bARHMENT
PARTMENT
PARTMENT

A SEIENCE BE
 REIENGE BF

TE
E

r
T
UTE

Mt
MPU
MP

|

AENSR &8
WATERLOO CO

WA
W

VERSITY
ONVERSHY &
UNIVERSITY OF

An Aid for
the Selection of
Efficient
Storage Structures

Frank Wm. Tompa

Raul J. Ramirez

CS-80-46
(replaces CS-79-40)

October, 1980

AN AID FOR THE SELECTION OF EFFICIENT
STORAGE STRUCTURES

Frank Wm. Tompa
Raul J. Ramirez ¥

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl
Canada

ABSTRACT

The representations used to implement data structures play a
large part in determining the execution cost for most applications.
Because suitable representations may be chosen from a very large
class, it is important to search systematically for the efficient ones.

In this paper, algorithms based on dynamic programming are
presented. It is assumed that an application’s behaviour is specified
by means of evaluation maps which reflect the expected run time and
storage space required by each component of the application’s data
structure. Those maps must be searched to find representations for
each component which, when composed into a single storage struc-
ture, minimize the cost for the application according to a given cost
formula. The algorithms incorporate bounds on the maximum
allowable run time and storage space and solve the selection problem
in pseudo-polynomial time and space.

Key phrases: Data structures design, space/time efficiency,
storage structures, library of implementations,
evaluation maps, dynamic programming.

CR Categories: 3.73, 4.33, 434, 5.25, 5.42

October 20, 1980

+ Current address: Grupe Industriai Saltilto, Saltillo. Mexico.

AN AID FOR THE SELECTION OF EFFICIENT
STORAGE STRUCTURES

Frank Wm. Tompa
Raul J. Ramirez t

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada

1. INTRODUCTION

Data structure design involves several levels of data abstraction [Tompa77].
At one of the levels, a data structure’s schema is defined in terms of a composition
of data type occurrences (e.g. occurrences of sets, dictionaries, priority queues,
trees, sequences or tuples) and in terms of the valid operations over each data
type. Indeed, programming languages such as Alphard [Shaw77] CLU
[Liskov77], SETL [Dewar79] and Mesa [Geschke77] provide ideal frameworks for
expressing such abstractions. This level of data abstraction has been termed the
abstract structure level.

Through data type encapsulation, the only possible interaction with a data
type is by invoking the given set of operations. As a result, “representation
independence” is achievable; that is, the manipulation of a data type occurrence
need not (in fact, cannot) rely on any particular implementation for the type. This
independence gives an implementer the freedom to select or to alter the represen-
tation for the type so as to improve some desired measure of performance (e.g.
efficiency, reliability, maintainability, or portability) without affecting the
application’s uses of the type. The choice of representations is the bridge from the
abstract to the storage structure level.

This paper is addressed at the problem of designing efficient storage
structures. Because the number of possible data representations is extremely large
and the space of possibilities is apparently not well-structured, choosing on
optimal storage structure appears to be unachievable. Even the design of reason-
ably efficient storage structures is sufficiently complex to benefit from the use of
automated tools. It is such a tool that is described in this paper.

+ Current address: Grupe Industrial Saltilio, Saltillo, Mexico.

2 F.W. Tompa and R.J. Ramirez

2. A SIMPLIFIED DESIGN PROBLEM

In order to make the problem of storage structure design amenable to
automated aids, several assumptions will be made. First, it is assumed that the
class of applications to use the data structure are known in advance and well-
understood. For example, the relative frequencies of queries and updates, the
specific types of queries and their probabilities of occurrence, and the cardinalities
of all structures and query responses are used as input to the design. Such
information can be gathered from several sources, including interviews with users,
simulation studies, monitoring of existing software, and designers’ hypotheses; the
less reliable the input, however, the less faith can be placed on the automated
storage structure selection.

A second assumption is that the storage structure will be built as a
composition of representations for basic data types, those representations being
selected from a finite library. The first part is merely a formulation of well-
structuring and modularity. The use of a library of representations is a restriction
on storage stucture choice, but it is realistic for applications that are written in
high-level code in terms of a fixed set of data types and automatically compiled in
one of several possible ways. Even for hand-coded algorithms, the use of formal or
informal libraries of code [Gonnet80] is likely to become more and more desirable
in order to save programming and maintenance effort and expense.

Given an application and a library of data types and their representations,
the problem of data structure design falls into two phases: the design of the
abstract structure (i.e., determining which types to use explicitly for which
relationships) and the design of the storage structure (i.e., determining which
representations to use, once the types are fixed). Several researchers have focussed
their attention on the first question ([Hubbard75], [March78],{Santoro80]).
However, in this paper, it will be assumed that such a design has been completed
and that the abstract structure is therefore fixed. Thus, the usage requirements
imposed by the applications will be assumed to have been translated into
parametric values for each of the data type occurrences.

As an example, consider a Huffman code generator (Program 1) and assume
it is complete application. The data types for which representations are to be
chosen are ser (to store in the priority queue the set of characters having a
combined probability), priority queue (for the variable QUEUE controlling the
algorithm), and dictionary (for the variable DICT to maintain the codes); the
other types (e.g. bitstring, char) will be assumed to have only one choice of
representation., The algorithm can be analyzed to determine the number of times
each operator is involved for each data type (Table 1); for example, if 128 symbols
are to be encoded and C = S logpS = 896, then there will be no set creations,
127 (disjoint) set unions, 896 set “‘get-next-members”’, etc.

2.1. The library of Implementations

The creation of a repertory of implementations from which the selections are
made has been addressed by Tompa [Tompa74] and by Low [Low76]. In
database systems, such a given set of possible implementations is commonplace
(see, for example, [CODASYL71]). A library of implementations contains a set

N W

~1

B B P DD e e e
W b = DN OO -

An Aid for the Selection of Efficient Storage Structures

type input-element = record symb: char:

probability: 0..100 end;

queue-element = record prob: 0..100:

members: set of char end;

dict-element = record symbol: char;

var INPUT:
QUEUE:
DICT:
MI1,M2:

begin

code: bit-string end;
sequence of input-element;
queue of queue-element priority by prob;
dictionary of dict-element key symbol:
queue-element;

DICT := dictionaryS$create:
QUEUE := queueScreate;
for each E in INPUT do
begin
dictionaryS$insert(DICT. E.symb, " ");

queue$insert(QUEUE, E.probability, set$insert{sct$create,E.symb)}
end:

M1 := queueSmin(QUEUE);

while not queue$empty(QUEUE) do
begin
for each CHAR in M1 .members do

dictionary$update(DICT, CHAR, "0" || code},

M2 := queue$peek(QUEUE):
for each CHAR in M2.members do

dictionarySupdate(DICT, CHAR. "1" || code);

M2.prot := Ml prob + M2.prob;
M2.members := M1.members U M2 .members:
queue$replace(QUEUE, M2);

Mi = queueSmin(QUEUE)

end;

for each D in DICT do
write(D.symbol, D.code)

end

Program &

Pascal-type code for Huffman code generation

F.W. Tompa and R.J. Ramirez

Let S be the number of distinct symbols for which codes are to be found
C be the total bit length over all codes generated.

Operation Counts Line Number(s)

sets
create: S 12
insert: S 12
union: S-1 21
get-next: C 15,18
QUEUE
create: 1 9
insert: S 12
min: S 13,23
empty: S 14
peek: S-1 17
replace: S-1 22
DICT
create: | 8
insert: S 11
update: C 16,19
traverse: 1 24

Table 1. Operation counts for Huffman code generation

An Aid for the Selection of Efficient Storage Structures 5

of possible representations for each member in a standard set of data types
available at the abstract structure level. Each member is a cluster of code that
implements the valid operations for a particular representation of the type. For
example, a set of valid operations for the dictionary data type might be to create
an empty dictionary, to locate an element of the dictionary, to read or to write its
contents, and to destroy the dictionary. These operations can be implemented for
different representations, e.g.,, a dictionary can be represented as a contiguous
store, linearly addressed store, unary chain, bit map, binary tree structure, etc.
[Gotlieb74]. Some of the implementations in the library may be better suited than
others for a particular application. For example, if, relative to other operations, a
large number of insertions are to be performed, the linearly addressed store is a
good choice; however if the dictionary is sparse (with respect to all possible keys)
and storage space is at a premium, a unary chain may be better.

As mentioned before, the reliance on a library of implementations restricts
the solution space to that implicitly described by the library. It is felt that the
restriction need not be severe if the library is allowed to be large. This, in turn,
requires that its alternatives can be quickly appraised.

In order to evaluate the appropriateness of the various representations
objectively, it is necessary to characterize each member of the library according to
some measure. The measure selected for most studies is that of efficiency in terms
of the expected run time for the required operations and the expected number of
storage cells consumed by the data.

Program 2 depicts a typical member of the library. Together with the code
are two parametric formulas representing the time required to execute the code
and the space required to maintain the structures. (The example is indicative of
the form of the library and is not intended to reflect the code’s actual behaviour
on a specific machine.)

There exist several techniques for parameterizing the expected run time and
storage space of a program: counting techniques [Cohen74, Tompa74], complexity
analyses of the algorithms involved [Aho74, Knuth73], as well as the monitoring
of the program execution [Wichman72, Low78]. For this paper, it will be
assumed that an appropriate library has been constructed by one or more of these
techniques. The remainder of this paper will concentrate on the selection of
efficient representations based on such a library. It should be noted, however, that
performance improvements may be possible when certain combinations of
structures are used; incorporating such improvements into the methodology are
beyond the scope of this paper (see, for example [Rowe76]).

2.2. The evaluation map

Given an application’s usage behaviour in terms of a collection of data type
occurrences and a library of implementations for data types, the impact of a
storage structure choice on the efficiency of the application can be determined.
Because the number of occurrences of data types in an application is typically very
large, it is important to aggregate them into substructures, homogeneous
collections of data type occurrences defined at the abstract structure level. For
example, although in principle each row of a matrix could be represented by a
different implementation, it is convenient to treat them all homogeneously, that is,

6 F.W. Tompa and R.J. Ramirez

Unordered contiguous representation for a set:

type set = record last: 0. MAX;
elements: array [1.MAX] of ANY end;
function CREATE : set;

begin
CREATE.last := 0
end;
procedure INSERT (S: set; D: ANY)
begin

S.last := S.last + I;
S.elements[S.last] := D
end;
function UNION (S1,S2: set) : set ;
/* find disjoint union */
var T: set ;
J: 0.MAX;
begin
for J:=1 to Sl.last do
T.elements[J] := S1.elements[J];
for J := 1 to S2.last do
T.elements{S1.last+J] := S2.elements[J];
T.last := Sl.last + S2.last;

UNION:=T
end;

function GET-NEXT (S1: set; current: 0. MAX) : 0. MAX;
begin

if current > S.last

then GET-NEXT :=0

else GET-NEXT := current+1
end

a) code
(O)*CREATE + (10)*INSERT + (18+15*SIZE | +18*SIZE 9)*UNION

+ (14=3*LAST)*GET-NEXT

b) time in terms of parameter for frequency of operations,
set sizes, and whether or not seeking legitimate next

I+ MAX¥ELEMENT —SIZE

¢) space in terms of maximum size of set and size of components

Program 2: Example of a library entry

An Aid for the Selection of Efficient Storage Structures 7

as one substructure [Tompa76]. Furthermore, in order to avoid excessive
conversions between representations for closely interacting structures (e.g.
operands for a common operation, two sides of an assignment statement, or
arguments to a common subroutine), it is often convenient to coalesce such data
type occurrences into substructures as well [Low78, Dewar79].

The problem of building an evaluation map from a library and usage
statistics is not trivial, often requiring additional analysis and insight on the part
of the designer. For example, to evaluate the expected accumulated run time for
the substructure consisting of all sets of characters in Huffman code generation, it
must be realized that the C get-next operations will correspond to 2* (S —1) set
traversals (thus LAST =2* (S —1)/C) and that the total of all set sizes involved in
unions will be C (thus SIZE, = SIZE, = C/2/UNION). The use of unordered
contiguous representations for the sets will therefore require time =195 +44C +12
and space =S +1. Since it cannot be expected that such analysis can be
automated in the near future, human intervention is again required. An example
of an evaluation map for Huffman code generation with S =128 and C =896 is
shown in Table 2.

In previous research, Gotlieb and Tompa first coded the application program
by means of the valid operations defined over the library’s data types, and next
counted the relative frequency of each operation, so that the parametric formulas
can be assigned values that reflect the application’s characteristics as well as the
computing environment [Gotlieb74]. In related work, Low characterized each
implementation by statistical information provided by the user or collected by
monitoring the execution of the program when using default representations
[Low78].

3. STORAGE STRUCTURE SELECTION FROM EVALUATION MAPS

The goal of efficient storage structure design is to find data representations
that together result in the least cost according to a given cost formula (e.g.,
space*time, space +time?, or time*log(time)+time*space2/5). In the context of
the simplified design problem introduced in Section 2, this corresponds to choosing
for each substructure, that implementation from the library that minimizes the
total cost (over all such choices).

If an application involves N substructures and the number of possible
implementations for substructure i is M;, a}r&/ exhaustive search of the evaluation

map would require the computation of HMi alternatives, which is usually
i=

prohibitively high. Elsewhere it has been shown that one cannot circumvent this
by merely choosing the least-cost implementation for each substructure, unless the
cost formula is separable, that is, unless the total cost is proportional to the sum
of the costs of the substructures [Tompa76]. For example, the formulas
space*time, are time +time*space2 and not separable, whereas space +time and
time* log(time)+space2 are. The remainder of this paper will address the problem
of processing an evaluation map.

F.W. Tompa and R.J. Ramirez

Substructure Implementation Time Space
sets bit map 528972 2048
contiguous store 22213 16512

QUEUE unary chain 161534 640
contiguous store 219495 132

heap 45951 132

DICT binary ring 650321 2060
unary chain 965844 1544

binary tree 242064 2060

avl tree 168452 2060

contiguous store 286934 1028

hash table 116214 1280

Table 2: Evaluation map for Huffman code generation

An Aid for the Selection of Efficient Storage Structures 9

3.1. Formal background

Previous research dealt with the selection of unchanging storage structures
(e.g., [Tompa76, Berelian77,Low78, Rowe78];. It was implicitly assumed that the
relative frequency of operations over the datz types remained constant or that the
average frequency of operations over the lifetime was sufficient to characterize the
application. Thus once a selection of implemantations for the substructures was
made, say at the Seginning of the application life, it remained for the complete
lifetime. However, there exist applications in which the frequency of operations
changes as time passes. making some other implementations more attractive than
the ones choscn at the start. For these cases it is said that the application passes
through phases, each phase having different requirements.¥

In general, converting from one implementation that is optimal for one
phase to the implementation that is optima! for the next phase might not be
overall optimal. It might be possible to make a selection that is not optimal for
the first phase, and another that is also not optimal for the second phase, but when
composed, cost less than the phase-optimal selections (see example below).
Similarly, if a third phase has different requirements it might be more efficient to
convert directly from the structure most suited for the first phase to the one most
suited for the third, at the time that the application is only beginning the second
phase.

Consider the simplified application represented in Table 3. The best
selection for phase | alone is implementation 1, and the best selection for phase 2
alone is implementation 2. The combined cost of both selections, including the
conversion cost of 100, is 120 cost units; that is, applying the cost formule to the
expected run time and storage space results in a value of 120.

When the two phases are considered simultaneously, an algorithm solving
this problem should select implementation 3 for both phases, with a combined cost
of 30 units. An algorithm solving this type of problems must be supplied with the
information regarding each phase before any selection can be made. Such an
algorithm will in general, produce a sequence of storage structures that together
minimize cost.

The selection of a sequence of storage structures can be described as an
integer programming problems as follows:

given:

P the number of phases for which a selection is sought, i.e., the
application lifetime,

N the number of substructures for which an assignment is sought,

M; the number of implementations in the library for substructure i,

+ There exist studies that deal with the detection of phase changes for an application (see, for example,
[Winslow751).

10

F.W. Tompa and R.J. Ramirez

Cost of Phase

Conversion Cost

1 2 1 2 3

1 10 20 0 100 25

Implementations 2 20 10 100 0 25
3 25 25 25 25 0

Table 3: Simple application with phases

An Aid for the Selection of Efficient Storage Structures 11

N . P . .

Xp a (ragged) zero-one matrix in which x;; indicates whether or not
implementation j is to be selected for substructure i in phase p,

P . . L

5i.j the estimated storage space consumed by implementation j when
used for substructure i in phase p,

P

lij the estimated run time of implementation j when used for
substructure i in phase p,

P

¢ijj the cost of converting substructure i from implementation j In
phase p to implementation j' in phase p +1,

.S'DTP the maximum amount of storage space and running time
respectively available to be used by the selected implementations
in phase p,

$(Xp,Sp,Tn) a monotonic cost function in terms gf the total amount of time
consumed_ by the final selection X when constrained to the
bounds Sp and in phase p.

find:
P N i i
‘ p p p+l1
Z =min 3 {$(XP,S Ty + K * 2 2 2 Cijj * xij X H(l)
p=1 i=1j=1j=1
such that:
M;
6 =1 foralli=1.N.p=1..P)
=1
N M
s,-!:,- * xfj <Sp for all p=1...P 3)
=1 j=1
N M
2 tfj * xfj £T, forall p=1..P 4
=1 j=1
X =01 foralli=1.N, j=1.M;, p=1..P (5)
K €R* (6)

The last expression of Equation g) accounts for the conversion cost between
phases, since the conversion cost ¢;;; applies only when both zero-one variables
are one. Equations (2) and (5) guarantee the selection of only one implementation
per substructure per phase. Inequations (3) and (4) restrict the solution to fit
within bounded space and time at each phase, and Expression (6) allows
conversion costs to be weighted more or less heavily as desired.

THEOREM: The selection of a sequence of storage structures problem belongs to
the strong-NP-complete class of problems.

12 F.W. Tompa and R.J. Ramirez

PROOF (M. Tompa): In order to prove this theorem, it will be shown that it is
possible to transform the well-known NP-complete problem concerning the
satisfiability of Boolean expressions (SAT) [Karp75] to the selection of a
sequence of storage structures problem:

The satisfiability problem can be stated as follows:

Given a set U of Boolean variables and a collection C of clauses in
conjunctive normal form, is there a satisfying truth assignment for C?

Given an instance of the satisfiability problem, transform it into a selection
problem in which for all i=1...| U| and k=1...] C|

. 0 if variable U; is in clause Cy
1T 01 if Uy is not in G

By 0 if the negation of U; (U;) is in Cy
5.2 1 if U; is not in Cy

tl‘]f]' =0

0 if j=j
ko = 7
iy 1 otherwise

TF =0, Sk=|U|~-1

For N = | U] and P = | C|, solve the following selection problem:
P N 2 - N 2 2 %
Z =min ¥ > i+ cfl * xly * xly!
~ A A
such that

2
E ski*xa i) < N—1 for all k =1...P
I=

M=

i=

The interpretation of this restriction when applied to the original
satisfiability problem is to allow at most N-1 variables in each clause to be
false, i.e., at least one variable in each clause to be true; consequently, the
whole expression must be satisfied.

If the selection problem just described is solvable and if its solution has a
cost of zero, then the original problem is satisfiable by setting

true if Xflfl =1
Ui = Jfalse if x> = 1

If there is no solution or if the cost of the solution is greater than zero,
then the original problem is not satisfiable: since all the t,-’_‘j are zero, at
least one conversion cost was employed, which in turn means that the truth
assignment of a variable changes between clauses (which is not possible).
Since the input for this selection problem consists only of zeroes and ones
(N is a count of the number of zeroes and ones) the selection of a sequence
of composite storage structures is strongly NP-complete

[Garey79]. U

An Aid for the Selection of Efficient Storage Structures 13

It is common belief that NP-completeness means intractability; however it
has been recently pointed out [Garey79], that for certain NP-complete problems,
called number problems, there can exist pseudo-polynomial time algorithms for
their solution. Pseudo-polynomial time means that the time complexity of the
algorithm can be bounded by some polynomial in the input length and the
magnitude of the maximum number of a given problem instance that bounds the
time complexity of the algorithm.

For example, the input to a one-phase selection problem consists of the
evaluation matrix, the maximum amount of space and time, and the cost formula.
Thus the length of the input is:

N M

E []og(s,-,j)+log(t,-,j)]+ [log(S)+log(T) +L = O(M*N*log(S*T)+L)

i=1 j=1
where L is the length of the description of the cost formula and M is a bound for
all M;. Assuming that each evaluation of the cost formula requires only
polynomial space and time in L, a selection algorithm will be polynomial if it
requires only O (M*N*log(S*T)) cost evaluations. All solution algorithms used
to date (including exhaustive search, bounch-and-bound [Tompa76], and hill-
climbing [Low78]) require O (M) evaluations in the worst case.

Elsewhere it has been shown that the one-phase storage structure selection
problem is also NP-complete [Ramirez80]. Thus, unless P = NP, there is no
deterministic polynomial time algorithm to solve even the simplest problem.
However, because the one-phase problem is a so-called number prolem, a pseudo-
polynomial time algorithm can be found. As demonstrated in the next section,
dynamic programming yields a one-phase selection algorithm that runs in time
O (M*N*min(S,T)).

3.2, A selection algorithm based on dynamic programming

Dynamic programming is an optimization technique used to make a
sequence of interrelated decisions which maximize (or minimize) some measure of
value [Bellman57, Dreyfus77]. Although used to solve several important problems
in other areas of computer science [Brown79], it has not been applied to the
selection of storage structures.

This technique is applicable since the one-phase problem can be partitioned
into stages, each stage representing a substructure for which an assignment is to be
made.t

Each stage has a number of associated states corresponding to the value of the
amount of storage space and time remaining to be allocated. These states are
used to represent the various possible conditions in which the system might find
itself when trying to make an assignment for the stage. The effect of such an

t The order of the substructures does not affect the outcome but may affect the algorithm’s efficiency.

14 F.W. Tompa and R.J. Ramirez

assignment is to transform one state into a state associated with next stage.

For the Huffman code generation algorithm, the three stages correspond to
the implementation selections to be made for the sets, QUEUE, and DICT,
respectively. The initial system state represents the condition that no selection has
been made and S storage cells and 7 time units are available. If unordered
contiguous stores were selected for the sets, the system would then be in a state
indicating that choice, no selections for the other two substructures, and S —16512
storage cells and 7—22213 time units remaining for further allocation.

Thus a sequence of states results in assignments to each of the substructures.
Given a particular state, the optimal policy for the remaining stages is independent
of the policies adopted in previous stages. A selection algorithm solving this
problem finds first the optimal policy for each state with no stages remaining,
composes it next with the policy for each state with one stage remaining, etc.,
until the final solution is computed. The principle of optimality is central to
dynamic programming:

“an optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.”. [Bellman57]

Therefore recursive formulations result.
To solve the one-phase selection problem, let
1 if there exists a sequence of implementations
one for each of the substructures 1 to i, such

that the space and time required by the k%
implementation are Sk jik and 1k, and

! i
> sij =sand Xty =1 thatis, if a
k=1 k=1
sequence of implementations fits exactly in

the resources available.
0 otherwise

Fi(s.1) =

The following recursive relationship can be derived:

1 if there exists j such that Fy_j(s—s;;, t—¢;) = 1
Fi(s.1) = 0 otherwise

The boundary condition is given by:

1 if there exists j such that s =s,; and ¢t = ¢y
Fis.6) = 10 otherwise

If $(X,S,T) is expressed as a function f(space,time), the solution will be found by
taking the min f(s,¢) such that Fy(s.t) = 1. In other words Fy will have non-
zero entries for all feasible solutions; thus the one that minimizes the cost criterion
is easily selected.

For applications in which the space and time constraints (Inequations (3)
and (4)) are not present, let the maximum values S and T of these equations be
the sum of the largest spaces and times respectively. This makes every
combination of implementations feasible.

An Aid for the Selection of Efficient Storage Structures 15

In practical situations, all measures of space and time will be integral
multiples of some underlying units. Thus the straightforward implementation of
the recursion involves the computation of at most O (N*M*S*T') operations, since
for each stage (substructure) there are at most S*T possible states (combinations
of space and time available) and each state requires at most M calculations. The
space required to trace the solution is O (V*S*T') storage cells, since at each stage
it is necessary to store the outcome for each state.

There are several techniques for reducing the run time for the selection
algorithm. The primary one results from the realization that because the
application’s cost formula is monotonically non-decreasing in space and in time
(ie. f(s.1) < f(s+s'.t) and f(s.t) < f(s.z +1") for all non-negative s, ¢, s', and),
Fi(s.t) can be modified to be

1 if there exists a sequence of implementations
one for each of the substructures 1 to i, such

1 1
that Sk, =8 and Irj, =1 and
Fi(sit) = kzl Tk /21 Tk ()
Fi(s',t') = 0 for all s'<s and ' <t or s'<s
and ' <.

0 otherwise

and recursive or iterative formulations can be similarly augmented. The effect of
this change is to guarantee that for all 5, F;(s,*) = 1| for at most one value of ¢
and similarly, for all ¢, F;(*,1) = 1 for at most one value of 5. Hence there are
only min(S.T) possible states at each stage, which implies that the selection
algorithm runs in time O (N*M*min(S,T)) and space O (N*min(S,T)). Similar
modifications have been reported for other storage structure selection algorithms
[Berelian77, Low78].

A second realization is to note that the selection algorithm runs more
quickly when S and T are small. The implication of this observation is that the
time required to select a storage structure can be reduced by considering larger
units of space and time, for example, multiples of kilowords and milliseconds
rather than bytes and microseconds. As these units are increased however, the
discrimination away implementations’ performances is blurred, thus implying the
possible selection of suboptimal structures. Further techniques for reducing the
algorithm’s running time can be found elsewhere [Ramirez80).

To illustrate the selection algorithm, it will be applied to find the most
efficient representations for the directories of a file for which several attributes
(domains) have been inverted. In this example, appropriate implementations for
each directory are sought, i.e., the implementation for the inverted list themselves
is not addressed (for a discussion of how to represent inverted lists, see, for
example [Cardenas79]).

In particular, consider a file for which three important attributes have been
inverted (e.g., for a chemical substance file, the weights, cost per ton and supplier
of the substance). The characteristics of the attributes are assumed to be as
follows:

attribute 1: of 5000 possible distinct values, at most 3000 are expected,
attribute 2: of 1000 possible distincts values, at most 1000 are expected,

16 F.W. Tompa and R.J. Ramirez

attribute 3: of 500 possible distinct values, at most 100 are expected.

Assume that 90% of the application’s activity involves the insertion of
records into the file (and therefore occasional insertions into all three directories)
and 10% involves searching the directories. Furthermore, assume that a library of
implementations for a directory consists of a linearly addressed store, contiguous
store, unary chain, binary tree, and threaded binary tree as formulated by Tompa
[Tompa74]. The resulting evaluation map is given in Table 4.

Let us assume that the application must run in less than 10000 words, but
may have unlimited time (i.e. $=9999 and T=66170). An iterative formulation
of Equation (7) calculates values for F first, using the initial boundary condition.
Because the fourth and fifth implementations for attribute 1 have identical space
and time, the second implementation uses the same space but more time, and
§=9999, Fi(*,*) = 1 for two entries only (Table 5a). Notice that preserving 4
rather than 5 as the selection number in the third column is arbitrary, but 2 could
not have been used. Next the values for F; are computed, and because of the
monotonicity condition there are only six non-zero entries (Table 5b). The routing
data in the fourth column indicates which of the non-zero entries from F; are
needed to reconstruct a selected composite storage structure, as demonstrated
below. Finally F3 is calculated giving seven possible minimal cost selections
(Table 5c).

Depending on the cost formula used by the application, any one of the non-
zero entries in F3 may be the minimal cost storage structure. For example, if
f(s,£)=.000001*s*¢, then the third entry (s =7580, ¢ =1700) gives a cost of 12.886
which is minimal. Thus the third substructure should use implementation 4 and
the others are indicated by routing 2. The second non-zero entry in F, shows that
the second substructure in the minimal cost selection uses implementation 1 and
routing 2, which in turn indicates that the first substructures uses implementation
4. Thus the optimal selection is to use binary trees for the directories for
attributes 1 and 3 and to use a linearly addressed store (i.e., conventional array)
for attribute 2. (As mentioned above, the preference for binary trees over
threaded binary trees is arbitrary for those two attributes, since both space and
time are equal.)

It is interesting to notice the effect of using a larger granularity for space
and time. If, for example, space were measured in multiples of kilowords and
time in multiples of seconds, all s and ¢ entries x in Table 5 would be replaced by
rounded values of .001x. Applying the algorithm with $=10, T=66, and
f(s,1)=s*¢ yields the data in Table 6. The number of non-zero entries in each F;
is typically smaller than previously, since the coarser granularity results in more
selections having equal values for space and time. Using the same cost formula as
before, but adjusted to the new units, the minimal selection is obtained when s =7
and r =2. The routings in the F; indicate the same choices as before for the first
two substructes, but the directory for attribute 3 is to be implemented by using a
contiguous store. Thus, it is seen that adopting a coarser granularity, although
typically requiring less computation, may produce a suboptimal solution.

An Aid for the Selection of Efficient Storage Structures

Implementation
| Iy I 15 14 Is
Ay | 10000 5400 4000 5400 5400
Substructure 4> 2000 1800 1400 1800 1800
Aj 1000 180 1400 180 180

(a) [s,-_j} in words

Implementation

| I I I3 14 Is
Ay 160 59050 41340 1520 1520
Substructure A»r 60 6840 6900 620 650
As 20 170 220 120 120

(b) {t,"j] in milliseconds

Table 4: Space and time components of an evaluation
map for one-phase selection

(I, = linearly addressed store, f5 = contiguous store. /3 = unary chain,
I4 = binary tree, {5 = threaded binary tree)

18

F.W. Tompa and R.J. Ramirez

| S t selection
1 | 4000 41340 3
2 | 5400 1520 4

(a) Non-zero entries for F

S t selection routing
1 | 6000 41400 1 1
2 | 7400 1580 1 2
3] 5400 48240 3 |
4 | 6800 8420 3 2
5 1 5800 41960 4 I
6 | 7200 2140 4 2
(b) Non-zero entries for F»
S t selection routing cost
1 | 8400 1600 1 2 13.44
2 | 6180 41520 4 1 256.59
3 | 7580 1700 4 2 12.89
4 | 5580 48360 4 3 269.85
5 | 6980 8540 4 4 59.61
6 | 5980 42080 4 5 251.64
7 | 7380 2260 4 6 16.68
(¢) Non-zero entries for F3
Table 5: Application of the one-phase selection algorithm

to the map in Table 4.

An Aid for the Selection of Efficient Storage Structures

| S t selection
1[4 41 3
215 2 4

(a) Non-zero entries for F

s t selection routing
1|7 2 1 2
2|5 48 3 1
316 9 3 2

(b) Non-zero entries for F5

s t selection routing cost
117 2 2 1 14
215 48 2 2 240
316 9 2 3 54

(c) Non-zero entries for Fy

Table 6: Application of the algorithm with coarser granularity in space and time

19

20 F.W. Tompa and R.J. Ramirez

3.3. Re-selection of a storage structure

An interesting related problem that is frequently encountered in practice is
the one in which the relative frequency of operations performed on the abstract
structure’s data types changes from time to time. For example, this behaviour
may be exhibited by a database that first requires a relatively high number of
insertions and updates as compared to the number of queries, and once reaching
steady-state, requires fewer insertions and updates and relatively more queries.

Although related to the multi-phase selection problem as outlined at the
start of Section 3, storage structure re-selection is far more restrictive. Rather
than preprocessing the application’s requirements over the whole lifetime to find
an overall optimal sequence of representations, only one phase change is
considered at any time.

In particular, the problem studied in this section is the one in which an
initial set of implementations has been adopted, and it is suspected that that
selection may no longer be the most efficient one because the relative frequency of
operations has changed. It is desired to find the most efficient set of assignments
for this new phase taking into account the initial set and the associated conversion
costs. In other words, the problem is to determine whether or not it will be
profitable to change the implementation of some (or all) of the substructures and
to which new implementations they should be changed.

Mathematically this problem can be formulated as follows:

N M
Z = min {$(X.S.T) + 2} D cij*xi
i=1 j=1

where ¢;; is the conversion cost from the initial assignment for substructure i to
implementation j. The restrictions for this problem are as for one-phase selection.

The solution of this problem is achieved by defining G;(s,t) to be the
minimum cost for converting the implementation of substructures 1 to i from the
initial assignment of implementations. It is now possible to derive the following
recursive relationship for the solution of the problem:

min C,'_j+G,'_1(S =St —tl"l')
j y y

if there exists a j such that

Gi(s,t) = Gi-(s —Sij. _ti,j) is finite and Gj(s'.t')=o0
forall s'<sand t'<r or s’ <s and ' <t

®© otherwise

The boundary condition is given by:

min {CUJ if there exists a j such that sy ;=s
j :

Gi(s.t) = and 1y ;=t and G ((s'.t")=o for all 5" <s and
' <rors' s and ' <t
@ otherwise

and the solution will be obtained by taking:

Z = mitn{GN(s,t) + f(s,t)]f
5 J

An Aid for the Selection of Efficient Storage Structures 21

The function G (s,¢) will be finite if there is a feasible solution that uses
exactly s space and ¢ time. However, rather than being a Boolean function as was
F, Gy will contain the minimum cost of converting the implementations of
substructures 1 to NV from the initial assignment. The second term in the above
minimization formula accounts for the cost of the implementations in this new
phase.

The computational complexity of this algorithm is of the same order as that
in the previous section, although more operations might actually be performed.
Thus, the number of operations is O(N*M*min(S,T)) and O (N*min(S,T))
storage cells will be required.

Storage structure reselection can be illustrated by extending the inverted list
directories example of Section 3.1. Assume that after some time, a second phase
of operation begins in which the number of insertions decreases to 10% of the
activity and the number of queries increases to 90%. Table 7 contains the
evaluation map for this second phase and a conversion cost table for the
substructures. The application of the re-selection algorithm is similar to that of
the one-phase selection algorithm. If there are the same bounds on space and
time in the second phase, the minimal cost solution using the same cost formula as
for the first phase, but with the addition of conversion costs, results in the
conversion of the first and third substructures to contiguous stores and the second
remaining unconverted (Table 8).

4. Conclusion

In this paper algorithms for solving two related storage structure selection
problems were presented. The algorithms rely on several assumptions about the
application environment: the application is expressed as a set of algorithms, the
application’s performance characteristics are known, the storage structure is
restricted to be a composition of members chosen from a finite library, and the
selections for each substructuret can be made independently (subject to meeting
overall criteria, such as bounded total space). The core of each algorithm is based
on the principle of optimality for dynamic programming. As a result it is possible
to obtain pseudo-polynomial bounds for their running times.

An example involving few data type occurrences and few library
implementations was presented in order to demonstrate that intuition and a priori
selections might not be the best manner of solving such problems and that hill-
climbing or branch-and-bound methods may not be appropriate. As the problem
size grows, the advantages of the algorithms presented here are even more striking.

There exist some special cases for which it is possible to reduce the amount
of computation required and/or the amount of storage space consumed. For
example, when the cost formula is the ratio of two resources (e.g., the total
number of input/output operations per time unit) it is possible to devise
algorithms whose running time is strictly polynomial, in fact 0(N3logN), N being
the number of substructures in the application (see the minimal cost-to-time ratio
cycle problem [Lawler76]). As a second example, it may be the case that there

T Recall that inter-dependencies among data type occurrences can be accomodated by a suitable aggre-
gation into substructures.

22 F.W. Tompa and R.J. Ramirez

Implementation
l I I I3 14 Is
Ay | 10000 6000 8500 11400 11400
Substructure A 2000 2000 2900 3800 3800
Aj 1000 290 290 380 380

(a) [si‘j] in words

Implementation
| I I I3 14 15
A 360 15160 199820 3530 3470
Substructure A» 300 2820 61670 2950 2770
Aj 150 740 3330 1010 1000

(b) [t,-,j] in milliseconds

Implementation
I I I I3 14 Is
A 470000 282000 552500 0 5244000
Substructure A2 0 220000 49300 798000 912000
Aj 20000 5800 8700 0 =~ 7600

(c) [cl-_j] in millisecond-words assuming initial selection

I4 for Ay, I for A,, and T4 for A3

Table 7: Evaluation map components and conversion table for reselection

An Aid for the Selection of Efficient Storage Structures

| s t c selection
1 | 6000 15160 2820000 2

(a) Non-zero entries for G

I s t c selection routing
1 | 8000 15460 2820000 1 1

{b) Non-zero entries for G,

s t c selection routing cost
1 | 9000 15610 2840000 1 1 143.33
2| 8290 16200 2825800 2 1 137.12
3 | 8380 16470 2820000 4 1 140.84

(c) Non-zero entries for G3

Table 8: Application of the re-selection algorithm to the map
and conversion table in Table 7.

23

24 F.W. Tompa and R.J. Ramirez

are no restrictions on space nor time and the cost function is separable (i.e., the
total cost is monotonically non-decreasing in the cost of each component). For
example, an installation may operate under a ‘“‘fixed charge” policy such as
f(s.t) = ci*g1(s) + ca*ga(r) where g and g, are monotonically non-decreasing
functions, and it may allow an application virtually unbounded resources. In this
case, the minimal cost solution is, in fact, achieved when each component is
implemented using minimal cost; this requires only O (N*M) time. Finally, if the
cost function is separable but there are restrictions on space and/or time, a
divide-and-conquer technique can be used to reduce the space complexity from
O (N*min(S,T)) to O(min(S,T)) without significantly increasing the running time
[Ramirez80].

Acknowledgements

We wish to acknowledge the helpful discussions with Gaston Gonnet, lan
Munro, and Martin Tompa, and the financial support of the University of
Waterloo and the Natural Sciences and Enginecring Research Council of Canada
under grant A9292.

References

[Aho74] Aho A.V., Hopcroft J.LE. and Ullman J.D. The Design and
Analysis of Computer Algorithms. Addision-Wesley, Reading,
1974.

[Bellman57] Bellman R. Dynamic Programming. Princeton University
Press, Princeton, 1957.

[Berelian77] Berelian E. and Irani K.B. *Evaluation and Optimization,”

Proceedings of the International Conference on Very Large
Data Bases 3 (1977), 545-555.

[Brown79] Brown K.Q. *“Dynamic propramming in computer science,”
Department of Computer Science, Carnegie Mellon University
Technical Report CMU-CS-79-106 (1979).

[Cardenas79] Cardenas A.F. Data Base Management Systems, Allyn and
Bacon, Boston, 1979.

[Cohen74] Cohen J. and Zuckerman C. “Two languages for estimating
program efficiency.,” Communications of the ACM 17, 6 (June
1974), 301-308.

[Dewar79] Dewar R.B.K., Grand A., Liu S-C., Schwartz J.T., and
Shonberg E. “Programming by refinement, as exemplified by
the SETL representation sublanguage, 4ACM Transactions of
Programming Languages and Systems 1, 1 (July 1979), 27-49,

[Dreyfus77] Dreyfus S.E. and Law A.M. The Art and Theory of Dynamic
Programming, Mathematics in Science and Engineering, Vol.
130, Academic Press, New York, 1977.

[Garey79] Garey M.R. and Johnson D.S. Computers and Intractability.
A Guide to the Theory of NP-Completeness. Freeman Co., San
Francisco, 1979.

[Geschke77]

[Hubbard?75]

[Knuth73]
[Lawler76]

[Liskov77]

[Low78]

[March78]

[Ramirez80]

[Rowe76]

[Rowe78]

[Salkin75]

[Santoro80]

[Shaw77]

[Tompa76}

An Aid for the Selection of Efficient Storage Structures 25

Geschke C.M., Morris J.H. and Satterwaite EH. “Early
experiences with Mesa,” Communications of the ACM 20, 8
(August 1977), 540-553.

Hubbard G. and Raver N. “Automating logical file design,”
Proceedings of the International Conference on Very Large
Data Bases (1975), 227-253.

Knuth D.E. Sorting and Searching. The Art of Computer
Programming 3, Addison-Wesley, Reading, 1973.

Lawler E.L. Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart and Winston, Toronto, 1976.

Liskov B., Snyder A., Atkinson R. and Schaffert C.
“Abstraction mechanisms in CLU,” Communications of the
ACM 20, 8 (August 1977), 564-576.

Low J.R. ‘“Automatic data structure selection: an example
and overview,” Communications of the ACM 21, 5 (May 1978),
65-77.

March S.T. and Severance D.G. *“A mathematical modelling
approach to the automatic selection of database designs,”
Proceedings of ACM SIGMOD, 1978, 52-65.

Ramirez R.J. *“Efficient algorithms for selecting efficient data
storage structures,” Department of Computer Science,
University of Waterloo, Technical Report CS-80-18 (1980).

Rowe L.A. “A formalization of modeling structures and the
generation of efficient implementation structures,” Ph.D. thesis,
Department of Information and Computer Science, University
of California-Irvine (1976).

Rowe L. A. and Tonge F.M. ‘“‘Automating the selection of
implementation structures,” IEEE Transactions on Software
Engineering SE-4, 6 (November 1978), 494-506.

Salkin HM. Integer Programming. Addison-Wesley, Reading,
1975.

Santoro N. ‘““Efficient abstract implementations for relational
data structures,” Department of Computer Science, University
of Waterloo, Technical Report CS-80-21 (1980).

Shaw M., Wulf W.A., and London R.L. “Abstraction and
verification in Alphard: Defining and specifying iteration and
generators,” Communications of the ACM 20, 8 (August 1977),
553-564.

Tompa F.W. “Choosing an efficient internal schema,”
Systems for Large Data Bases, Lockemann and Neuhold (Eds.)
North-Holland, New York, 1976, 65-77.

26

[Tompa77)

[Wagner75]

[Wichman72]

[Winslow75]

F.W. Tompa and R.J. Ramirez

Tompa F.W. “Data structure design,” Data Structures,
Computer Graphics and Pattern Recognition. Klinger, Kunii
and Fu (eds.), Academic Press, New York, 1977, 3-30.

Wagner H.M. Principles of Operation Research, second
edition. Prentice-Hall, Englewood Cliffs, 1975.

Wichman B. ‘*‘Estimating the execution time of an ALGOL
program,” SIGPLAN Notices 6, 8 (August 1972), 24-44.

Winslow L.E. and Lee J.C. “Optimal choice of data
restructuring points,” Proceedings of the International

Conference on Very Large Data Base, Framingham Mass.,
1975, 353-363.

	

