close enough®

to a given sequences,which is assumed to have these properties.Analogous results

hold,also,for many other properties.Again,there are many special types of bases—

each having certain defining characteristics;and all of these characterizations
may be incorporated in a symbolic computation system—along with a collection of
results for bases in concretely-represented Banach spaces{ e.g.,the classical func—

tion spaces),which arise frequently,in practice.

The major use of bases to be discussed here,is their use in determining the 'best
approximation(s) of order N' to a given element, £ ,0f a Banach space,B,by linear
combinations of elaments chosen from a set G < B,where,either(i)G has finite
dimension,say,n( so that,G =[ x1,...,xn] );or else,(ii)G has finite codimension,

say,m (so that,G & [z1 ,...,zm] = B).There are various conditions ensuring the

existence(and uniqueness)of elements of best approximation--see,e.g.,Singer{4970b),
where an extensive theory is developed,combining techniques from measure theory
and linear functional analysis in a way that offers many opportunities for sym-

bolic analysis.
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An element,y,in G is a'best approximation in G' to x IFF || x-y|| = inf E=" "I weGl.
The aim of the following procedure(in which a Banach space,B,admitting unique
best approximation of elements,is given)is to construct a norm,say, " lr‘,eggiva—
lent to the standard norm of B(in the sense that there exist constants,c1 ,02,

such that c,l " x” < H x[r<c2 " x“ sfor all x in B)but having the property that

the mapping,say, WG,assigning to each element of B its unique best approximation in
" G,is linear (whereas,with respect to the standard norm, the mapping is,in general,
nonlinear).This implies that,for purposes of approximation(to a given order) G
may be 'replaced by a continuous,linear mapping of B onto G——in terms of which
the calculation of best approximations(and,of elements of best approximation) is
a simple matter.The key results are as follows(see Singer(1970a,pp175-6).

|

The norm in B is a 'T--norm'( Il ) with respect to a basis, {xn} s IFF

(a)Every x in B has(for n = 1,2,... ) a unique best approximation,say, 7([ ny (x),
in [x‘t’””xn ] sand,(b) this best approximation coincides with the n th partial

sum,in the expansion of the element x relative to the basis § X, } +Analogously,

the norm in B is "aA ‘K—-nom‘(K” ”) IFF (c¢)every x in B has{for n = 1,2,00. )a

unique element of best approximation in the ‘complementary space', [ X1 Xt ]s

and,(d) this complementary element coincides,for any n,with the 'remainder after n

terms’ 1in the expansion of x relative to {xn} «(Since equality of elements is

defined to obtain when the norm of their difference is O,or,tends to 0,for se—
quences, the necessity of changing from the standard norm to an equivalent T-,or K-,
norm,is clear).The crucial point in this procedure is that there are potentially
effective criteria for the construction of(or identification of) K- and T— norms;
and it is such criteria which must be incorporated for symbolic computation.For
instance,explicit realizations of these norms are given by:

n
(*) T"x" :=Max{n~1_2“.‘n fi(x)xiu +”n2>:‘i(x)xill I1< n< oo }; and

. R n
(**) K"xl :=12>-;2~l|l fi(x)xi “ + sup{ “ §JJ‘ fi(x)xi“ l 1<n< o } « Here, ixn} is

E

a basis in B,and {f‘k} is the 'associated sequence of coefficient functionals',

defined by the condition: ( ¥x &B) f‘k(x) =a, IFF x=3 a, X, <Since {xn} is a

basis,both of the terms inside the 'Max'sign tend to O as n tends to 003 S0,
the maximum is attained,in (*).The situation for {**) is not so clear,and must
be investigated,to see how far this definition is ( approximately) impleanentable.
However, there are many other criteria for T~ and K- norms ,which may be more
suitable for suitable than (**) for use in symbolic analysis:therc is wide scope

for experiment,here.The main result may be stated,now,in a simple way.
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Theorem.Let {x,} be a basis for B,and define e yi= inf { Fx-pl]pel x,eexd]

Then,if ¢y and ¢, are the 'equivalence constants' for the standard and T- norms

2

on B,and O, is the 'partial sum operator',taking each x in B to . the k th partial

k
sum in the expansion of x relative to {xn } ,in the standard norm,the following

inequalities hold: (c_l/cz) I x ~ GN( x) | < e,N <l x —~0N(x) . -

Plainly, there are many 'contiguous' areas in which symbolic analysis routines
could be developed;but,the object of this subsection is merely to show the
feasibility .of attacking problems of this kind,not to compile a large collection
of examples.However,one other aspect of best-—approximation theory is worth men—

tioning here,namely,the concept of near-best approximation,introduced,in the

context of practical approximation procedures,by Mason{(41970).For a review of
some recent results,see Mason(1980).If an element,x,in a normed linear space,
has a best approximation,say,xﬁ sin a subspace of dimension n+1,then an arbitrary

approximation,say,x*r‘l,is ‘near-best within a _relative distance pn' IFF

ux - x‘}“" < (1 + pn) | x - xﬁ I (*#x ) If § pn} is a suitably decreasing se-
-quence; then (¥*#**) has useful practical implications.Results of this type have

been obtained for real Lw approximation;real L1 approximation,some forms of

real multivariate approximation,and for certain 'asymptotically near-best approxi-—
mations.Moreover,a fundamental role is played by 'minimal projections'(if P

projects B onto a subspace of dimension n+i,and if nn:=|| Pn “ sthen it may be
shown that (***) holds for any Pn =1, ),and several of the results are

obtained from projections based on series expansion and interpolation pro-
cedures).Although this is intended to be,primarily,a numerical technique,there
are many advantages in having at hand . symbolic representations of near-best

approximations( if more precise approximations are lacking).

Extensions of the notion of basis to linear topological spaces(in conjunction
withthe use of proximites,uniformities,and other,general topological structures)
would allowthe formulation of approximation problems,in a quasi-metrical framework,
(and the generalization of may concepts),over a wide range of fields where,
currently,very few 'quantitative results' are available.This is a project on
which I have been working for some time.(One general approach to approximation
problems in analysis—including the treatment of various types of boundary-value
problems,systems of differential equations,and integral equations—-is due to
Stummel(1973,1975,1979) ,who is able to cover several aspects of numerical analysis
in a unified way(mainly,in a Banac‘h—space context).It may be possible to imple-
ment some of Stummel's techniques effectively,for symbolic analysis--for instance,

criteria for convergence,stability and consistency.See Section 15.19).
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15.20.50ome calculations in rigorous statistical mechanics.

In statistical mechanics,the aim is to derive observable (equilibrium and nonequi-
librium) properties of 'macroscopic systems',from their microscopic descriptions,
in terms of interactions among the particles of which they are composed.Usually,
this means that the Hamiltonian function is 'given' on the'phase space' of the
system,in the form: H( @) = T(p) + V(q),where T represents the kinetic energy, -
and V the potential energy,for a 'system' comprizing n particles,moving in a

'container', @ ,of volume l S?l —T being a function of the n generalized momenta,pj,

and V,of the position co—ordinates,qk.(lt is possible,in some circumstances,for T

and V to depend on both the p.j and the q.; but this case is not considered here).

Although there is wide scope for symbolic computation in many parts of theoretical
physics and chemistry(several of the computations packages described in this paper
were developed,principally,for relativity(see Section 11),high energy physics(see,
€«g.,Campbell(1974))and celestial mechanics(see,e.g.,Barton and Fitch(1972a)),it
appears that,rigorous statistical mechanics raises,in a natural way,a remarkable
variety of deep mathematical problems.In order to identify these problems(even in
the barest outline)a few definitions must be given.(Only 'classical'statistical
mechanics is considered here.In 'quantum' statistical mechanics,various operator-
theoretic questions arise,some of which may be amenable to symbolic analysis;but,
these qhestions are too technical to be described briefly.However,certain matters
can be considered 'in parallel',for the classical and quantum cases;see,e.g.,
Bongaarts and Siskens(1973)).

The partition function,for the system,say,S,specified above,is defined by:

*) Z( BN, Q):= (Nz)'1fe-BH(a.)da’
‘A

where do. denotes integration over the phase space, A ,of the system.This'corres—
ponds' to a system in thermal equilibrium with its surroundings,at temperature
(kB )—1,k being Boltzmann's constant.The grand partition function (for a system at
temperature (kB)"1 and fugacity,z—or,activity, A——able to exchange particles with
its 'surroundings')is given by:

(**) B(B,z,2)i=14+ 3ANZ(B,N, Q) =2 1+ (NP B,N,9),

where, { B,N, ):= I e PV q)N d( q)N ,is called the configurational integral.
@

Typically,V( q)N is a sum over pairwise interactions,which are cenrally symmetric:
(##e) Vay = 2 4| 0~ q ),

: 1<i<j<N J
in which ¥ is called the pair interaction potential.(Extensions covering many-body
interactions,and potentials that are not centrally symmetric,are of importance in

some applications;but they are not discussed here). The kinetic energy is expressible
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as a diagonal quadratic form in the generalized momenta;so,the integrations invol-
ving T( p)N may be performed trivially.This representation for T( p)N is appropriate
in most cases of practical interest.Again,analogous definitions are obtained for

the so-called lattice models(where the'particles' are either,spins,fixed at the

points of a discrete space lattice,or else,or else,'itinerent particles',whose
possible positions are assumed to be confied to such lattice-points).Typical exam—

ples are:models of (ferro-)magnetic crystals,and,of adsorbed gases.

The fundamental mathematical problems associated with this microscopic description
of 'matter' may be summarised as follows.Denote by D* the general mathematical

description outlined above.(P1 )Prove that the accepted thermodynamic properties -
(including the 'Laws of thermodynamics')are derivable from D*.(Pz)Calculate the

'equation of state' for S(a functional relation interconnecting pressure,volume,
temperature,etc,for a system in overall equilibrium).,(Ps)Prove that S 'tends to-
wards an equilibrium state' if it remains 'isolated for a sufficiently long time'.

(P )Account,mathematically,for the phenomena of changes of state('phase transitions').
4

(PS)Char‘acter‘ize the possible equilibrium states of S.(PG)Obtain adequate mathe-
matical descriptions of the various states of matter(solid,liquid,dense gas,dilute
gas,ebc.).(P7)Give a detailed mathematical description of systems'in the critical
region'(i.e.,close to points of phase transition).I shall indicate now{ultra-brief-
ly),how the pr‘oblems,(Pi),encompass several interesting mathematical procedures—-

many of which are potentially amenable to symbolic analysis.

(P1) has two aspects:(a)to justify the replacement of 'time-averages' by 'mean val—
ues' ,computed using probability densities over phase space(the exact forms of these
densities being very hard to derive rigorously).This is usually known as 'the er—
godic problem':see,e.g.,Farquhar(1964),and,for a more sophisticated treatment,
Mackey(1974).(b)Proof of the existence of the limit functions L(B,p) sE(B,z),
given,respectively by the limits,as ISBI tends to o ,0f ISBr1 log Z( B,N,RQ),

and lSZr1log E(B,z,2) (where N ISZr1 tends to p,the 'particle density at infin—
ite volume');and,determination of their analytical preperties ——g. g ;continuity,
convexity,differcntiability,analyticity—-\\hich,together‘,_imply the laws of thermo-
dynamics( see,e.g.,Fisher(1964),Ruelle(1969)).(P1(a))does not offer obvious open—
ings for symbolic analysis;but,in conjunction with (P1(b)),it gives rise to inter—
esting problems in asymptotic analysis.The point is that,since,infinitely large
systems do not exist,it is highly desirable to study the asymptotic behaviour of
the sequences of functions corresponding to the functions Z and & ;and,to combine
this study with approximate evaluations of 'phase averages' for the associated,
finite systems.Undoubtedly,this will generate messy expressions;but,one would ex~
pect to obtain series expansions{ in N"1, ISZI ~1,or~ some other 'amall parameter' Jwhich

could be handled,to fairly high order, with symbolic computation.One attempt to
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derive such expansions is due to Horowi tz{1966,1968) ,whose papers would form a
suitable starting point for these investigations.Anothes asymptotic method of

some interest is developed in Iwata{(1963),and later papers).

(P2) raises questions of great complexity,and has been attacked on divers levels
of sophistication.Perhaps the simplest 'self-contained' approach is that of Penrose
(196 ),who introduces a 'Markovian postulate'—to the effect that successive 'states’
of an isolated system(observed at times, nt ,n = 0,1,2,... ) constitute a Markov
chain.Thus,the tendency of the system to an equilibrium state is deduced from
parallel properties for Markov chains.Of course,the basic postulate cannot be
Justified rigorously;it is suggested by physical considerations.Nevertheless,all i
other approaches,however mathematically intricate,embody some assumption:of an
analytical nature(as in the representation of states of systems in terms of 'state
functionals' on C*—algebr‘as——see,e.g.,Robinson(1978));‘df a probabilistic nature(as
in the imposition of various 'randomness conditions'-—see,e.g.,van Kampen,in Cohen
(1962),and,on a higher mathematical level,Davies(1977));or,of other types,not so
easily classified.Although there are possibilities here for symbolic analysis,no
potentially effective schemes suggest themselves directly (apart from the approxi-

mate solution of the so-called master equations,which,in some treatments,govern the

'approach to equilibrium' of the system,once the basic assumptions are accepted).

- In (Ps),on the other hand,there are several lines of investigation where symbolic
analysis could be most valuable.Roughly speaking,the equation of state should
determine( by analytic continuation) whether a system can undergo phase transitions,
and(if so),the nature of all phases in which it can (co)exist in equilibrium.This
problem has been discussed,mainly,in terms of 'fugacity expansions'(power series
representations of various functions),whose singularities are of crucial impor—
tance——see,e.g.,Katsura(1963);and,in terms of the distribution of limit points of
(complex) zeros(in the z-Plane),of the grand partition function, ¥ ,as ISEI S eIf,

for instance,this distribution includes a point,say,xo,on the positive,real-z axis,

then there could be a phase transition at z = xo‘——with associated values of the
other thermodynamic variable s.(See,e.g.,Yang and Lee(1952)).In particular,for cer—
tain types of classical lattice models,it may be shown that all of the limit points
of zeros of E lie on a circle(Lee and Yang(1952))~—a result that has been exten—
ded to many other lattice models(see,c.g.,Suzuki and Fisher(1970),Newnan(1974),and
Punlop and Newman(1975)).1t has been extended,also,to cover the limit p.oints of

zeros of X in the complex B -Plane(see Jones(1966)).

In connecticn with these matters,certain problems arise.(i)To form various fugacity

or density expansions( to prescribed order).(ii)To perform the analytic continuation

from a_given cquation of state.(iii)To determine the limit—~point distribution,for

zeros of  the grand partition function,corresponding to a prescribed interaction

potential.
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For (i),see,e.g.,the article by Stell,in Frisch and Lebowitz(1964) ,where techniques
of functional differentiation and graph theory are used; and,Katsura(1963),for defi-
nitions and basic analytical properties.Detailed computations of such expansions
(for both 'lattice' and 'continuum' models)have been undertaken by many people.One
approach involves the use of Padé approximants--a technique that has been imple—
mented for symbolic computation by Geddes(1978);and it is clear that the " other.
methods,also,could be implemented(at least,partially).Graph-theoretic methods are
used extensively, too( see,for instance,Ford and Uhlenbeck{ 496 ),and several papers
by,e.g. ,Domb,Sykes,Essam and Gaunt).Many of the graph—theoretic procedures are
amenable to symbolic computation,and this may allow theexpansions to be carried
further than has been possible so far. °
Item (ii) is very difficult to investigate generally;but,one example of a detail-~"
ed study,for the van der Waals equation of state,is given by Ikeda(41974a,b,c;1975).
Although some aspects of his method need further justification,the whole study
amounts to a description of the Reimann surface associated with the complete analytic
function determined by the equation of state——together with various series expan-
sions,representing the branches of this function in specified domains.This entire,
compound procedure could be implemented efficiently for symbolic computation.For
item (iii),the characterization, and determination,of he limit-point distribution
is intimately related to the process of analytic continuation—though,no rigorous-
ly Jjustified general prescription has been found,yet( this is a problem with Ikeda's
work) ;but,see Penrose and Elvey(1968),and Elvey(1974),for a prescription valid

for certain{ essentially) one-dimensional models; and,Elvey(1973),for a proof that

this prescription fails for the van der Waals equation-—a fact that was conjec—
tured by Penrose(unpubllshed)ln 1967.An extension of the Yang/Lee results,due to
Ruelle(1971),gives rise to a systematic computational scheme offering wide scope
for symbolic computing(see,Runnels and Hubbard(1971),and Ruelle(1973)).

(P ) is still very much open{ insofar as the results prompted by P, ,P. and P have

falled to solve it).See,for instance, the contributions by Kac,a;d ﬁy hasteleyn,
in Cohen(1968),for accounts of this Tield;also,Baxter(1971a,b). (P ) has been
tackled,recently,in terms of the a pproximation of convex functions by tangent func-
tionals(see,Israel(1975 »1979)) ,and this procedure could allow explicit computation,
in certain circumstances(possibly,in the construction of 'pathological' examples).
There are,also,procedures for the decomposition of states into' collections of ex-~
tremal invariant states'('Choquet theory' ) :see,e.g.,Lanford( 4197 ),and the lecture
notes by Phelps(196 )'(PS) includes the theory of lattice dynamics,various theories
of correlation (e.g.,'long-range order') in liquids-~involving all of the distribu~
tion function of orders n - 15250+ ,for which systems of coupled integral equa-
tions must be solved(see,e.g.,Hill(1956),and Ruelle(1969),for a rigorous treatment)
~—a task in which symbolic analysis could play a very useful part,since,iterative
techniques may be cmployed.Flnally,(P7) has been studied on the basis of the hypo-
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thesis that the'free energy density'function ( £ ,above)is analytic in both variables -

and so,is analytically continuable in both of these variables;and,similar assump-
tions are made for other'thermodynamic potentials' «By applying basic results from
the theory of functions of several complex variables,Coopersmith(1968) obtains
expansions for the potentials around critical values,and deduces 'scaling laws'
(characterizing the singular behaviour of the thermodynamic functions within the
critical region).This scheme is directly computational,and could be adapted for

symbolic analysis.More recently,the so-called renormalization group approach (see

e.g.,Wilson(19 ) and Barber(197 )) offers rich opportunities for symbolic compu-
ting( though,it is difficult to make some of the calculations rigorous;and it may

prove hard to cast them in algorithmic forms). -
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15.21. Approximate solution of (stochastic)(functional) operator equations.

The 1literature in this area is so vast and diverse,that, the only objective of

this sdbsection is to identify a few types of calculations which are,already,essen-
tially algorithmic;and so,could be implemented,fairly simply,for symbolic analysis.
These calculations include:iterative procedures(for {non)linear,deterministic,( func—
tional) operator equations),and methods for the constructive approximation of

' stochastic integrals',and,of the solutions to certain stochastic differential
equations.The potential fer symbolic analysis,here,is enormous,since, there are
numerous, quasi-effective schemes,whose fully effective implementation has been pre—
vented{with few exceptions)by the intractability of the computations involved—-
even,' to low_order'.Naturally,various approximations must be introduced;but,it
should be possible to derive suitable(analytical) error estimates in most cases of
major interest.Throughout this subsection,many of the routines outlined in other
parts of this paper are required-—especially, those dealing with 'calculus in Banach
spaces'.

For the approximate solution of operator equations there are many methods available.
In particular,for linear'equations,over(real,or complex) Hilbert spaces, several
iterative schemes,capable of effective formulations,are discussed in detail by
Patterson(1974).The variety of procedures is considerable,and includes some tech-

_ hiques potentially applicable to nonlinear equations, too.Thus,a sensible approach,
for symbolic analysis,would start with a study of methods for linear operators;and
then,coverextensions of some of these methods to nonlinear operators.After this,
somé of the technidﬁes developed specifically for nonlinear equations could be
examined, for effective formulations.Another basic source of techniques( for lipear,
and nonlinear operators on normed spaces) is Kantorovich and Akilov(1964)-—a new
(English) edition of which will appear very soon(published by Pergamon).In this work,
there is a strong emphasis on effective methods.Again,Ostrowski(4197 )also contains
much interesting material;and,a wide-ranging survey,covering various types of non—
linear euqations(e.g.,integral equations,integrodifferential equations,delay-differ—
ential equations and difference equations) is given by Saaty(1967).Frequently, these
methods involve the implicit function theorem(or,at least,similar hypotheses).Among
the methods which could be implemented for the symbolic analysis of nonlinear equa-
tions are the following.(i)Altman's ' tangent hyperbola method'(characterized by:

(%) Xnet ® X, = Q¥ T(x ),where n>0, Y::: ’I"(xn),Q;1 t= I 1/2)(nT"(xn)rnT( x.),

and the primes denote Frechet differentiation).(ii)Picard's method,for 'T(y) =y,
(with the iteration (**) Xq = T(xn))~—useful for certain integral equations.(iii)
-
! 1 re . — — = t i 3 & 1—
Newton's method (where, X1 = X, T]nf(xn),for UIEER (zn) »Z being chosen arbi
trarily in some ' &-neighbourhood' of the trial solution,xb).(iv)The'method of mini-

v . Ca s 7 _ _ . -
mum error'(in which, T(x) = 0 is to be solved,and, X1 = X, J\HAn1(xn) (wsu)

2
where, (AN)(x)i= grad < T0x ), x) >, A c= [l 1x ) 12 /) (arm)(x ) [P, and the error
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estimate, | x —x " = O 7xn/2) holds--x* being the exact solution,and A,a calcu-~
n

lable,positive number less than 1).(v)The 'method of minimum residuals'(in which

Xngq = X, + 06y ~—for effectively calculable sequences, { 6n} < R,and, iyn i< H,the

underlying space).(vi)Ritz/Galerkin methods,(see Section 15.19),vhere some generali-
zations may be obtained if the bachground space admits a Qgéig(see,also,Section
15.20).A11 of these techniques are valid only under certain additional conditions -
(mostly,referring to Frechet derivatives of order j = 1,2,0or 3),and one essential
task for symbolic analysis is to satisfy these conditions,approximately--but,in

such a way that adequate(symbolic)error estimate can be derived.(Although there
will be cases where this goal is unattainable(so that,any approximate implementa-—
tion could be judged only by 'practical results'),it appears that the necessary
estimates could be obtained,in many situations of Importance for applications.For
instance,when separable spaces are involved,linear operators have(generally,infi~
nite)matrix representations,finite sections of which may be used.In the evaluation
of Frechet derivatives,inverses of operators,etc.,analogous approximations inevi-
tably appear;but,all of the methods mentioned here are,nevertheless, amenable to
symbolic computation~—in the sense that,expressions can be constructed,which satis-
fy the original operator equation(s),to given orders in suitable parameters;with the
possibility,in principle,of indefinite improvement towards the exact solution(s),

in cases where there is at least one exact solution.All of the specific classes of
equations disussed by Saaty(1967)could be formulated effectively(in the sense just
explained),and,an extensive collection of symbolic analysis routines could be assem-
bled,by implementing these techniques,approximately.There are,of course,various
other methods, especially,for nonlinear 'evolution equations',and integral equations;
see,e.g.,Lattes and Lions(1969),where effectiveness is a high priority;and,Prodi
(1971),for some examples‘of solution techniques.Here,again, the scope for symbolic

computation is wide.

Assuming that effective methods can be found,for various types of deterministic
operator equations,the problem arises of adapting some of these methods to handle
equations in which certain,stochasticyelements are present.Once again,no attempt
will be made to treat this mattef comrehensively--even, in outline.Instead, two prob-
lems will be considered(with a view to effective symbolic implaementation),namely:

(a)the_approximate evaluation of stochastic integrals;and,(b) the approximate solu—

tion of certain classes of stochastic differential equations.Moreover,for each of

these topics,the identification of one or two 'pre-algoritims' is the only aim{as a

prelude to more systematic investigations).

Stochastic integration (also known as 'functional integration') originated in Wiener':

studies of Browian motion{Wiener(1923)).In much the same way as 'Haar integrals'and
'Haar measures' can exist separately,as well-defined objects,without their being a
universal procedure for'associating them in pairs',it is possible to define vari-

ous measures,in tems of stochastic processes;and, to find conditions sufficient
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for the existence of integrals over these measures.For the Wiener measure,an expli-
cit formula may be obtained for the integral (e.g.,for bounded,continuous function-

als,F,on the space,X,of continuous functions,x,on [ 0,y] ,with x(0) = 0),namely:

(*) ){F [xt)]dx ~ (= 7\’/n)""/21.{§1 F*(x)  exp {-(n/A) 2(xj+1'xj)2 Fa(x) ,

as n - oo,where,xoE(‘),and,l"‘(x)n is obtained from F [ x ] when the 'graph of x' is -

replaced by an n-gon,with its vertices on the graph,with ordinates xi,i = 1yeseyne.

This is,apparently,a most unpromising formula for effective approximation.Neverthe-
less,since the existence of the Wiener integral is assured( from general results),it
is certainly possible to use (*) for 'large,finite values of n'(with suitable approx-
imations for the integration over Rn,which,again,may be justified by the known con-
vergence of this integral).In exceptional cases,(*) may be evaluated exactly(see,
€.8. ,Montrol1(1952),Kac(1959)),and it would be quite feasible to incorporate all
special results of this kind.In other cases,the 'value' of the Wiener integral is
shown to be related to the solutions of certain parabolic evolution equations( the
special results just mentioned corresponding to ordinary differential equations).
Moreover,many results on the approximation of 'Feynman integrals' have been obtained
in quantum mechanical investigations,and these,too,would be enhanced greatly,if
they were formulated for effective computation.(See,also,Edwards and Lenard(1962)).
More generally,in a series of basic contributions to this field,Cameron and Martin
(1944,1945a,b,1949) ,and Cameron(1951,1954),1aid the groundwork for a systematic
approach to the approximate evaluation of Wiener integrals(and,to their manipula-
tionjallowing,e.g.,changes in the 'variable of integration'),and a set of symbolic-
analytic routines could be developed from this(and more recent)work.A good review,
(with applications to quantum physics)is given by Gel'fand and Yaglom(1960),where
several references to early papers in this field are given.For other types of stoc—
hastic integrals,there seems to be no source of 'pre-algorithms as direct as those
for basic Wiener integration;however,the work of Young(see Ney(1970),Ney and Port
(1974)) indicates that effective procedures could be developed to cover a wider class
of stochastic integrals(and,some of the techniques used in studying stochastic

differential equations are also relevant to the definition of new types of integral.

In 'stochastic differential equations',indeterminacy can enter in many ways( for
instance,in:random initial/boundary conditions;in random coefficients;and,in random
forcing functions).This comment applies,with sui table modifications,also to stochas—
tic operator equations Of all types;but,only differential equations are considered
here.Again,one may study ordinary,or partial,stochastic differential equations;but
the differcnces between these two cases are not due,substantially,to the presence

of indeterminacy;so,it will suffice to consider stochastic ordinary differcential
equations(except in a few remarks,and references).For experiments in symbolic analys—

is, the 'mean-square convergence' approach of Jazwinski{1970),which avoids the use of
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measure theory,would provide a convenient starting point,the generic equation

studied being: (d/dt)xt = f(xt,wt,t) =, (**) ,for t >t,,to determine the

unknown n—vector,xt,subjected to stochastic irregularities through the occurrence

of a random 'disturbing function' sW;,as an argument of a specified,(non)linear

function,f.If Jt ir‘cdfc is well-defined( say,in a mean-square sense),then,(*) is
0

equivalent to the relation: X, = X, = J;Jt f:cdq; (*#),and, ix sgiven( implicit~

¢}
ly)by (**),may be studied as a stochastic process,in its own right.One of the most
practically significant cases of (*) is obtained if splits into a deterministic

part,say,g,and an additive 'white Gaussian' part,proportional to Wt,giving( formally):

((Feren ) (d/dt)xt =g(xt,t) + Q(xt,’t)wt s,where Q@ is an(nxm)--matrix,and,xt does

not depend on W, .Since it may be shown that, {xt ! is mean-square(Riemann) intoegr‘able
over an interval,J,IFF the 'covariance function of {xt} is integrable(in the
deterministic sense)over JxJ,it follows(from the properties of the white Gaussian

process),that, f Qtdw t cannot be defined in the mean-square sense.To avoid this

difficulty,one mzw 'replace’ Wt ( again,formally) (d/dt)q’ swhere, § q‘ : t?tof is a
vector process of (independent)'Brownian motions'.If this is done,then (**%*) jg

t t
t LI i desteste YV . — —
converted’ into the relation (***)': X xto = ftOgTdT + J;_’OQTdBT sboth

integrals being well-defined,now.The second('Ito! )infegral in (***)' already requires »
an extension of the methods mentioned above,for Wiener integrals.The Ito integral

is studied quite extensively(along with corresponding ‘I differentials) in
Jazwinski(1970)with several examples,and a number of potentially effective proce-
dures( some of which are due to Wong and Zakai(1965a,b,c)).In addition,it is shown
that the process corresponding to (***)!' jg Markovian,and that its transition
probability density function satisfies the 'Kolmogorov equation'(also called the
'Fokker/Planck equation,in statistical mechanics).Jazwinski applies these,and
related,methods,systematically,to problems of (a)(non)linear filtering,and(b)(non)-
linear prediction(i.e.,sufficiently reliable determination of the state of a stoc-
hastic system,(a),instantaneously,and,(b),in the future-—in each case,using.the

past and current observations.A retrospective modification of observations,in this
context,is called smoothing). Although the aim of filtering is to obtain numerical
results,it is 1likely that symbolic computation - could be used to improve the quality
of these results—by postponing the numerical operations to the final stages of a
calculation.Moreover,there are numerous approximation problems associated with fil-
tering theory,and here,also,symbolic analysis could be very useful.A somewhat more
rigorous fornulation of the Wong/Zakai approach to the effective solution of stochas-
tic differential equations is given by McShane(1972) ,who outlines a 'Runge/Kutta'
procedure( involving 'averaging' and recursion)for the approximate solution of such
equations.Plainly,there is almost unlimited scope for the development of construc—~

tive symbolic analysis routines,in this areca.
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15.22. Miscellaneous topics.

(a)Some calculations in general perturbation theory.

This is precisely the kind of filed where symbolic analysis can prove most valuable,
provided that specific(effectively realized)algorithms are developed.The necessary
analytical estimates and convergence criteria are available( for perturbations in-
volving general operators) in a Banach-space framework--which can be handled,for °
symbolic computation,in various contexts.For operators on finite~dimensional spaces,
a complete theory exists(see,e.g.,Kato{1976),chapters I and II1},and this may be
implemented almost totally,depending,as it does,on a function theoretic analysis of
resolvent operators——and,allowing estimates for rates of convergence of perturba-
tion series.Moréover,the central broblem(investigation of the behaviour of eigen-
values and eigenvectors,for families of linear operators depending analytically on
a parameter)is related closely to aspects of bifurcation theory(see,for instance,
Arnol'd(19741;and,Section 15.8).Matters covered by the'finite-dimensional theory'

include:determination of singularities of eigenvalues(which may be represented by

Puiseux series—-see,also,Sections 15.1 and 15.8);determination of Neumann series

for the resolvent,say,R;manipulations involving the projection operator,P{ x ),defin-

ed by P(x)i= = (27:1)—1 SJROZ,%)dZ (which "equals' the sum of all the eigenvec—
tors corresponding to eié%nvalues of the basic operator,say,T % ),lying inside the

contour T },and manipulations . for locating the singularities of the 'eigenprojec-

tions';calculations with perturbation series——e.g.j,application of estimates for

radii of convergence,and,for 'remainders after n terms';treatment of nonanalytic
14

perturbations(e.g.,when T( %) is merely continuous)--incorporating criteria for
differentiability,in % ,of eigenvalues and eigenvectors,at isolated points,or over
domains; asymptotic expansions of eigenvalues and eigenvectors—-and, treatment of
these objects as functions of T itself,rathan,of % ,T being represented by its
matrix realizations.All of these facets of perturbation theory for finite-dimen-—
sional spaces are ideally suited to symbolic analysis;and,one very practical field

of application is the numerical analysis of matrices.Several of the procedures

Just listed have fairly direct extensions Lo operators between infinite-dimensional
spaces,and amny new problems arise in this,more general,case.For symbolic analysis,
an excellent start could be made by implementing a comprehensive set of routines
dealing with the finite-dimensional casej;and then,examining possible extensions of
these routines.Applications to problems in quantum mechanics could be contempla—
ted(so that,some of the methods to be found in the extensive literature of this
Tield could be implemented to comparatively high orders).Plainly,the longterm possi—
bilities for symbolic computation in this area are diverse--though,the more ab-

stract procedures would require very careful analysis,before they could be implem—
ented effectively.



214

(b)Some calculations in abstract harmonic analysis.

The type of algorithms envisaged here, are concerned,primarily,with the construct-
ion of Haar measures(in various contexts) and on the determmination of corresponding
(Haar)integrals.Underlying this scheme,are certain constructive procedures,involving
toplogical groups,group representations,group characters,etc.,which must(as far as
possible) be considered for{approximate)effective treatment.The ultimate aim,for a
restricted project,might be to obtain a 'noncommutative Risch algorithm',for the
determination of integrals from given measures on topological groups(but,allowing
for approximate constructions,as well as exact determinations).Thus,one routine
would attempt to construct invariant measures on specified topological groups(with
suitable conventions for the interpretation of approximate results).Then,a related
routine could be used to form 'integrals',with respect to these measures(where this
is possible),of functions defined on the specified . group.The 'Haar integral' is a
quasi-linear functional,defined on the group.(A fully linear integral may be obtain-
ed by using an extension procedure,making the domain a linear space).There are
constructions for associating,with a given Haar integral,certain {(left-,or,right- )
invariant set-functions (or,'measures').Consequently,there are two('mutually inverse')
problems:given a functional satisfying the defining conditions for a Haar inte-
gral,find a corresponding( invariant) set-function;and,conversely,given a measure
function,construct a Haar integral from it.General(analytical)forms can be found,
for the Haar integral over . some classes of groups;and,manipulations based on such
characterizations may be implemented for symholic analysis--along with a collec-
tion of explicit results,where the Haar integrals can be evaluated as a (multiple)
Riemann{ or,Lebesgue) integral.(Some results of this kind are given in Hewitt and
Ross(1263)).A11 of these explicit methods of computation .could be incorporated in

a symbolic computation procedure.As a second project,one might attempt to implement
a few constructions involving convolutions and group. representations.{In a differ-

ent context,many techniques for obtaining representations for finite groups are

capable of effective formulations,and this is another area where symbolic analysis
could play an important part).0On a more practical level,there may be calculations

in quantum mechanics,or in high energy physics,where (e.g.) integration over Lie
groups is required;and there are,certainly,potential applications in many parts of
pure and applied mathematics.However,before embarking on elaborate schemes,one must
experiment, thoroughly,with the basic calculations,until the optimal approach( for
symbolic analysis)is found.The crucial point is,that this(predominantly,abstract)
field should not be regarded as 'inherently unsuitable for symbolic computation'.On
the contrary,routines of this kind would constitute a valuable complement to several
of the other procedurecs outlined in this paper——and,ultimately,it may prove possible
to develop a set of approximation schemes with much wider application than the oOnes

tentatively discussed here,
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(¢)Calculations in computational geometry.

Computational geometry,as a well-defined fiecld,is of very recent origin.Essentially,
what is involved is the recasting of certain geometrical problems in computational
forms.Among these problems are:the construction of convex hulls (of finite sets of
points, in Rk);the determination of intersections of sets of points ('discrete',or
'continuous');and,the solution of 'closest-point',and,'searching',problems.Much of
this work has wide practical application(e.g.,in cluster analysis,computer’graphics;
printed—circuit design,linear programming,pattern recognition,and applied statistics).
There are,also,corresponding problems in higher-dimensional spaces(as indicated for
the 'convex hull' problem),which are,at present,mainly of mathematical interest,but
could find unexpected uses.(Some questions of these types even make sense in,say,
Banach spaces—-where there are potential applications,e.g.,in game theory,and in
statistical mechanics).Only two possible sources of pre-algorithms are mentioned

here:( i)the use of so-called geometric transforms (e.g.,in the construction of 'fast'

algorithms);and,( ii)computational statistics.Source(i) has been developed by many

peoble(especially,members of the Department of Computer Science,Carnegie-Mellon
University).In particular,the doctoral thesis of Brown(1979) gives an interesting
survey Of the whole field(with many references),and it includes several specific
transformations, together with an analytical approach to the determination of trans—
forms—all of which purview of symbolic analysis.There is some emphasis on 'worst-
case estimates'(i.e.,on finding upper bounds for the time,storage,or cost,required
to produce results)—e.g.,for 'planar diameters';'intersections and unions'(in Rk);
'nearest,and farthest,points';and,'searching over tessilations'.A summary is given
of all types of transformations so far found to be useful in this kind of work,name—
ly:'point-to-point','duality',and,'others'.There are many problems in which it would
be.useful to have symbolic representations of the 'objects' and results obtained in
computational geometry,and the underlying mathematical framework is,already,access—
ible to symbolic computation.

Source (ii),although it stems from geometric transform ideas,has become almost auto—
nomous,since, itranges widely over statistical problems,and includes many results in
‘applied complexity analysis'.The connection between geometry and statistics becomes
clear when a ‘'sample' is regarded as a point set (in some Euclidean space).This
field has been developed,principally,by Shamos(1977,1978).Various 'tendencies',of
empirically determined distributions of points,may be characterized by assocliated
parameters(e.g.,'skewness'),and t.e design of efficient algorithms to calculate
such parameters(which may be viewed as real-valued functions of sets)is of impor-
tance.Moreover,the complexity of basic statistical operations may be found{ or,loca-
ted,within bounds);and,similar analyses may be given for the calculation of certain
‘statistics' of practical importance.In the opposite direction,probabilistic argu-—
ments may be used to analyse 'average gcometric behaviour'.(E.g.,Renyi(1963) shows
that,if N points are chosen,'independently and uniformly' in a bounded,convex,plane

figure,F,then, the expected value of the number of vertices in their convex hull,is
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. 1/3 . .
equal to: (2r/3)log N + O(r),if F is a convex 'r-gon';and, O(N / ) ,if F has a
continuously turning tangent.If,instead,N points are chosen from a planar,normal
distribution,then,the corresponding expected value is O( vlog N ).This is a fasci-

nating area for symbolic analysis.

(d)Probability theory and mathematical statistics.

In this enormous field,there are almost unlimited opportunities for symbolic analysis.
One has only to peruse such works as Feller(1957,1966) ,Renyi(1970),and Kendall and
Stuart(1958,‘l'961),to discover a plethora of pre-algorithms.In view of this situation,
no attempt is made here even to list the most substantial routines which might be
implementable.It is enough to remark that, the existing facilities for general linear
algebra,and for classical analysis(in Rk),would allow the construction of efficient
routines,covering the bulk of 'everyday calculations' in applications of probability
theory and statistical analysis.In particular,most parts of the study of Markov
chains are amenable to full symbolic-computational treatment;which is of great impor-
tance,since,apart from their many practical applications,Markov chains act as a
basis for several, apparently unrelated theories(for instance,in the statistical me—
chanics of systems 'approaching equilibrium'(see Section 20);and,in the analysis of
'light fields',in Radiative transfer theory( see,e.g.,Preisendorfer(1965)).0n a more
abstract level,problems of asymptotic approximation( especially,in relation to vari-
ants of the 'Central Limit Theorem' --see,e.g.,Petrov(1973) ;in calculations invol-
ving random series of functions( see,e.g.,Kahane(1968) ;and,in the limit~analysis of
'convolution power's'(see',e.g.,Bergstrom(1963)) offer attractive possibilities for.
symbolic analysis.No serious questions of principle seem to be raised by any of these
calculations: their difficulty resides in the extraction of efficient algorithms,and
error estimates.
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{e)Calculations in analytic complexity theory.

It is,perhaps,fitting,to end Section 15,which has ranged so widely over mathematics
and its applications,with a few remarks on the possible use of symbolic analysis

in estimating the analytic computational complexity of general classes of calcula-

tions——about which users of symbolic computation systems could be uncertain,be-
cause of the difficulty in assessing the storage demands involved.A major contri—
bution to this field has been made by Traub and Wozniakowski,in a series of inves- -
tigations{ see,Traub and Wozniakowski(1980),where a large,annotated bibliography is
given).In this work,they develop a general theory of optimal-error algorithms and
analytic complexity,based on the concept of 'the information needed to solve( to pre-—
scribed accuracy)a given class of problems'.In practice,these 'problems' corres— .
pond,mostly,to'the solution of various types of (nonlinear) operator equations;but,
the approach is of great generality,encompassing many parts of classical approxi-
mation theory,as well as,the solution of equations over Banach spaces,of boundary-
value problems,and,the analysis of quadrature procedures.In several cases,effect-
ively calculable bounds are derived on the complexity of algorithms in which the
data have specified 'information content'.The information may be of a general kind;
but the most complete results are obtained in the case of 'iterative information'
(. on the basis of which,iterative schemes may be formulated for the approximate
solution of the problem in question).The framework for most of these analyses is
that of functional analysis in Banach spaces—-and, the 'characteristic param eters',
and associated bounds,could be approximate effectively,in many cases of practical
significance.Although the basic motivation for complexity analysis is the estima—
tion of cost(for various types of computations),this is related,intimately,to the
determination of 'worst-case storage demands',which,if too high,would cause pro-
grams to stop.Moreover,such estjmates(especially,in relation to optimal-error/optimal
~<efficiency algorithms} of defining ‘efficiency'(for symbolic computation packages),
and 'expressive power'(for symbolic computation languages );see,Section 16,for a
few observations on these matters.Thus,in the area of complexity analysis, the primary
aim is to design routines which can accept,as input,suitable specifications of
calculations to be attempted,and,of the'information' to be supplied—the corres-
ponding output comprising (symbolic) estimates of the complexities(which can be
converted to quasi-numerical forms,whenever concretely-specified operators are
involved.The implementation of such routines for symbolic analysis,though requiring
careful preliminary research,is,still,perfectly feasible;and it raises fascinating
possibilities( such as,calculating the complexity of algorithms for calculating
the complexity of algorithms),which are,however,best left for a future investiga—

tion}
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16. Remarks on 'efficiency' and comparison.

This is an area fraught with semantic,as well as mathematical,difffail ties.'Effic—
iency' is a concept normally associated with "machines';so,one would not attempt

to define the efficiency of a symbolic computation lan ge,but,rather,of a package,
comprising a language,and its implementation(s).Here,already,a problem arises,since,
different implementations of the same language may differ,also,in their ‘observable
characteristics'.One aim,then,is to define efficiency as an intrinsic property of
a package( and, to define,say,'expressive power',for a language).For algorithms,the
notion of efficiency has been studied extensively(see,e.g.,Karp(1974),Traub(1976,
1977),and, Traub and Wozniakowski(1980))}.A possible approach to the definition of
analogous concepts for languages and packages ,may be characterized through( respec—-

tively),minimal specification,and minimal realization(in terms of total storage

used, total number of 'elementary operations'performed,etc.),0f suitable classes
of algorithms.For the purposes of symbolic analysis, these classes should contain
all of the algorithms for basic symbolic procedures,together with as many of the
more sophisticated algorithms as are fully specifiable in the language( or,realizabl:
in the package) concerned.It appears that this tentative prescription could be
made precise if one proceed along the following lines.Every algorithm has a lin-—
guistic specification,involving basic symbols,predicates,and various constructions.
Many definitions could be given of 'expressive power'{in this context):for instance.
the minimal number of 'lines'(or,of 'simple statements') of program,required to
specify all of the algorithms in an 'approved,fundamental set'-—- for a variety of
types of data,covering the most common situationsjor,alternatively,to specify only
the most basic algorithms,from which the more sophisticated procedures are,ultimate--
ly,constructed.This is,of course,a 'gross' characteristic of a language,and it
would have to be complemented by other,'finer',characterizations.However,it is
clear that,in principle,many different measures of expressive power could be con—
structed,and that,eventually,a set of parameters could be associated with each
language,in such a way as to summarise the 'bulk behaviour' of the language,rela-
tive to the writing of a wide range of programs.This information could be useful
to designers,as well as to users,since,they could aim to produce an 'optimal set
of parameter-values,in relation to a particular collection of 'calculation/data
pairs'.In short,only the efficiency of algorithm/data Ppairs can be considered as
a notion having practical value;and,such pairs may be analysed linguistically( to
some extent) in isolation from their realizations.
For the corresponding definitions of efficiency for packages,it is necessary to
decompose all of the algorithms in a fundamental sct,into ‘cemponents',for which
reliable( estimates of)operation-counts( or,other cost/time estimates) are available.
There is no unique definition of 'elamentary operation’ ,but,one possibility,is to
mirror the approach used in thedesign of algorithms for formal integration(sec,c.g. .
Ritt(1948,Risch(1969),and,also,Section 12;Jeffreys(1961),and,Isaacson and Keller
(1966),als0 consider the problem of assigning 'weights' to basic algebraic/analy-

tical operations). The idea is to specify a hierarchy of function types,each,more
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( structurally) complicated than its predecessors.All types together( through compo-
sition and field operations) must encompas the full collection of functions of
interest.Once this has been done,it should be possible to decide which operations
to label as 'elementary',and to assign them weights;so that,if the numbers of
elementary operations inherent in some calculation/data pair has been determined
(or,estimated),this may be correlated with the minimal specification(or,realizapion)
for the pair,in a given languagel or,package).The definitions of 'power',and 'effic-
iency'must,somehow,combine information about the ctmplexity of calculations,and,
about the minimal prescriptions for implementing them.Some interesting ideas are
contained in Knuth{1969),where the basic field operations are subjected to a sear-
ching analysis. , . -
An important point already hinted at,is that,one must characterize the data for
various classes of computations,in such a way that efficient algorithms for given
types of data are used in estimating the efficiency of computation packages.The
only absolute measure of efficiency for an algorithm{ in isolation from the data

on which it is to be used) must be based on its 'worst-case perfommance--which is
not of much general use.Another basic requirement is that one should be able to
predict the performance of a system,without doing all of the calculations contem—
plated.Thus,the 'efficiency parameters' associated with any specific computat ion
package,can,at best,reflect some 'average mode of its behaviour',over a wide range
of calculations,and types of data.To complement such 'mean-performance indicators',
one needs other,'localized' criteria,applicable to individual computations(or else,
to narrowly-defined calculation/data classes).Consequently,intrinsic characteriza-
tions of efficiency,etc.,though raising ma y interesting problems in mathematics
and computer science,have to be studied more systematically,before they can pro-
duce results of much practical use.However,the combination of analytic complexity
theory,mathematical logic,optimal—progrmn design( see,e.g.,Schaefer(1973) ,where the
underlying ideas stem from graph-theoretic analysis),and,the 'minimal representa-—

_ tions' ,mentioned here,should yield useful results-—-including,perhaps,a definition
of 'manipulative capacity of a package'(with associated 'partial capacities');and,
ultimately,an axiomatization of this whole area of research.If intrinsic,localized

properties are to be defined meaningfully, one must suppose that near-optimal use

is made,of algorithms which are,themselves,near-optimal for a given{class of) data/

calculation pair(g)and,the first step in this direction,is,to try to specify pre-

cisely the(operational) meanings of the italicized phrases.

Of more immediate practical significance are in dications of the relative efficiency

of,say,systems,S, and S_.A general representation of this parameter could have the
" 1 1 .

form: e*:= F(p1,...,pm;pf,...,pﬁ;C).Here,the superscr1p§s label the two systems,

each of which has its own 'unit-operation parameters',pi sand,the symbol C stands

for an adequate specification of the computation(as a calculation/data pair).The
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form of dependence of F on C could be suggested by breaking C into its 'hierarchic-
al components',and then,constructing F from information about these components.Of
course,all of this is very vague;but it could be made precise,in a concrete situa—
’tion,without undue difficulty,provided that sufficiently detailed.algorithms for
the components of C were available.The dependence of F on the p‘)’( would be deter-—
mined,almost automatically by the algebraic/analytical procedures required to - B
complete the computation,C.This idea,like the possible definitions of intrinsic,
characteristic parameters,is worthy of close investigation. For instance,could one
derive estimates for relative efficiency in complex calculations,in general,from
similar estimates for basic calculations--without descending to the level of the
most elementary components of C( -as envisaged above,as a possible mode of deter—
mination of F)?These,and analogous,questions,raise many interesting problems,but
these will not be pursued here.

The most direct measurement of relative performance is obtained by means of timing
comparisons.Unfortunately,a moment's reflection shows thaf: the apparent simplicity
(and,adequacy)of this approach,is illusory,since,it is virtually impossible to

ensure that exactly the same calculation is done,on all machines involved in the

comparison.As a rough,practical guide it isuseful:certain types of calculations
seem to be 'inherently ill-fitted for execution by some computation packages;and,
relatively'well-suited' for others.Although a deeper analysis might reveal the
source(s) of this phenomenon,it is unlikely that much could be done to produce a
greater uniformity of performance among various systems ssince,frequently, the diffi-
culties are rooted in fundamental features of the language/machine designs.Conse~
quently,as symbolic computation becomes more widespread{as it is likely to do,with
the development of faster,cheaper,microprocessors—-see,e.g. sMiola(1975),Rich and
Stoutemyer{1979),for examples of symbolic computations using minicomputers) the
assessment of 'worst-case cost' will assume critical importance.Moreover,in line
with the above remarks on the possibility of estimating efficiencies for complex
computations,from results obtained in relatively simple cases,one would hope to be
able to achieve this end in the special case of direct, timing comparisons-—since,
such a procedure would be of wide application.An idea of how timings can differ,
from system to system,is given by the 'league table' compiled by d'Inverno(1978),
for a relativity calculation.A useful,general,"'snapshot comparison' of several
systems(as of about 1974) is provided by the t able( due,mainly, to Sundblad)from
Cohen et 21.(1976);both of these tables are reproduced,here.
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The principal thesis of this paper may be summarised( indeed,'sloganized'l) as
follows: 'sufficiently uniform combinations of (finitely) manv (uniformly) effec-
tive approximation procedures,are,themselves,{uniformly) effective'. Like all
slogans,this one is not intended to be taken literally;ner,to be subjected to
intensive logico/mathematical investigation—-but,it does convey,in essence,how
symbolic computation packages can be used,creatively,by mathematicians,in all
fields.The crucial matter is the interpretation of the terms 'uniform',and,'effec-
tive';and,many different interpretations have been given in the course of this
paper-—depending on the field within which approximations were being sought.A pre-
requisite for. the use of what I have called 'symbolic analysis',is the formulation
of all problems in a constructive manner{ however apparently abstract they may seem
to be).With this precondition,the embitious mathematical schemes outlined in Sec—
tion 15(as well as many others)are quite feasible,at the level of sophistication

now attained.Their detailed implementations constitute major research projects;but,
my objective has been,almost entirely,to suggest ways in which significant analy-
tical procedures can be developed,and then,implemented,approximately ,with error
estimates at each stage of the computation often,in cases where the calculations
would be prohibitively complicated .without a computer).Moreover,the speed of
machine calculation is such,that variants of conventional methods may be tried,
experimentally,and,’partial proofs' may be expiored,heuristically.The large number
of references cited here,reflects the great variety of fields considered sand, the
diversity of 'almost constructive methods' already in existence( but,mostly,neg-
lected,because of their intractability).Section 15 contains merely a small selec~
tion of the vast array of effective procedures that could be assembled for use in
symbolic analysis.The crucial breakthrough,allowing 'symbolic manipulation'{as
described,e.g.,in Samet(1967,1569),Tobey(1971)) to be transformed into 'symbolic
analysis'(as exhibited,already,in many of the papers given at the MACSYMA Users'
Conferences( Fatemar(1977), (1979)),and the EUROSAM '79 meeting(Ng(1979))
--to give only the most obviocus examples) resided in the fundamental improvements
made in general algorithms for:(a)factorization,over algebraic number fields;(b)
other calculations involving algebraic number fields,including the determination
of multivariable greatest common divisors;ard,(c)formal integration,of transcen-
dental and algebraic functions of one variable.These advances are associated,especi-
ally,with Collins(1967),Zassenhaus(1969),Brown(1971) ,Wang(1971),Moses/Yun(1973),
Miole/Yun(1974),Wang/Rothschild(1975),and Wang(1976), and,a collection of algorithms
underlying the 83C-1 system(see,Collins(1971))=- for items (a) and (b).The re-
markable progress in algovitlmic integration stems from Ritt's(1948) presentation,
and extension,of Liouville's(18333-1840) results;and,the formulation of integration
problems in terms of differential fields(the basic formalisin,and theorems,being,
again,due to Ritt(1950)).Thereafter,the main theoretical contributions came from
Risch(1969,1970},for ‘transcendental' integrands,and,from Davenport(1979a,b,c),for
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Yalgebraic' integrands.(See,Section 12,for more details of topics (a),(b) and (c)).
To make these mathematical advances practically useful,the fundamental algorithms
must be implemented effectively——and extremely nontrivial task,which 1s still to
be completed, though,mich has been achieved in both hardware and software improve-
ments.Indeed, the design groups of all the systems discussed in this paper are en—
gaged,regularly,in projects to incorporate in their systems the most efficient .
procedures available(and compatible with their basic design aims).For this reason,
it is essential to check,with members of the design groups,all technical informa-
tion about the current state of{ and,implementations of) systems.

On the mathematical side,what has emerged very strongly,in the past decade,is the
pervasiveness of algebraic geometry(as a means of unifying procedures involving

fractional power series,as a basis for finite element calculations,for domains with
curved boundaries;and,above all,as the key to constméting a decision procedure for
the lintegration of algebraic functions).This is,perhaps,not so0 surprising,after
all,if one reflects that algebraic geometry is concerned,mainly,with the system—
atic study of rings of (formal) power series,and,of varieties(intersections of
zero-sets of finite numbers of (homogeneous) n-variable polynomials--over some
‘ground field').A glance at textbooks on classical algebraic geometry(e.g.,Lef-
schetz(1953)) makes the connection with effective methods in symbolic analysis
very clear.Nevertheless,the conversion of semi~cualitative procedures into appli-
cable algorithms has been accomplished,so far,only in a few types of calculation.
This *conversion' constitutes a most important aim,deserving close attention.
Whilst I am aware that the generality,and scope,of the schemes I have proposed in
this paper{ and,of the abstract approach they embody)is wunusual in the context of
computing,it does represent an effor to reduce the emphasis on purely numerical
routines,which have dominated numerical analysis for so long.If rigorous,effective,
(symbolic) procedures(with their concomitant error estimates) are available, then,
they should be used,since,the information they contain,about the analytical pro-

perties of functions,cannot be matched,even remotely,by purely numerical output.It
is interesting to note that,over:: ten years ago,Engeli(1969),using his crystal ball
to look a decade ahead,envisaged a 'general mathematical utility',in which collab~
oration between mathematicians and computers would extend(in principle) to all
areas of research.The current state of symbolic computation is such, that this
vision is no longer futuristic,

For all of the topics discussed in Section 15,1 have tried to find existing treat-
ments where the basic aim was to produce effectively calculable results;or,failing
this,where,the theorems are presented in a manner allowing the development of
'approximate realizations'.I believe that a very strong case has been made,here,
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for the extensive study of symbolic analysls;and,mat the material given in
Sections 14 and 15 represents an essentlal 'first step' in this direction.Hope-
fully,it will be of sufficient interest to mathematicians in all areas,for them
to implement procedures pertaining to their fields of special concern.

In case it should be thought that my appreciation of mathematics is confined ‘
solely to algorithmic procedures,may I declare,in conclusion,my admiration for all
who create beauty in mathematics--~however esotericallyl-—though,that beauty is
enhanced, for me,in proportion as it unifies apparently disparate fields,and forms
a basis for effective calculation.Disinterestedly abstract mathematical theories
are,almost always,necessary precursors to constructive procedures.lt is,by no
means,my intention to detract from the unique blend of abstraction,economy and
elegance,which characterizes the greatest contributions to axiamatic mathematics.
On the contrary,it is my principal aim to show that,not only are they aesthetic-
ally satisfying--most of them are,also,of considerable(and,often,unexpected) prac-
tical use.Although many people may share these views,they are stated only very
‘rarely in print--and,seldom reflected in the contents of books at graduate level,
or,in research papers.Beczuse.of this situation,I have emphasized the potential
use of symbolic analysis in predominantly 'theoretical',as well as 'applied'
contexts, '
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Summary of Propertics of Algebraic Systems (input/output facilities can be judged from the examples given in the text).

Property ALTRAN FORMAC LAM REDUCE SAC-1 SYMBAL
Version 1.9 (1974) 1968 1970 1974 1973 1970
Minimum core memory 260 kbytes 160 kbytes {50 kbytes 300 kbytes 130 kbytes 25000 words

(IBM 360) (IBM 360) (IBM 360) (IBM 360) (I1BM 360) (CDC6000)

Core memory for 350 kbytes 300 kbytes 400 kbytes 500 kbytes ? 33000 words

problem I

Implementation FORTRAN IBM assembler LiSp LIisSp FFORTRAN CDC-assem-

language bier

Cowputer Any IBM 360/370 Many - Many Any CDC6000

Distribution, addresses  Free for educa- Free from IBM Free Free Free Commercial -

in appendix tional institu- Program Library
tions

Distributed as Magnetic tape  Magnetic tape Magnetic tape Magnetic tape. Punched cards -

Maintenance Very good None Fair Good Fair -

Cortection of system Lasy without - Easy but complete Easy but complete  Easy without com- -
complete re- regeneration regencration plete regenera-
generation necessary necessary tion

Dialog version existing  No Yes, for IBM- No Yes, for DEC-10 No No

360/67
FORDECAL
(Grenoble)
SYMBAS
(Aachen)

Syntax FORTRAN FORTRAN or LiSP ALGOL-like FORTRAN lmiproved
and PL/1- PL/1 (METASAC: ALGOL
like ALGOL-like)

Declaration of variables Everything No No Some No (Metasac: Only spelling

(security) type and everything)
Jayout

Debugging facilities Very good Good Poor Fair Almost none Good

Output form Some choice Some choice Na choice Good choice No choice No choice

User’s documentation Very good Good manual Good manual Incomplete Good description Good manual
manual manual

System documentation  Veiy good Not available Good listing Good ful} listing Very good descrip- Not available

listing and tion and listing
manual

Exact arithmetic Fix length 2295 digits Infinite precision  Infinite precision  Infinite precision lnﬁnilc pre-

cision
Floating point Slow Fast None Very stow (LISP)  Fast None
arithmetic

Most general Rational May include May include May include Rational expres- Rational ex-

expression expression functions functions functions sion pression
Knowledge of elemen-  None Most Most Some None None

tary functions

Definition of differen-
tiation rules

Pattern matching

Analysis of expressions

Rational function
algorithms (division,
ged)

Modernity of
algorithms

Handling of trun-
cated power series

Formalism for vectors
and matrices

Gamma matrix algebra

Noncommutative
algebra

Explicit in

procedure
Limited
Very good
Good

Good
Very good

Good

No
No

Very good possibilities
Very limited

Iair

None

Bad

None

Fair

No
No

Good possibili-
ties (in LISP)

Very limited

Poor

None

Bud
None
Geod

No
No

Very good possi-
bilities

Good

Good

Good

Good
Good
Fair

ch.. built in
Under testing

Explicit in
procedure

Nonc

Fair

Very pood

Very good
None

None

No
No

Explicit in
procedure

None

Good

Nonc

Bad
Fair
Very good

No
Noe
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and Rational Function Integration System,
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Johnson, §. C., Tricks for Improving
Kronecker's Polynonilsl Factorlng Algorithm,
Bell Telechone Leberatortes Report, 1966,

Jordan, D, E., R, Y. Catln, and L. C.
Clapp, Symbolic Factoring of Polynomials
in Scveral Vortables, Comm, A.C.M.,
Vol. 9, No. 8 (Aug. 1968), pp. 638-643,
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Gorithing),

Knuth, D. E., The 2
grawmning, Vol. 1 (Fu:
Addison-Wesley, 1968.

Knuth, D. E., The Art of Computer Pro-
gramming, Vol. 2 {Seminumcrical
Algorithme}, Add!scn-\Wesley, 1969,

Lipson, John D., Symbelic Methods for the
Computer Solution of Linzar Equations with
Applications to Flowgraphs, Proceedings
of the 1368 Summer Inst{tute on Svmboltic
Mathematical Computation (Robert G.
Tobey, ed.), June 19569, 1BM Federal
Systems Center, pp. 233-303.

Manove, M., §S. Bloom, and C. Engelman,
Rational Functions in MATHIAB. In
Bobrow, D. G. (Ed.), Symbol Manipuiation
Languages and Techniques. North Holland,
Amsterdam, 1968, Pp. 86-102,

McClellan, Michael T., Algorithms for the
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" Equations viith Poiyr-nial Ceefficlents,
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Musser, David R., Algorithms for Poly-
nomial Factorization, University of Wis-
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1968 Summer instire:
Mathematrical Cem

rev.y.

Tobey, Robert G., Algorithms f
Differerciation of f.auz nclions,
Ph,D. Thests, Harvar! Untversity, 1967,

Van der Waerden, B. L., Maodern Alaebrs,
Vol. 1, Frederick Unaar Publishing Co.,
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mation Processing on
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- 1ing Systems
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FOTE THAT,although these refer—

ences only go to 1970, the basic

hiererchical structure of SAC-L

(2s reflected in the subsystems)
is essentislly covered.This
situation contrests with that
of FORMAC, where the early ver-
sions do not give an adequate
idea of the vresent sirength
of the system.
Current informotion on SAC-L
may be obtzined rrom tae Teche
nical Revorits{in their latest
forms)and géneresl enquiries may
be sent to G.E.Collins at the
University of Wisconsin,lizsdison.




	

