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List of Symbols

v

greater or equal

< less or equal
< strictly less than
o not equal
n intersection
@ empty set
{1 set brackets
o little circle (function symbol)
+ little vertical arrow (function symbol)
€ element of
¢ not element of
K~,) union of several sets
u union of two sets
o little circle with &m below
(abbreviation for leftmost),
to be treated as one function symbol
Em little vertical arrow with 2Zm below,
to be treated as one function symbol
# number symbol
I vertical bars, cardinality
> small horizontal arrow, "productijon arrow"
z capital greek letter "sigma"
o lower case greek letter "alpha"
o) lTower case greek letter "sigma"
T lower case greek letter "tau"
o) lower case greek letter "rho"
u lower case greek letter "mu"
w lower case greek letter "omega"
¥4 lower case script "2"
*

small star as super script



Abstract

We investigate decision problems for the concatenation of
rooted trees, considering different tyhes of trees as well as different
modes of concatenation.

Qur main theorem establishes the undecidability of the

following problem: Given two lists
A =(x],...,xk) and B =(y],...,yk)

of rooted ordered unlabeled trees, does there exist a sequence of

indices i],...,in such that the concatenation of Xi oXg seeeaXy =
1T "2 n
in that order - equals the concatenation of Yi o¥5 seees¥s in
1 2 n
that order?



1. Introduction

The well-known Post Correspondence Problem - PCP for short -
asks whether for fwo 1ists of strings there is a unifying sequence of
indices, i.e. concatenating the words from the first 1ist in the given
order of the index-sequence yie]dsythe same string as the concatenation
of the words of the second list in that order. This problem is known
to be equivalent to the halting problem of Turing machines and hence
undecidable, c.f. [2].

On the other hand we get a decidable problem if we drop the
restriction of the common order of indices. Obviously, this problem
can be reduced to the emptiness-problem of the intersection of two
regular sets. The fact that trees are the most natural and important
generalization of strings motivates us to formulate the above mentioned
problems for several types of trees. The concatenation of two trees
is done by attaching the root of the second tree to a Teaf of the first
one. Thus, concatenation of trees becomes a nondeterministic operation
and therefore we have to deal with sets of trees, where we had single
concatenated strings in the original problems.

For the generalization of the Post Correspondence Problem to
(rooted ordered) labeled trees we get a straightforward undecidability
result, since strings can easily be encoded as 'string-l1ike' Tabeled
trees.

If we do not require the same sequences of indices for the
concatenation of the trees, the decidability of that problem is not
that obvious as it is for strings but can be established by an effective
reduction to the intersection problem of two ﬁarenthésis languages.

More interesting is the tree version of the PCP over a one-

lTetter alphabet, where we have lists of unlabeled rooted trees. Since



the one-letter case of the PCP is decidable, the undecidability for the
corresponding problem for trees is of interest and actually quite non-
trivial as our proof will indicate. Our proof-technique is then
carried over to a different mode of concatenation and a]so"tb |
‘oriented' trees, where the relative order of the subtrees is not

considered.



2. Preliminaries

For the definitions concerning trees we follow the termi-
nology of [1] and refer the reader to this book for all notions not
explicitely explained in the sequel.

Definition

A directed graph G 1is a pair (A,R), where A is a set of

elements called nodes and R s a relation on A. An element of R

is called an edge of G. A labeling of the graph is a pair of functions

f and g, mapping A and R resp. to some (possibly distinct) sets.

A sequence of nodes (ao,a],...,an), n>1, 1is a path of
length n from ag to node aps if there is an edge which leaves node
a;_1 and enters a, for 1< 1i<n.

The in-degree of a node p s the number of edges entering
p and the out-degree of p is the number of edges leaving p.
Definition

An oriented tree T is a directed graph G = (A,R) with a

specific node r in A, called root, such that
i) r has in-degree zero,
ii) A11 other nodes of T have in-degree 1, and
iii1) For every node p there is a path from r to p.
In a tree a node with out-degree zero will be called a leaf.
Definition

An ordered graph is a pair (A,R) where A is a set of

nodes as before and R is a set of linearly ordered 1ists of edges

such that each element of R is of the form ((a,b1),(a,b2),...,(a,bn))
where a 1is a distinct member of A, and this element of R indicates
that there are n edges leaving a, the first entering b1, the

second entering b2, and so forth.



Definition

A labeling of an ordered graph G = (A,R) 1is a pair of

mappings f and g such that
i) f:A > S for some set S,
ii) g maps R to sequences qf symbols from some set T such
that g maps ((a,b]),...,(a,bn)) to a sequence of n
symbols of T.
Definition

An ordered tree is an ordered graph (A,R) whose underlying

graph is a tree and such that if ((a,b]),...,(a,bn)) is in R then
bi # bj if 1#73].

For an ordered (oriented) graph g = (A,R) and a specific
pair of labeling functions (f,g) for G we will write the quadruple
G' = (A,R,f,g) and call it a labeled ordered (oriented) graph.

We will now introduce two different types of concatenation
of trees.

Definition

Let T] = (A],R],f],g]), T2 = (Az,Rz,fz,gz) be two labeled
ardered (oriented) trees with roots ryand r, resp. and Ay n A, = 4.
a) For each Teaf q of T] such that f](q) = fz(rz) we define the

labeled ordered (oriented) tree
Sq = (A]qu-{q},R]uR2u{2r2}¥{zq},fq,gq) where Zq is the unique
element in R] in which q occurs and z, s obtained by
2
replacing q by r, in Zq'
(Remember that zq is an ordered 1ist of pairs of nodes for an

ordered tree T] and a single pair for an orjented tree T].)

Furthermore, let



f](x) for x e Ay - {q} ,
fq(x): =
f2(x) for x e A2 R
?1(2) for z e R] - {zq} ,
gq(z): = 4g](zq) for z = Zr2 .
gZ(Z) for z ¢ R2 ]
Now define
o(T],TZ) = {Sq | q Teaf of T],s.t.f](q) =’f2(r2)}.
Let E;, E, be the sets of edge-labels of Ty Té resp.
For each leaf q of T] and each edge-label a ¢ E1 U E2 let
Sq a DPe the following labeled ordered (oriented) tree
Sq,a = (A1UA2’R1UR2U{(q’r2)}’fq,a’gq,a) where
f](x) for x ¢ A1 R
fq’a(x) = '

fz(x) for x ¢ A

g](z) for z ¢ Ry

gq,a(z) = gz(z) for z € R2 R

a for 2z = (q,rz)

Then let
+(T1,T2) = {Sq,a | q leaf of Ti»a e B v Ez}.

Thus in O(TI’TZ) a leaf of T] can be replaced by T2 if

Teaf-label and root-label of T2 match; whereas in +(T],T2)

a new labeled edge is created Between a leaf of T] and the
roat of T2 .
Now we extend the definitions for o and + in the following

manner.



Definition

Let S]’SZ""’sn be sets of labeled ordered (oriented)
trees and F ¢ {o,4}.
We define
i) F(81.8,) = \\‘.// F(T,,T,)
T.€S,,T,eS

192127252

11) F(S7,S,,... Sn) = F(F(S1,S

125035+ 4+> S ..,Sn) for n 2 3.

2)’ 3’
Whenever some set Si is a singleton {T} we drop the set brackets
and write T only.

Now we still need the notion of leftmost concatenation for
the proof of our main result.
Definition

Let T] = (A],R]), T2 = (A2,R2) be unlabeled ordered trees
with roots ry and r, resp. . Let s be the (unique) leaf of T]
such that for the path (f] = qgs9y59ps---2q, = s) every pair (qi,qi+])
is the first one in the corresponding Tist of Ry Then s is called
the leftmost leaf of T].

a) Now we define the leftmost concatenation of T], T2 by

o (T;,T,) = (A uA,-{s},RIuR,)
w12 1982 1"2

where Ri equals R] except for the replacement of s by ry.

b) Analogously, let + (T1,T2) be the leftmost concatenation of
o ¢
T], T2 with a new edge between s and ro.
zm(T],Tz) = (AuA5 R uRU{ (5,7))})

c) For T.,T T nx=3 and He {0 ,+} define

'[’ 2""’ n’ zmm

'l’ 2" s )

H(T;5Tsewe Tn) = H(H(T],Tz),T3,...,Tn



Now we recall the formulation of the Post Correspondence

Problem.

The Post Correspondence Problem (PCP for short) is to

determine for two lists A = (x],...,xk), B = (y],...,yk) of non-
empty words from a common alphabet I whether or not there exist

'i]aizs--os'ins 1 < 'ij < k SUCh that

_i] 12‘-.| 'in 'i.] _iz + . _in .

For the undecidability of the PCP see [2].



3. Results

We start our main section with a decidability result, proven
by a modification of a well-known encoding of trees in bracketed
strings and a reduction of the problem to the emptiness problem of the
intersection of two'p;;énéhésis languages.
Theorem 1

Let A = (51’52""’sk>’ B = (tl’tZ""’tk) be two lists of

labeled ordered (oriented) trees and

T (A) =\ o(s; »8; suvurs: )
T-I 1 1

m21, 2 m
1sijsk

TO(B) =U O(t_i ,t_i ,...,ti )
m=1-, 1 2 m
1sijsk

Then it is decidable whether or not
To(A) n T(B) = ¢

Proof

We will show Theorem 1 first for the case of lists of ordered
trees. Let N be the set of node-labels and .E be the set of edge-
labels occurring in the trees of the lists A and B. We will construct
two parenthesis languages which give us a string-representation of all
the trees which can be generated by the 1ists A and B. For the
definition of parenthesis grammars the reader is referred to [3] rather
than to the original definition found in [4].

Let (, ), # be new symbols, not occurring as labels in
~the trees of A and B and furthermore for each a ¢ N let Sa,Sé be
new symbols. For a symbol Z and a tree T we define now a set of

context free productions recursively as follows:



a) Let T be a tree with root labeled by a and n =1 edges
leaving the root, labeled by b]"“’bn’ leading to the sub-

trees T],...,Tn.
P(Z,T,) = {}+ (a#by#X #.. . #b #X ) |
Xi = Sc if Ti consists of only one node
labeled ¢ and Xi is a new symbol Zi

otherwise} u \\‘,/} P(Z,,T;) . where for a
1T;1>1

trée ';;"£A; number of nodesﬁoéi t-W;; denoted by |t].
b) Let T be a tree consisting of only one node labeled a,
then
P(Z,T) = {Sa - (a)}
- For the motivation of this construction c.f. the 1eft-bracketed
representation of a tree given in [1].
According to the 1lists of trees
A = (51’52""’Sk)’ B = (tl’tZ""’tk)

we define production-sets PA and PB by:

j

kK k
Py =1g=]j|>(sa'l s;) u% P(Sai,si) ,

k k
_ '
Py -wp(sbi ts) U%P(Sbi,ti)

are the node-labels of the roots of Sis t.

where ai, b. ;

i
resp. .
The two parenthesis grammars GA, GB are now-defined by
GA = (Z,VA,c,PA)
GB = (Z,VB,o,PB) where
EUNU{(’),#},

{Sé | a e N} and

z

o)



Vy» Vg contain I, o, {S, | a ¢ N} and all the new symbols
introduced during the construction of PA, PB resp. .
Obviously, each terminal word generated by GA, GB represents

a concatenation of trees from A, B resp. and vice versa.

m
...,sim) n O(tjl,.-.,tjn) t o

Thus, there exist 1],...,1 and j]""’jn such that
ofs, , S

B

iff L(GA) n L(GB) £e .

Since parenthesis languages are effectively closed under .

intersection [3], and the emptiness of parenthesis languages

is trivially decidable, this proves our Theorem 1 for the

case of ordered labeled trees.

For A, B being lists of oriented labeled trees we only have

to modify the definition of P(Z,T) to

#"'#bi #Xi ) 1

P(Z,T) = {Z ~ (a#b, #X;
1 1 n n

X. =S, if T, consists of only one node

labeled ¢ and X. is a new symbol Z,
: 7. 1.
J J
otherwise, (i],...,in) is a permutation of

(1,...,n)} U ,,,u 7 P(Z'I’T'i) .

IT%I>]

It should be clear that the above proof far the ordered trees

can be carried over for the oriented trees without further

changes. O
Corollary 1

Let A = (51’52""’Sk)’ B = (t]’tZ""’tk) be two lists of

labeled ordered (oriented) trees and



m=1, 1 m
1<i.<k
J
T,(8) =\ 4ttt )
mz1, 1 2 m
1sijsk

Then it is decidable whether or not

T, T (B) = g

The proof of this corollary follows the lines of the proof
of Theorem 1.

It is slightly more complicated in the construction of PA

and Pgs where the parts P(S ’Si)’ P(Sb ’ti) have to be modified
i

3
according to the insertion of a new labeled edge for the concatenation
of the trees. But the details of the changes are obvious and left to
the reader.
Corollary 2
Let A = (51’52""’Sk)’ B = (t]’tZ""’tk) be two lists of

labeled ordered (oriented) trees and let TO(A), TO(B), T+(A), T+(B)
be defined as in Theorem 1, Corollary 1 resp. . Then it is decidable
whether or not

T.(A) = T_(B) ,

T+(A) T+(B) .

This follows immediately from the theorems given in [3].

We turn now to our main results, namely, the undecidability
results for the concatenation of unlabeled ordered and unlabeled
ariented trees, our Tree Correspondence Problem. Since labeled trees
are generalizations of the unlabeled ones, the corresponding results

for the Tabeled case are hereby implied.



Theorem 2

Let U = (s],...,sl), V = (t],...,t be two lists of un-

" 2’ )
labeled ordered trees whose nodes have out-degrees of at most 2.
Then it is undecidable whether or not there exists a sequence
of ‘integers i],iz,...,im such that

O(S; seeesS: ) nO(t, suu.0t, ) # 6
B Tm I "m

Proof

We will show the undecidability by encoding each instance
A, B of the Post Correspondence Problem in two 1ists U, V of un-
labeled trees such that A, B has a solution if and only there exists
a solution for U, V.

We can restrict ourselves to instances A, B of the PCP over
a two-letter alphabet {a,b} by using the mapping a; -~ abi; which
also has the effect that each word in the Tists A, B starts with an
a.

To simplify the representation of the trees we will only
draw roots, nodes of out-degree 2 and leaves and mark their connections

by the number of edges occurring in the original tree.

So 3 is an abbreviation for the tree
2¢/1\33



Now, Tet Ty, T, be two homomorphisms defined on {a,b}”

by
T,(a) = s T,(a) =
1 2/\10 2 1
12/ \12 1/\5
T (b) = . s T (b) = s
1 2 2 3
2/\10 1/\5
12/ \12

and for words u,v e {a,b}* let

Tyfuv) = o (rq(u),tq(v))
£m
) = )sto(v)) .
TZ(UV Zm (rz(u 12>v”

Note that Tz(a), rz(b) can be completed by

5
12/ \12

at their righthand leaves to become

Té(a) = : and Té(b) = 5 .
1 10 1 10
12 12 12 12

Hence, by ré(uv) = O (Té(U),Té(V)) for u,v ¢ {a,b}* we get
£m

zm(r+11,11(x),sl) - zm(rl,ré(x'),s+1])

for any r,s 2 0 if and only if x = x', which is the essential idea

of our following construction of U and V.



For the lists A = (X1”"’Xk)’ B = (y],...,yk) of nonempty

strings over {a,b} 1let

U= (0 (07sTq (X)) 500e30 (07577 (X,)) s Te(Xq)auensTq (XL)s0q sty sty 507 ) s
om 1°°1 41 om 171V 11 1Yk 271271271

Vo= (0 (ansTh(yy)) e s (ansTolyy))s Tol¥q)seeesTol¥y)s00s0stnsw,) »
m 2° 2\ m 2’2k 271 2k 2 272

where the pairs (01,0,), (07,05), (uy,0), (uy5Hp) s (wysw,) are defined

as follows:

Q
—

n
N
N

p———
w
Q
no

1}
N
ol
-

2

2 p = 9
5
12 12/ \12

2 31 12

Q
——d
it
—
> ~
:_4
v
Q
N
1}
—
o (0]
:...a
()]

1
14

1
14

=
e
n
~ ~
PO S
T
N
il

w -
1 1
12

12 12 12

::>>;:~
e

N
0

[AS]
:::>~::~

Now we assume, that for A, B there exists a sequence

11’12”"’1m such that



and let n be the length of z.

Then it is fairly eaéy to see that the sequence

i],(k+12),...,(k+im),(2k+1){§2k+2),...,(2k+2);$2k+3),...,(2k+3) (2k+4)

?
J

M Y.
n times n times

gives a solution for U and V, just by using the facts

(22 | (2,7 [ ) =0 (@

o
£Zm £m
2n times n times
o (14 /N supratpy) = 9 (10 NE s cabguy)

£m £m

For the converse let us assume now, that for the lists of
trees

U= (31’52""’52) = (zm(a],'r](x])),...,w1),
V= (tstps..onty) = (Zm(az,Tz(y])),...,wz)

there exists a sequence of indices j],jz,...,jq such that
1< Jos2k+4 =2 for r=1,...,q and

o(sjl,sjz,...,sjq) n o(tj],tjz,...,tjq) > T. .

From the construction of the pairs (Si’ti) it is clear that
j1 e {1,...,k}, i.e.
(sj] 9tj]) = (,o?_m(oc.[ ,’[’] (XJT))szm(OLz,Tz(.VJ])))
since those are the only pairs with matching lengths from the root to
the first node with out-degree 2. Remember that all words X;.¥; start

with an a. For the concatenation of further trees it is now essential



which numbers of edges between two nodes of out-degree 2 can occur in
a solution T.

For U, V let D(U), D(V) be the sets of numbers of edges
between two nodes of out-degree 2, such that all nodes in between have
only out-degree 1, occurring in the concatenations of the trees of U,
V resp. . In other words, D(U), D(V) are the sets of chain-lengths
occurring between inner nodes in TO(U),TQ(V).

Thus, D(U) = {2,4,9,10,12,14,19,21,24,29,31,34,36},

D(v) = {2,4,6,9,10,11,13,15,17,18,20,22,23,26,27,31,32,33,34}.

Of course, only numbers from D(U) n D(V) = {2,4,9,10,31,34}

can appear as such distances in a solution T.

Let us consider now the possible choices for ( t

, %Iy’ J'2):_
(1) j2 ¢ {1,...,k} since each tree in

oo (a,,t,(y; ))s0 (a,,7,(y; ))) would contain a path of
en 2T gy 2727, |

23 or 27 edges between two nodes of out-degree 2.
(2) o £ {2k+2,2k+3,2k+4}, since each tree in

o(o (aq,79(x: ))suq) and in
om 1°°1 Jq 1

o(o (a],r1(x. )),w]) contains a path of 19 or 29 'edges
£m N

between two nodes of out-degree 2.

(3) Now assume j2 e {k+1,...,2k}. Then s, = T](Xj ),

32 z"k

t. = Tz(y. k) must be attached to the leftmost leaves
32 32'

of o (al,r(x. )),0 (az,rz(y. )) resp. since all other
£m I em ¢ I

concatenations would result in path-lengths 12, 6 resp.

which are not in D(U) n D(V).



By definition of T15To it holds
O (aq 5T (X
m]] Zm J] 32

J])’T](ij—k)) = O (ag,7q(x; »x, ) and

O (0nsToly: »To(ys )) = o (a,,t (v; sy s ))
gm 2273772 3pk em 272730k

For the trees
@] (OL-I ,T-l( . _k))

o xJ] (az,rz(y

,sz-k))’ zm j] ’yjz
the arguments of (1) and (2) apply, i.e.
j3 £ {1,...,k} v {2k+2,2k+3,2k+4}, and if

s, = T1(Xj

) then these trees must
J3 k

5

be attached to the leftmost leaves of o (s: »S: )
em 3172

Zm(ti1’t52)’ etc.

Thus, there exists a p =2 1 such that j2,j3,...,jp are

in {k+1,...,2k}. Furthermore, p < q by the definitions

of T](Xi), Tz(yi) and by (1) and (2) jp+1 = 2k+1.

Again, s, = 0y, t, =0, can only be attached to
p+1 Ip+1

the leftmost leaves of

o (a],r](xj],sz_k,...,X- ) oo

2m Ip~
zm(aZ,Tz(yj Y5 -k ’yjp-k)) resp.
Therefore,

O (0 ,T9(X: sX: seeesXs .)s0,) and
2m 1°°1 35 Jz-k j.~k’ 71

O (0 sTolYs ¥ _precesYs _1)s05)
om 2°°2 31773, k Jj.~k’*72
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are both initial parts of the solution T.

Since the path-length 9 is now occurring for the first time
between two nodes of out-degree 2 on both leftmost paths

from the roots to the leaves, there must be a complete
matching of all previous path-lengths between out-degree

2 nodes on these paths.

After the necessary completion of Tz(yj]’yjz—k""’yjp—k)

which can only be achieved by concatenations with p, we have

o (U- s T (X- o X - svee X, - )s7 1 ) =
et RS Rt Flath PRI Ip k

408 ])

as completely matching initial parts of T. We conclude

o (a2’T2(yj1’yj2-k""’yj

2m p

Xs Xs _poeee Xo T Yo Yi o oee Yio
3y k Jpk T3y Tipk Jpk

which gives obviously a solution of the instance A, B of the PCP and
thus complete the proof of Theorem 2. 0

Note, that the inclusion of subtree

p= d

12 12
in Tl(a) and T](b), and the pair (u],p) in fhe simulating instance
of the Tree Correspondence Problem is essential for our proof. Other-
wise the instance of the Tree Correspondence Problem might have a
solution which does not correspond to a solution of the simulated
instance of PCP. Intuitively, we want td enforce that a "solution"
on the left-most path is completed before another "solution" is

started elsewhere.
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The restriction to trees with nodes of out-degree at most

one in Theorem 2 would make the problem decidable since it would,

clearly, correspond to PCP over a one-letter alphabet.

Corollary 3

Let U = (§1,...fs£), Vv =‘(tij..,t£) bgmtwo 1ists of un-

labeled ordered ng{enteA) t%ees whose nodes have out-degrees of at

most 2.

Then it is undecidable whether or not there exists a sequence

of integers 11’12"“’1m such that

Proof

O(S;: ,...58: ) no(t, ,...,t, ) #¢
( " iy " "

S 5e..s8; ) 0 +(ti sevests

For the ordered trees this is the result of Theorem 2.

For the oriented trees it js easy to see that the definition
of the leftmost concatenation can be formulated equivalently
for the trees occurring in U and V 1in terms of the admissible
path-Tengths of D(U) an D(V). This property is of course
independent of the relative order of subtrees and thus can be
used for oriented trees as well as for ordered ones.

Since the operation + always creates a new edge, we can
carry over the proof of Theorem 2 if we redefine the trees of
Uand V in the following way. In each of these trees insert
one new node between each pair of adjacent nodes, except ff
one of these nodes is a leaf where there is nothing changed.
This just doubles each number in D(U) and D(V) but does not

affect the proof in other ways. a0



4V,

4. Concluding Remarks

Since trees are intensively studied objects and there are a
lot of tree-families investigated which are sub-families of the ones
treated in Theorem 2 and Corollary 4, it would be an interesting
Aprob]em to find nontrivial families for which the question given in
Theorem 2 turns out to be decidable. On the other hand, one can try
to put severe restrictions on the trees of U and V such that undecid-
ability still holds and by this narrow the gap between decidability and

undecidability.
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