e
PrSs———"
——

== ATeT

N
T

AT&T Bell Laboratories

University of Waterloo
Technical Report Distribution
Dept. of Computer Science
Ontario N2L 3G1

Canada

To whom it may concern,

To the best of our knowledge the

Whippany Road
Whippany, New Jersey 07981-0903
201 386-3000

July 22, 1987

document(s) listed below is(are)

not available from the National Technical Information Service or

the Defense Technical Information

Center. Will you please furnish

us with a copy of each, or if not available through your

organization, please forward any
the document(s) and a source of s

Report CS-80-47

Constructive Approach to the Desi
Gonnet, G.H. and Tompa, F.W.

1980

Thank you for your attention in t

Very truly yours,

Oondy S Lhele -

Cindy LV Anderson
Technical Report Specialist
Room 5E-227

(201) 386-6734

information you may have regarding
upply.

gn of Algorithms and Their Data Structures.

his matter. /fﬂgb

& vth
X

In Reply Refer To:
Ref. No. 87-0708-4

AT&T Bell Laboratories
Technical Report Service
Whippany, NJ (07981

Attn: Cindy Anderson Ref. No. 87-0708-4

The malterial requested is:
e
v~ Enclosed
For retention
On loan until

Priced at $£2.00 Canadian

Not avsilable from us but may be obtained from:

i/ / [/ e
X { i Ly
o i / a/} ;

iy v S
Additional identifying inforgﬁiion for the requested document is
shown below:

Please make your cheque or money order payable £o the University of Waterloo
Computern Science Depantment and fomward to my atifention.

2

Signed Suwsan DeAngelis

Thank you.
Title Research Report Secrefary

-

1

o
; s
o

L,
g s

MENT

E DEPARTMENT
E DEPARTMENT

E BEPA

ER SEENS
oSSR

i
ut
t

QM
OMP

3 ¢

Y

E

UNIVERSITY OF WATERLOO C

LY
Y

UNIVER§H Y

HNIVER

A Constructive Approach
to the Design of Algorithms
and their Data Structures

Gaston H. Gonnet
Frank Wm. Tompa

CS-80-47

November, 1980

A CONSTRUCTIVE APPROACH TO THE DESIGN
OF ALGORITHMS AND THEIR DATA STRUCTURES

Gaston H. Gonnet
Frank Wm. Tompa

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl
Canada

ABSTRACT

The design of algorithms and data structures can usually
benefit from a study of previous experience. A framework for
describing specific algorithms and their data structures is introduced
in order that designs can be presented in a uniform style that is suit-
able for discovering new designs as well as documenting known ones.
Data objects are described in terms of a formal grammar and most
data manipulation is characterized as a composition of a few simple
algorithms. Descriptions for several standard algorithms are
included to illustrate the process, and a few newly-designed
structures are introduced. Such an approach is expected to be
extremely useful in the construction of software libraries.

Key words and phrases: algorithms, algorithm classification,
algorithm construction, data structures, data types, data representa-
tion, design, specification, W-grammar, functional composition.

CR Categories: 4.34, 4.9, 5.24, 5.29.

This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grants A3353 and A9292.

October 29, 1980

A CONSTRUCTIVE APPROACH TO THE DESIGN
OF ALGORITHMS AND THEIR DATA STRUCTURES

Gaston H. Gonnet
Frank Wm. Tompa

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl
Canada

1. INTRODUCTION

Much of recent research into data structures has been directed at
representation-independent descriptions of (abstract) data types [Dungan79] or at
descriptions of isolated implementations (e.g., [Standish80]). Unfortunately there
has not been a concerted effort to describe implementations using a common
framework. As a result, except in a few instances (e.g., [Darlington78, Batory80]),
it has been difficult to appreciate the similarities among distinct representations
and algorithms and to obtain insight into the design of modified representations to
suit particular processing requirements.

In this paper, we present a framework for describing data structure
implementations. The goal is to be able to specify both the (static)
representational structures themselves and the algorithms that are used to manipu-
late them. We do not claim to possess a universal specification language, much
less a unique nor an optimal presentation method. Rather we wish to present one
specification framework that serves its intended purpose of

. describing a wide range of implementations in enough detail to allow an
average programmer to code each effectively in some language,

. serving as a framework for describing data structures and algorithms,
especially for educational purposes,

. encouraging the discovery of similarities among algorithms,

. encouraging the discovery of new implementations through modification of
those already described.

Before proceeding with the methodology, we would like to contrast our
approach to that of researchers in abstract data types. The goal of abstract data
type specification is to describe objects in a representation-independent way in
order that implementation detail can be suppressed; the result is a description that
can be shown to be correct for some intended purpose, but that is still far-removed
from programs. In contrast, our concentration on an operational description of
algorithms allows programmers to compare and contrast implementations based
on some measures of performance. For example, the descriptions will provide a
contrast among various possible representations for dictionaries, rather than
concentrating on the abstract properties of dictionaries themselves.

2 G.H. Gonnet and F.W. Tompa

2. STATIC OBJECT DEFINITIONS

The formal description of data structure implementations is similar to the
formal description of programming languages. In defining a programming
language, one typically presents first a syntax for valid programs in the form of a
grammar and then further validity restrictions (e.g., usage rules for symbolic
names) in terms of constraints that are not captured by the grammar. Similarly, a
valid instance of a data structure implementation will be one that satisfies a
syntactic grammar and also obeys certain constraints. For example, for a
particular data structure instance to be a valid weight-balanced binary tree
[Nievergelt74], it must first satisfy the grammatical rules for binary trees, and it
must also satisfy a specific balancing constraint.

2.1. Grammar for Data Objects

The syntax of a data object class can be defined using a W-grammar (also
called a two-level or van Wijngaarden grammar) [van Wijngaarden65].t Actually
the full capabilities of W-grammars will not be utilized; rather the syntax will be
defined using the equivalent of standard BNF productions together with the
uniform replacement rule as described below.

A W-grammar generates a language in two steps (levels). In the first step, a
collection of generalized rules are used to create more specific production rules.
In the second step, the production rules generated in the first step are used to
define the actual data structures.

This two-step process can be illustrated as follows. A sequence of real
numbers can be defined by the BNF production
<S> = [real . <S>]| nil .

Thus a sequence of reals can have the form nil, [real.nil], [real,[real,nil]], and so
on. Similarly, sequences of integers, characters, strings, boolean constants, etc.
could be defined. However, this would result in a bulky collection of production
rules which are all very much alike. One might first try to eliminate this
repetitiveness by defining
<S> == [<D>, <S>]| nil
where <D> is given as the list of data types
<D> ::= real| int| bool| string| char .
However, this pair of productions generates unwanted sequences such as
[real,[int.nil]]

as well as the homogeneous sequences desired.

In a W-grammar, the problem of listing repetitive production rules is solved
by starting out with generalized rule-forms, known as hyperrules, rather than the

rules themselves. The generalized form of a sequence S is given by the hyperrule
s-D : [D, s-D] ; nil .1

+ W-grammuars are only one of several formalisms that could be used to specify the syntax.
Equally powerful would be the syntax section of algebraic specifications languages (e.g. [Tom-
pu80]) or purametric cxtensions to graph grammars.

T The metasymbol ; indicates alternation.

Design of Algorithms and their Data Structures 3

The set of possible substitutions for D are now defined in a metaproduction, as
distinguished from a conventional BNF-type production. For example, if D is
given as

D :: real; int; bool; string; char;

a sequence of real numbers is defined in two steps as follows. The first step
consists of choosing a value to substitute for D from the list of possibilities given
by the appropriate metaproduction: in this instance, D = real. Next invoke the
uniform replacement rule to substitute the string real for D everywhere it appears
in the hyperrule that defines s=D. This substitution gives

s-real : [real , s-real] ; mil .

Thus the joint use of the metaproduction and the hyperrule generates an ordinary
BNF-like production defining real sequences. The same two statements can
generate a production rule for sequences of any other valid data type (integer,
character, etc.).

Figure | contains a W-grammar which will generate many conventional data
objects. As further examples of the use of this grammar, consider what happens
when D—>real and LEAF—nil. With these substitutions, HR[3] generates the
production rule

bt—real—nil : [real,bt—real—nil ,bt—real—nil] : nil

which defines a binary tree that has a real entry in each node.t Since bt—real—nil
is one of the legitimate values for D according to M[!] let D—>bt—real—nil from
which HRJ!] indicates that such a binary tree is a legitimate data structure.
Secondly consider a production rule for B-trees of strings using HR{[4] and the
appropriate metaproductions to yield .
mt—string—nil : [int, {string} |®, {mt—string—nil} }°] : nil.

This is a multi-way tree in which each node contains ten keys and has eleven
descendants.

Finally consider the specification for a hash table to be used with direct
chaining. The production
s-(string,int) : [(string,int) , s-(string,int)] ; nil
and M[1] yield
; D — {s-(string,int)} ¢
Thus HR[I] will yield a production for an array of sequences of string/integer
pairs usable. for example, to record NAME/AGE entries using hashing.

2.2. Constraints for Data Objects

Certain syntactic characteristics of data objects are difficult or cumbersome
to define using formal grammars. For example weight balance for trees or
lexicographic ordering for sequences can be defined using W-grammars, but they
are more easily understood using constraints, similar in nature to a program’s
“static semantics: admonitions, restrictions, and other information about the form
of the program” [Koster76].

+ Throughout this paper. an acquaintance with standard data structures is assumed (see. for
example. [Gotlieb78. Standish80]).

4 G.H. Gonnet and F.W. Tompa

Metaproductions:

MIJ1] D :: real:int:bool;string:char;...;
(DR
DS : (DS):
[D]:

s—D:
gt—D—-LEAF;
SEARCH;

M[2] SEARCH :: (DY: s-D:
bt—D—-LEAF;
mt—D—-LEAF;
tr—D.

M|[3]} DS :: D: D, DS

Mi4] LEAF :: nil: D.

M|[5] N :: DIGIT: DIGIT N.

Mié6] DIGIT :: 0:1:2:3:4:5:6:7:8:9.

Hyperrules:

HR{l] data structure : D.
HR[2] s=D: [D,s—-D] nil

atomic data types

array # .

record

reference

sequence

general tree

dictionary structures
other structure classes

binary tree
multiway tree

trie

HR[3] bt-D-LEAF: [D,bt—D-LEAF ,bt—D-LEAF | LEAF.
HR[4] mt—-D-LEAF : [int,{D}),{mt-D-LEAF}}'] : LEAF.
HR[5] gt—-D-LEAF: [D,s—gt—D~LEAF]:LEAF.

HR[6] tr-=D: [{tr=D}Y 1:[D]: nil.

Figure 1: Grammar for data objects

A semantic rule or constraint may be regarded as a boolean function on data
objects (S:D—>bool) that indicates which are valid and which are not. Objects
that are valid instances of a data structure implementation are those in the
intersection of the set produced by the W-grammars and those that satisfy the

constraints.

Below are some examples of semantic rules which may be imposed on data
structures. As phrased, these constraints are placed on data structures that have

been legitimately produced by the rules given in the previous section.

Sequential order

Many data structures are kept in some fixed order (e.g. the records in a file are
often arranged alphabetically or numerically according to some key). Whatever

work is done on such a file should not disrupt this order.

Design of Algorithms and their Data Structures hY

Lexicographical trees

A lexicographical tree is a tree that satisfies the following condition for every node
s: If 5 has n keys (kevy.kevs.....key,) stored in it. s must have n+1 descendant
subtrees rg.1y. . . ., t,. Furthermore, if dg is any key in any node of 7g, d any
key in any node of #;. and so on. the inequality do<key<d <...<key, <d, must
hold.

Priority queues
A priority queue can be any kind of recursive structure in which an order relation
has been established between each node and its descendants. One example of such
an order relation would be to require that key, <keyy. where key, is any key in a
parent node, and kev; . is any key in any descendant of that node.

Height balance

Let s be any node of a tree (binary or multiway). Define h(s) as the height of the
subtree rooted in s. i.e. the maximum number of nodes one must pass through to
reach the end of branch starting at 5. One structural quality that may be required
is that the height of a tree along any pair of adjacent branches be approximately
the same. More formally. the height balance constraint is | A(s)~h(s2)| < 8
where sy and s> are any two subtrees of any node in the tree. and § is a constant
giving the maximum allowable height difference. In B-trees, for example, §=0,
while in AVL-trees. §=1.

Weight balance

For any tree. the weight function w(s) is defined as the number of external nodes
(leaves) in the subtree rooted at s. A weight balance condition requires that for
any two nodes s; and s». if they are both subtrees of any other node in the tree,
r < w(s))/wi(ssy < 1/rwhere ris a positive constant less than 1,

Optimality
Any condition on a data structure which minimizes a complexity measure (such as
the expected number of accesses or the maximum number of comparisons) is an
optimality condition. If this minimized measure of complexity is based on a worst
case value. the value is called the minimax; when the minimized complexity
measure is based on an average value, it is the minave.

In summary the W-grammars are used to define the general shape or pattern
of the data objects. Secondly. once an object is generated, its validity is checked
against the semantic rules or constraints that may apply to it.

3. ALGORITHM DESCRIPTIONS

Having defined the objects used to maintain data, it is appropriate to
describe the algorithms that access them. Furthermore. because data objects are
not static. it is equally important to describe data structure manipulation
algorithms.

6 G.H. Gonnet and F.W. Tompa

An algorithm is a function that operates on data structures. More formally,
an algorithm is a map S—=R or SXP—>R, where S, P, and R are all structures; S
is called the input structure, P contains parameters (e.g., to specify a query), and
R is the resuit.¥ The two following examples illustrate these concepts:

(1) Quicksort is an algorithm that takes an array and sorts it, Since there are
no parameters,
Quicksort: array —> sorted-array.

(2) B-tree insertion is an algorithm that inserts a new record P into a B-tree S,
giving @ new B-tree as a result. In function notation,
B-tree-insertion: B-tree X new-record = B-tree.

Algorithms compute functions over data structures. As always, different
algorithms may compute the same functions; sin(2x) and 2sin(x)cos(x) are two
expressions that compute the same function. Since equivalent algorithms have
different computational requirements, however, it is not merely the function
computed by the algorithm that is of interest, but also the algorithm itself.

Following some of the ideas of structured programming, it is clear that
algorithms are typically not indivisible units created in isolation, but rather they
are built up from basics. However, one cannot define a set of basic operations for
algorithms without paying some attention to the building procedures as well.
After all, the richer the set of building procedures, the simpler (and possible fewer)
atomic operations are needed to construct usable algorithms. On the other hand,
with a large collection of basic operations, fewer building procedures may be
needed to be able to construct the algorithms desired. There are an infinite
number of ways to define basic operations and building procedures that will
produce equivalent algorithms. We do not claim that the division of operations
we make is optimal; our motivation for choosing the following system is simply
that it seems natural. In the following section, we describe a few basic operations
informally in order to convey their flavour.

3.1. Basic (or Atomic) Operations

A primary class of basic operations manipulate atomic values and are used
to focus an algorithm’s execution on the appropriate part(s) of a composite data
ohject. The most common of these are as follows:

Ranking : set of scalars X scalar = integer

This operation is defined on a set of scalars X X5.....X,, and uses as parameter
another scalar X. Ranking determines how many of the X; values are less than or
equal to X, thus determining what rank X would have if all the values were
ordered. More precisely, ranking is finding an integer 7 such that there is a subset
AS{X1.X2...X,} for which | 4] = i and X;EA if and only if X;<X.
Ranking is used primarily in directing multiway decisions. For example, in a
binary decision, n =1, and / is zero if X <X . one otherwise.

+ With more than one input to an algorithm. the choice of which belong to S and which to P
is somewhat arbitraryv. tvpically made to emphasize one input over the others.

Design of Algorithms and their Data Structures 7

Hashing : value X range — integer

Hashing is an operation which normally makes use of a record key. Rather than
using the actual key value, however, an algorithm invokes hashing to transform
the key into an integer in a prescribed range by means of a hashing function and
then uses the generated integer value.

Interpolation : numeric-value X parameters = integer

Similarly to hashing. this operation is typically used on record keys. Interpolation
computes an integer value, based on the input value, the desired range, the values
of the smallest and largest of a set of values, and the distribution of the values in
the set. Interpolation normally gives the statistical mode of the location of a
desired record in a random ordered file. i.e. the most probable location of the
record.

Digitization : scalar = sequence of scalars

This operation tranforms a scalar into a sequence of scalars. Numbering systems
that allow the represention of integers as sequences of digits and strings as
sequences of characters provide natural methods of digitization.

Testing for equality : value X value = boolean

Rather than relying on multiway decisions to test two values for equality, a
distinct operation is included in the basic set. Given two values of the same type
(e.g.. two integers. two characters. two strings). determine whether they are equal.
Notice that the use of multiway branching plus equality testing closely matches the
behaviour of most processors and programming languages, which require two tests
for a three-way branch determining less than, equal, or greater than.

Other classes of basic operations relate to each of the data structure
constructors used in the grammar for data objects. Corresponding to the array
constructor { DI is an access operation (commonly referred to as “‘indexing™).
used either to read or to write a component’s value; for a record, there is an
operation to select a component field; and for a reference, there is an operation to
access a referent.

3.2. Building Procedures

Building procedures are used to combine basic operations and simple
algorithms to produce more complicated ones. In this section, we will define four
building procedures.

3.2.1. Compeosition

Composition is the main procedure for producing algorithms from atomic
operations. Typically. but not exclusively. the composition of F;:S XP—+>R and
F3:§ XP—>R can be expressed in a functional notation as Fo(F|(S.P|).P>). A
more general and hierarchical description of composition is that the description of
F> uses Fy instead of a basic operation.

8 G.H. Gonnet and F.W. Tompa

Although this definition is enough to include all types of composition, there
are several common forms of composition that deserve to be identified explicitly.

Divide and conquer uses a composition involving two algorithms for problem
that are greater than a critical size. The first algorithm splits a problem into
(usually two) smaller problems. The composed algorithm is then recursively
applied to each non-empty component using recursion termination when
appropriate. Finally the second algorithm is used to assemble the
components’ results into one result. A typical example of divide and
conquer is quicksort (where the termination alternative may use a linear
insertion sort). Diagramatically:

solve-problem(A):
if size(A) < critical
then {end action}
else {split problem}
solve-problem(A);
solve-problem(A»);

{assemble results} i

Iterative application operates on an algorithm and a sequence of data
structures. The algorithm is iteratively applied using successive elements of
the sequence in the place of the single element for which it was written. For
example, insertion sort iteratively inserts an element into a sorted sequence.

solve-problem(S):
while S is not exhausted do
{apply algorithm to next element of sequence S}:
fadvance S} od:;
{end action}

or alternatively, if the sequence is in an array:

solve-problem(A):
for i from ! to |A| do
faction on A[i]} od:
{end action}

Design of Algorithms and their Data Structures 9

Tail recursion is a composition involving one algorithm that specifies the
criterion for splitting a problem into (typically two) components and
selecting one of them to be solved recursively. A classical example is binary
search.

solve-problem(A):
if size(A) < critical
then (end action}
else {split and select subproblem i};
solve-problem(A;) fi

or alternatively, unwinding the recursion into a while loop:

solve-problem(A):
while size(A)>critical do
{split and select subproblem i};
{replace A by A;} od;
{end action}

It should be noted that tail recursion can be viewed as a variant of divide
and conquer.

Inversion is the composition of two search algorithms used to search for sets
of records based on values of secondary keys. The first algorithm is used to
search for the selected attribute (find the “inverted list” for *“‘hair colour” as
opposed to “salary range”) and the second algorithm is used to search for
the set with the corresponding key value (e.g. “blonde” as opposed to
“brown””). In general, inversion returns a set of records which may be
further processed (for example, using intersection, union, or set difference).

inverted-search(S,A,V):
S is a structure, A an attribute, and V a value
search (search(S,A), V)

10 G.H. Gonnet and F.W. Tompa

Digital decomposition is applied to a problem of size n by attacking
preferred-size pieces (for example, pieces of size equal to a power of two).
An algorithm is applied to all these pieces to produce the desired result.
One typical example is binary decompostion [Bentley79].

Solve-problem(A,n):
n has a digital decomposition: n=n; By + +, Birtng
{Partition the problem into subsets
k M .
A= UUA)
i=0j=1 ,
where |Af| =6; #:
for i from O to k while not completed do
simpler-solve({A! ,Alz,...,Aini }) odod

Merge applies an algorithm and a discarding rule to two or more sequences
of data structures. The sequences are ordered on a common key. The
algorithm is iteratively applied using successive elements of the sequences in
place of the single elements for which it was written. The discarding rule
controls the iteration process. For example, set union, intersection, merge
sort, and almost all business applications use merging.

Merge(S;,S,....S¢):
while (at least one S is not empty) do
kmin := minimum value of keys in (heads of) S;...S:
for i from 1 to k do
if kmin = first key in §;
then t; := head of §;
else t; := null fi;
processing-rule((t;, #s...., ty)) od,
{end action}

3.2.2. Alternation

The simplest form of building operation is alternation. Depending on the
result of a test or on the value of a discriminator, one of several alternative
algorithms is invoked. For example, based on the value of a command token in a
batch updating interpreter, an insertion, modification, or deletion algorithm could
be invoked; based on the success of a search in a table, the result could be
processed or an error handler called; based on the size of the input set, an O(Nz)
or an O(NlogN) sorting algorithm could be chosen.

There are several forms of alternation that appear in many algorithms; these
are elaborated here.

Design of Algorithms and their Data Structures 11

Superimposition combines two or more algorithms, allowing them to operate
on the same data structure more or less independently. Two algorithms F
and F; may be superimposed over a structure S if F1(5,01) and F(S5,05)
can both operate together. A typical example of this situation is a file that
can be searched by one attribute using Fy and by another attribute using F.
Unlike other forms of alternation, the alternative to be used cannot be
determined from the state of the structure itself; rather superimposition
implies the capability of using any alternative on any instance of the
structure involved. Diagramatically:

solve-problem(A):
case 1: solve-problem;{A);
case 2: solve-problemy(A);

case n: solve-problem,(A)

Interleaving is a special case of alternation in which one algorithm does not
need to wait for other algorithms to terminate before starting its execution.
For example one algorithm might add records to a file while a second
algorithm makes deletions; interleaving the two would give an algorithm that
performs additions and deletions in a single pass through the file.

Recursion termination is an alternation that separates the majority of the
manipulation for a structure from the end actions. For example, checking
for end of file on input, for reaching a leaf in a search tree, or for reduction
to a trivial sublist is a binary search are applications of recursion
termination. It is important to realize that this form of alternation is
equally applicable to iterative processes as to recursive ones. Several
examples of recursion termination were presented in the previous section on
composition (see, for example, divide and conquer).

3.2.3. Organization

If an algorithm creates or changes a data structures, it is sometimes
necessary to perform more work to ensure that semantic rules and constraints on
the data structure are not violated. For example, when nodes are inserted into or
deleted from a tree, the tree’s height balance may be altered. As a result it may
become necessary to perform some action to restore the balance in the new tree.
This process of combining an algorithm with a ‘““clean-up’ operation on the data
structure involved is called organization (sometimes reorganization). In effect,
organization is a composition of two algorithms: the original modification
algorithm and the constraint satisfaction algorithm. Because this form of
composition has an acknowledged meaning to the algorithm’s users, it is
convenient to list it as a separate class of building operation rather than as a
variant of composition. Other examples of organization include reordering
elements in a modified list to restore lexicographic order, percolating newly-
inserted elements to their appropriate locations in a priority queue, and removing
all dangling (formerly incident) edges from a graph after a vertex is deleted.

12 G.H. Gonnet and F.W. Tompa

3.2.4. Self-organization

This is a supplementary heuristic activity that an algorithm may often
perform in the course of querying a structure. Not only does the algorithm do its
primary work, it also reaccomodates the data structure involved in a way designed
to improve the performance of future queries. For example, a search algorithm
may promote the searched element once it is found so that future searches through
the file will locate this record more quickly. Similarly, a page management system
may mark pages as they are accessed in order that “least recently used” pages
may be identified for subsequent replacement.

Once again, this building procedure may be viewed as a special case of
composition (or of interleaving); however, its intent is not to build a functionally
different algorithm, but rather to augment an algorithm to include improved
performance characteristics.

3.3. Interchangeability

The framework as described so far clearly satisfies two of its goals: sufficient
detail to allow effective encoding in any programming language and uniformity of
description to simplify teaching. It remains to be shown that the approach can be
used to discover similarities among implementations as well as to design
modifications that result in new useful algorithms.

The primary vehicle for satisfying these goals is the application of
interchangeability. Having decomposed algorithms into basic operations used in
simple combinations, one-is quickly lead to replacing any component of an
algorithm by something similar.

The simplest form of interchangeability is captured in the static objects’
definition. The hyperrules emphasize similarities among the data structure
implementations by indicating the universe of uniform substitutions that can be
applied. For example, in any structure using a sequence of reals, the hyperrule for
s—D together with that for D indicates that the sequence of reals can be replaced
by a sequence of integers, a sequence of binary trees, etc. Algorithms that deal
with such modified structures need at most superficial changes for manipulating
the new sequences, although more extensive modifications may be necessary in
parts that deal with the components of the sequence directly.

The next level of interchangeability results from the observation that some
data structure implementations can be used to simulate the behaviour of others.
For example, wherever a bounded sequence is used in an algorithm, it may be
replaced by an array, relying on the sequentiality of the integers to access the
array’s components in order. Sequences of unbounded length may be replaced by
sequences of arrays, a technique that is usefully applied to adapt an algorithm
designed for a one-level store to operate in a two-level memory environment
wherein each block will hold one array. This notion of interchangeability is the
one usually promoted by researchers using abstract data types, who would claim
that the algorithms should have been originally specified in terms of abstract
sequences. We feel that the approach presented here does not contradict those
claims, but rather that many algorithms already exist for specific representations
and that an operational approach to specifying algorithms together with the notion
of interchangeability is more likely to appeal to data structure practitioners. In

14 G.H. Gonnet and F.W. Tompa

interpolation value /. This algorithm has the advantage that range searches
are possible and efficient and that the file is very close to total order (only
the sequences themselves are out of order).

O If hashing is composed with interpolation, in other words, interpolation is
performed using the result of a hashing function applied on a key instead of
using the keys themselves, a new algorithm results. The structure is again
derived from D—{DJX, but the components are ordered by hash-function
value rather than by key value. This algorithm is as efficient as interpolation
search [Gonnet80a] and does not suffer the same difficulties as pure
interpolation search does when the keys are not uniformly distributed.

O Composing interpolation with the linear collision resolution scheme produces
an interesting algorithm which is similar to linear probing but which
constructs an almost ordered table. From this a fairly efficient sorting
method can be derived [Gonnet80b].

4. CONCLUSIONS

The descriptive framework presented in this paper simultaneously addresses
the presentation of algorithms and their data structures. The basic operations for
an algorithm correspond very closely to the metaproductions used to define the
data structure; for example, indexing in an array corresponds to the
metaproduction D—*{D}ﬁ. The alternation and composition building procedures
often deal with the particular hyperrules used to form the structure; for example,
recursion termination typically corresponds to the use of “;”” in a hyperrule, and
the use of iterative application corresponds to the processing of a sequence s-D.
The two ‘“‘semantic” building procedures, organization and self-organization,
correspond to the less formalized aspects of data structure description captured in
the constraints as explained in Section 2.2.

This framework has been used at the University of Waterloo for teaching
about data structure and algorithms. The approach captures the notions of
modularity that many educators have found to be desirable. The level of
formalism is sufficient to capture intuitive ideas of interchangeability and to
translate algorithms into operating programs. At the same time, the constructive
aspect of the approach is less intimidating to students than other formalisms have
been.

Finally, the primary value of this constructive approach may be in the
insight gained when designing new algorithms. Based on the experiences gained so
far with interpolation algorithms, we feel that the approach has already proven
itself, and we look forward to further new developments.

Acknowledgements. The authors have benefited from interactions with several
researchers and teachers, especially Jon Bentley, who helped to clarify some of the
ideas regarding composition.

References

[Batory80]

[Bentley79]

[Darlington78]

[Dungan79]

[Gonnet77]

[Gonnet80a)

[Gonnet80b]
[Gotlieb78}

[Koster76]

[Nievergelt74]

[Standish80]

[Tompa80]

[van Wijngaarden65)

Design of Algorithms and their Data Structures 15

Batory, D.S. and Gotlieb, C.C. A unifying model of physical databases. Univ.
of Toronto CSRG Tech. Rept. CSRG-109 (1980), 39 pp.

Bentley, J.B. Decomposable seaching problems, Information Processing
Letters 8,3 (June 1979), 244-251.

Darlington, J. A synthesis of several sorting algorithms. Acta Informatica 11,
1 (1978), 1-30.

Dungan, D.M. Bibliography on data types. SIGPLAN Notices 14, 11 (Nov.
1979), 31-533.

Gonnet, G.H. and Rogers, L.D. The interpolation-sequential search algorithm.
Information Processing Letters 6, 4 (Aug. 1977), 136-139.

Gonnet, G.H., Rogers, L.D., and George, J.A. An algorithmic and complexity
analysis of interpolation search. Acta Informatica 13,1 (Jan. 1980), 39-46.

Gonnet, G.H. and Munro, J.I. Linear probing sort. (in preparation).

Gotlieb, C.C. and Gotlieb, L.R. Data Types and Structures. Prentice-Hall,
Englewood Cliffs, N.J., 1978, 444 pp.

Koster, C.H.A. Two-level grammars. Compiler Construction: an Advanced
Course, 2nd edition (F. L. Bauer and J. Eickel, ed.) Lecture Notes in
Computer Science 21, Springer-Verlag, 1976, 146-156. '

Nievergelt, J. Binary search trees and file organization. Computing Surveys 6,
3 (1974), 195-207.

Standish, T.A. Data Structure Techniques. Addison-Wesley, Reading, Mass.,
1980. 447 pp.

Tompa. F.W. A practical example of the specification of abstract data types.
Acta Informatica 13, 2 (1980), 205-224.

van Wijngaarden, A. Orthogonal design and description of a formal ianguage.
Math. Centrum Rept. MR76, Amsterdam, 1965.

	

