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1 INTRODUCTION

1-1 Problem Statement

The Library of the University of Waterloo serves 30,000
patrons, providing a ccllection of nmore than 1.6 million
items. On an average day activity at the various circula-
tion desks +totals more than 5300 transactions for the
library's GEAC on-line circulation system [GEAC73]. For
each transaction such as charge and discharge, the GEAC sys-
tem creates a log record containing comprehensive informa-
tion about the transaction. The log records are periodically

appended to the history file, which resides on tape.

The efficient management of an enterprise of this size
and activity obviously requires large amounts of prespro-
cessed information about all its aspects. In this thesis, we
are concerned with maintaining information about the librar-
y's usage as an aid to management decision making. Decision
problems pertinent to this aspect of the enterprise reguire
various types of statistical reports about short-term behav-
iour {(weekly, biveekly, monthly), as well as 1long range

planning aids (academic term, year, seven-year period).
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1.1 Problem Statement

The Library of the University of Waterloo serves 30,000
patrons, proéiding a ccllection of more than 1.6 million
itenms. On an average day activity at the various circula-
tion desks totals more than 5000 transactions for the libra-
ry's GEAC on-line circulation system [GEAC78]. For each
transaction such as <charge and discharge, the GEAC systenm
creates a log record containing comprehensive information
about the transaction. The log records are periodically

appended to the history file, which resides on tape.

The efficient management of an enterprise of this size
and activity obviously requires large amounts of prepro-
cessed information about all its aspects. In this thesis, we
are concerned with maintaining information about the libra-
ry's usage as an aid to management decision making. Deci-
sion problems pertinent to this aspect of the enterprise‘
require various types of statistical zreports about short-
terﬁ behaviour ([weekly, tiweekly, monthly), as well as long
range planning aids {academic ierm, year, seven~year

period).



The information about the behaviour of the collection,
such as usage patterns, peaks in demands for certain items
and aging of items, can, at least in principle, be extracted
from the history file (in connection with the library master
catalogue). This thesis provides a discussion of various
methods to preformat the history file and their applicabil-
ity with respect to particular constraints. The goal is to
outline a suggestion as to how to rearrange the history file
into a meaningful data base of manageable size to support

efficient report generation.

The history file is a collection of variable 1length
records of {at this time) four different types. Fach record
contains a field indicating its type as a numerical value as

follows:

code transaction described
01 charge
02 discharge
03 single copy request (RFP)
o4 multi copy request (hold)

The record layout 1is the same for all four types of
record; only the meaning of the various fields differs for
each type. A detailed record definition is shown in
tables 1.1 and 1.2. Note that some fields are undefined for

certain record types, e.g. field 10 contains no valid infor-
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Table 1.1

TYPE
binary

99

999
YY-NM-DD
99999
999999999
999999999

999
999

999
YY-M¥M-DD
9699

YY-MM-DD

9999

9999999.99

999

99

9999999939

999
9999939999
999

99

9

99
YY-¥MM-DD
YY-MM-DD
999

999

999

999
99999999

CONTENTS

length of record

transaction type

terminal number

date transaction was created
time in 2 sec. from 00:00,
transaction was created

item number {physical volume)
record number of patron on GEAC
status bits from transaction
charge: secondary status bits
discharge: number of fine notices
RFP: processing code

hold: items linked wvia hold
location, valid only for trans-
action types RFP and hold
charge: due date

hold: date not reguired

charge: due tinme

hold: time not required
discharge: date returned

hold: date before which

not required

discharge: time returned

hold: time before which

not required

hold: pointer to call # record
charge: number of times renewed
hold: copy # that satisfies hold
charge: number of overdue
notices sent

patron type description
department # of patron

status code for patron

loan privileges of patron

year code

privilege category

statistical classification

date registered

2xpiry date

default loan period of itenm
items's default location
items's status

status of the call number
accession number {link to
library master catalogue)

History file layout

{fixed section)



FIELD # LENGTH TYPE CONTENTS
31 2 binary length of call number
32 var alphanum call number text (max length 30)
33 2 binary length of author field
34 var alphanum author text
35 2 binary length of title text
36 var alphanun title text

Table 1.2 History file record layout
{variable length section)

mation in record type 02. However, all fields of the fixed
length portion are present in records of all types, unde-
fined fields being set to zero. The variable section of a
record is only included in records describing a transaction
that involves an item not listed in the library master cata-
logue., Its existence is indicatzd indirectly in the length

field of the record.

Certain relations between the data contained in sonme
fields are immediately cbvious from the record definition.
Denote the content of field i by (i); then (1) = 01 implies
(9) = (12) = (13) = (14) = 0 ; (1) = 02 implies (9) = {15) =
{(16) = 0 ; etc.; Other relations follow from the semantics
of the data. However, deducing such relations from data
semantics has some potential pitfalls, as the semantics are
not clearly defined. One might for instance suspect that,
analogous to the above, {1y = 02 implies (3) = (12), but

this relation does not hcld.



Typically, the history file grows by more than 5000
records a day. Approximately one in four records has a
variable portion, having an average length of 55 bytes when
present. In one year the file thus grows by roughly 280
million bytes, or 10 tape volumes. The record types 01 and
02 each make up approximately 48% of all records; types 03

and 04 each account for approximately 2%.

1.3 Computing Facilities and Constraints

Report generation frcm the history file in connection
with the 1library master catalogue is +to be run as a batch
application under VM on the University of Waterloo's Comput-~
ing Centre's IBM 370,158 and 3031. The Computing Centre is
currently replacing the clder 2314 disk drives by the model
3350, and will replace the processor 3031 by a pair of 4341
[Watt80]. On the 3350 system, the disk packs are station-
ary, i.e. not mountable. This implies that the history data
tase cannot be kept on off-line disk packs to; be mounted
only during specific time slots available for library data
processing. On the other hand, it is obvious that the data
base cannot reside on one or more stationary 3350 disk

drives, thus depriving the Computing Centre of these drives.

As a conseguence of these constraints, the history data
base must reside off-line on tape. This leaves the choice of
two different general strategies in the design of the data

base:



1) Design the data base on-line on one or more 3350
disk packs. After constructing the data base, dump
the disks on targe. Note that +the data base need
never be updated, as it will only contain fixed
facts about past library transaction activities.
Future additions to the data base can be constructed
as successive denerations in  the same way as the
first one. When reports are *+o be produced from this
data base, it is loaded from tape onto 3350 disks,
and can be accessed directly. The disks are freed
again after the reports are generated.

2) Design the data kase as a collection of seguentially
accessible files. In this approach, the data hase
need not be loaded onto disk prior to accessing it.
The constraint of seguential access 1is not a savere
one, since report generation requires all pertinent
data over a given subject range to be examined, in a
suitably ordered sequence. Different orderings, how-
aver, cannot be maintained by pointers, as on disk,
but will require different versions of the same

file, sorted in the respective orders.

Report generaticn usually involves only simple and very
fast computations, and the time 1required to read the files
from tape will be the governing factor in determining the
elapsed run time for a given application. Thus by reading

sequentially and processing "simultaneously", the second



approach will yield faster report generating facilities than
the first; in fact, elapsed time for a typical report gensr-
ator will be of the same order as that required merely to
load the data base onto disk. Therefore in this thesis, we

will concentrate on the latter strategy.

1.4 Thesis Qutline

The goal of this thesis 1is to examine various methods to
devise a data base which is suited to meet the library's
demand for efficient report generation. The reports will
deal with a wide range of aspects of the library's collec-
tion. They do not form a fixed set of reports; rather the
very existence of a general reporting facility will create
even more demand for information, and thus reports, whose

nature and subject are highly unpredictable today.

Given the constraints outlined above, we will analyze
different methods with respect to their applicability and
usefulness for tape files. In chapter 2 we will discuss
various technigues to compress files, i.e. to reduce their
size while keeping all data available. In chapter 3, we
look at record splitting methods to divide a file into sev-
eral subfiles, each containing part of the original data.
After considering advantages and trade-offs of different
approaches, we will present an outline of a solution to this

design problem in chapter L. We conclude the thesis in chap-



-

ter 5 with final comments and details of the design to be

investigated further.



2 COMPRESSION

2.1 Introductory Remarks

While there is no standardized definition of compression,
we will adopt the definitions of Gottlieb et al.
[Gottlieb757]:

Compaction of data means any technique which reduces
the size of the physical representation of the data
while preserving a subset of +the information Jdeenmed
"relevant information®.

Compression of data is a compaction technique which is

‘completely reversible [i.e. compression preserves all
information contained in the data).

Compression Factor is the size of the comprassed file

expressed as percentage of the original file (called

Compression Ratio in [Gottlieb75)).
Compaction techniques which are not completely reversible
include truncation and rcunding of numerical values and rear
end compaction of a sorted sequence of keys. Because of the
unpredictability of future derands for reports to be
extracted from the history file, we cannot afford any loss
of information while reducing the file's size. Thus we are

confined to compression techniques as defined abovae.
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It should be noted that compression is not to be confused
with storage esfficient data design. The thoughtful data
designer does, of course, take into consideration the aspact
of space efficiency, and may apply techniques that are simi-
lar to those which are used in compression, e.g. decimal to
binary conversion, data packing, or field differencing
[Ruth72]. However, the result of his/her work is the jinput
to a compression algorithm, and it is not in the scope of
the deviser of a compression technique to redesign the data
for optimal overall results. The potential merit of a good
data design 1is conceivably greater than that of good com-
pression of a weakly designed file, just as improving the
abstract schema for a data base may have more impact than
improving the internal/physical schena [Santoro8)]. How-
ever, when looking for an efficient compression technique
for the history file, we have chosen to accept the file as

it was originally designed [Library Systems].

2.2 QOverview of Compression Technigues

No mathematically precise overall concept of compression
has yet been devised. Major work in this area was done in
the business environment, based mostly on isolated practical
cases. The apparent lack of interest in the scientific com-
munity might be based on one of the following +two impres-

sions: 1) Given the task of compressing a file with certain
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characteristics, the best suited compression technique is
obvious and can be determined by straightforward reasoning.
2) A compression problem is parametrically dependent on so
many characteristics and peculiarities of the given file and
on environmental constraints that there seems to be no meth-
odical way to determine an optimal solution. Although for
some files one can fairly weasily find compression methods
that work "quite well”™, we consider the first impression a
delusion, for the general case. The latter impression, on
the other hand, actually constitutes a challenge which has

not yet been seriously accepted.

Compression techniques can be <roughly divided into three
major categories: statistical encoding, pattern substitu-
tion, and differencing. They are, however, not clearly
delineated, and many actual compression technigues fall
under two of these categories. A possible categorization of

selected techniques is depicted in figure 2.1.

In this chapter, our task will be to find from this vari-
ety of techniques those which are specifically suited for
the history file. Because of the size of the files, we will
concentrate on very fast algorithms which yield good conm-
pression factors, rather than on those which promise optimal
results with medium or slow speeds. Our criteria in compar-
ing different technigues thus will be speed and compression

factor; we will not be concerned with the conceptual conm-
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Pigure 2.1 A possible categorization of sone
compression technigues
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plexity or the space requirement for a program implementing
a given technique. In the following three sections, we will
discuss for each category its major typical representatives
and assess their applicability to our problen. Finally, we
will present results of test runs for those techniques

deemed most promising.

2.3 Statistical Encoding

Data in a file are wusunally represented as strings of
characters over a fixed alphabet. Different characters of
this alphabet will normally occur in the file with different
frequencies. Statistical encoding techniques try to e2xploit
this fact by translating the original alphabet into a code
of variable length codewords, such that the 1length of the
codeword for a given character is inversely related to its

frequency in the file.

An early practical example of statistical encoding is the
Morse code for English language text. This code translates
letters of the 2nglish alphabet into codewords over
(r.v,n_n,m "}, while taking advantage of the different fre-
gquencies #ith which the letters occur in normal English
text. The most frequent letter e is encoded ". ", while the
much less frequently occuring g is encoded "__._ ", From

results in information theory we know that if individual

characters are encodead, the shortest possible binary repre-
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sentation for a text of N <characters over a finite alphabat
is ¥ * H, where H 1is the entropy of the distribution of
characters in the text [Abramsonst3]. Note that the more

uneven the distribution, the better the compression factor.

An encoding technigque which comes closest to the lower
bound of N * H 1is the Huffman encoding scheme [Huffman52].
This scheme has also the important prefix property, i.e. no
codeword c(i) is the prefix of another codeword c{j). Thus
retrieving the original +text from the encoded one requires

only one single pass over the input streanm.

The information theoretic 1lower bound of N * H is based
on the assumption that the probability of appearance of any
character in the +text is independent of the probability of
appearance of any other character. This assumption, how-
ever, is in practice violatad in wvirtually every file.
Dependencies of probability of appearance occur in a variety
of ways: in English text, for example, the occurrence of the
letter "t" will drastically dincrease the probability of
appearance for the letter "h", in many files zeros and

blanks tend to appear in "clumps”, etc.

The assumpticon of independent probabilities being vio-
lated, Huffman encoding of individual characters may not
yield the best possible compression factor. But because it
assumes independent probabilities and is, therefore, inde-

pendent of the semantics of the data, the expected compres-
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sion factor for a given file can be calculated from a simple
statistical pass ovaer the data, and without actually apply-

ing the compression rontine.

An extension of Huffman encoding that does take data
semantics into consideration could be viewed as successive
application of two compression techniques. Usually the most
frequent character in a file, such as the zZero in the his-
tory file, appears in "clumps". Clumps of length greater
than two can be replaced by a sequence "(flag) {(count)” in
the original text. This technique 1is a type of run-le2ngth
encoding and is described in more detail below under pattern
substitution. The flag character is then added to the origi-
nal alphabet and Huffman encoding is applied to the text in

which the clumps have been replaced.

In general, Huffman encoding can be combined with any
other compression technique to yield better compression fac-
tors. Extensions of Huffman encoding like the one above can
be found as indivisible encoding schemes in +the literature
{Ruth72 ], [Mulford71], [Gottlieb75]. He prefer the cleaner
view of extended Huffman encoding as pure Huffman encoding,

preceded by any other suitable compression technique.

Implementing Huffman encoding on a byte-oriented machine
will result in a relatively expensive compression routine,
because variable length bit strings are not effectively han-

dled by the machine's instruction set. Experiments con-
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ducted by Gottlieb et al. have shown that Huffman encoding
takes roughly twenty times the processor time used by a
byte-oriented compression method based on differencing

[GottliebT5 ].

A statistical encoding technique which is related to the
Huffman scheme was developed by Hu and Tucker [Hu71]. The
Hu-Tucker algorithm has the additional property that it
maintains the order of the original alphabet, i.e.

if d(i) < d{j), then c(d(i)) < c(d(d)).,
where ¢ (d(k)) 1is the codeword encoding character d (k). The
advantage of this technigue is that a file can be sortad
without decompressing it first. Because of the constraint
of ordering, the compression factor achieved will in general
be worse than that of the Huffman encoding scheme, while the

processor time used is essentially the same [Gottlieb75].

2.4 Patterp Substitution

While statistical techniques encode the source text char-
acter by character, methods belonging to this category work
on aggregates of several characters at one time. These
aggregates may be letter pairs, logical fields of a recorxd,
or patterns that exceed field boundaries. The input text is
scanned for predetermined patterns, and when such a pattern
is found it is replaced by a shorter string of characters

which does not occur in the original text, or by the empty
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string. Application of a pattern substituting compression
technique requires exact knowledge of the underlying alpha-
bet of the file as well as some insight into its semantics.
Candidate patterns must be found and their 1length and fre-
quency of occurrence be determined. Techniques in this cat-
egory thus depend heavily on the properties of the individ-
ual file to which they are to be applied and are not as well
suited for a general compression facility as are statistical

methods.

Run time will generally increase (and the compression
factor decrease) with increasing complexity of patterns to
be recognized and replaced. A very fast compression techni-
que for the history file is, for instance, one that finds
the pattern "-" and replaces it by the empty string. This
achieves a compression factor of roughly 93% and, in IBM
Assembler lanquage, takes two instructions (one MVC and one
TR instruction) per iecord, in addition to input/output and

loop control.

A very complicated pattern ’substitution technique is the
ANPAK ccmpressor described by Marron and De Maine
[Marron67 3. ANPAK is a component of the universal compres-
sion package COPAK for data bases. It is a recursive bit-
pattern recognition technique which determines the patterns
to look for automatically during the compression process.

Because of its intended universality, its compression factor
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varies greatly with the properties of the data on which it
vorks. Results range from 100% {(no compression) to 61%, as
reported in [Marron67] for the text of a technical report.
While the authors do not disclose the time used for compresQ
sion, they do say that "...read-in time for compressed
informaticn plus time for decompression is significantly
less than read-in time for the original information." For
this technique, however, compression is much more exp=nsive
than decompression, because recursively finding repeating
patterns and consfructing the translation table requires
several passes cover the input stream and a greater amount of

computation than decompression by simple table look-up.

A pattern substituting technique that is particularly
suited to handle English language text was developa=d at the
Scientific Exchange, Smithsonian Institute, on an IBM Systen
360 [ Snyderman707. This technique takes advantage of the
fact that the text to be compressed contains only 88 of the
256 IBM EBCDIC 8-bit codewords (bytes). The 168 codewords
which never occur in the original text are used to encode
the most frequent pairs of characters. Taking into account
upper and lower case letters, numbers, special symbols, and
blank, it is not an easy task to determine the 168 character
pairs most freguently used in English text. Also, it is not
a trivial problem to reassign the 256 codewords to pairs and
single characters in a fashion that supports a fast running

implementation of this compression technique. After a series
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cf trial and error tests the authors arrived at a routine
that achieved a compréession factor of 65% and usad 73 msec

per 1000 characters on an IBM 360,/40.

This pair encoding method is of very limited applicabil-
ity to the history file, as only the variable portion of the
extended records, and thus less than 10% of the file, con-
tains English text. ©Pair encoding for the numerical values
contained in the other 90% of the file can be achieved much
faster and with less consideration, by transforming the data
from the zoned to the packed format using the PACK instruc-
tion [IBM Principles of Operation]. Each field in the fixed
part of the record can be packed withcut loss of informa-
tion, provided the hyphens in the date fields are first
removed (for example, by a procedure as outlined above).
The reason, of course, is that we know from the data defini-
tion that all left half-bytes contain a hexadecimal npn
which can be reconstituted during decompression by ths UNPK

instruction.

This simple packing of numerical values can be viewed as
a type of pattern substitution, for it repeatedly replaces a
pattern "Fx"™ by the shorter "x», if "Fx" is not the last
byte in a field, or else by M"xF" (x being a hexadecimal
digit from O to 9). Applied to the history file, this method
compresses the fixed part of the records from 149 to 91

bytes, yielding a compression factor of 65% for the antire
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file. It takes per record essentially one MVC and ons TR (to
remove the hyphens as above) and 30 PACK instructions, one

for each field.

There are , however, two disadvantages in packing field
by field, caused by peculiarities of the PACK instruction.
The last byte packed by one instruction is not compressed,
and packing a field of even length n results in {n/2 + 1)
bytes, where the left half of the leftmost byte is wasted.
This can be avoided by applying PACK instructions with maxi-
mum length, across field boundaries, and overlaying succes-
sive instructions by one byte. The fixed part can now be
packed into 70 bytes using only 10 PACK instructions, and

the compression factor achieved is 52% overall.

Note that the above ccmpression method changes the fixed
part to a 70 byte long packed signed decimal number. This
number can be worked om by another pattern sSubstituting
technique, namely decimal to binary conversion. Since

2%%472 < 10*%%138 < 2%%x430,
a binary number capable of representing any 70 byte long
decimal number, and thus any fixed part of the record, fits
into 480/8 = 60 bytes. This constitutes a compression factor
of less than 46% for the history file. The implementation of
this technique on an IBM machine, however, is not quite as
straightforward as the preceding compression step, because
the Assembler instruction CVB can only handle 9 decimal dig-

its at a time.
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The last method we will discuss 1in this category is pro-
bably the nost widely used compression technique, null sup-
pression. This pattern substituting technique takes advan-
tage of the fact that files often contain a high percentage
of null, or default, values, such as blank or zero, and that

these values tend to appear in clumps.

There are two main strategies to represent runs of
default values by shorter patterns, bit mapping and run-
length encoding. In bit mapping, one bit is used to repre-
sent one unit in the record. Units can be bytes, machine
words, fields, or arbitrary chunks of the record. The bits
are collected in a bit map, which is appended to the front
of the record. If a unit represented by a bit contains only
default values, the bit is set to zero and the unit is omit-
ted from the record (i.eca replaced by the empty string);
otherwise the unit is kept and +the bit 1is set to one.
Alternatively, in run-length encoding, a run of default val-
nes of length greater than two is replaced by the pattern
" (flag) ({count)"., The <character serving as flag must not
occur in the original data. If all characters are used, we
can select as a flag the least frequently occurring charac-

ter and double it when it appears in the data.

Detailed statistics of the object file are neseded for
both strategies to determine the unit sizes or the space for

the run-length count that yield best compression factors.
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Trial runs with a representative portion of the file are
probably the =ecasiest and fastest way to find a good solu-
tion. A generalization of these methods is to treat several
characters in the same way as the default character. This
can be done by including one bit map for each character or
using a replacement pattern of tha form

"({flag) (character) {count)".

Because the history file contains a substantial percent-
age of zeros, null suppression appears to produce a good
compression factor. However, because estimates cannot be
given as easily as for packing and decimal to binary conver-
sion, results of trial runs with null suppression are post-

poned to section 2.6.

2.5 Differencing

In contrast to the previously described methods, which
achieve compression by changing +he physical reprasentation
of the data, +the emphasis of differencing technigues is on
the infcrmaticn ccntent of the data. Their gonal is to
reduce the overall amount of information recorded in the
file Dby not repeating parts of the information that are
already stored elsewhere, vithin or without the file. In
general, an information unit to be compressed is compared to
a reference unit, and only the difference between them is

kept in the record. A special type of differencing uses one
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field in a record as a <reference unit for another, similar
field in the same record. If, for example, a record contains
the fields {[datel), (date2), compression might be achieved by
storing " (date1) {interval2)", wvhere interval2 = (date2 -
datet) . This technigue, however, belongs more to the realm
of data design than to that of compression, because it
applies directly to the definition of the data structure
(record). In the following, we will therefore limit the dis-
cussion to differencing technigues with reference units cho-
sen from outside the data structure currently being con-

pressed.

Among these, we can distinguish between techniques that
use fixed reference units (the reference record), and those
which change the reference record dynamically as successive
records are compressed. A very simple example of differenc-
ing with a fixed reference uﬁit is the following: An inte-
ger field contains a year which falls in the range between
1900 and 1999 (this range might not be known at data design
time). The field can be compressed by using 1900 as a
reference unit and storing (actual year - 1900), which is in
the range of 0 to 99, and fits into a smaller field. Note
that the difference recorded 1is the result of arithmetic

subtraction.

In cases where arithmetic subtraction cannot be used +o

construct a meaningful "difference”, we can apply the log-
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ical "exclusive cr" operation bit by bit. The result of this
operation is a 0 for equal bits, and a 1 otherwise, or, on a
more practical byte level, we will obtain X'00' if and only
if a character equals its counterpart in the reference unit.
Characters which yield a X'00' can +then be omitted from the
record. Of course, we nmust somehow indicate whers and how
many characters were omitted. As a practical example, null
suppression can be viewed as a differencing technigue, where
the reference record consists of a fixed string of zeros
(X'F0'), and the difference is constructed by exclusive or.
Bytes which produce X'00' results are omitted and <their
absence 1is indicated either by <run-length or by bit map
encoding. In general, null suppression is a good "second

phase" for this type of exclusive-or-differencing.

Both arithmetic subtraction and exclusive-or-differencing
can also be used with dynamically changing reference
records. A widely used instance of this type of differencing
is a front end compression technique for a sorted directory
of keys: The n leading bits of a key that are identical to
the corresponding bits of the preceding key are redundant
(they do not help to distinguish the keys) and can be omit-
ted. Note that the (n+1)st bit can be omitted as well,
because if the keys are equal in exactly n 1leading bhits,
they must differ in the (n+1) st bit, which is thus unigquely
determined by the preceding key [Gottlieb75]. The reference

record used here consists of the preceding key, and the dif-
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ference is obtained by applying the exclusive or operation.
Run-length encoding is then used to compress the 1leading
string of O-bits, and the first 1-bit is omitted. Since
n £ m, where m 1is the length of the entire key, the run-
length count can be stored in log{(m) bits, which often con-

stitutes a considerable saving in space.

As a generalization of the front compression method, we
can compress a file sequentially by taking the preceding
record as a reference record for differencing. This type of
technigque has a property which distiguishes it fundamentally
from statistical and pattern substituting technigues, and
even from differencing with fixed reference record: to
decompress a given record, we will have to decompress all
records preceding it in the file. While this is hardly a
severe ccnstraint if the file is only to be processed
sequentially, it makes the application to a direct access
file difficult. 1In this case practicality dictates that the
first record of each block that is directly accessed should
be left uncompressed {or compressed against some fixed ref-

erence), at the expense of the compression factor.

The compression factor achieved by differencing against
the preceding record depends heavily on the ordar of the
records in the file. The heuristic of sorting by the larg-
est field [Gottlieb75] may yield acceptable results, but in

general only a detailed analysis of the actual contents of
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each field will give enough information about orderings that
potentially yield an optimal compression factor. In prac-
tice, however, the ordering of a seguential file is often
dictated by the applications that run against it. If this
ordering allows only a mcderate compression factor, differ-
encing against the preceding record can prove too ineffec-
tive and must be abandoned in favor of other compression
technigyues. In most cases it is highly undesirable to keep a
file compressed in the most suitable order for this purpose
and to decompress and resort the entire file before it is

accessed by an application program.

Another problem with differencing against the preceding
record is reliability. 1If one record is physically damaged,
all succeeding records in the file cannot be decompressed
and are lost. In contrast, with pattern substituting techni-
ques only the damaged record itself is not decompressable.
The propagation of the damage can be checked to a certain
extent by leaving the first record in a block of n records
uncompressed, thus limiting the damage to the rest of that
block. Depending on the blocking factor n, the compression
factor can deteriorate to a point where other compression
techniques begin to appear more favorable than differencing

against the preceding record.



2.6 Test Runs

For test runs of several compression technigues a partial
history file was available which contained all transaction
records for the day 20/11/79. This sanmnple file is very
small in comparison to the actual history file, but it can
be taken to be representative in most aspects. It has the
advantage that it can be stored on a VM minidisk, and thus
testing of different compression routines and making changes
to them could be done guickly and conveniently on-line under

V¥4 CMS.

The file consisted of 5951 transaction records, of which
2162 were extended by a variable part, as opposed to 25% in
the entire history file. The overrepresentation of the
extended records results from the fact that they correspond
mainly to reserved material, including previous assignments
and final exams for various courses. With a final exan
period arproaching, these 1items were at the peak of their
year-round demand. The larger than average portion of
extended records does not influence results from compression
techniques that work on the fixed part only ({overall con-
pression factor estimates will even be somewhat pessimis-
tic), and it helps in testing compression techniques that

apply to the variable parts of fhe records.

In selecting candidate compression techniguas +to be

tested, we were guided by a compression factor of 46%, which
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is achieved by converting to binary the 70-byte decimal num-
ber produced from the fixed part by packing, as outlined in
section 2.4. ©0Only fast compression techniques that are
likely toc do better on the history file were taken into con-
sideration. The major representative of Statistical ZEncod-
ing, the Auffman encoding schenme, was not implemented for
testing, because of the predictably large amount of proces-
scer  time it uses in ccmparison with other methods, and
because compression factors reported for this technigue in
[Gottlieb75] are only slightly better +han 46%. W2 first
concentrated on compressing the fixed part of the records,
as this makes up mcre than 90% of the data. All compression
routines that were tried removed as a first step the ten
hyphens contained in the date fields, transforming the fixed

part into a numerical string of length 139.

The packing technique, as described 4in section 2.4,
yields a <compression factor of 52% for the entire history
file. In the fixed parts of the sample file, we found more
than 45% zeros occurring in strings of length greater than
two. These zeros are still present in the packed version of
the file, and null suppression suggests itself to compress
the fixed part further. Because the packing routine repre-
sents two characters in one byte, a following null suppres-
sion algorithm would have to work on a half-byte level. In
an actual implementation, we therefore reversed the order of

the routines to avoid this difficulty. In summary, the
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first candidate compression program, RUNPACK, consistad of
the following steps:

1) Remove hyphens in date fields

2) Replace runs of zeros by combined flag/count byte,

stored in two consecutive right half-bytes
3) Pack compressed variable 1length version of fixed
part

4) Append variable part unchanged, if it exists.
Step 1) is implemented in a straightforward way. Since the
hyphens have fixed offsets from the start of the record, a
predetermined pattern is moved into a work area and accord-
ing to this pattern a TR instruction collects all bytes of
the current record into +the work area except the ten
hyphens. In step 2), a run of zeros is replaced only if its
length exceeds two bytes, since only then can compression be
achieved. It is sufficient to start looking for zero runs
at the last byte of field 3, because before this, only two
consecutive zeros «can occur., In the sample file we found
44786 strings of zeros, only one of which was longer than 63
bytes. We therefore reserved six bits in the flag/count byte
to indicate the length of a zero string, and set the two
leftmost bits +o0 one. 4 half-byte containing a hexadecimal
digit frem € to F is thus uniquely identified as the left
half of a flagscount byte. This byte must initially be
stored in +two right half-bytes in order to "survive" the

packing step. Zero runs longer than 63 bytes are 2ncoded in
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several successive flag/count bytes, as needed. Step 3)
packs the run length encoded fixed part, which now has vari-
able length and whose end is indicated by the contents of a
register. The two halves of a flag/count bhyte will be adja-
cent after packing, although they might be separated by a
byte boundary, which causes only insignificant inconvenience
for decompression. Finally, step 4) appends the extended
part, if it exists, to the compressed fixed part. A program

listing of RUNPACK can be found in the appendix.

Test runs with this ccmpression routine against the sam-
ple history file showad an overall compression factor of
38. 14%, which is scmewhat pessimistic for the entire history
file because of the untypically large proportion of extended
records in the sample file. Assuming, more realistically,
that only every fourth record is extended, a compression
factor of 35.76% would have been achieved. The fixed part of
the records was compressed with a factor of 29.9%. A lower
bound for this is 23.3%, under the assumption that zeros
make up 50% of the fixed part and they all occur in maximum

length runs.

The test runs wvwere timed in texrms of internal timer
units, one unit being equal to 26.04166 microseconds. The
processor time used to ccmpress the sample file was roughly
211000 timer units, or 5.49 seconds. This time includes the

time used to read the data from disk, which was timed sepa-
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rately at approximately 93000 +timer units, leaving for
actual compression 118000 timer units, or 3.1 seconds. ¥With
this technigue, we are thus likely to compress one year's
volume of the history file in less than 20 minutes processor

time by a factor of 35.7¢%.

As a next phase we tried a compression technique that
would also take into account the variable length part of the
extended records. The obvious choice for this was a type of
differencing method, working on the file sorted by accession
nurber (field 30). The selection of this ordering was made
easy by a number of advantages with respect to both process-
ing and compression: Most processing against the history
file will be via accession number {Damon], which is facili-
tated by this ordering, and identical extended parts can be
made to appear 1in consecutive records by a subsort on iten
number (field 5). To begin with, we tested a routine that
implemented a rather crude exclusive-or-type differencing
technique. Differencing was done against the precading
record on the field level, and absence of fields in the com-
pressed record was indicated in a bit map. In detail, the
routine NFDIFF implemented the following steps:

1) Remove hyphens in the date fields

2) Construct difference against preceding record by
exclusive or

3} Locate fields that differ from zero and set corre-

sponding bits in bit map to one
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4) Concatenate bit map and fields <corresponding to
nen-zeros to form output record.

Step 1) is identical to step 1) in RUNPACK. In step 2), the
difference is calculated in a Wwork area between the current
record and the preceding one, which has been saved in uncom-
pressed form in a special area. The length fields in the
extended part were treated as part of the corresponding data
fields, so that the extended part is viewed as a collection
of only three fields. The first record in the file is pro-
cessed against a dummy record containing all zeros (X'FQ!')
in the fixed part, and blanks in the variable part. Step 3)
looks in the work area for nonzero bytes ({#X'00'}) using a
TRT instruction. When a nonzero byte is found, the position
in the bit map of the corresponding bit for its field is
looked up in tables, and the bit is set to one. In step 4),
the start and 1length of each field are determined fron
tables and the wentire field is appended to the current end
of the output record. A program listing of NFDIFF is

included in the appendix.

Test runs with NFDIFF against the sample file showed a
slightly higher compression factor ({39.77%) than that for
RUNPACK. This results from the fact that the compressed
fixed part of the records still contains a considerable
amount of zeros, which is caused partly by the field level
operation of NFDIFF, and partly by the fact that complete

fields containing only zeros are Kkept when they are differ-
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entiated against ncnzero fields. The good compression result
for the extended parts could not offset this disadvantage.
Note, however, that +the compression factor achieved by
NFDIFF on the sample file is not as easily projected for a
year's vclume of the history file as the result for RUNPACK.
In fact, it can only be taken as a very 1loose upper bound
for the factor that can ©be achieved in actual production.
Identical extended parts appear in the sample file in a max-
imum of eight consecutive records, the average being less
than five, while in a sorted year's volume identical
extended parts will occur consecutively in several hundred
records. The elimination of all these except for the first
occurrence will have a much greater impact than in the sam-
ple file and will sharply improve NFDIFF's compression fac-
tor. The processor time used by NFDIFF was (within the lim-
its of error in measurement) egual to the time used by

RUNPACK.

Because compression of the extended part of the record is
acconplished far better by differencing than by any statis-
tical or pattern substituting technique discussed above, we
concentrated attempts tc improve on NFDIFF's compression
factor again on the fixed part. He note that fields in the
fixed part are still in the zoned numerical format after
NFDIFF's treatment. The obvious next phase thus was to
append to NFDIFF's four steps a step

5) Pack surviving fields from the fixed part,
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resulting in the routine DIFFPACK. Step 5) was impleprented
in a straightforward way, and inserted into NFDIFF at the
logical end of the program. A listing of DIFFPACK is shown
in the appendix. Processor time measured for DIFFPACK on the
sample file was about 3.5 seconds, which projects to about
22 minutes processor time used to compress a year's volume
of the history file. The compression factor, however, was
significantly improved to 23.64%. This figure is subject to
the same remarks as that for NFDIFF, and will improve when a

larger portion of the history file is compressed.

Using the same consideration that lead us from the dis-
cussion of packing as a pattern substituting technique to
the actual routine RUNPACK, we can precede stap 5) of
DIFFACK by a step

4a) Replace runs of zeros 1in the differentiated fixed

part by a flag/count byte.
The resulting routine DIFRUNPK can be viewed as a successive
application of NFDIFF and RUNPACK, or, in terms of sections
2.4 and 2.5, as a concatenation of pattern substitution,
exclusive-or-differencing using bi%t map, null suppression
with run 1length encoding, and pattern substitution {pack-
ing). A program listing of DIFRUNPK is found in the appen-
dix. The processor time used to compress the sample file was
increased to about 4.5 seconds, which means roughly 28 min-
utes to compress a year's volume of the history file. The

compressicn factor achieved by DIFRUNPK was 20.15% for the



sample file, and will still likely be better for a year's

volune.

Table 2.1 summarizes the yearly predictions for the sev-
eral data compression techniques. The test runs show that
the history file lends itself to considerable compression hy
relatively simple and fast routines. Because the history
data base is to reside on tape, storage cost saved by con-
pression is of minor importance and can be neglected. The
advantage of compression lies in the fact that reading time

is largely reduced at the 1low cost of decompression, which

technique/progran processor tinme compression factor
packing < 10 min 52%
convert to bimnary approx 20 min bs%

after packing

RUNPACK 20 min 35%
NFDIFF 20 min < 39%
DIFFPBACK 22 min < 24%
DIFRUNPK 28 min < 20%

Table 2.1 Predicted run time and compression factor for
some compression technigues when applied to a year's
volume of the history file



amounts 0 a net saving in the cost of running an
application against the data base. Another advantage is that
a larger time span can be recorded on a single tap=, reduc-
ing the number of tapes to be mounted and thus the elapsed
time for long range statistical reports. In +*+he following
chapter, we present further methods that address the problen
of reducing the read time for applications from a totally

different starting point than compression.



3 RECORD PARTITICNING VS REPORT PARTITIONING

The records in the history file each contain information
that describes a certain transaction in great d=2tail, so
that each specific report generator will use only a subsat
of the fields contained in the histcry records +o produce
specific statistics. For example, a report on the usayz of
a given class of items will not be interested in the number
cf the terminal where a transaction originally was enter=d
{field 2). Even though compression reduces tha ovarall
amount of physical storage units to be transferred from tape
into main memory, a reporting program still spends a consid-
erable portion of its time to read-in data which are irresle-
vant to its purpose. To reduce *+his overhead, nethods have
been developed to regroup the fields of a record ;nto sav-
eral separate records, which are then collected in different

files.

Three major representatives of +these record splitting
methods are the techniques of Benner [Bennerf7], Zisner and
Severance [Eisner76], and Babad [Babad77]. In each model,
the fields of the record to be split are distributed over a

primary record and zero or more auxiliary, or seconidary,



records. Such a system of the primary and secondary files is
intended to reside on storage devices which are hierarchi-
cally organized. Access to the file system will always bhe
through the primary file, which resides on the fastest, but
most expensive, storage device, The general strategy then
is to assign the various data fields to the primary and sec-

ondary records such that the total system cost is minimized.

For each model, +the total system cost includes the stor-
age cost for each data field and the cost for each applica-
tion to access the data fields it needs to process. The
storage cost for a data field depends on its length, its
density (i.e., the expected percentage of records in the
original file +that ccntain non-default values in this
Field), and on the characteristics of the storage device to

which it 1is assigned. The access cost for an application

depends on the number of files it must access to extract the

=

fields it needs, and on the position of these files within
the storage hierarchy. Asscciated with each application is a
weighting factor that takes into account the fraguancy of
access to the file system as well as a notion of priority of

the respective applicaticn. The following list summarizes

the items and characteristics that the models assum2 to bhe



known in advance:

d {i) - Jdata fields i = 1,cea,n

g{i,s) - probability that data field A{(i) is of size s

p{i) - density of field 4(i), i.e. probability that
field d{i) contains a non-default value

A{3) - application running against the file systen
J = 1seae,n

val {j) - relative importance of application A{(j)

a{i,j) - frequency of access to field d(i) by
application 2 (j)

ACC(S) - access cost per anit for storage device §
S = 1,eee,t

ST(5) =~ storage cost per unit for device 5

While all three record splitting mefhods take these char-
acteristics into account, +they differ in the emphasis laid
on them and in the way in which the characteristics are con-
sidered in the total cost formula. 4 detailed description
of these methods can be found in a recent essay [lLau78]. For
our purpose it is sufficient to note that déta items that
are expected to contain default values rarely and that are
accessed often by applications with relatively high impor-
tance are stored in the primary €file, while less dense and
less frequently required items, as well as items that are
accesseé by less important applications only, are pushed off

to secondary files.
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Much of the gain achieved by these methods stems from the
underlying assumption of a hierarchy of storage devices with
increasing capacity and access time, but decreasing storage
cost. Because, in the design of the history data base, we
are restricted to only one storage medium, namely tape, all
secondary files as proposed by the record splitting methods
have the same access speed and storage cost, and the gain
based on a storage hierarchy vanishes. Moreover, the
implicit use of pointers, especially in Babad's model, sug-
gests an implementation on direct access storags devices,

and is rendered more difficult, or even impossible, on tape.

The accuracy of the results obtained when optimizing the
design according to the overall cost formula of any of the
record splitting methods depends heavily on the accuracy of
the statistical input data. A relatively small error in
estimating the reguired statistics may 1lead to an "optimal"®
design which is far from being optimal in actual production.
%hile, in the case of the history file, we can easily deter-
mine the length for fixed fields or the statistical distri-
bution for variable fields, and even a sufficiently exact
probability for a field to contain a default value, we can-
not even hope to approximate the total application activi-
ties of the data items. As pointed out earlier, the set of
reports required by the library's management is not fixed,
but rather will be growing to contain reports which are
undefined as of today. On the other hand, reports considered

useful today may later decline in their importance.
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In the design of the history data base, we thus must view
the set of users, or applications, as being highly dynanic
and volatile. The assumption of a relatively static systen
being viclated in our design problem, we are in no position
to provide the most important statistics for the record
splitting methods, namely a list of the relative importance
of each of n application programs running against the data
tase, and a measure of total activity for each data item in

the history recorda.

Another difficulty is illustrated by the following real-
istic case. Most queries against the history data base will
be made using as selecticn criteria only fields from a very
small subset of all fields. Although we cannot estimate the
activity of these fields within any reasonable error margin,
we can safely predict that their activity will be high rela-
tive to the activity of fields not used as selection cri-
teria by most applications. Assume that such a field is
assigned to the primary record. It is now quite conceivable
that a single application of moderate relative importance
uses this field to select the records it has to extract
(thereby contributing to the activity of that field), and
that the fields it is processing are stored in some secon-
dary file. Because of the sequential nature of tape, pro-
cessing time and cost may warrant that we repeat the selsc-
tion criterion for +this particular application in the

secondary file. As a result, the primary file can be by-
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passed and the application has only to read the secondary
file, which contains its pertinent data. This duplicating
of data in different files, however, is heyond the scope of

the above record splitting meathods.

In summary, the record splitting techniques propossd in
the literature do not apply to the design of +the history
data base for two Teasons: 1) With very cheap and conceptu-
ally simple technigues +we can compress the history file to
an extent that allows us to repeat every data item five
times without exceeding the size of the original file, and
2) because all files of the data base will reside on tape,
the notion of a primary file does not apply to our problenm.
These facts give us much more flexibility in choosing a
design for +the history data base than the previously dis-

cussed record splitting methods assume.

3-2 An Application Partitioning Model

Although the record splitting methods reviewad in the
previous section do not seem to be applicable to the design
of the history data base, we do want to reduce the overhead
of reading irrelevant data. We therefore still want to
organize the data base into several files, but under diffar-
ent assumptions (as discussed above) and aiming at a differ-
ent goal. The difference in the design goal manifests itself

in a fundamental difference in the notion of overall systen
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cost. We will largely disregard the storage cost of the
various files, and concentrate on improving the access cost
{speed) for individual applications. In addition, we nust
include in the total cost, the cost of a structuring program
that creates the different files, because this program will
have to be run regularly to incorporate newly generated por-

tions of the raw history file into the data base.

Rather than partitioning the set of data fields into seg-
ments that appear in exactly one file and forcing the appli-
cations to access several files in order to extract their
relevant data, we will take a reversed approach. We will
partition the applications into user groups within which
each needs to access one common file only, and we will allow
the data fields to be replicated in all files in which thay
are needed. The partitioning must be such that applications
that have many regquired data fields in common fall into the
same group. Bach single application will have a certain
overhead in reading irrelevant data, but will share the cost
of producing its input file with all cther applications in
its group. The total system cost formula thus comprises the
cost of the structaring program that produces the different
group files, and +the total overhead cost for all applica-

tionse.

Both ccmponents of the total system cost are strongly

dependent on the granularity of the partition, or, equiva-
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lently, on the number kX of files to be generated (assuming
that for each k we can find a minimal overhead partition).
While the total application overhead cost O0Ov{k) decreases
mcrotonically and smcothly with increasing k, the cost Cr (k)
of creating the files increases with k and has discontinuous
jumps at certain points. The explanation for this is as fol-
lows: the structuring program takes as input the raw history
file and creates from it the group files. If we assume that
t+1 tape drives are allocated to this process, all of which
are served by the same channel, * group files «can be pro-
duced simultaneously during one pass over the history file.
The increase of Cr{k) in an interval [n*t+1,n*t+t] (n20) is
thus very slight, as it reflects a relatively small increase
in the amount of processing time plus the cost of an
increasing number of channel programs to be executad. How~
ever, each time kX crosses a boundary frem n*t to n*t+1, the
history file must be rewound and a complete new run of the
structuring program must start. Indicative graphs of the
functions Ov(k) and Cr{k) are depicted in figures 3.1 and

3.2, respectively.

In order to present our application splitting model more
formally, Wwe denote the set of all data fields by
D={d (i) ; i=1...m}, where each data field d (i) is of size
s{i) {i=1...m). The set of fields that application A{(j) must
access is denoted Dby the subset D{j) of D (j=Te-an)a He

then define the directed labelled graph G=(V,Z% as fol-
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Figure 3.1 Cost of overhead in reading irrelevant data as
a function of the granularity of the report partition
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Figure 3.2 Cost of the structuring program as a function
of the granularity of the report partition
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lows: the set of vertices is the power set P(D) of D.
Fach vertex v has associated with it a weight
w{v)=1{3(3) ; D{jy=v,3=1.=.n}], where {X| denotes the cardi-
nality of set X. Thus w{v) indicates the number of applica-
tions that must access exactly the data fields contained in
Va (If desired, w{v) can be arbitrarily assigned to reflect
some measure of relative importance of the applications by
defining w{(v) = SUM val{(j), such that D{(j) = v, j=1...n. If
we set val(j) = 1 for all j, our simpler definition is
equivalent to this one and is thus deemed sufficient to denm-
onstrate the general idea.) An edge is directed from v (i)
to v{(j) if and only if v {i) is contained in v{j), and is
labelled by e(v{i),v{(j)) = 50M s{(k), such +that d({k) is in
v{j) - v{(i). Thus e{v{i),v{j)) indicates the total length of
data fields that v (j) has in excess of v{i). For an appli-
cation that needs to access the data fields in the set u,
but has available only a file containing the larger set v
{such that v includes u), the overhead then is egual to the
label on the directed edge from u to v. We define a set of
distinguished vertices as N = {v ; v=D{j), j=1...n}, i.e.
the set cf vertices that are equal to D{j) for sonme j. An

example of this model is shown in Figure 3.3.

For a fixed k, we can now find the total overhead 0Ov{k)

by the fcllowing steps:
1Y select k vertices from the graph G, such that there
exists a directed edge from each vertex in N to at

least one selected vertex



{1,2,3,4}

{3, 43

?igure 3.3 FExample of the 2pplication Partiticning Model

D= {1,2,3,4} H K = {{?};{113};{013}'{2:a}t{‘:ru}v 1,3,8}})
s{1) =6, s(2) =2, s(3) =14, s(8#) = 17 X¥umbers on the left
of vertices indicate nonzero weights. Vertices ¢ have
weights zero, Edges that can be deduced from transitivity
are omitted for clarity. For k=3 the selected vertices are
{1.3,43, {2,3,4%, and {2,843, the *otal overhead is
Ov(3) = 1%1 + 2%71 + 3%71 # 2%0 + 3%2 + 2%0 = 12.
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Y

2) «calculate the sum of o{(v)=e(v)*w{v) for all vertices
v in N, where e{v) 1is the minimum of the labels on
edges from v to the selected vertices

3) repeat step 2) for all selections of k vertices fron
graph 6 that satisfy the condition in 1)

4) +the minimal sum encountered in step 2) 1is the total

overhead.

Note that this model assumes that a fixed set of applica-
tions and their required data fields are defined before the
algorithm can be executed. However, we can still achieve a
high degree of flexibility by incorporating a procedure that
implements this algorithm into the structuring program that
produces the group files. A description of the set of appli-
cations thus needs to be specified only before each run of
the structuring program, and a change in report requirements
is reflected immediately in the following data base genera-
tion. {How to cope in practice with application partitions
that differ for successive generations will be discussed in

the following chapter.)

The design problem then is to find a partitioning of the
set of applications into k groups such that the total cost
Cr{k) + Ov{k) is minimized. Cr{k) can best be determined by
measuring trial runs of the structuring program for
k=1, eas,ta The function values can then be stored for

k=1,+e2,n, and remain valid until +the number t+1 of tape
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drives allocated to the structuring process is changed. The
function Ov{k) must be calculated for each run of the struc-
turing program, for which the report requirements have
changed. For each k in the interval [1,n], Ov{(k) must then
be determined by the above algorithm in order to minimize

the total cost.

Thus minimizing the total cost Ffunction may itself prove
quite costly, as the algorithm to determine Ov{k) will con-
sume a considerable amount of processor time. In addition,
it must be run n times, because a solution for k verticss
cannot be determined based on a solution previously found
for less than k vertices. In the following section we will
present a fast heuristic method to determine a partition of
the set of applications and its cost, which can be used as

an approximation for Ov (k).

3.3 A Heuristic Algorithm For Report Partitioning

A graph resulting frcm our application partitioning model
has the structure of the relational diagram of the partially
ordered set (P{D),X), vwhere the partial order <€ denotes the
usual relation of set inclusion. The integer 1abelsion the
edges from @ (the empty set) to the atoms 4{i) {i=1...m)
uniquely determine the labels on all edges in the entire
graph. The label e{u,v) con an edge from vertex u to vertex v

is simply the sum of the labels on all edges from & to atoms



- 50 -

d, such that 4@ is in v - u. It follows for vertices u,v,v,Z

that 1) ufv<w implies e (u,w) e{u,v) + e{v,w), and 2) usgv,

uivw, vs<z, W<z implies e{u,v) = e{w,2) and e(u,w) = 2{(v,Z).
Each vertex v has associated with it a weight w{v) 2 8. The
set of distinguished vertices is N = {v ; w{v)>0}.

A problem instance thus 1is described by a tuple
P = (D, fe(@,4(1i)) ; i=tl...m}, {{(v,w(V)) , w{v)>0}, k). A

-~

sclution to the problem P is a pair (S,c), where S is a sub-
set of P{D), the set of selected vertices, |5} = k, and

c = S5UM {( min e(u,v) ).

a in XN v in 3
An optimal solution (S,c) for problem P igs a solution with

minimal ¢ over all solutions for P.

At this time, no inherent ordering of the solution space
{{S,¢)} has been discovered that could direct the search for
an optimal solution. We therefore are not ahble to present
an algorithm that produces an optimal solution in less tinme
than a brute force exhaustive search approach as oatlinad in
section 3.2. In the follcwing, we outline a heuristic method

to determine a feasible solution (S,c) for a problam P.

We start with a list SLIST of all vertices in N. Two ver-
tices 1 and v are repeatedly replaced in SLIST by their
"father" <u,v>:=u+v {where + denotes set union), the ver-
tices being «chosen such that <u,v> adds the least cost of

all possible fathers of vertices in SLIST. We stop when
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|SLIST}|<k. The vertices contained in SLIST are the selacted

vertices: S = SLIST.

2 selected vertex r thus can be described recursively as
r=9v or r = <s5,t>,
where v is a vertex in N, s and t are selected vertices.
Note that this notation incorporates which vertices were
successively replaced by a selected vertex. The cost ¢ of a
solution (S,c) 1is the sum of the added costs c{<s,t>) that
are generated when two vertices s,t are replaced by their
father <s,t> during the run of the algorithm. Replacing s
and t by <s,t> contributes the cost
c{<s,t>) := cf{s)*e(s,<s,t>) + cf(t)*e(t,<s,t>),

where the cost factor cf(r) is defined as

w{v)

ct(v) =
2= cf(s) + cf(t),

cf (<s,t>)
and indicates the number of users (or their +total impor-

tance) currently requiring access to r.

The algorithm consists of the following steps:
1)  SLIST := N ; COST := 0 ;
2) if JSLIST] £ k
then return {SLIST,COST) ;
3) CLIST := { { <u,v>,c{<u,v>) ) ; u,v in N } ;
) loop;
5) select from CLIST a tuple (Ks,t>,c(<s,t>)) with

minimal c{<s,t>)

-e

6) delete from SLIST the vertices s and t ;

7) add to SLIST the vertex <s,t> ;



3) COST 1= COST + c(<s5,%>)
3) if |I51787Y) = Xk
+hen return (3LT57,C0ST) 3

10 delete frcm CLI

(€2}

T all *uples of the form
{<z,x>,c{<s,x>)) , (Lx,s>,c{<x,s>)),
(<t,x>,c(<+,x>)), or (Kx,*>,c{<x,%>)),

where x is any vertex;

ER ) CLIST : 1I&7T nnion
{ {<1,<5,t>>,c{<u,<s,%>>)) ;3 a in BLI3T } 3

Fach application 2{3) is now assigned a file containing
the set of data items r, which is uniguely determined by 1)

is in S1I57; 2) the proposition 30N (D(Jj),r) holds, where

[

ON is recusively defined as

[47]

SON{D (§) , 1) <==> D{j) =T
SCN(D{]) ,<s,%>) <==> SCY{(h(i1),s or SON[D(3),t).
The solution (S,c) prcduced by the abkove algorithm is, in
general, not an optimal cne (excep* for the +trivial cases
k=1, k2{%y, and k={¥{-1.) However, the algorithm providss a
fast means to determine a feasible solution; moreover, by
omitting step 2) and changing step 8) to
8m) print (SLIST,COST) g if JSLTISTY = 1 then exit ;

sclutions for all k=1 ...{%¥]-1 can be produced in one run.

2 solntion produced by this algorithm could bhe used as
the starting point for a hillclimbing method in order to try

to find a cheaper scluticr. However, +*his may prove *oo
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ineffective, becanse very many <choices must "blindly" e
explored, which results in an expensive search process with-

out the guarantee of success. Furthe

[ ]

research of the prop-
erties of the problem graph and the solution space is n=eded
in order to devise an algorithm of acceptable cost that pro-

duces an optimal scluticr.



4 QUTLINE OF PROPOSED DESIGN

4.1 The Management Systenm

Many aspects of the future environment of the history
data base are still unclear at this +time. After examining
various methods +to design and improve the data base, we
therefore cannot present a final design in concrete forn,
nor actunal programs that would implement such a design. Nei-
ther can we give complete functional specifications in the
form "input specification - output specification®, for which
a programmer has to devise the black box that produces the
required output from the input. We rather will outline a
possible approach to the design problem in view of insights
gained in chapters two and three, as well as other consider-
ations not mentioned before, as a guideline for the systems

analyst who will have to define the overall system layout.

We propose a logical organization of +the history data
base whose central component is a management system which
comprises all functions that are involved in converting the
raw history file covering some time period (henceforth
denoted a "generation®) into a set of input tapes for the
different application groups. The structural arrangement of

the functional units 1is depicted din figure 4.1. This
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Figure 4.1

Proposed structure of the management systen
for the history data base.
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arrangement guarantees a maximum of flexibility %o react to
changes in report requirements as well as in the raw history
file. 1In the following we will outline some suggestions and

considerations as to how these units should be designed.

Application Partitioning: This component takes as input

a description of applications A({j) that are to be against
the data base, and the sets of fields D(j) they must access
{(3=1ee-n). It is responsible for constructing a partition
of the set of applications into groups which use the same
input file, as indicated in section 3.2. The audit produc-
tion component is then informed about the chosen partition
and the file production component is instructed as to how
many files must be constructed and which data fields they

are to contain.

The ihput description of A{j) and D{(7) can be conven-
iently represented in the form of a matrix {u(i,d)), where
the entry u{i,j) indicates the usage of data field i by
application j {(i=1...33; j=1...n). In the simplest case,
u{i,j)=1 if application j must access field i, otherwise
u{i,j)=0. Allowing any rational value for u{i, §), on the
other hand, enables us to indicate a measure of relative
importance for the dJdifferent applications as w2ll as a
notion of priority among the data fields, if this app=ars

desirable.
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The cost formula presented in section 3.2 do=s not
reflect a measure of continuity for successive generations
in the history data base: Minimizing according to this for-
mula may result in significant changes of partitions as well
as changes in the record layout for a given file from gener-
ation to generation, thus causing confusion as to which
application takes what input file for what generation, and
where to find its pertinent data fields in the records of
this file. Two approaches to relieve the problem are to
construct a data dictionary system which describes the lay-
outs for each generation and to convert all previous genera-
tions whenever the layout in revised. A solution will be

elaborated in section 4.2.

We conjecture that the application partitioning routine
will have the most crucial impact on the overall system per-
formance and cost among the components of the managenment

system.

File Production: This component takes as input a list of

file specifications prepared by the application partitioning
routine. According to these specifications it extracts data
fields from the raw history file and collects them into
records, which it then forwards to the compression compo-
nent. While file production is a minor component of the
management system in terms of its logical complexity, it

contributes much to the overall system cost, as a result of
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the predictably large amount of sorting that has to be done

during the preparation of the output files.

Several output files can be extracted in one ©pass over
the raw history file, the limit being dictated by the amount
of sorting work space available and the number of tape
drives allocated to the output files. The file produaction
component thus has to make a decision as to which specifica-
tions best facilitate parallel creation of the respective
files. For example, for files which require the same order-
ing, the union of their sets of required data items can be
extracted from the raw history file into the sorting work
area {space permitting), and after sorting the respective
output files can be extracted directly from there. We regard
the implementation of the file producticn component as b=ing

rather straightforward.

Compression: After the dinput files for the various
applications are prepared in the sorting work ar=a by the
file production component, +they are passed to the compres-
sion component for further reduction of their physical size
(in case a file need not be sorted, it is forwarded record
by record by the file production during a pass over the raw
history file). This ccmponent will have at its disposal
several routines which implement different compression tech-
niques and apply to different types of records. As pointed

out in chapter two, we suggest that emphasis be put on very
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fast compression technrigques with good results rather than on
techniques that achieve an optimal compression factor with
moderate speed. We conjecture that the general relation
between compression factor and processor time gsed to

achieve it 1is the one depicted in figure 4.2. ¥ote that

100%\ compression
factor

ko
B4
c“uw“u-ﬂuluwu‘““w“..

PR N N L EERE R FEEINEEREEEERELEEEREERENEREIRE IR R R ]

processor time

0%

Figure 4.2 Conjectured general relatioa between prceccessor
time used and ccmpression ratio achieved.

while Huffman encoding is optimal under limited assumptions
{see section 2.3), no method is known to determine the opti-
mal compression factor X for a given file when those assump-

tions are violated.
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We propose that the initial design of the compression
component contain two routines which resemble +the progranms
RUNPACK and DIFRUNFK, and a routine that uses only packing.
For reascns of reliability (see section 2.5) we suggest that
techniques that employ differencing only be used with files
in which the variable fields 31, 32, or 33 make ap a major
portion. For all other files we propose using a RUNPACK-
like procedure, except for files that are known to contain
only few default values, where the cheaper and faster pack-
ing routine will achieve a compression factor comparable to

that of RUNPACK.

Further, more elahorate, compression routines can be
added to this ccomponent throughout the lifetime of the his-
tory data bhase, as special needs arise or particular proper-
ties of files are discovered that can be exploitad advanta-

geously, and as available processor time allows.

Output: This is the simplest component of the management
system. It merely opens the output files, distributes the
results from the compression component to the pertinent data
sets, and closes the files after a new generation of the
history data base is produced. 1In fact, we present it as a
separate component of the management system only for reasons

of clarity. In a practical implementation it is likely to bhe

incorporated as a last step into the compression component.
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Audit Production: This component of the managament sys-

tem keeps track of all activity which the implementor deeas
worthwile tracing. It prints the results on hardcopy at the
end of each run of the management system, or writes diagnos~-
tic messages during a run, which is essential especially
during the testing period for the entire data base. A perma-
nent task of the audit production is to list the partition-
ing of the applications into groups, as decided by +the
application partitioning component, along with information
about compression routines used and other resulting charac-

teristics of the files generated.

4.2 Transparency

We have repeatedly pointed out that a fundamental prop-
erty of the future history data base is its dynamic struc-
ture. The most important consequence of this dynamic struc-
ture is its impact on the life-time cost of the +total
system. Contrary to a static system, the life-time cost of
the historyvdata base cannot be described as a function of
merely storage cost and processor time. Besides set-up,
testing, and maintenance cost for the system, it must incor-
porate the cost of the development of application prograas
to generate the required reports. The development cost for a
given report generator in terms of programmer hours us=2d to

define the report layout, to write the program, and to sat



up the job control, may well exceed the cost of running this
application in terms of processor time and access cost for
the data. In the following, we will demonstrate how a con-
siderate design of the system can help to keep down the cost

of future program development.

The files produced frcm the raw history file by the man-
agement system contain data in compressed form for specific
groups of applications. As explained in section 4.1, the
compression technique applied to a given file depends on the
contents ofi its data fields, which in turn may vary over
different generations. Instead of burdening every applica-
tion, and thus its programmer, with the routine task of
determining the compression technique used for a specific
file and then decompressing it accordingly, this routine can
be designed once and for all as an interface between the
file system and the application programs. It can then be
invoked via a special GET macro, with a file name as paranme-
ter, and return appropriately decompressed records ready for
processing. Besides the advantage of the saving in program-
ming effort, +this interface makes the compression of files
transparent to the applications, thereby providing a higher
degree of independence for both these applications and the
file systenm. This independence facilitates fast and easy
adding and changing of routines in the compression compo-
nent, because the corresponding changes to the decompression
routines must only be made in the interface, while no appli-

cation program needs to be aware of then.
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Arguments similar to those used above hold for the trans-
parancy of the application partition for a given data base
generation. If we extend the interface by a component that
has access to a list of descriptions for all files in the
system (the data dictionary), it will be sufficient for an
application program to state the data fields it has to pro-
cess. The interface can then decide automatically which file
is best suited to the application's needs and provide for
its allocation. The data dictionary can be kept in a file
that is created and updated by the audit production compo-
nent of +the management system, which 1is easily extended

accordingly.

The advantage of such an arrangement is obvious: the
application partitioning component of the management system
can be allowed a free hand without causing the confusion
mentioned above. Moreover, applications defined 1later on
which still have to access files from previous generations
can be accomodated automatically with the pertinent filas
that cause the least overhead. The alternative approach to
achieve this advantage, namely reformatting all pravious
generations {see section 4.1), 1is nmuch more expensive in
terms of processing time regquired for the management system,
as it amounts +to reprocessing all previous raw history
files. 1In addition, all existing applications would have to
be partly rewritten to adapt to changing file layouts. ¥We

therefore propose to include in the data base design an
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interface between the file system and the applications as
outlined above. A structural diagram of the complete his-

tory data base system is shown in figure 4.3.
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Proposed structure of the history data
base systen.



The design of the history data base had to take into
account two major constraints: the data base is to reside on
tape, and the applicaticns running against it are yet to be
defined and will vary with time. In addition, the amount of
data will grow during the entire lifetime of the system. The
confinement to tape l2d us to disregard in our considera-
tions the storage cost of the data base and to concentrate
on improving the access speed for the applications. This was
achieved by devising an application partitioning model and
by compression. while the application partitioning model
gives us the means to reduce the amount of irrelevant data
each report generator has to read, compression increases the
density of the stored information, thus further reducing the

time to transfer data into main memorvy.

The problems presented by the dynamic growth and the
changing report requirements are solved in the design of the
management system. It can be run at fixed or variable time
intervals {(which must be empirically determined aftar the
system is implemented) +to incorporate a nevw genaration into
the history data base. At each run the applications that are
currently of interest can be specified to produce an appli-

cation partition with minimal overhead. An interface between



file system and applications provides transparancy of com-
pression and application partitions, which makes the appli-
cations independent of file layout and data representation

and thus saves program development and maintenance cost.

An implementation of the proposed design can be developed
in a straightforward manner and can become operational after
a short testing period. The dynamic structure of the systenm
together with the transparancy of compression and applica-
tion partitioning facilitates changes and improvements in
all system components throughout the lifetime of the history

data base.
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APPENDIX

In the following, we present the source codes of the compression
programs RUNPACK, NFDIFF, DITFPACK, and DIFRUNPK, a3 described in sec-
tion 2.6. All programs were run as independent mainlines. Instructions
pertinent to statistical and timing measurements are not sShown in the
listings, which otherwise present the programs as thay were used in the
test runs., We do not claim that these programs ars of maximal effi-

ciency in terms of storage or processing time requiraments.

program listing page
RIONPACK 72
NFDIFF 76
DIFFPACK 81

DIFRUNEK 87



RUNFACK START

*%*% HOUSEKEEPING,BASEREG,CFEN FILES
o Aok deok gk o o okl ok vk kokok ok kokok ok kokokde ok

STM  14,12,12{13)
BALR 3,0
USING *,3

, ST 13,5AVET3

R1 ECU 1

RW1 EQU 4

RWEND EQU 5

RW2 ECU 6

RWPIR EQU 7

ROUTPTR EQU 8

EC EQU 11

FSOPEN FSCB=LIB
FSERASE FSCB=0UT
FS3OPEN F5CB=0U0T

%% TNITIALIZATION AND INPUT

ok ok ook ook skokok otk kokokok koo ke Kok

GET DS 0H
FSREAD FSCB=LIB, ERROR=EOF
Mvc WAREA (139) ,PATTERN
TR WAREA (139) ,INBUF

*%% RUNLEZENGTH ENCODING FOR ZEROS
% e ok k3 e ek e sk ok ook ok ek e ok ok ok sk sk o o ok koo

iR RWEND,RWEND

XR RWPTR,RWPTR

LR R%¥1,R¥W1

LA RWEND, #AREA+138

LA RWPTR,WAREA+1D
ZEROFIND D5 0H

CR RWPTR,RWEND

BNL PCKSTART

HOUSEK
SET UP

HOUSEK

OPEN H
CREATE
- OUTPY

GET RE
PREPAR
REMOVE

CLEAR
CLEAR
CLEAR
INITIA
POINT

END OF

EEPING
BASE RIGISTERS

LEPING

ISTORY FILE
FRESH
T FILE

CORD; FROFADDR=EOF
E EDITING
HYPHENS

END POINTER

WORK AREA POINTER
WORK REGISTER
LIZE END OF WAREA
TO START OF STUFF

WORK AREA REACHED ?
START PACKING



* FIND START OF ZERC STRING

XR R1,R1 CLEAR REGISTER USED IN TRYT
TRT 0 {127 ,RWPTR) ,ZERDTASB FIND ZERO

BZ PCKSTART NC MORE ZZR0OS: DONE

CR R1,RWEND IS ZERO BEYOND OQOUR SCOPE ?
BH PCKSTART - YES, DONE

* FIND END OF ZIEROC STRING

LR R¥PTR,R1 POINT TO ZERO FOUND
TRT 1(127,RWPTR) , NZERCTAB FIND NEXT NONZERO

* COMPUTE LENRGTH OF ZERC STRING

LR R¥1,R1 GET END OF STRING
SR R¥1,RWPTR SUBTRACT START OF STRING
CH RW1,MINSIZE IS STRING TOO SHORT ?
BH NOTSHORT - NO
La RWPTR,1({R1) BUMP POINTER TO STUFF
B ZERCFIND TRY AGAIN

NOISHORT DS 0H
CH RW1,MAXSIZE I5 STRING TOO LONG ?
BNH RUNLENTH - NO, GO ENCODE IT
LA RW1,MAXSIZE GET MAX LENGTH ALLOWED
LA R1,0{RWPTR,EU1) ADJUST END OF STRING

* INSERT RUNLENGTH INTO 2 RIGHT HALF-BYTES

RUNLENTH DS OH
LR RW2,RW1 SAVE LENGTH
STC  RW1,1(R¥PTR) INSERT LENGTH AT START OF STRING
SRL  RW1,4 .
STC  RW1,0 (RWPTR) .
oI 0 (R¥PTR),X'0C? MARK BYTE AS RUNLENGTH INDICATOR

* MOVE STUFF TO FRONT AND CALC NEW END OF FIXED PART

LA RWPTE, 2 {RWPTR) GET NEXT FREE BYTEH

LR RW1,RHEEND GET CUREENT END OF RECORD

SR R¥1,R1 CALC LENGTH OF MOVE

EX RW1,MVC

SR RWEND, RW2 CALC NEW END: SUBTRACT LENGTH,
LA RWEND, 2 {RWEND) - ADD ZERO COUNT

B ZEROFIND GO AGAIN

LR nvce 0{1,RWPTR) ,0(B1)



*%%x PACKING ROUTINE
ek ok ok Rokok K ok ok oKk ok

PCKSTART D3
LA
LA

PACK DS
PACK
LA
La
CR
BNH
LA
SR
LA
SRL
LH
SH
BL
LA
EX
LA

OH

RWPTR,WAREZR
ROUTPTR,OUTEBUF+2
OH

0{8,R0UTPTR),0{15,RWPTR)

ROUTPTR,7 (ROUTPTR)
RWPTR, 14 {(RWPTR)
RWPTR, RWEND

PACK

RW1,WAREA-1

RWEND, RW1
RWEND, 1 {RWEND)
RWEND, 1

R¥1,INBUF
RW1,H150

OUTPUT
RW2,0UTBUF+2 {RWEND)
RW1,VMOVE

RWEND, 1{RW1,RWEND)

**% QUTPUT, RETURN
% okl deokok o ok o o ok ok ok

OUTPUT DS
STH
LA

OH

RWEND,OUTBUF

RWEND, 2 (RWEND)

- 74 -

POINT TO STUFPF TO PACK
POINT TO WHERE TO PACK IT

PACK STUFF
BUMP OUTPUT POINTER

BUMP WORK AREA POINTER
END OF WORK AREA REACHED ?
- NCO, DO IT AGAIN
CALCULATE LENGTH OF
«-COMPRESSED FIXED PART
ADD ONE FOR DIVISION
CALC LENGTH OF PACKED PART
PICK UP LENGTH OF RECORD
SUBTRACT LENGTH OF FIXED PART
NO VARIABLE PART: DCNE
POINT TO FREE BYTE AFTER FIX PT
MOVE VARIABLE PART UNCHANGED
CALC LENGTH OF QUTPUT RECORD

@

PUT LENGTH INTO RECORD
ADD LENGTH OF LENGTH FIELD

FSHRITE FSCB=0UT,BUFFER=QUTRUF,BSIZE=({RWEND) PUT RECORD

B
EQCF DS

GET

OH

FSCLOSE FSCB=LIB
FSCLOSE FSCB=0UT

L
LM
BR

13,SAVE13
14,12,12(13)
14

CLCSE HISTORY FILE
CLCSE OUTPUT FILE
HOUSEKEEPING

RETURN TO CONTROL PROGRAM



*%*% STORAGE DEFINITICN
ok o o ok ok ook ok o ko ok ok ok

VMOVE
LIB

0UT
H150
MINSIZE
MAXSIZE
SAVE13
OUTBUF

INBOF
WAREA

PATTERN

ZERCTAB
NZEROTAB

MVC
FSCB
FSCB
DC
DC
DC
D5
ple
DS
De
bC
DC
bDC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

0(1,R¥2) ,INBUF+151
'COMP DATA B',RECFM=V,BUFFER=INBUF

'DIFF DATA B! ,RECFM=V,BUFFER=0UTBUF

H' 1501

HY 20

H'631

F

3%1100100*

0y

4CL100 ¢
X1020304050607080A0B0DOE0OF1011121314151617131914A"

X' 1B1C1DIE1F202122232425262728292A2B2C2D2E2F303233
X135363738393A3B3C3E3F4142430445464748494A4BLC?

X' 4DUEUFS5D5152535455565758595A5B5C5D5E5F606162636465¢
X'666768696A6B6CEDEESFTOT17273747677797A7BTCTR?
X'7F8182838485863788898A8B8C3D8BESF90919293949596°
X*1020304050607080A0B0D0OE0F101112131415161718191A"

X' 1B1CI1D1E1F202122232425262728292A2B2C2D2E2F303233
X"35363738393A3B3C3E3FP4142434445464T483494A4B4C?

X' 4DYESF505152535455565758595A535C5D525F6061626364651
X1666768696A6B6C6D6R6FT0717273747677797A7BTCTA?
X'7F8182838485868788898A8RB8CED8EBFI0919293949596?
260X'00!,X'FF?,15X100"

240X YFF!,X 100", 15X FP?
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NFDIFF

A o o s

NFDIFF START

*%% HOUSEKEEPING, EASEREG,CEFEN FILES
A s ok ook e s dok ol ok Jokok ook kok ok kol ok ook ok ok

5TH 14,12,12{13) HOUSEKEEPING
BALR 3,0 SET UP BASE REGISTERS
USING *,3 -
ST 13,S5AVE13 HOUSEKEEPING

R1 EGU 1

RW1 BQU 4

RWEND EQU 5

RW2 EQU )

RUWPTR EQU 7

ROUIPTR EQU 8

RW3 EQU 10

RC EQU 11
FSOPEN FSCB=LIB OPEN HISTORY FILZ
FSERASE FSCR=0UT CREATE FRESH
FSOPEN FSCB=0UT -00TPUT FILE

*¥%k INITIALIZATION AND INPUT
3 A deodook Aok ok de ok gk koot ok ok Rk ok K ok

XR R¥W3,RH3 CLEAR WORK REGISTER

GET DS 0H
FSREAD F3CB=LIB, ERROR=Z0F GET RECORD; EOFADDR=EOF
XC BITMASK {5) ,BITMASK CLEAR BITMASK

* REFMOVE HYPHENS

MVC WAREA(117) ,PATTERN PREPARE FOR TRANSLATION

TR WAREA(117) ,INBUF TRANSL TILL BZFORE LAST HYPHEN
Mve INBOF+2{117) ,¥AREA SAVE FOR LATER USE

LH R¥W1,INBUF GET LENGTH OF RECORD

SH R¥1,H128 CALC (LENGTH OF REST) -1

EX R¥1,XMOVE MOVE REST UNCHANGED

EX R¥1,SMOVE SAVE ALSO FTOR LATER 9JSE

* CALCULATE DIFFERENCE TC PREVIQUS RECORD

AH R¥1,H117 GET (ENTIRE LBNGTH) -1
EX R¥1,X0R DIFFERENTIATE AGAINST PREV REC
ST R¥1,SL SAVE LENGTH

B DIFFER GO FIND DIFFERENCE



*%% SET UP VARIABLE PART OF CONTROL TABLES
ook ook dodokok ok ok sk kol o ook ool e skok e ok ok ook ook R ok

VSETUP DS 0H
MVI  FORK,X'00" DISABLE BRANCH AT FORK
LA RW1,INBUF+ 141 POINT TO VARIABLE PART
LA RC, 3 SET COUNTER
FILL DS 0H
Ly RW2,0 (RW1) GRT LENGTH OF CALLNO FIELD
LA RW2,1{RH2) INCLUDE (LENGTH FIELD) -1
STC  RW2,LENGTH- {INBUF+2) (RW1) STORE INTO CONTROL TABLE
LH RW2,0 {RW1) GET (CALLNO + LENGTH) - 2
LA RW3,MASKTAB- (INBUOF+2) {R¥1)  START OF FIELD IN CNTL TAB
EX RW2,VMOVE FILL CNTL FIELD WITH BIT
LA RW3,BYTETAB- {INBUF+2) (RW1)
BX RW2,VMOVE FILL IN OFFSET IN BITMASK
LA RW3,LENGTH=- (INBUF+2) (RW1)
BX RW2,VMOVE FILL IN LENGTH OF FIELD
LA RW3,0FFSET- (INBUF+2) (RW1)
EX RW2,VMOVE . OFFSET OF FIELD IN REC
BCT  RC,ON DO IT FOR 3 VARIABLE FIELDS
B ADJUST WHEN FINISHED, GO AHEAD
VMOVE MVC  1(1,R¥3),0 (R¥3)
ON DS 0H
LA RW1,2 (RW2, RW1) GET LENGTH OF NZXT FIELD
AH RW2,0 (R¥3) OFFSET+LENGTH OF PREV FIELD
LA RW2,2 (RW2) CALC OFFSET OF NEXT FIELD
STC  RW2,0FFSET~ (INBUF+2) (R¥1) STORE INTO CONTROL TABLE
Ic RW3, M (RC) PICK UP BIT FOR THIS FIELD
STC  RW3,MASKTAB- (INBUF+2) {RW1) STORE IT INTO CONTROL TABLE
1c RW3,B(RC) PICK UP OFFSET IN BITMASK
STC  RW3,BYTETAB- (INBUF+2) (RW1) STORE INTO CONTROL TABLE
B FILL GO FILL TNTIRE CNTL FIELD

***% FIND FIELDS DIFFERENT FROM PREVIOUS RECOHRD
ek ok o oo e o o ok sk e ok ok ok ok ok ok ok ok s sk skokok ok ok ok ok ok ok ok ok ok &

DIFFER D5 0H
MVI FORK,X'FO? ENABLE BRANCH AT FORK
LA RW3,WAREA+139 POINT TO END OF FIXED PART
xR RWPTR, RWPTR CLEAR WORK ARZA POINTER
XR R1,R1 CLEAR REGISTER USED IN TRT
LA ROUTPTR,PAREA POINT TO OUTPUT AREA
L RWEND, 5L PICK UP LENGTH OF RECORD
LA RWEND, "AREA+1 {(R¥END) INITIALIZE END OF WAREA
La RWPTR, WAREA POINT TO START OF 3TUFF
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* FIZLDS DIFFERENT FROM PRIV RECORD HAVE A BYTE -~= X'00°?

FINDDIFF DS
TRT
BZ
CR
BL
CR
BNL

FORK EGU
B

0H

0 (256, RWPTR) , DIFFTAB
DUTPUT

R1,RW3

ADJUST

R1,RHEND

QUTPUT

*+ 1

VSETUP

* ADJUST BITMASK

ADJUST DS
XR
Ic
La
La
ocC

0H

R¥W1,RW1
R%1,BYTETAB-WARZA {R1)
RW1,BITMASK (RW 1)
RW2,MASKTAR-WARZA (R1)
0{1,RW1),0 {RN2)

* MOVE DIFFERENT FIELD TC CUTPUT

XR
IC
LA
IC

EX

RW1i,RW1
RW1,0FFSET-HWAREA(R1)
RWPTR,INBUF+2 {R¥1)
R%¥1,LENGTH-WAREA {R1)
RW1,MOVE

* BUMP POINTERS

LA
LA
CR
BL
B

*%%x OUTPUT,

ROUTPTR,1{RW1,ROUTPTR)

FIND DIFFERENT POSITION

NC MORE DIFFERENCES: DONE

IS DIFF IN VARIABLE PART ?

.NO, GO AHEAD

IS DIFF BEYOND CURRENT END ?
.YES, DONE

CONDITION MASK FOR BRANCH INSTR
MUST SET VARIABLE CONTROL TABLES

PICK UP OFFSEZT FOR MASK BYTE
POINT INTO BITHMASK

POINT TO BYTE TO BE ORED
SWITCH BIT FOR THIS FIEZLD ON

PICK 7P OFF3E? OF THIS FIELD
POINT TO THIS FIELD IN INBUF
PICK UP (LENGTH-1) FOR FIELD
MOVE DIFFERENT FIELD TO OUTPUT

POINT TO NEXT FREE BYTE IN OUTPU

RWPTR, WAREA- (INBUF+1) (RW1,RWPTR) NEXT FIELD IN WAREA

RWPTR, RWEND
FINDDIFF
QUTPUT

RETURN

e koo g e ko sk ok ko kool i ok

OUTPUT DS
La
SR
STH
LA

DH

RW1,0UTBUF+2
ROUTPTR,R¥ 1
ROUTPTR,RECL
ROUTPTR, 2 (ROUTPTR)

BEYOND CURRENT END 2
.NO, DO IT AGAIN
DONE

BT START OF OUTPUT AREA
CALC LENGTH OF RECORD
STORE INTC LENGTH FIELD
ADD LENGTH OF LENGTH FIELD

FSWRITE FSCB=0UT,BUFFER=0UTBUF,BSIZE= (ROUTPTR) PUT RECORD

L
EX
B

MOVEOLD MVC

R¥1,SL
R¥1,MO0VEOLD

GET

XOBREA{1) ,INBUF+2

PICK UP ORIGINAL LENGTH
SAVE PROCESSED REC FDOR DIFP'CING
GO PROCESS NEXT RBECORD



EOF D5 0H
FSCLOSE FSCB=LIB
FSCLOSE FSCB=0UT

L 13,SAVE13
LM 14,12,12(13)
BR 14

*%* STORAGE DEFINITION
ool ok ok ok ok okok ok % ok ok ok K ok

XOR XC WAREA{1) ,XGEEA

MOVE MVC 0{1,RCUTPTR) , 0 {RWPTR)
XH¥OVE MVC WAREA+117 (1) ,INBUF+129
SMCVE nve INBUF+119({1),INBUF+129

* FILE CCNTROL BLOCKS

CLOSE HISTORY FILE
CLCSE OUTPDT FILE
HOUSEKEEPING

RETHRN TO CONTROL PHEOGRAM

LIB FSCB 'COMP DATA B! ,RECFM=V,BUFFER=INBUF
ouT FSCB 'DIFF DATA B',RECFM=V,BUFFER=0QUTBUF

* BITS ANE BYTES FOR FILLING VARIABLE PART OF CONTROL TABS

M EQU *-1

DC X138001°*
B BQU *-1

DC X'0403"
H117 1o H'1171
H128 DC H' 128"
H138 DC H*138"
SAVE13 DS F
SL DS F
PACKEND DS P

* O0TPUT EUFFER

OUTIBUF DS 0H

RECL DS H

BITMASK DC 5%X100°
PAREA DC 3XL1001'00?

DS OH

* INPUT BUFPER

INBUF bC 4cr100 1

* WORK AREAS

WAREA DS 139C,176C
XOREA DC 139¢*'O ,176C?
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* PATTERN
PATTERN ©DC
bC

bC
nc
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RIEMOVAL OF HYPHENS USING TR INSTRUCTION

X*020304050607080A0BODOEOF1011121314151617181391A°

X' 1B1C1DIETF202122232425262728292A2B2C2D2E2F303233 ¢
X?353637383S3A3B3C3E3P4 142430444545 4748494A484C?
X*'UDUELUF505152535455565758595A5B5C5D585F606162636465!
X'666763696A6B6CH6DO6E6FT707172737476777397A7B7CTE?
X17r8182838485868788898A888C3DBEBFIN919293949596?

* TABLE FOR TRT

DIFFTAB DC

% CONTROL

MASKTAB DC
DC
DC
DC
DC
VMASKTAB DC

* CONTEROL

OFFSET DC
bC
DC
DC
DC
VOFFSET DC

* CONTEOL

LENGTH DC
DC
DC
DC
DC
VLENGTH DC

* CONTROL
BYTETAB DC

VBYTETAB DC
END

TABLE CONTAINS BITS FOR CORRESPONDING

TABLE

TABLE CONTAINS BITHMASK-BYTE

X100 (255 NONZERO BYTES MUST FOLLOW

FIELDS

X18080',3X"401,6X120',5X*'10',9%X'08",9X"04",3X'02!?
3X'017,3X'807,6X'40 ,4%1207,6X 10 ,4%X1081,9X104?
3¥'027,2X'01',10X'80*,3X'40',9X'20",3X"'10!,X'0808"
X'041,X'0202',6X'01?,56X"80,3X'40"',3X20',3X110?
3X'087,8X' 041

176X102?

TABLE CONTAINS OFFSET FOR CORRESPONDING FIELDS

X'0000',3X'02',6X105,5X 0B ,9X"10",9X 19" ,3x22!
3X*25',3X'28",6X'23",4X*31,6X'35" ,4X"3B',9X"3F?
3X'487',2X'4B,10X'4D,3X 571 ,9X'50 " ,3X'63" ,X'66066"?
X'68',X'6969',6X'6B,6X* 71 ,3X*77,3X17A,3X'7D?
3X'80*,8X'83"

176X 88!

COKTAINS LENGTH OF CORRESPONDING FIZLDS
X*'0101*,3X'02',6X'05",5%'04,9X'08"',9X'08°*,3X*02?
3X1'021',3X'02',6X'05,4X'03",6X105" ,4%103,9x1'08?
3X1027',2X'01',10X'09*,3X*02,9X'08" ,3X1'02',X'0101°
X'007,X'0101?,6X'05",6Y'05,3X'02*,3X'02',3x'02?
3X1'027,8X'07

176X100*

FOR CORRESPONDING FIELDS

40X'00°',37X'01',36X'027',26%X'03"?
176X'031

!



DIFFPACK

o s i e . o

DIFFPACK START

*%% HOUSEKEEPING,BASEREG,OFEN FILES
e okook dokok ok kokotokdok Rokokok ok kokok ok ok ok ok ok kokok

STH 14,12,12(13)

BALR 3,0

USING *,3

5T 13,SAVE13
R1 EQU 1
RW1 EQU 4
RWEND EQU 5
Ru2 BQU 6
RWPTR EQU 7
ROUTPTR EQU 8
RHU3 EQU 10
RC EQU "

FSOPEN FSCB=LIB
FSERASE FSCB=0UT
FSOPEN FSCB=0UT

*%% INITIALIZATION AND INPUT
e ke ok e et ok ok ok doodeotote s o ook ok ook ook

xR RW3,R¥3

GET DS 0OH
FSREAD FSCB=LIB, ERROR=EOF
XC BITMASK (5) , BITMASK

* REMOVE HYPHENS

MVC  WAREA(117) ,EATTERN

TR WAREA (117) , INBUF
MVC  INBUF+2(117),WAREA
LH RW1,INBUF

SH RW1,H128

RX RW1,XMOVE

EX RW1,SMOVE
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HOUSEZKEEPING
SET UP BASE REGISTERS

HOUSEKEERPING

OPEN HISTORY FILE
CREATE FRESH
- 0UTPUT FILE

CLEAR WORK REGISTER

GET RECORD; EOFADDR=EOF
CLEAR BITMASK

PREPARE FOR TRANSLATION
TRANSL TILL BEFORE LAST HYPHEN
SAVE FOR LATER USE

GET LENGTH OF RECORD

CALC (LENGTH OF REST) -1

MOVE REST UNCHANGED

SAVE ALSO FOR LATER USE

* CALCULATE DIFFERENCE TOC PREVIOUS RECORD

A H RW1,H117
EX RW1,XOR
ST RW1,SL

B DIFFER

GET {ENTIRE LENGTH) -1
DIFFERENTIATE AGAINST PREV REC
SAVE LENGTH

GO FIND DIFFERENCE



*%% 5ET UP VARIABLE PART OF CONTROL TABLES
3 ot ook sk ok Bl ok okl ok e ok ol o ok s ok koK o ok ol Kok ok kok ok ok

VSETUP DS oH
ST ROUTPTR,FIXEDEND SAVE END OF COMPR FIXED PT
MVI  FORK,X'00" DISABLE BRANCH AT FORK
LA RW1,INBUF+141 POINT T0 VARIABLE PART
LA RC, 3 SET COUNTER

FILL DS 0H
LH RW2,0 (RW1) GET LENGTH OF CALLNO FIELD
LA RW2,1{RW2) INCLUDE (LENGTH FIELD) -1
STC  RW2,LENGTH- (INBUF+2) (RW1) STORE INTO CONTROL TABLE
LH RW2,0 (RW1) GET (CALLNO + LENGTH) - 2
LA RW3,MASKTAB- (INBUF+2} (R¥1) START OF FIELD IN CNTL TAB
EX RW2,VMOVE FILL CNTL FIELD WITH BIT
LA RW3,BYTETAB~- {INBUF+2) {RW 1)
EX RW2,VMOVE FILL TN OFFSET IN BITMASK
LA RW3,LENGTH~- (INBUF+2) (RW1)
EX RW2,VMOVE FILL IN LENGTH OF FITELD
LA RW3,0FFSET- (INBUF+2) (RW1)
EX RW2,VMOVE . OFFSET OF PIELD IN REC
BCT  RC,ON DO IT FOR 3 VARIABLE FIELDS
B ADJUST WHEN FINISHED, GO AHEAD

VMOVE MVC  1(1,RW3),0 {RW3)

ON DS 0"
LA RW1,2 {RW2,RH1) GET LENGTH OF NEXT FIELD
AH RW2,0 (RW3) OFFSET+LENGTH OF PREV FIELD
LA R¥2,2 (RW2) CALC OFFSET OF NEXT FIELD
STC  RW2,0FFSET- (INBUF+2) {BW1) STORE INTO CONTROL TABLE
Ic RW3, M {RC) PICK UP BIT FOR THIS FIELD
STC  RW3,MASKTAB~- [INBUF+2) {RW1) STORE IT INTO CONTROL TABLE
IC RW3, B (RC) PICK UP OFPSET IN BITMASK
STC  R%3,BYTETAB- (INBUF+2) (RW1) STORE INTO CONTROL TABLE
B FILL GO FILL ENTIRZ CNTL FIELD

*%% FIND FIELDS

DIFFERENT FROM PREVIOUS RECORD
o e Aok kb ok ok stk ok deskoleokodkodok dok ok ok golok e e ok ok ok ok ok ok ke ok ok

DIFFER DS 0H
Mvy FORK,X*'FO? ENABLE BRANCH AT FORK
XR RW3,R¥3 CLEAR WORK REGISTER
ST RW3,FIXEDEND DEFAULT FOR PACKING ROUTINE
LA RW3,HAREA+139 POIRT TO END OF FIXED PART
XR RWPTE, RHPTR CLEAR WORK AREA POINTER
IR R1,R1 CLEAR REGISTER USED IN TR7?T
LA A0UTPTR,WAREA POINT TO START OF FIXED PART
L RWEND, SL PICK UP LENGTH OF RECORD
LA RAEND, WAREA+1 (RYEND) INITIALIZE END OF WAREA
LA RWPTE,WAREA POINT TO START OF STUFF
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* FIELDS DIFFERENT FRCM PREV RECORD HAVE A BYTE -= X'001?

FINDDIFF DS
TRT
BZ
CR
BL
CR
BNL

FORK EQU
B

OH

0(256,RWPTR) ,DIFFTAB
PCKSTART

R1,R%¥3

ADJUST

R1,RWEND

PCKSTART

*+ 1

VSETUP

* ADJUST BITHMASK

ADJUST DS
XR
Ic
LA
LA
ocC

0H

RW1,Ru1
R¥1,BYTETAB-WAREA {R1)
RW1,BITMASK (R¥1)
RW2,MASKTAB-WAREA (R1)
0(1,R¥1),0 {RW2)

* MOVE DIFFERENT FIELD TC FRONT

XR
Ic
LA
Ic
EX

RW1,R¥1
RW1,0FFSET-®WAREA {R1)
RWPTR, INBUF+2 {RW 1)
RW1,LENGTH-WARERA(R1)
RW1,MOVE

* BUMP POINTERS

LA
LA
CR
BL
B

ROUTPTR, 1(RW1,ROUTPTR)

PIND DIFFERENT POSITION

NC MORE DIFFERENCES: DONE

IS DIFF IN VARIABLZ PART ?

.NC, GO AHEAD

IS DIFF BEYOND CURRENT END 2
.YES, DONE

CONDITION MASK FOR BRANCH INSTR
MUST SET VARIABLE CCNTROL TABLES

PICK UP OFFSET FOR MASK BYTE
POINT INTC BITHMASK

PCINT TO BYTE TC BE ORED
SWITCH BIT FOR THIS FIELD ON

PICK UP OFFSET OF THIS FIELD
POINT TO THIS FIELD IN INBUF
PICK UP (LENGTH-1) FOR FIELD
MOVE DIFFERENT FIELD TO FRONT

POINT T0O NEXT FREE BYTE IN OUTPU

RWPTR,WAREA~- {INBUF+1) (RW1,RWPTR) NEXT FIELD IN WAREA

RWPTR,RWEND
FINDDIFF
PCKSTART

BEYOND CURRENT END ?
-NC, DO IT AGAIN
DONE

*¥%% PACK CCMPRESSED FIXED PART OF RECORD
e e ook gkt dok kokok Sl ok ok dok dokkok ko ok ok kR kokdokok ok

PCKSTART DS
L
LTR
BNZ
LR

OK DS
LR
LA
LA

OH
RWEND,FIXEDEND
RWEND,RWEND

0K

RWEND, ROUTPTR
OH

RW2,ROUTPTR
RWPTR, WAREA
ROUTPTR,PAREA

POINT TO END OF FIXED PART

WAS I? REALLY SET ?

- YES, RECORD HAS VARIABLE PART
ELSE CURRENT END = FIXED END

PICK UP END OF COMPRESSED RECORD
POINT TO STUFF TO PACK
POINT TO WHERE TO PACK IT



* PACK CCHMPRESSED FIXED PART FRCM WAREA INTO OUTPUT BUFFER

PACK DS OH
PACK 0(8,EQUTP?R),0(15,RWPTR) PACK STUFF
LA ROUTPTR,7 (EOCUTPTR) BUMP OUTPUT POINTEF
LA RWPTR, T4 {AWETR) BUMP WORK AREA POINTEE
CR RWPIR, RWEND END OF WORK AREA REACHED ?
BL PACK - NG, DO IT AGAIN

* COMPUTE LENGTH OF PACKED PART

SR RW2,RWEND CALC LENGTH OF VARIABLE PART
LA RWI,WAREA CALCULATE LENGTH OF

SR BWEND, RW1 «- COMPRESSED FIXED PART

LA RWEND, 1 (R¥WEND) ADD ONE FOR DIVISICN

SRL RWEND,1 CALC LENGTH OF PACKED PART

* I¥ THERE IS A VARIABLE PART, MOVE IT TO OUTPUT BUFFER

LIR RW2,RE2 I5 THERE A VARIABLE PART ?
BZ OouTPUT - NO, DONE
BCTR R¥2,0 SUBTRACT ONE FOR MOVES
L R¥W1,FIXEDEND POINT TO VARIABLE PART IN WAREA
LA ROUTPTR,PAREA {RWEND) POINT AFTER PACKED OUTPUT
EX RW2,YMOVE MOVE VARIABLE PART UNCHANGED
LA RWEND, 1(RW2,RWEND) CALC LENGTH OF OUTPUT RECORD
B ouTPUT
YMOVE MVC 0(1,RCUTPTR), 0 (RWT)

*%%x QUTPUT, RETURXN
ok ok e o ook ok ok o ok K Kk X

CUTEUT DS OH
LA RWEND, 5 {(RWEND) ADD LENGTH OF BITMASK
STH RWEND, RECL STORE INTO LENGTH FIELD
LA RWEND, 2{RWEND) ADD LENGTH OF LENGTH FIELD
FSWRITE FSCB=O0OUT,EUFFER=0UTBUF,BSIZE= (RWEND) PUT RECORD
L R¥1,SL PICK UP DRIGINAL LENGTH
EX R¥1,MOVEOQOLD SAVE PROCESSED REC FOR DIFF'CING
8 GET GO PROCESS NEXT RECORD

MCVEOLD MVC XOREA{1) ,INBUF+2

EQF D3 0H
FS5CLOSE FSCB=LIB CLOSE HISTORY FILE
FSCLOSE FSCB=0UT CLCSE OUTPUT FILE
L 13,SAVE13 HOUSZEKEEPING

LM 14,12,12(13) .
BR 14 RETURN TO CONTROL PROGRAM



%% STORAGE
% koo dokok % ok A %

X OR XC

MOVE ¥vVC
XMOVE MVC
SMCOVE MVC

DEFINITICN
Fode ok ook Sk

WAREA (1) ,XORZA

0 (1,RCUTPTR) , 0 {RHPTR)
WAREA+117(1),INBUF+129
INBUF+119 (1), INBUF+129

* FILE CCNTROL BLOCKS

LIB FsC
aurT FsSC

* BITS AND

M ECU
DC
B EQU
DC
H117 DC
H128 DC
H138 DC
SAVE13 D3
SL DS

FIXEDEND DS

* O0UTPUT B

OCUTBUF DS

RECL D3
BITMASK DC
PAREA DC

DS

* INPUT BYU

INBUF DC

* WORK ARE

WAREA DS
XOREA bC

* PATTERN

PATTERN DC
DC
DC
nc
DC
DC

B 'COMP DATA B',RECFM=V,BUFFER=INBIF
B 'DIFF DATA B',RECFM=V,BUFFER=0OUTBUF

BYTES FOR FILLING VARIABLE PART OF CONTROL TABS

*- 1
X'8001°?
-1
X10403°
H'117¢
H*128"
HY138?
F

F

F
OFFER

DH

H

5%100?

3XL100*00
OH

FFER
4cri1o0r*
As

139C,176C
139C'0*,176CY ¢

FOR REMOVAL OF HYPHENS USING TE INSTRUCTION

X1020304050607080A0B0ODOEOF1011121314151617181914A!
X'1BI1CIDIETF202122232425262728292A282C2D2E2F303233
X?'35363738393A3B3C3E3F4142U344454608748494A4BUC
XT4DU4EY4F505152535455565758595A5B5C5D5E5F606162636465
X'666768696A6B6CH6DEERFTOT17273747677797A7B7CTE!
X'7F8132838485868788898A8B8C8DBEBFY0919293949596!



* TABLE FO
DIFFTAB DC
* CONTROL
MASKTAB DC
DC
DC
DC
DC

VMASKTAB DC

* CONTROL
OFFSET DC
DC
DC
DC
DC
VOFF3ET DC
* CONTROL
LENGTH DC
DC
DC
DC
DC
VLENGTH DC
* CONTROL
BYTETAB DC

VBYTETAB DC
END

R TRT

X100 (255 NONZERO BYTES MUST

TABLE CONTAINS BITS FOR CORRESPONDING PIBLDS

X'80801',3X'407,6X'20,5X*10',9X'08",9X704"',3Y*02"
301 ,3X'80',6X"407,4X'20,6X Y10, 4X'087,9X104?
3X'02',2X1'01*,10K*80°,3X'40',9X'20",3X*10',X'0808"
X'04*,X'0202',6X'01',6X*180",3X%40" ,3%X'20',3X'10°?
3X*087,8X1'04°
176X1'021

TABLE CCNTAINS OFFSET FOR CORRESPONDING FIELDS
X*0000*,3X'02',6X*05,5X'0B,9X*' 10 ,9X 197 ,3x122?
3X'251,3X'287,6X"2B,4X131"!,6X '35 ,4X"3B,9X13F!
3X'48°,2X"4B',10X'4D" ,3X 57 ,9X'54",3X'63" ,X16666"
X168t ,X'6969" ,6X'6RY,6XY 71, 3X 777 ,3X"TAY, 3XTD!?
3X'80°',8X'83¢
176X'3B?

TABLE CCNTAINS LENGTH OF CORRESPONDING FIELDS
X'0101*,3X'021,6X705,5¥ 104,908 ,9X108"',3X'02"
3X*02',3X"027,6X'05",4XY037,6X 05" ,4X1031,9X108"
3X'02,2x'01',10X*09*,3%'02',9X'08',3X702*,X'0101"
X*'00',X'0101,6X'05*,6X'05',3X102",3X'02',3X702"
3X102*,8%X'07"
176X1'00?

TABLE CONTAINS BITMASK-BYTE FOR CORRESPONDING FIELDS

LOX'D0*,37X'017,36X*02?,26X'03?

176X'03"
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DIFRUNPK START

%% HOUSEKEEPING,BASEREG,CFEN FILES
Aok ok ok o & ok ok ok e sofokok ok ook ok ok dok feokok ok

STM  14,12,12(13) HOUSEKERPING
BALR 3,0 SET UP BASE REGISTERS
USING *,3 .
ST 13,SAVE13 HOUSTKEEPING

R1 EQU 1

RW1 EQU 4

RWEND EQU 5

RW2 EQD 6

RWPTR 20U 7

ROUTPTR EQUD 8

RW3 EQU 10

RC EQU 11
FSOPEN FSCB=LIB OPEN HISTORY PILE
FSERASE FSCB=0UT CREATE FRISH
FSCPEN FSCB=0UT .OUTPUT FILE

*%¥ INITIALIZATION AND INPUT
2k Aok Aok o okl ok ool ok o ok ok ok ook Sk koK

XR RW3,RW3 CLEAR WORK REGISTER

GET DS OH
FSREAD FSCB=LIB, ERROR=EOF GET RECORD; FEOFADDR=EOF
XC BITMASK (5) , EITMASK CLEAR BITMASK

* REMOVE HYPHENS

MvC WAREA{117) ,PATTERN PREPARE TOR TRANSLATION

TR WARE2{(117) ,INBUF TRANSL TILL BEFORE LAST HY PHEN
Mve IKBUF+2 (117),WAREA SAVE FOR LATER USE

LH R¥1, INBUF GET LENGTH OF RECORD

SH RW1,H128 CALC ({LENGTH OF REST) -1

EX RW1,XMOVE MOVE REST UNCHANGED

EX RW1,SMOVE SAVE ALSO FOR LATER USE

* CALCULATE DIFFERENCE TC PREVIOUS RECORD

AR RW1,H117 GET (ENTIRE LENGTH) -1
EX RW1,X0OR DIFFERENTIATE AGAINST PREV REC
ST RW1,SL SAVE LENGTH

B DIFFER GC FIND DIFFERENCE
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¥%% SET UP VARIABLE PART OF CONTROL TABLES
Bk ook ook R ok ofok ok ok ok okokkok e ok Sk kb ok ok ok kokok ok ok

VSETUP DS 0H
ST ROUTPTR, FIXEDEND SAVE END OF COMPR FIXED PT
MVI  FORK,X'00!? DISABLE BRANCH AT FORK
L3 RW1,INBUF+141 POINT TO VARIABLE PART
L3 RC,3 SET COUNTER

FILL DS 0H
LH RW2,0 {RW1) GET LENGTH OF CALLNO FIELD
LA RH2,1{RW2) INCLUDE (LENGTH FIELD) -1
STC  RW2,LENGTH- (INBUF+2) {R¥1) STORE INTO CONTROL TABLE
LH RW2,0 (R¥1) GET (CALLNO + LENGTH) = 2
LA RW3,MASKTAB- {INBUF+2) {(R¥1)  START OF FISLD IN CNTL TAB
TX RW2,VMOVE FILL CNTL FIELD WITH BIT
LA RW3,BYTETAB- {INBUF+2) (R¥1)
EX RW2,VMOVE FILL IN OFFSET IN BITMASK
LA RW3,LENGTH- (INBUF+2) (RW1)
BX RW2,VMOVE FILL IN LENGTH OF FIELD
LA RW3,0FFSET~- (INBUF+2) (RW1)
EX RW2,VMOVE . OFFSET OF FIELD IN REC
BCT  RC,ON DO IT FOR 3 VARIABLE FIELDS
B ADJUST WHEN FINISHED, GO AHEAD

VMOVE MYC  1{1,BW3),0 {RW3)

ON DS 0H
LA RW 1,2 (RW2,RK1) GET LENGTH OF NEXT FIELD
AH RW2,0 {RW3) OFFSET+LENGTH OF PREV FIELD
LA RW2,2 {RW2) CALC OFFSET OF NEXT FIELD
STC  RW2,0FFSET- (INBUF+2) (RW1) STORE INTO CONTROL TABLE
Ic RW3, M (RC) PICK UP BIT FOR THIS FIELD
STC  RW3,MASKTAB- (INBUF+2) {RW1) STORZ IT INTO CONTROL TABLE
ic RW3,B{RC) PICK UP OFFSET IN BITMASK
STC  RW3,BYTETAB=-{INBUF+2) {RW1)  STORE INTO CONTROL TABLE
B FILL GO FILL ZNTIRE CNTL FIELD

*%% FIND FIELDS DIFFERENT FROM PREVIOUS RECORD
ok e ol ko ok dk ok ool ok o ok o ofoakok ok sl ol ok skojok ook ok ook ok

DIFFER DS 0H
MVI FORK,X'FD? ENABLE BRANCH AT FORK
XR RW3,RW3 CLEAR WORK REGISTER
5T RW3,FIXEDEND DEFAULT FOR PACKING BOUTINE
LA RW3,WAREA+139 POINT TO END OF FIXED PART
iR RWPTR, R¥PTR CLEAR WORK AREA POINTER
XR R1,R1 CLEAR REGISTER USED IN TRT
LA ROUTP?R,WAREA POINT TO START OF FIXED PART
L RWEND, SL PICK UP LENGTH OF RECORD
LA RWEND,WAREA+] {RWEND) INITIALIZE END OF WAREA
La RY¥PTR,¥ARERA POINT TO START OF STUFF



* FIELDS DIFFERENT FROM FREV RECORD HAVE A BYTE -= X*'00!

FINDDIFF DS
TRT
B7Z
CR
BL
CR
BNL

FORK EQU
B

0H

0 {256, RWPTR) ,DIFFTAB
RUN

R1,R¥3

ADJUST

R1,RWEND

RUN

¥+ 1

VSETIUOP

* ADJUST BITMASK

ADJUST D3
xR
IC
La
LA
oC

OH

R¥1,RH1
R¥W1,BYTETAB-WARZA {R1)
RW1,BITHMASK (RW1)
RW2,MASKTAB-WAREA (R1)
0(1,R¥1),0 (RW2)

* MOVE DIFFERENT FIELD TC FRONT

XR
ic
LA
Ic
BEX

RW1,RW1
RW1,0FFSET-HAREA{R1)
RWPTR,INBUF+2 {R¥ 1)
RW 1, LENGTH-HAREA (R1)
R¥1,MOVE

* BUMP POINTERS

La
LA
CR
BL
B

ROUTPTR,1(R¥W1,ROUTPTR)

FIND DIFFERENT POSITION

NO MORE DIFFERENCES: DONE

IS DIFF IN VARIABLE PART 7

- N0, GO AHEAD

I5 DIFF BEYOND CURRENT END 2

. YE3, DONE

CONDITION MASK FOR BRANCH INSTR
MUOST SET VARTABLE CONTROL TABLES

PICK UP OFF387T FPOR MASK BYTE
POINT INTO BITMASK

POINT TO BYTE TO BZ ORED
SWITCH BIT FOR THIS FIELD ON

PICK 0P OFFSET OF THIS FIELD
POINT TO THIS FIEZLD IN INBUF
PICK UP {LENGTH-1) FOR FIELD
MOVE DIFFERENT FIELD TO FRONT

POINT TO NEXT FREE BYTE IN OUTPU

RWPTR,WAREA- (INBUF+1) (RW1,RWPTR) NEXT FIELD IN WAREA

RWPTR, RWEND
FINDDIFF
RUN

*¥%%k RUNLENGTH ENCOCDING FOR ZEROS

*kk LAST BYTE OF FIXED PART:

a* %k ¥k

BEYOND CURRENT END ?
-NO, DO IT AGAIN
DONE

(FIXEDEND) - 1 FOR LONG RECS
{ROUTPTR) - 1

ELSE (FIXEDEND = 0 )

e ook ke de e ok e e o ok ok e e S o oo e o ke ok ko ok skok kool sl sk sk otk 3k o ok ok % kool 3 ok o ok ok ok kol ok o ok ok o ok ik ke ok akok

RUN D3
L
LTR
BNZ
LR

OK DS
LA

ZEROFIND DS
CR
BEL

OH
RWEND,FIXEDEND
RWEND,RWEND

OK

RWEND, ROUTPTR
0H

R¥PTR,WAREA

0H

RWPTR, RWEND
PCKSTART

POINT TO END OF FIXED PART

WAS IT REALLY SET ?

+YE5, RECORD HAS VARIABLE PART
ELSZ CURRENT END = FIXED END

POINT TO START OF STUFF

END OF WORK AREA RTZACHED ?
- YES, START PACKING
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*  FIND START OF ZERO STRING
XR R1,R1 CLEAR REGISTER USED IN TRT
TRT  0{139,RWPTR),7EROTAB FIND ZERO
BZ PCKSTART NO MORE ZEROS: DONE
CR R1,RWEND IS ZERO BEYOND OUR SCOPE ?
BNL  PCKSTART .YES, DONE
*  FIND END OF ZERO STRING
LR RWPTR,R1 POINT TO ZERO FOUND
TRT  1{127,RWPTR),NZEROTAB FIND NEXT NONZERD
*  COMPUTE LENGTH OF ZERC STRING
LR RW1,R1 ET END OF STRING
SR RW1,RWPTR SUBTRACT START OF STRING
CH RW1,MINSIZE IS STRING TOO SHORT ?
BH NOTSHORT .NO
LA RWPTR, 1 (R1) BUMP POINTER TO STUFF
B ZEROFIND TRY AGAIN
NOTSHORT DS 0H
CH RW1,MAXSIZE IS STRING TOO LONG ?
BNH RUNLENTH .NC, GO ENCODE IT
LH RW1,MAXSIZE GET MAY LENGTH ALLOWED
LA R1,0 (RWPRT,RW1) ADJUST END OF STRING
*  INSERT RUNLENGTH INTO 2 RIGHT HALF-BYTES
RUNLENTH DS 0H
LR RW2,R¥1 SAVE LENGTH
STC  RW1,1{RWPTR) INSERT LENGTH AT START OF STRING
SRL  R¥1,U .
STC  RW1,0 {RWPTR) .
01 0 (RWPTR) ,X 10C!* MARK BYTE AS RUNLENGTH INDICATOR
*  MOVE STUFF TO FRONT AND CALC NEW END OF FIXED PART
LA RWPTR, 2 (RWPTR) GET NEXT FREER BYTE
LR RW1,RWEND GET CURRENT ZND OF RECORD
SR RW1,R? CALC LENGTH OF MOVE
EX RW1,MVC
SR RWEND, RW2 CALC NEW END: SUBTRACT LENGTH,
LA RWEND, 2 (RWEND) .ADD ZERO COUNT
B ZEROFIND GO AGAIN
MVC MVC 0 ({1,RWPTR) ,C(R1)



*%% PACK CCMPRESSED FIXED FART OF RECORD

* k% LAST BYTE OF COMPRESSED FIXED PART: (RWEND) - 1
% %% 5TART OF VARIABLE PART, IF EX: (FIXEDEND) (=0 IF -EX)
* X% END OF VARIABLE PART: (ROUTPTR) - 1
ok ok ook ok ok ek ok e Sk kol gk gk ook ok o T stk ok ok ool ook ok ook ek kool ok ok ook Rk ok ol ok
PCKSTART DS OH

LA RWPTR, WAREA POIRT TO STUFF TO PACK

LA RW1,PAREA POINT TO WHERE TO PACK IT

* PACK COMPRESSED FIXED PART FROM WAREA INTO OUTPUT BUFFER

. PACK DS 0H
PACK 0 ({8,E¥1),0 {15,R¥PTR) PACK STUFF
LA BW1,7(RW1) BUMP OUTPUT POINTER
LA RWPTR, 14 (RWPTR) BUMP WORK AREA POINTER
CR RWPTR,RWEND END OF WORK AREA REACHED ?
BL PACK .NC, DO IT AGAIN

* COMPOTE LENGTH OF PACKEL PART

LA RW1,WAREA CALCULATE LENGTH OF

SR R¥END, RW1 - COMPRESSED FIYXED PART

LA RWEND, 1 {RWEND) ADD ONE FOR DIVISICN

SRL RWEND, CALC LENGTH OF PACKED PART

* IF THERE IS A VARIABLE PART, MOVE IT TO ODTPUT BUFFER

L R#1,FIXEDEND ~ POINT TO VARIABLE PART
LTR  RW1,RW1 IS THERE A VARIABLE PART ?
BZ QUTPUT .NO, DONE
SR ROUTPTR, R¥ 1 CALC LENGTH NF VARIABLE PART
BCTR ROUTPTR,O SUBTRACT ONE FOR MOVE
LA RW2,PAREA (RWEND) POINT AFTER PACKED OUTPUT
EX ROUTPTR, YMOVE MOVE VARIABLE PART UNCHANGED
LA RWEND, 1 (ROUTPTR,RWEND) CALC LENGTH OF QUTPUT RECORD
B OUTPUT

Y MOVE MVC  0{(1,RW2),0 {RW1)

**% QUTPUT, RETURN
B oot e e oo fe ook ok ook ok ok

OUTPUT DS 0H
LA RWEND, 5 (R¥END) ADD LENGTH OF BITHMASK
STH RWEND, RECL STORE INTO LENGTH FIELD
La RWEND, 2 (RWEND) ADD LENGTH OF LENGTH FIELD
FSWRITE FSCB=0UT,BUFFER=0UTBUF,BSIZE={RWEND) PUT RECORD
L R¥1,5L PICK UP ORIGINAL LENGTH
EX RW1,MOVEOLD SAVE PROCESSED REC FOR DIFF'CING
B GET GO PROCESS NEXT REIORD

MOVEOLD MVC XOREA{1) ,INBUF+2



ECF D3 0H
FSCLOSE FSCB=LIB
FSCLOSE FSCB=0OUT
L 13,54VE13

LM 14,12,12(13)

BR 14

*%% STORAGE DEFINITICN
e ok o ok ok g ok o sk ok o ok ook ok o ok ok ok ok

XOR XC WAREA (1) ,XCREA

MOVE MVC  0(1,RCUTPTR), O {RWPTR)
XMOVE MVC  WAREA+117(1),INBUF+129
SMOVE MVC  INBUF+119(1),INBUF+129

* FILE CCNTROL BLOCKS

CLOSE HISTORY FILE
CLCSE OUTPUT FILE
HOUSEKEEPING

RETURN TO CONTROL PROGRAM

LIB FSCB 'CCMP DATA B! ,RECFM=V,BUFFER=INBUF
0U7 FSCB 'DIFF DATA B',RECFM=V,BUFFER=0QUTBUF

* BITS AND BYTES FOR FILLING VARIABLE PART OF CONTROL TABS

M EQU *-1

DC X18001!
B EQU *-1

DC X'0403?
MINSIZE DC H'2*
MAXSIZE DC H'63?
H117 DC H* 117
H128 DC H'128?
H138 bC H*138°?
SAVE13 DS F
SL DS F
FIXEDEND D3 F

* OUTPUT BUFFER

OUTBUF D5 OH

RECL DS H

BITMASK DC 5X1'00!

PAREA DC 3XL100' 00!
DS 0H

* INPUT BUFFER
INBUF DC 4CL100"
* WORK AREAS

WAREA DS 138C,176C

XOREA DC 139C*'0',176C?

92
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* PATTERN FOR REMOVAL OF HYPHENS USING TR INSTRUCTION

PATTERN DC
DC
DC
DC
DC
DC

* TABLE FOCR

DIFFTAB DC
* CONTEROL

MASKTAB DC
bC
DC
DC
DC
VMASKTAB DC

* CONTROL

OFFSET hlu
DC
DC
DC
DC
VOFFSET DC

X1020304050607080A0B0D0E0OF1011121314151617183191A"
X'"1B1C1D1ET1F20212223242526272829282B2C2D282F303233!
X'35363738393A3B3C3E3F4 1424344454604 T748494A4B4C?
X'4DLUELYF505152535455565758595A5B5C5D5E5F606162636465!
X'666768696A6BBCO6DBEGFTO0T717273747677737A7B7CTE?Y
X'7F8182838485868788898A8B8C3DBEBFI9091929393495956?

TRT

X*00° {255 NONZERO BYTES MNUST FOLLOW

TABLE CONTAINS BITS FOR CORRESPONDING FIELDS

X*8080',3X'407,6X720',5X*107,9X'08?',9X* 04" ,3X*02"
3X'011,3X'80",6X*40,4X'207,6X110',4X'08?,9X'04!
3¥X*02',2X*01*,10X'80°*,3X40"',9X'20,3X*10*,X'0808"?
X'0ur,X10202*,6X'01',6X'80,3X'40,3X120',3X'10"
3X*08',8%'04?

176X102?

TABLE CONTAINRS QOFFSET FOR CCHERESPONDING FIELDS

X*0000*,3X'02',6X'05*,5%X'0B?,9¥X*10,9X*19",3X*22?
3X'25',3X'28',6X' 2B, 431 ,6X"35" ,4X"3B',9X'3F"
3X'48°,2X4BY, 10X 4D, 3X 571 ,9X'54",3X763? ,X'6666"
X'68',X'6969",6X16B,6X"'71,3X'77 ,3X"7A',3X'7D!
3X*80',8X*83"

176X'8B"

* TRANSLATION TABLE FOR ZERO RUNLENGTH ENCODING

NZEROTAB EQU
DC

*—240

1

X*00' {240 PREVIOUS AND 15 FNLLOWING BYTES MUST -= X'00')

* CONTROL TABLE CCNTAINS LENGTH OF CORRESPONDING FIELDS

LENGTH DC
DC
DC
DC
DC
VLENGTH DC

X'01011,3X1027,6X105,5X04",9X*087,9X*08",3X102"
3X'027,3X'02%,6X'057,4X*037,6X1057,4X1031,9X108?
3X'02+,2X'01',10X'091,3X102',9X'08?,3X"02',X'0101"
X100',X'0101,6X'05',6X'05,3X102",3X'02",3X102!
3X1021,8X' 071

176X100*

* TRANSLATION TABLE FOR ZERO RUNLENGTH ENCODING

ZERCTAB DC

240X'00 , X' FF? {15 FOLLOWING BYTES MUST = X'007)

* CONTROL TABLFE CONTAINS BITMASK-BYTE FOR CORRESPONDING FIELDS

BYTETAB DC
VBYTETAB DC
END

40X'00',37%X'01°7,36X'02"',26%X'03"
176X'03¢



	

