O

7

2

Distributed Algorithms for Finding
Centers and Medians in Networks

by
E. Korach
D. Rotem +*)
N. Santoro (+++)

++Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gl

Research Report CS-80-44
September 1980

(+)

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada

N2L 3Gt




Distributed Algorithms for Finding
Centers and Medians in Networks

E.
D.
N. Santoro

by
Korach (+)
(++)
(+++)

Rotem

++Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Research Report CS-80-44
September 1980

(+)

(+++)

Department of Combinatories and Optimization.

Waterloo, Ontario, CANADA N2L 3G1.

Department of Computer Science.
Ontario, CANADA KIN 9B4.

University of Waterloo,

University of Ottawa, Ottawa,



DISTRIBUTED ALGORITHMS FOR FINDING
CENTERS AND MEDIANS IN NETWORKS

E. Korach 't

- D Rotem '+

N Santoro T

ABSTRACT

In this paper. we consider the problem of determining in a distributed
fushion the centers and the medians of a network. Lower hounds on the timeg
needed 1o solve these problems are proved. Algorithms that achicve those bounds
for tree networks are presented: the number of exchanged messages is lincar in the
number of nodes. We extend these techniques 1o work on general networks in
O(n) time units exchanging O(n-¢) messages. where n is the number of nodes and ¢
is the number of edges in the network. In addition. a comparison with a simple
heuristic approach is included.

Key Words.and Phrases: Distributed algorithm, networks. center. median. analysis
ol algorithm.

* A preliminary version of this paper will appear in 18th

Allerton annual conference.



DISTRIBUTED ALGORITHMS FOR FINDING
CENTERS AND MEDIANS IN NETWORKS

E. Korach '

- D Rotem 't

N. Santoro T

ABSTRACT

In this paper. we consider the problem of determining in a distributed
fushion the centers and the medians of a network. Lower hounds on the timeg
needed to solve these problems are proved. Algorithms that achicve those bounds
for tree networks are presented: the number of exchanged messages is linear in the
number of nodes. We extend these techniques to work on general networks in
0(n) time units exchanging 0(#n-¢) messages. where n is the number of nodes and e
is the number of edges in the network. In addition. a comparison with a simple
heuristic approach is included.

Key Words. and Phrases: Distributed algorithm, networks. center, median. analysis
of algorithm,

* A preliminary version of this paper will appear in 18th

Allerton annual conference.



DISTRIBUTED ALGORITHMS FOR FINDING
CENTERS AND MEDIANS IN NETWORKS

E. Korach, D. Rotem, N. Santoro

1. Introduction ; )
Recently we are witnessing a wide and growing interest in the design and analysis of
decentralized networks (for example MERIT or ARPANET) and distributed algorithms [1,2,5,6,8].

In distributed networks, topological information plays an important role. For example, in
packet-switched store-and-forward networks, packets leaving a source are routed to intermediate
nodes; thus, it is essential for every node in the network to have some knowledge of the topology of
the network (eg. the adjacency matrix [14,15], the distance matrix [5], etc).

In general, information about the network topology can be usefully employed to develop
efficient network algorithms; for example, the number of steps needed to synchronize the nodes can
be minimized if a center of the network is known [10].

Unfortunately, topology information cannot be taken into account once and for all at design
time. In fact, several unpredictable factors make the topology vary in time, eg. power failure,
computer crash, link reactivation, etc. Therefore this information must be redetermined whenever '
it is needed.

In this paper we present and analyze distributed algorithms for locating centers and medians
of a network. Such location algorithms are important in the design of routing mechanisms which
provide broadcast with small delay [16].

The organization of the paper is as follows. In Section 2 the model is described. In Section
3, we consider the special important case of tree networks. A basic algorithm is presented: this
algorithm activates all nodes in the network. An activated node, in turn, reports some information
which is eventually collected at a certain node. It is shown that by processing the collected infor-
mation we can design efficient algorithms to determine the center and the median of a tree.

Furthermore, we find lower bounds on the time required to find a center and a median in a
tree and prove that our algorithms achieve these lower bounds and are therefore time optimal. The
number of messages exchanged in both algorithms is shown to be linear in the number of nodes of
the tree.

In Section 4 we extend the results of Section 3 to general networks. The idea here is to con-
struct shortest path spanning trees for each node, and then locate the center or the median of the
network by conducting a competition among the nodes of the network.

The exact solutions of our algorithms are compared with the approximate solutions obtained
by heuristics that choose the center or the median of an arbitrary spanning tree. Achievable
bounds on the accuracy of such approximate solutions show that they can be far from optimal.
The proposed algorithms for finding a center and a median require at most 5-r(G) and 5d(G)
units of time respectively where 7(G) is the radius and d(G) is the dlameter of a network" G We
also give upper bounds on the number of exchanged messages.

2. The Model
In this section we describe the framework and define some terms that are used throughout
the paper.

A communication network can be represented as a graph G = (V(G). E(G)) where V(G) is
a set of nodes and E(G) € V(G)YXV(G) is a set of arcs. An arc (i.,j) € E(G) represents a
bidirectional communication link between nodes i and j.



- -

We denote by INF(i.¢) the information about the network stored at node i at time t. We
assume that for i/ # j INF(i,0) ¢ INF(j,0), i.e., before any exchange of information occurs, no
node i knows the information of node j, for all i.j € V(G). Each node i makes a decision at time
t which is a function of the total information known to 7 at this time. For each node i, INF(i, 0)
includes a list of its neighbours N (/) where

N@) =] (i.j)EEG).

To illustrate the above assumptions, consider two nodes k! € V(G) where /| € N (k) and
N(/) = {k}. Then k knows that {k} & N(/) but does not know {k} = N(I); hence even in this
simple case

INF(/.0) § INF(k,0).

Unless otherwise stated, we will use the following standard assumptions in our algorithms:

1)  Partial reliability -- the network topology does not change during the execution time of an
algorithm,

2)  The network is synchronous and it takes one unit of time to transmit a message along any
edge.

3) The time to process a message at a node (including its queueing time) is negligible when
compared with the time to transmit a message along an edge.

We now list the graph theoretical terms commonly used in the paper; the reader is referred to
any standard graph theory text (for example [4]) for definitions of any additional terms.

Given a graph G =((V(G), E(G)) we denote by:

d(ij) — distance between /,j € V(G );

r(i) = max; g y(G{d(i.j)) — maximum distance between i and any other node;
c(G) = {j]| r(j)=min; g Gy (i)} — set of centers of G;

DIS(G.i)= D, d(ij)— sumof distances from a node i
JEVI(G)

m(G) = {j| DIS(G.j)= min; g y(G(DIS(G.i))} — set of medians of G;
r(G) = r(i) where i €c(G) — radius of G;

d(G) = max; g y(Gy (i) — diameter of G.

In a tree T we denote by:

<x,y> — the unique path between x,y € V(T);

diameter path — a longest path in T, i.e. any path with length 4(T);

h(T) — the height of T — (defined only for rooted trees) the length of
the longest path from the root to any leaf.

3. Tree Networks

3.1 A Basic Algorithm

In this section we present a basic algorithm which is a building block in the construction of
the distributed algorithms presented in this paper.

The purpose of this algorithm is to collect some relevant information from all nodes in the
network and make it available to one or more nodes called SATURATED nodes. The
SATURATED nodes can subsequently use this information to locate nodes with required
properties (e.g. centers, medians, nodes with highest identifiers, etc.) or to determine properties of
the network (e.g. diameter, number of nodes, etc.).

In the following sections we will use S () to denote the set of nodes actwated after ¢ units of
time from the start of the algorithm.



-3

An arbitrary node /. called the initiator, activates all nodes in the network as follows:

(1)  The initiator 7 sends a FORWARD message to all its neighbours.
(b) When a node is activated by a FORWARD message from one of its neighbours it sends a

FORWARD message to all its other neighbours.

When a leaf (a node of degree one) is activated, it sends a BACKWARD message containing
some information. The nature.of this information may vary according to the context in which the
basic algorithm is applied. For all other activated nodes which are not leaves, the algorithm
proceeds as follows. At each time instance 7, each node i checks which BACKWARD messages
were received so far; it will take some actions only on the following cases:

(a) If all but exactly one neighbour, say j, have already sent BACKWARD messages to i by this

time, then / sends a BACKWARD message to j.
(b) g BACKWARD messages were received from all neighbours then i becomes SATURATED.

In the very special case when the initiator I is a leaf, then I sends the BACKWARD message
to its only neighbour one time instance after the FORWARD message has been sent. In Section

3.1.2, a formal description of this algorithm is given.

3.1.1 Basic Properties
We need some terminology in order to prove interesting properties of the basic algorithm. In
a tree T, every node x € V(T) witLl | N(x)| = k is the root of k subtrees r = {T'}, ... T} such
that for i #j, T,NT; = {x}, and U lT,~ = T. For a node / # x we denote by T, the unique tree in
i=

t which contains /.
Let D = <a.b> be a diameter path in a tree T.

Lemma 3.1:
A node x € D can send a BACKWARD message only to a neighbour on D.

Proof:
If x =1 then the lemma trivially holds. Let x # 7/ be a node on D with
Nx)={1.2, ..., k}. After node x changes its state to FORWARD, it sends messages

to every i € N(x) such that i € T/,. Let us denote by (i) the time it takes for a report
from i € N(x) to arrive at x, measured from the time that x becomes FORWARD. For
T that does not contain I, t,(i) is the time needed for the message to traverse the dis-
tance from x to the furthermost node in T and then back to x. The only exception is
T, on which a FORWARD message was sent prior to the time that x became FOR-

WARD. Hence
t (i) = 2h(T;) for i &Tyy
and (31)
tx(i) < 2h(Ty) = 2h(Ty) for i€ T

If x becomés SATURATED then it does not send any BACKWARD message, and
the lemma trivially holds. Otherwise let / € N (x) be the unique last node which has not
reported yet to x at the time that x becomes BACKWARD. This node will receive the
BACKWARD message from x. We now show that / € D. By eq. (3.1)

either A(Ty) > h(Ty). where T;p# Ty
(3.2)

or h(Tr) > h(Ty) > h(Ty) such that Tp# Ty, Tip# Tix
in both cases / € D and the lemma is proved.0



Lemma 3.2
For any diameter path D, a node y & D cannot be SATURATED.

Proof:
Let x be the nearest node to y on D and let <x = xgx X3 ... .x,=y> be the path
from x to y. By Lemma 3.1 since x;& D for 1 i <m, x | will not receive a BACK-
WARD message from x, and in general x;4+; does not receive a message from x;
1<i <m=1. Finally ¥ does not receive a BACKWARD message from x, -} hence y
cannot be SATURATED.O

Theorem 3.1
Either one or two nodes become SATURATED in finite time, and every SATURATED
node lies on all diameter paths.

Proof:

Every node must change its state to FORWARD after at most d(7) units of time and
then changes its state to BACKWARD after at most an additional 2-4(T) units of time.
Therefore by 3-d(T) time units, every node either becomes SATURATED or BACK-

WARD.

Let us choose an arbitrary node s and traverse a BACKWARD edge going out of s,
i.e. an edge along which a BACKWARD message was sent. By traversing BACKWARD
edges in this way we must meet a SATURATED node since there are no cycles in 7.
Hence there exists at least one SATURATED node s. Assume ‘that there are more than
two SATURATED nodes, then there exist twvo SATURATED nodes 5 | and 5 ; such that
d(s 15 9 >2. Consider any node x on the path <s s >; x could not send a BACK-
WARD message in the direction of both s and 5 7 and therefore one of these nodes can-
not be SATURATED. We conclude therefore that there are one or two SATURATED
nodes and by Lemma 3.2 all such nodes must lie on all diameter paths. O

It is easy to show that the number of messages exchanged until a SATURATED node is
found is 2(n—1) if there is a single SATURATED node and 2n—1 otherwise. This follows
because exactly two messages will be transmitted along each edge with the exception of the edge
between two SATURATED nodes on which three messages will be exchanged. We defer the
analysis of the number of time instances to the next section. _

3.1.2 Formal Description of the Basic Algorithm

. Each node i has available to it:
(iy the queue Q(i) of current messages; each entry consists of a pair [message, sender].

(ii) the list N (i) of its neighbours in the network.

(iii) a-state indicator *‘status’: the possible values of “status” are: INACTIVE, FORWARD,
BACKWARD and SATURATED.
The algorithm uses the functions DEQUEUE and ENQUEUE defined as follows:

DEQUEUE [M./] .
removes one entry from the queue Q (current node) and sets M and / to the value of

the “‘message” and *“sender” of the removed entry, respectively;

ENQUEUE Q (j)[M, current node]
enters the entry [M, current node] into the queue of node j, i.e. it sends [M. current

node} to node ;.



Initially each node is in state “INACTIVE” and N; := N (/) for all i.
An arbitrary node [ starts the algorithm by performing the following operations:

INITIAL

begin
status := “FORWARD"";
forall jEeN{)U Ido

begin
dest := j:
M := **message”;
SEND;

end

end;

The algorithm uses the following routines:

SEND
begin

ENQUEUE Q(dest)[M,i];
end;

SATURATED
begin

status := “SATURATED"”;
end;

PROCESSMESSAGE
begin

“perform needed operations™
end;



The BASIC aigorithm will be as follows.

begin
while Q0 (/) # & do
begin
DEQUEUE [M,k];
if status = “INACTIVE” then
‘begin
if | V(@) > 1 then
begin
status := “FORWARD”;
- foralljEN({) —- kdo
begin
dest := j;
SEND;
end
end
else
begin
status := “BACKWARD?”;
dest := k;
SEND;
end
end
else
begin
if status = “FORWARD?” then
begin
N,' = N,‘ - k;
if N; = & then SATURATED
else
begin
PROCESSMESSAGE;
if (N =1 and Qi) = &) then
begin
status := “BACKWARD’’;
dest := NV;;
SEND;
end
end
end
end
‘ end
end;

3.2 Finding a Center in a Tree

As mentioned before, the knowledge of a center and of the radius of a network can be
usefully employed in several algorithms to either minimize or bound the maximum transmission
time and the volume of exchanged messages [16].

3.2.1 Basic Properties
We present here some basic properties of trees which are used in our algorithm.

Given a tree T



Property 3.1:
« Ifd(T) is even there is a unique center, else there are two centers at distance one from

each other.

Property 3.2:
d(m)

2]'

r(iT = |

Property 3.3:
Every diameter path centains all centers of T.

Proof:
Given any diameter path D = <a.b> and a node x € D, x cannot be a center because

clearly
max{d(x.a), d (x.b)} > r(T).

Hence every center must lie on all diameter paths. O

Property 3.4:
For a node x € T, let j be the furthermost node from x in T i.e., d(x.j) = r(x). Then

dG.er > (£

where ¢ is a center of T.

Proof:
By contradiction. Let D = <a.b> be a diameter path, then either ¢ € <x.b> or

¢ € <x,a>. Assume ¢ € <x,b>, then
d(xb) =d(xe) +d(ch) > dixe) + L. - (3.3)

On the other hand, by the triangle inequality and by the assumption d(c.j) < L%QJ.

d(xj) < d(x.c) + d(c)) <d(xc) + [4%]; (3.4)

hence, d(x.j) < d(x.b) which contradicts the fact that j is the furthermost node from
x. O '

3.2.2 The Algorithm TREE-CENTER

A distributed algorithm for finding the center in a tree was presented in [12]. To make the
present paper self contained, we present a formal version of that algorithm. Furthermore, we will
prove here that the algorithm is time optimal.

The algorithm is based on the observation that if a node x on the diameter path knows its
distance from the two extreme points of this path, it can determine both the direction and the dis-
tance from itself to the closest center. This observation is formally stated in the following lemma:

Lemma 3.3:
~Let x be on a diameter path D = <a.b>,d(xa)=p andd(x.b) = p2; then

(@) if py > pathen c lies on <x,a>, otherwise it lies on <x,b>; and
Ip1=pal
|[———)

(B dxc)= 3

Proof:
Simple use of properties 3.1, 3.2 and 3.3. O



/

“In order to find a center, we use the BASIC algorithm as described in Section 3.1.2. We use
the BACKWARD messages to determine maximum distances from the SATURATED node. To
achieve this, the leaves send BACKWARD messages with counters set to 1. These counters are
incremented by one at each traversed node. The two largest counters that reach a SATURATED
node s contain the distances from s to the two extremes of a diameter path D = <a.b>, (see
Theorem 3.1 ). By Lemma 3.3 a SATURATED node knows d(s.c) and whether ¢ € <s.a> or
c € <s,b>.

The algorithm TREE-CENTER will be the BASIC algorithm where in INITIAL (see Sec-
tion 3.1.2) the ‘“‘message” is set to zero and the operations SEND, SATURATED and
PROCESSMESSAGE are specified below. Let us observe that using this algorithm all nodes
between the first SATURATED node(s) and the center will become SATURATED.

SEND

begin
if status = “BACKWARD” then M:=M+1
ENQUEUE Q(dest)[M.,i];

end

The procedure SATURATED is based on the observation that maxmessage and M (the last mes-
sage received) are the two largest counters received by a SATURATED node.

SATURATED
begin
status := “SATURATED”;
Diff := M - maxmessage;
_if |Difff <1 then status := “CENTER”

else
begin
if Diff>2 then
begin
inf := maxmessage + 1;
dest := k;
end;
else
begin
inf:=M + [;
dest := maxsender;
end;
ENQUEUE Q(dest){inf.i};
end;
“end;
PROCESSMESSAGE
begin
if M > maxsender then
begin
maxsender := k;
maxmessage := M;
end;

end;



“
3.2.3 Analysis of the Algorithm
In this section we prove correctness and optimality of algorithm TREE-CENTER.

Lemma 3.4
Algorithm TREE-CENTER correctly finds a center in a tree T.

Proof: N
The correctness of this algorithm is based on the following observation. Let x be in the

FORWARD state, and assume it receives the message M from its neighbour y. Then
M = h(T,,), i.e., M is the distance between x and the furthermost node in T,,. This
fact is easily proved by induction on the height of T,.. It therefore follows that when a
node s becomes SATURATED it knows its distance from the furthermost nodes in T
for all i € N(s). Since s is on a diameter path (Theorem 3.1), the two largest messages
p and pj, received at s, specify the distances from s to the two extreme points on a
diameter path on which it lies, and by Lemma 3.1 s sends a message to the correct direc-
tion of the center. Since | p; — p3| decreases by 2 at each node traversed on the path
from s to the center, eventually a SATURATED node for which [p| — pa < 1 must
exist and this node changes its state to CENTER.OI

In order to prove a lower bound on the time needed to find a center in a tree we use the
equation
INF(i,t) = INF(.0) if i &€S(@)
or 3.5

INF(i,t) € INF(i,t—=1) U {INF(i.t=1) | jENG) N S=1)}.

where S(¢) is the set of nodes which were activated by time ¢.

In words, the information known to node i at time ¢ is INF(i, 0) if / has not been activated
yet, else it is a subset of the information known at time ¢ —1 to itself and its activated neighbours.

Theorem 3.2 . )
Any distributed algorithm for finding a center in a tree T from originator X requires at

least B(X) = r(x) + LD

time units.
3 J

Proof:
Assume that an algorithm A4 finds that ¢ is a center of T at time ¢y < B(X). Then the

maximum information at node ¢ at this time is

INF(c.tf) € INF(c.ty=1) U {INF(ity=1D) | jEN(c) N S(ty~1)} (3.6)
by eq. (3.5). By repeated application of eq. (3.6) we get
INF(c.ty) S {INF(j.0) | j E€S(ty —d (el (3.7

i.e., the information at ¢ at time ¢y includes information from node j, if and only if j was
active at time ¢y —d (j.c). '
Let j be a node in T such that d(j.X) = r(X). We will show that the information
from j cannot arrive at ¢ by time ¢;.
First we note that

jESEF@) =1 (3.8)
therefore _ ‘
JES(y = L—S——dzT)J) (3.9)

since by our assumption on ¢



- 10 -

4Dy < -1

tf—[

By Property 3.4. d(jc) > [ﬂj and hence we have j &€ S(¢y — d(j.c)) which implies

INF(. 0) & INF (c.tp) by (3. 7) Next, we modify the tree T by adding a path <j,j.j>>
rooted at j, (see Figure 1) and call the obtained tree 7". We show that when A4 operates

on T" it makes a wrong decision.

At time t7, INF(c,ts), when A is applied to T', is the same as INF(c.t s) when A is

applied to 7. This follows because by the above arguments no information from j(or j»
can reach ¢ in T, and all other nodes are activated at the same time both in T and 7"
Hence at time 17, A will choose ¢ as the center of T" which is clearly a wrong decision.d

Theorem 3.3:

Algorithm TREE-CENTER is time optimal.

Proof:

Let x be the furthermost node from [ in 7. By Property 3.4 we know that x is an
extreme of a diameter path. Let ¢ be the center closest to x (see Fig.2), ie.

d(xc)= [ﬂzllj.

Let us consider the situation after F = d(Ix) + LEZL)J — 1 time units from the

beginning of the algorithm. Two cases are theoretically possible.

(a)

(b)

No node in T is SATURATED: In this case in time F + 1, ¢ will be
SATURATED. This follows since the node x was activated and its BACKWARD
message reaches ¢ by time F + 1, also the BACKWARD messages from all other
nodes in T have already reached ¢ by this time. Hence ¢ must be SATURATED
and the algorithm correctly locates the center in optimal time.

A node s became SATURATED by time F: Let us consider the SATURATED
node s closest to ¢. By Theorem 3.1, s lies on all diameter paths. Furthermore,
5 € <x.c > since if s & <x,c> the BACKWARD message from x cannot arrive at s
by time F, contradicting the fact that that s is SATURATED by this time. There-
fore s becomes SATURATED at time

dxI)+ d(sx).
After additional d(s.c) time units the center ¢ becomes SATURATED and there-

fore the algorithm is optimal also in this case and terminates at time
dixI)+d(xs) +d(sc)=dxI)+d(xc) O

It is easy to show that the number of messages exchanged by algorithm TREE-CENTER is:

An—=1)+r* if there is a unique SATURATED node
2An—=1)+r*+1 if there are two SATURATED nodes

where r* is the minimum distance between a SATURATED node and a center. This follows
because on each edge, two messages are sent (FORWARD and BACKWARD) whereas on every

edge of <s.c> a SATURATED message is added.

3.3 Finding 3 Median in a Tree

Another important node in a tree is a median, i.e. a node from which the average dlstance to
all nodes in the tree is minimized [16]. In this section we show how to apply the BASIC algorithm
in order to find the median.



33.1 Bt;§ic Properties

Lemma 3.5:
Let x.y € V(T) be connected by an edge then
DIS(Tx)=DIS(T.y) + | V(Ty)| — | V(T - (3.10)
Proof:
DIS(Tx) = 2, d(xxz) = > d(xz) + > d(x.z). (3.11)
tE€T €V (T — Ix}) €V (Tyy) - v}

since d(xx) = 0 and [V(T,x)] U [V(Tyy) = {¥}] = V(T). By
diy.z)+1 for z€V(Ty) = {x}
d(xz) = 140.2)=1 for z €V (Tyy) — Iy}

we have

DIS(Tx) = 2 d(y.z) + (| V(Txy)| =D+ ) dy.z) = (| V(Ty)| = .
€V (Tyy) = {x}) €Ty ~ Iy}

from which (3.10) follows. [
Let A(x.y) = DIS(T.x) — DIS(T.y) and | V(T)| = N.

Corollary 3.1:

Axy)=N +2 =2|V(Ty)| = —Apx).
Proof:
Follows from (3.10) and the fact that
| V(Te)l =N +2 - | m,,)m
Lemma 3.6:
Forx € Tlet N(x) ={1.2...., j} be the set of nexghbours of x in T. There exists at
most one vertex i € N (x) such that
A(ix) <0
Proof:
We derive a contradiction by assuming that for & # /, k./ € N(x) both A(x.k) and A(x./)
are non positive.
Akx) =N +2 =2 V(Tie)| €0 (3.12)
Allx) =N +2=2|V(Ty)| <0O. (3.13)
By adding (3.12) and (3.13) we get
‘ AN +2) = 2| V(T)| + | V(TR <0
But this is impossible since
| (V(Te)| + | V(Ti)] €N +1. 0O (3.14)
Lemma 3.7

A node x € V(T)is a median of T if and only if for all i € N(x),
A(ix) >0



Proof:
“Only if” - let x be a median then DIS (7.i) > DIS(Tx) for all i € V(T), hence for
i € N(x), A(i.x) = DIS(T.i) - DIS(T.x) > 0.

“if” - let m be a median of T and let us choose a node y which is not a median. We now
show that y has a neighbour i for which A(i,y) <0, i.e. DIS(Ty) > DIS(T.i). Let
<y=yiya..., yi.m> be the path from y to m in T} if y; = y, then A(y;m) >0
(since y; is not a median) and by Corollary 3.1 A(m.y;) <0, and the lemma is proved.
Otherwise A(y;,m) > 0 (by minimality of DIS(7.m)), and by Corollary 3.1 A(m.y)) < 0;
hence by Lemma 3.6, A(y;-1.v/) > 0. By repeating this argument along the path <y.m >
we get A(ya.y) = A(ya2.y 1) < 0 which completes the proof of the lemma.Od

Corollary 3.2
In a tree T with median m. for a node y € V(T) which is not a median, there exists a

unique i € N(y) with A(i,y) < 0. In this case i € <y.m> and
| V(T > | V(T;)| for jEN() - {i}

Proof:
Simple use of Lemmas 3.6 and 3.7.0

Corollary 3.3:
There are at most two medians in a tree.

Proof:
Let m be a median, then by Lemma 3.6, m may have at most one neighbour, say m’,
which is a median, i.e. A(m.m’) = 0. Also if any other median m’’ exists, then by follow-
ing the arguments from Lemma 3.7 along the path <m’.m > we derive a contradiction.[J

From all the above properties we can see that if a SATURATED node s knows all A(i.s) for
[ € N(s) it can determine whether s itself is a median (all A(i.s) > 0) or if there exists j € N(s)
such that A; < 0. In the latter case the median lies in the direction of j and s reports to j which
will become SATURATED.

3.3.2 The Algorithm TREE-MEDIAN

By the properties proved in the previous section, it is clear that if a node x knows DIS(T.x)
and | V(Ty)| for all i € N(x) it can compute A(i.x) and decide whether x is itself a median and,
if not so, it can determine the direction of the median.

The purpose of our algorithm is to supply this information to the first SATURATED node
from which the median is approached by a sequence of SATURATED nodes. This is done by
providing two counters, m | and m, with each BACKWARD message sent. When a node x sends
a BACKWARD message to y then

my=DIS(Tyyx)— 1 and my=|V(Ty) — L

Node y can process all BACKWARD messages received such that, when y becomes BACK-
WARD, it knows DIS(T;,.y) and | V(T;,)| for all but one neighbour to which it sends a BACK-
WARD message. This process continues until some node becomes SATURATED and the median
can be found. The algorithm TREE-MEDIAN is the BASIC algorithm where the operations
SEND, PROCESSMESSAGE and SATURATED are described below.



PROCESSMESSAGE
begin
countdist := ml + m2 + countdist;
countnode := countnode + m2;
if m2 > maxnode then
begin
maxnode := m2;
maxdist : = ml;
maxsend := k;

end
end;
SEND
begin
if status = “BACKWARD?” then
begin
m1l ;= countdist;
m2 := countnode + I;
M := (ml,m2)
end
Enqueue Q(dest)[M,i};
end;
SATURATED
begin
status := “SATURATED”;
PROCESSMESSAGE;
" DELTA := (countnode + | + 2) - (2 - maxnode);
if DELTA < O then
begin
m1 := countdist - (maxdist + maxnode)
m2 ;= countnode - maxnode + 1;
dest := maxsend;
SEND;
end
else status := “MEDIAN";
end;

We now state a result analoguous to the one proved for finding the center in a tree.

Theorem 3.4:
Any distributed algorithm for finding the median of a tree T from initiator /, requires at

least
max, g {d(l.x) + d(x.m))

units of time.

Theorem 3.5:
Algorithm TREE-MEDIAN is time optimal for all trees with | ¥(T)| > 3.

The proofs of both theorems follow the same lines as those of theorems 3.1 and 3.2. and are
therefore omitted here.



4. Ge\neral networks

4.1 Basic Algorithms

In many cases, efficient distributed algorithms for finding certain properties of general
networks, can be found by constructing certain spanning trees and then applying known algorithms
which operate on trees [5,10,11]. Using this principle, we combine here the results of the previous
section with a known algorithm for constructing spanning trees in order to find the center and the
median of a general network. -

Let us briefly describe a well known algorithm [9] that generates a spanning tree SPT(x)
rooted at a node x € V(G ), such that the distance from x to any node v € V(G) in SPT(x) is
equal to d(x,v) in G.

Algorithm SPANNING-TREE

Step 1.

x sends a message SPto alli € N(x).
- Step 2.

When a node v receives the first SP message (ties are broken arbitrarily), it sends an ACK-
NOWLEDGE message along this edge and an SP message along all other edges incident
with v.

Step 3:
Every node v marks all the neighbours in G from which it received and to which it sent an
ACKNOWLEDGE message. These are the neighbours of v in SPT (x).

4.2_ Finding Centers of General Networks

Our algorithm is based on some relations between the centers of a network and the centers of
SPT(x) for x € V(G). In general the radius of SPT(x) for an arbitrary x € V(G) can be as
large as 4(G) as shown in the next example. . .

Example:
Consider the n Xn grid graph G in Figure 3. The tree SPT(J) is shown in bold lines.
I €c(SPT) and r(SPT(I)) = 2(n~1) where r(G) = n=1.0
Therefore the simple heuristic of choosing a center in ¢(SPT(x)) of an arbitrary spanning
tree SPT(x) as an approximation, may be as bad as choosing an arbitrary node. However we
know that a center of G is also a center of its own spanning.tree as proved in the following lemma.

Lemma 4.1:
If x € ¢(G) then x € ¢ (SPT(x)).

Proof:
Forall y € V(G) we have
hA(SPT()) 2> r(G) = h(SPT(x)) = r(x)
hence x must be a center of SPT(x).00
From this simple observation it follows that the only candidates of being centers of the graph are

those nodes which are centers of their own spanning trees. We are now in a position to describe
the algorithm GRAPH-CENTER starting from initiator /.



Algorithm GRAPH-CENTER

(a) Create a spanning tree SPT(])

(b) Whenever a node x is activated in (a), it will initiate a process of finding the center of its own
spanning tree SPT(x).

(¢) If node x finds that it is the center of SPT(x)itis a candldate for being a center of G, it will
then report r(SPT{x)) to I along the path <x,/> in SPT(I). This requires that in (a). each
node marks its activator in SPT({).

(d) The initiator I will choose a center of G to be the node x which sent the minimum
r(SPT(x)) within time W = 4r(G )+ 1, and then will notify it.CJ
We now prove the correctness of the algorithm and show how the initiator [ can compute W.

Lemma 4.2:

A message from a center x of G will arrive at [ after ¢, time units where ¢, € 4-7(G)+ 1.

Proof:

The message which activates x in (a) will reach x in d(/.x) time units. By Lemma 4.1, x
is the center of SPT(x), therefore after at most additional 2-A(sPT(x))+ | = 2:r(x)+ 1
time units (see Theorem 3.3) x will find that it is a center of SPT(x). The report sent by
x back to 7 will require an additional 4(/.x) time units.

Summarizing,
e =2d(Ix)+ 2r(x)+ 1 < 4r(G) + 1.
This completes the proof.[]

This lemma guarantees that after 4-#(G) + | time units, the initiator must have- recexved a
message from a center of G.

We now show how the initiator I can compute W without knowing r(G). Initially 7 sets
W := @, and its internal clock ¢t := 0. Every time a report from a node x containing
r(SPT(x)) is received, / updates its information about the minimum radius and the node that
achieves this minimum:

if 4r(SPT(x)) + | < W then
begin
W := 4r(SPT(x)) + |;

tempc 1= x;
end;

and at every time instance, [ performs the following operations:

t:=t + I
if t = W then rempc is a center.

,Summarizing, the entire algorithm GRAPH-CENTER requires in total W +d(/.c) time
units where ¢ is the closest center to [. This is bounded by

4r(GY+1 S W+d(lc) < 5r(G)+ L.

An example of a graph in which our algorithm attains its upper bound is given in Figure
4. The lower bound will be achieved on any graph in which 7 is a center.

The number of messages exchanged in this algorithm is fairly large. Each node has to
participate in the construction and ‘center finding’ of n spanning trees. In each such spanning
tree a node x will send at most deg(x)+ | messages to find the center, where deg(x) is the
degree of x in G. In total this requires



D (deg(x)+ 1) =2 E(G)| + | V(G)| messages.
xXEV(G)

In the worst case every node has to report to / and this may require DIS(SPT(I).]) additional
messages. Finally, [ has to notify the center: this requires at most r (G ) messages.
Since DIS(SPT(I).1) < n?we have an upper bound of
2n| E(G)| +2n%+ r(G)

on the number of exchanged messages where n=| V(G)| .

4.3 Finding the Median in a Graph

An algorithm for finding a median can be devised along the same lines as the GRAPH
CENTER algorithm, where now each node x reports to 7 the value of DIS(SPT(x).x) (the sum
of distances in SPT(x) from x to any other node). Unlike GRAPH-CENTER, the initiator [/
has to receive messages from all nodes in order to determine a median.

Algorithm GRAPH-MEDIAN .

(a) The initiator [ creates a spanning tree SPT([)

(b) Whenever a node x is activated in (a) it will find DIS(SPT(x)x) in SPT(x) and report it
to 1. .

(c) Initiator 7 chooses x, whose report is minimum, as the median, and then notifies x..0

In the worst case this algorithm requires 5d(G) units of time. It can also be shown that at most
2n| E(G)| + n?+ d(G) messages will be exchanged.

The large number of messages exchanged by algorithm GRAPH-MEDIAN might motivate
one to find approximate solutions.

In general, the simple heuristic of choosing the median m, of an arbitrary tree SPT(x) for
some x € V(G), as an approximation to the correct median m of G, can produce undesirable
results. In fact, the ratio between DIS(G.m,) and DIS(G.m) can be unbounded as shown in the
following example.

Example:
Consider the family of graphs of Figure 5(a). Tt is possible that the tree SPT(/) will
have the shape as shown in figure 5(b). In this case m;=17 and
DIS(GI)=k?*+ (2 + Dk +2 while DIS(Gm) =k +k+2l Clearly when

. DIS(G.I)
{=k®a>2 lim——>t =wo O
%2 L DISGmy
5. Concluding Remarks

Centers and medians play an important role in the construction of optimal broadcasting
schemes and synchronization techniques in decentralized networks. ]

In this paper we have considered the problem of devising efficient distributed algorithms for
finding a center and a median in a network. These algorithms can easily be extended to find all
centers and all medians in a network.

The main contributions of this work are:

(a) Presenting a basic algorithm which can be applied for finding different properties of
networks.
(b) Proving lower bounds on the time required to find centers and medians, in a tree network.



(c) “Presenting time optimal algorithms for tree networks; the number of exchanged messages is
linear in the number of nodes.

(d) Presenting algorithms for finding medians and centers for general networks. For a network
with n nodes and e edges both algorithms run in O(n) time units and require O (ne +n?
exchanged messages.

Throughout this paper, we have considered the case of only one node starting the process of
finding the center or median of the network. This apparent limitation does not affect the generality
of our algorithms. In fact, the case of several initiators can be reduced to the case of a simple
initiator by means of a collision resolution mechanism based on a simple priority function [10].

In [7], lower bounds on the time needed to find centers medians and other important
properties of general networks are presented. There seems to be a large gap between these lower
bounds and the upper bounds presented here. Further research is needed to reduce this gap and
also to improve the upper bounds on the number of exchanged messages.

It seems that in a general network, finding the exact center and median is a costly operation;
therefore an important direction for research could be to devise algorithms which find a good
approximate solution.

The problem of finding centers and medians in weighted networks is currently being
investigated [7]. Preliminary results show that most of the algorithms presented here extend in a

natural way to this more general case.
REFERENCES

{t] Abram, J.M_, and Rhodes. 1.B. A decentralized shortest path algorithm, Proc. 16th Allerton
Conf. on Communication, Control, and Computing, 1978.

{21 Aburdene, M.F. Numbering the nodes of a graph by distributed algorithms, Proc. [7th
Allerton Conf. on Communication, Control, and Computing, 1979.

[31 Angluin, D. Local and global properties in networks of processors, Proc. 12th ACM Symp.
on Theory of Computing. 1980.

[4] Bondy, J.A., and Murty, U.S.R. Graph Theory With Applications, MacMillan, London,
1976.

[5] Chang, E.J. Decentralized algorithms in distributed systems. Tech. Rep. CCRG-103, Com-
puter Systems Research Group, University of Toronto, 1979.

[6] Gallager, R.G., Humblet, P.A., and Spira, P.M. A distributed algorithm for minimum
weight spanning trees, Res. Rep. L1DS-P-906-A, Mass. Inst. Tech., Laboratory for Informa-
tion and Decision Systems, 1979,

[71 Korach, E., Rotem, D., and Santoro, N. Distributed algorithms for finding centers and
medians in networks: the weighted case, in preparation.

[8] Lynch, N.A. Fast allocation of nearby resources in a distributed system, Proc. 12th ACM
Symp. on Theory of Computing, 1980.

[9] Moore, E.F. The shortest path through a maze, Proc. Int. Symp. on Theory of Swnchmg,
1959.

[10] Ramirez, R.J., and Santoro, N. Distributed control of updates in muitiple-copy databases: a
time optimal algorithm, Proc. 4th Berkeley Conf. on Distributed Data Management and
Computer Networks, 1979.

{11] Romani, F. Cellular automata synchronization, Information Sciences, 10, 3 (1976) pp. 299-
318.

{t2] Santoro, N. Determining topology informat-ion in distributed networks, Proc. l1lth
Southeastern Conf. on Combinatorics, Graph Theory and Computing, 1980.



(13]
(14]
(15]

[16]

.18 -

Slater, P.J.. Hedetniemi, S.T., and Cockayne, E.J. Information dissemination in trees, Tech.
Rep. CS-TR-78-11, Computer Science Department, University of Oregon, 1978.

Tajibnapis, W.D. The design of a topology information maintenance scheme for a
distributed computer network, Proc. ACM Conference, 1974.

Tajibnapis, W.D. A correctness proof of a topology information maintenance protocol for a
distributed computer network, CACM, 20, 7 (July 1977) pp. 477-485.

Wall, D.W., and Owicki, S.S. Center-based broadcasting, to appear 1980.



FIG. 1 The addition of the path <jj ;. j2> to the tree alters the location of the center; this shows
that the information from cvery node must be taken into account to exactly determine the center.



FIG. 2 Each meeting point s in the algorithm TREE-CENTER lies between a center ¢ and a node
x farthermost from the initiator /.



FI1G. 3 Node 7 is a center of the tree SPT(/) (shown in hold) of the n Xn square grid graph G. The
radius r(SPT(1)) = 2(n—1) while r(G) = n—1.

m



FIG. 4 A simple graph for which algorithm GRAPH-CENTER achieves its upper bound.



(I)1dS 21 sgissod vy (d)

(y) o sydwig jo {rueq (o)

NN

VEN,

Lo



DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

TECHNICAL REPORTS 1979

Report No. Author
CS-79~01%* E.A. Ashcroft

W.W. Wadge
CS~79-02* T.S.E. Maibaum
C§8~-79~03% D.R. McIntyre
CS8~-79-04* K. Culik II

A. Salomaa
CS-79~05%* T.5.E. Maibaum
CS~-79-06+% C.J. Colbourn

K.5. Booth
C8-79-07* K. Culik, II

N.D. Diamond
CS-79~08* M.R. Levy

T.85.E. Maibaum
CS"79"'09 KaOo Geddes
CsS-79-10* D.J. Taylor

J.P. Black

- D.E. Morgan

C8=79-11* G.H. Gonnet
CS-79~12 M.0. Afolabi
C8~79~13* W.M. Chan

J.A. George
cs-79-14 D.E. Morgan
CS~79-15% M.H. van Emden

G.J. de Lucena
Ccs-79~16% J. Karhumaki

I. Simon
CS=79-17* K. Culik II

J. Karhumaki
CS~79-18

F.E. Fich

Title

Generality Considered Harmful - A
Critique of Descriptive Semantics

Abstract Data Types and a Semantics
for the ANSI/SPARC Architecture

A Maximum Column Partition for

Sparse Positive Definite Linear
Systems Ordered by the Minimum Degree
Ordering Algorithm

Test Sets and Checking Words for
Homomorphism Equivalence

The Semantics of Sharing in Parallel
Processing

Linear Time Automorphism Algorithms
for Trees, Interval Graphs, and Planar
Graphs ’

A Homomorphic Characterization of
Time and Space Complexity Classes of
Languages

Continuous Data Types

Non-Trunzated Power Series Solution
of Linear ODE's in ALTRAN

Robust Implementations of Compound
Data Structures

Open Addressing Hashing with Unequal-
Probability Keys

The Design and Implementation of a
Package for Symbolic Series Solution
of Ordinary Differential Equations

A Linear Time Implementation of the
Revergse Cuthill-McKee Algorithm

Analysis of Closed Queueing Networks
with Periodic Servers

Predicate Logic as a Language for
Parallel Programming

A Note on Elementary Homorphisms and
the Regularity of Equality Sets

On the Equality Sets for Homomorphisms
on Free Monoids with two Generators

Languages of R-Trivial and Related
Monoids

* out of print - contact author



Technical Reports 1979

Cs~79-19*

CS-79-20*.

cs-79-21*

Cs-79-22

CS-79~23*
CS~-79-24*

CS-79~25*

CS-79-26*
CS-79-27*
cs-79~-28

CS~-79-29

cs-79-30%

CS~79-31%*

CS-79-32%

CS~-79-33%
CS-79~34

€s-79-35

£S8~-79-36

Cs-79-~-37

D.R. Cheriton

E.A. Ashcroft
W.W. Wadge

E.A. Ashcroft
W.W. Wadge

G.B. Bonkowski
W.M. Gentleman
M.A. Malcolm

K.L. Clark
M.H. van Emden
D. Dobkin

J.I. Munro

P.R.F. Cunha
C.J. Lucena
T.5.E. Maibaum

T.S.E. Maibaum

D. Dobkin
J.I. Munro

T.A, Cargill

R.J. Ramirez
F.W. Tompa
J.I. Munro

A. Pereda

R.L. Carvalho
C.J. Lucena
T.8.E. Maibaum

J.I. Munro
H. Suwanda

D. Rotem

J. Urrutia
M.S. Brader
D.J. Taylor
D,E. Morgan
J.P, Black
D.J. Taylor
D.E. Morgan
J.P. Black
J.C., Beatty

E.A. Ashcroft
W.W. Wadge

-2 -

Multi-Process Structuring and the
Thoth Operating System
A Logical Programming Language

Structured LUCID

Porting the Zed Compiler

" Consequence Verification of Flow-

charts

Optimal Time Minimal Space Selection
Algorithms

On the Design and Specification of
Message Oriented Programs

Non~-Termination, Implicit Definitions
and Abstract Data Types

Determining the Mode

A View of Source Text for Diversely
Configqurable Software

Optimum Reorganization Points for
Arbitrary Database Costs

Data Specification Methods

Implicit Data Structures for Fast
Search and Update

Circular Permutation Graphs

L4

PHOTON/532/Set - A Text Formatter

Redundancy in Data Structures:
Improving Software Fault Tolerance

Redundancy in Data Structures: Some
Theoretical Results

On the Relationship between the LL(1)
and LR(l) Grammars

Rk for Semantics

* out of print - contact author



Technical Reports 1979

Cs-79-38

Ccs-79-39%

CcsS~79-40

CS-79-41%

Cs~79-42

E.A. Ashcroft
W.W. Wadge

J. Albert
K. Culik II

F.W. Tompa
R.J., Ramirez

P.T. Cox
T. Pietrzykowski

R.C. Read
D. Rotem
J. Urrutia

-3 =

Some Common Misconceptions about LUCID

Test Sets for Homomorphism Equivalence
on Context Free Languages

Selection of Efficient Storage
Structures

Deduction Plans: A Basis for Intelli-
gent Backtracking

Orientations of Circle Graphs

* Out of print -~ contact author



Report No.
CsS-80~01

Cs~-80-02
CS-80-03
Cs~-80~-04
CS-80-05
Cs-80-06

Cs-80~07

Cs-80-08

CS-80-09%

cs-80-10%

Cs-80-11

Cs~-80-12

CsS-80~13%

Cs-80~14

CS-80~15

CS-80-16

CS-80-17

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY -OF WATERLOO

RESEARCH REPORTS 1980

Author
P.T. Cox

T. Pietrzykowski

K. Culik II

J; Brzozowski
H. Suwanda
M.H. van Emden

Y. Kobuchi
K. Culik II

G.H. Gonnet
J.I. Munro
H. Suwanda

J.P. Black
D.J. Taylor
D.E. Morgan

J.Ll. Morris

N. Santoro
H. Suwanda

T.S5.E. Maibaum
. dos Santos
. Furtado

. van Emden

., George

s
L
.R. Apt
H
A
T. Heath

T.S.E. Maibaum

J.P. Black
D.,J. Taylor
D.E. Morgan

K.0. Geddes

P. Calamai
A.R. Conn

Title

On Reverse Skolemization

Homomorphisms: Decidability,
Equality and Test Sets

Open Problems About Regular
Languages

Implicit Data Styxuctures for the
Dictionary Problem

Chess-Endgame Advice: A Case Study
in Computer Utilization of Knowledge

Simulation Relation of Dynamical
Systems

Exegesis of Self-Organizing Linear
Search

An Introduction to Robust Data
Structures

The Extrapolation of First Order
Methods for Parabolic Partial
Differential Equations II

Entropy of the Self-Organizing
Linear Lists

A Uniform Logical Treatment of
Queries and Updates

Contributions to the Theory of
Logic Programming

Solution of Sparse Linear Least
Squares Problems Using Givens
Rotations

Data Base Instances, Abstract Data
Types and Data Base Specification

A Robust B-Tree Implementation

Block Structure in the Chebyshev-
Padé Table

A Stable Algorithm for Solving the
Multi-facility Location Problem
Involving Euclidean Distances

* Qut of print, contact author

+ In preparation



Research Reports 1980

Cs-80-18
Cs-80-19
Cs~80-20
Cs-80-21

Cs-80-22

Cs~-80-23

C5-80-24

CS-80-25
Cs-80-26
Cs-80-27
CS-80-28
CS-80-29
Cs-80-30
Cs-80-31

CS5-80~-32

Cs-80-33

CS-80-34+

C8-80~-35

C5-80-36

R.J. Ramirez
D. Therien

J. Buccino

N. Santoro

L. de Carvalho
S.E. Maibaum
H.C. Pegqueno
.A. Pereda

A.S. Veloso

H

. Gonnet

J.P. Black
D.J. Taylor
D.E. Morgan

N. Santoro
J.A. Brzozowski

J. Bradford
T. Pietrzykowski

P. Cunha
T.S.E. Maibaum

K. Culik 11
Arto Salomaa

T.F. Coleman
A.R. Conn

T.F. Coleman
A.R. Conn

P.R.F. Cunha
C.J. Lucena
T.S.E. Maibaum

Karel Culik II
Tero Harju

K.S. Booth

Alan George
J. W-H Liu

D.J. Taylor

2 -

Efficient Algorithms for Selecting
Efficient Data Storage Structures

Classification of Regular Languages
by Congruences

A Reliable Typesetting System for
Waterloo

Efficient Abstract Implementétions
for Relational Data Structures

A Model Theoretic Approach to the
Theory of Abstract Data Types and
Data Structures

A Handbook on Algorithms and Data
Structures

A Case Study in Fault Tolerant
Software

Four O(n**2) Multiplication Methods
for Sparse and Dense Boolean Matiices

Development in the Theory of Regular
Languages

The Eta Interface

Resource = Abstract Data Type Data
+ Synchronization ...

On Infinite Words Obtained by
Interating Morphisms

Nonlinear Programming via an Exact
Penalty Function: Asymptotic Analysis

Nonlinear Programming via an Exact
Penalty Functicn: Global Analysis

Message Oriented Programming - A
Resource Based Methodology

Dominoes Over A Free Monaid

Dominating Sets in Chordal Graphs

Finding Diagonal Block Envelopes of
Triangular Factors of Partitioned Matrices

Robust Storage Structures for Data
Structures

+ In preparation
* Qut of print, contact author



Research Reports 1980

€S-80-37
CS-80-38t

CS-80-39¢
CS-80-40

CS-80-41+
CS-80-42T

CS-80-43+

R
D

m oOw

K
J
J
E.
I
P

.B. Simpson

.Rotem
. Urrutia

.T. Vuong
.D. Cowan

. Mavaddat

. Culik II
. Pachi

.A. George
Ng

.S.E. Maibaim
.R.F. Cunha

+ In Preparation

A Two Dimensional Mesh Verification Algorithm
Finding Maximum Qliques in Circle Graphs
Automated Validation of a Protocol:

The CCITT Recommendation X.75 packet level

Another Experiment with Teaching of Programming
Languages

Equivalence problems for mapping on infinite
strings

A comparison of some methods for solving
sparse linear least squares problems

Synchronization calculus for message oriented
programming



	

