A SYNCHRONIZATION CALCULUS
FOR MESSAGE ORIENTED PROGRAMMING

P.R.F. Cunha
T.S.E. Maibaum

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada
N2L 3G1

Research Report CS-80-43
September 1980

This work was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada
and the Canadian International Development Agency.



ABSTRACT

In previous reports we have motivated and described a metho-
dology for the development of programs for distributed environments in
which the synchronization mechanism is based on message passing
primitives. We outline in this paper a calculus to study in a
systematic way the synchronization properties for message oriented
programming. These properties include such things as absense/presence
of deadlocks, unpaired primitives, use of unbounded buffers (capacity
of the channels involved in the communication), etc. In order to study
these questions, we introduce a technique (called the synchronization
tree) which is a finite representation for the reachability set. The
main result presented is that, given any message oriented program, it
is decidable whether the processes involved ever enter a configuration

in which some subset of the processes is deadlocked.

Keywords :
Distributed computing, message oriented programming, synchronization
calculus, deadlock, boundedness, unpaired primitives, vector addition

systems, synchronization tree.



1. Introduction

We outline in this paper a calculus to study the synchroniza-
tion properties (i.e., the properties related to termination) for
message oriented programs. The main result presented is that, given
any messade oriented program, it is decidable whether the processes
involved ever enter a configuration in which some subset of the processes
is-deadlocked. This provides a basis for a.static, data independent
test for deadlock freeness for message passing systems. We also are
able to answer such questions as: Does the communication channel
between two programs always contain a bounded number of messages? If
so, what is the bound? Before proceeding to further describe the
contents of the paper; we provide a motivation for the study of this
style of programming.

The current trend in parallel programming is programming
through messages and processes. The general idea of message passing
for interprocess communication was preliminarily discussed by
Brinch Hansen in [2 ]. More recently the concept has been discussed
in a more general setting, by presenting processes and messages as
both a structuring tool and as a synchronization mechanism. Instances
of this recent effort can be found in Zave [23], Jammel [18],

Hoare [17] and in the description of multiprocessing systems such as

Demos [1], Mininet [20] and Thoth [4].



Zave [23] has argued for the naturalness, usefulness and
generality of programming with messages and processes. We think that
a further characterization of this programming technique is necessary.
It needs to be at least as well understood as the techniques for
parallel programming with shared variables. In other words, design
principles, specification and proof methods need to be developed for
the complete characterization of this novel programming style.

The methodology we have developed [5 , 8, 9] is based on the
concept of resource. This concept has its roots in such notions as
monitors [16] (essentially the development of a synchronization
mechanism for the operations of a data type in a situation where a
shared address space is assumed), managers [18], proprietors [4] and
secretaries [10]. The underlying idea in all of these is the explicit
expression of synchronization mechanisms. Resources are essentially
an abstract data type together with a synchronization mechanism ex-
pressed in terms of message passing primitives. These mechanisms are
used to allow as much parallelism as possible in the use of the
operations of the data type. This is, of course, at the heart of the
development of distributed computing - to gain efficiency by the use
of paralielism.

As for the sequential programs, the first step in the
development of a program is the identification of the abstract data
types (i.e. the bases of the resources) to be used by the program.

(As for sequential programs the choice will have a great influence

on the final solution which is obtained.) Once an abstract data type



has been identified (and presumably specified but not yet implemented)
we are left with the task of adding the synchronization mechanism. This
can be done as follows: Assume for the moment that the operations of
the type can be directly invoked as primitive operations by the programs
performing synchronization for the resource. Thus the resource is
assumed to be implemented on a single address space. (This assumption
will Tlater be removed in the stepwise refinement process.) A formula,
called the asynchronous condition formula (acf), is now developed which
expresses the conditions under which operations of the data type may be
invoked. Thus, it is at this point that one determines the degree of
parallelism which is desired for the resource (within the limits set

by the nature of the underlying data type). Using the acf, one can now
define the process structure (i.e. the set of programs used for synchro-
nization) associated with the resource [7 , 8, 9].

Once the process structure for a resource has been defined,
for each process in turn we establish a syncrhonization formula (sf)
(in the form of a regular eXpression) which establishes the sequence
of message passing primitives which the process will use to synchro-
nize its activities with other processes in the resource (if there be
such) and the environment of the resource. Then the process is defined
by “filling in" the sequential parts of the process which "fit" between

the synchronization primitives of the sf.



By following the above methodology, one obtains an abstract
implementation of the resource and, based on the properties of the
data type and the synchronization primitives, one can prove properties
of the abstract program. At this point we use the idea of stepwise
refinement and remove the assumption that the synchronization processes
of a resource can invoke the operations of the underlying data type as
primitive operations on a shared address space. Two situations are now
possible. Firstly, we may keep the assumption of a shared address space
for the processes and implement the resource's underlying data type in
the usual way. This corresponds to the conventional situation and
techniques for such implementations have been well developed and studied
[11,13,15]. Secondly, wé may develop a distributed implementation
for the data type [ 8]. This involves the use of more primitive re-
sources (as opposed to the data types of the conventional implementa-
tions) for the implementation of the resource in question.

The advantages to be gained from such an approach are similar
to the benefits espoused for the analogous technique applied to
sequential programs. That is, we gain modularity in the solution and
we also mddularise the proofs of properties of the system. The
modularity to be gained in proofs of properties is fully outlined
in[5,6,8,9], butwe may point out here that since these programs
use a control structure quite different from sequential programs, new
techniques are needed for modularizing the traditional aspects of
proofs (such as the correctness of implementation of a data type) as
well as the new or novel aspects of proofs (such as deadlock freeness,

lack of starvation, etc.).



As indicated earlier, in this report we concentrate on these
so-called novel aspects of proofs-what we call synchronization aspects.
In message passing systems (whether based on our methodology or not),
important questions arise which have no analogues for sequential
programs. For example, a set of processes (programs) could all be
blocked in their execution because they are all awaiting some form of
communication from some other process in the set. This is what is
normally called dead]ock: Since separate processes may be executing
on separate processors whose relative speeds are unpredictable and
since programs may produce and consume messages at different rates,
it might be necessary to have buffers of unbounded size to buffer the
communication between processes.

We introduce a technique (called the synchronization tree
(ST)) which will allow us to predict, for example, whether a set of
programs is free of deadlock situations or whether the communication
between pairs of processes is bounded or not. The ST is a finite
representation of the reachability set (i.e., the set of possible
configurations) of a set of processes and is defined using concepts
which are drawn from vector addition systems [19,21]. We note here
that the technique is purely syntactic and ignores data in the programs.

The primitives used by our programs for communication are the
following:

- sendi(j, msg): process isends a message msg to process j.

- receivei(j): process i receives the next message from

process j. If this message is not available
then the process i blocks until such a message

arrives.



Thus we use "unblocked send" and "blocked receive". However the tech-
nique we describe actually works (with slight modifications) for all

the combinations of "blocked" and "unblocked" primitives. Also note
that receives are specific - i;e., messages are received from specific
processes (and not, as in some systems, from any processes which happens

to have sent a message).



2. The Synchronization Structure

We motivated and described a methodology for the development
of programs for distributed environments in [ 8, 9] where the synchro-
nization mechanism is based on message passing primitives. The
fundamental point of our methodology is the concept of resource.
Resources are essentially an abstract data type plus a synchronization
mechanism expressed in terms of message passing primitives. The
synchronization mechanism is used to allow as much parallelism as
possible in the use of the operations of the data type. Informally,
the methodology decomposes a system into a set of resources which must
interact to solve the problem at hand. In this report, our interest
is the second major component of a resource-namely, the synchronization
part. We will develop a calculus that will enable us to treat synchro-
nization properties such as absence/presence of deadlock, unpaired
primitives (defined later), or use of unbounded buffers in a systematic
way .

In the development (modelling) of message oriented programs
we have been using two programming languages. The first, called
programming language (PL), uses a combination of Algol and Hoare's
CSP[17] notations. An example of a program in PL is the following

(which appears in a solution to the bounded buffer problem [17]):



process p-avpl ;

{ avpl # 0 : msg := receive(prod) ;
avpl := avpl -1 ;
place item msg

or avpl # n : receive(cons) ;

avpl := avpl + 1 ;
get item into msg ;

send(cons, msg) }

The second language, called synchronization language (SL), is
used to specify the synchronization mechanism for each process (a resource
is managed by a finite number of processes). The primitives of the
language are s.. to indicate the sending of a message from process i

1J
to process j and rij to indicate the reception of a message by process

i from process Jj. These primitives can be preceded by boolean valued

or b:r..). Calling these primitives S and Tetting

54 ij
SLT, . . . , Skn be elements of SL we define SL recursively as follows:

expressions (i.e., b

(i) ScsL;

(ii) SL1; SL2 < SL ;

(iii) {SL1} < SL 3

(iv)  *{SL1}c SL ;

(v)  {SLtorsSL2or .. .orSkn}cSL (forn=1).



process p-avpl ;

* {avpl # 0 : receive(prod)
or avpl # n : receive(cons) ;

send(cons, msg) }

The two languages SL and PL differ essentially in the amount
of detail included in the "programs" of the respective languages in the
stepwise development of programs. In the design process, the first
language which is used to express synchronization properties of programs
gives a first approximation to the final program in PL. Here in the
analysis process, the program in SL can be thought of as a more abstract
version of the program in PL where the sequential part was removed. The
communication skeleton (or the program in SL) only captures the informa-
tion that will be necessary to answer questions related to the synchron-
ization part of the program in PL.

Verification of message oriented programs involves questions
related to the synchronization part (or to the termination) of the
programs. Absence of deadlock, unpaired primitives and use of unbounded
buffers are examples of such questions. These questions related to the
synchronization part refer to the possible sequences of communication
primitives (send's and receive's) and we can say that they are "data
independent". (The sequential part which fills in the "gaps" of the
communication skeleton shows how the values of the Tocal variables are
changed in the process.) In order to deal with such questions we are

going to associate with each processa formula - the synchronization



- 10 -

formula (sf) written as f],f2 R fn where each fi is some primitive
communications activity 1ike send or receive and each fi identifies

the process(es) involved in the communication action. This formula
establishes the sequence of message passing primitives that the process
will use to synchronize its activities with the other processes. The
synchronization formula is essentially the same program specified in
the syncrhonization language SL except that the boolean valued
expressions (predicates) and messages are removed. This action makes
the branching decisions be taken arbitrarily (nondeterministically)
instead of being "data dependent" and makes the sf still more abstract
than the corresponding program SL. The synchronization formula for

the process p-avpl presented above in the language SL is given below.
Let us use s and r to denote, respectively, the primitives send and
receive in the sf's. The symbol ";" denotes sequentiality of actions,
“*" an indefinite number of repetitions of the enclosed communication
sequence and "or" that the Teft and right expressions are disjoint in
the code used for the process. (As we can see an sf is a kind of

regular expression.)
[r(prod) or (r(cons); s(cons))]* (sf for process p-avpl)

(If we Tabel the processes p-avpl, producer (prod) and consumer (cons)
as processes 1, 2 and 3, then we can write the sf as

[r](Z) or (r](3); 51(3))]*. Note that the subscripts in the sf's can
be dropped when such values of the subscripts are obvious from the

context.)



-1 -

3. Some Analysis Questions

We have used sf expressions to specify the synchronization
part of message oriented programs. The types of errors treated here
are called potential errors because we are not considering the data
part of the program. In the synchronization model, it is assumed that
messages are transmitted in a finite amount of time and that messages
are received at some destination site in the same order that they were
sent from the source site. (In other words, we are assuming that a
reliable transmission protocol underlies the model.) When a sending
or a receiving operation is executed the control goes to one of the
next possible communication pimitivies in the formula as in the usual
sequential program (i.e., following the same rules for sequentiality,
alternation and iteration). A sending operation transfers the associated
message from the source process to the input buffer of the destination
process. A receiving operation waits until its input buffer is not
empty and then reroves the first message of the input buffer (the one
with the longest waiting time). Taking into account the previous con-
siderations, we describe the following potential errors that can be
present in the synchronization formulas. Note that these errors
(properties) are defined for the communication between any number of

processes.



- 12 -

3.1 Deadlock

A deadlock is characterized by two or more sf's (representing
the synchronization part of the associated processes) reaching a state
where there exists a circular chain of receiving operations (one in
each sf) in which each process (sf) is blocked and waiting for a
message from the next process (sf) in the chain. This state represents
a situation where no further transition is possible for the processes
that are deadly embraced in the chain.
Example 3.1:

Process 1: (r(2); s(2))*

Process 2: (r(1); s(1))*

Process 1 and process 2 trying to receive a message from each
other is an example of deadlock. The two processes after the activation
of the primitives r(2) in the first expression and r(1) in the second
expression form a circular chain of blocked processes (deadlock). Note
that in this case we have an example of an unavoidable deadlock (not
potential) because there is no other processing alternative for the
processes involved.

Example 3.2:

Process 1: ((s(3); r(3)) or (s(2); r(2)))*

Process 2: ((r(1); s(1)) or r(3))*

Process 3: ((r(1); s(1)) or s(2))*



- 13 -

Consider the following situation in the execution of the
processes: process 1 sends a message to process 2 and then blocks
itself awaiting a response from process 2, process 2 wants to receive
a message from process 3, and process 3 wants to receive a message
from process 1. This situation is clearly a case of deadlock. How-
ever, it is called a potential deadlock because it may not necessarily
represent an error. Remember that we have removed the predicates in
the sf's and consequently, by evaluating them, we may conclude that
the sub-expressions (s(2); r(2)) in process 1 and (r(3)) in process 2
cannot be activated at the same time. Therefore, the final evaluation
of a deadlock detected by the synchronization calculus would involve

an examination of the “"data dependent" part of the program.

3.2 Unpaired Primitives

Unpaired primitives occur when an sf contains a sending or

receiving operation for which there is no corresponding receiving or
sending operation in the other invoked sf. There are two distinct

cases of unpaired primitives. The first refers to a complete omission

of the corresponding primitive and the second to a possible inbalance
between the number of paired primitives in the sf's (e.g., just one of
them appears inside an iteration). An unpaired sending primitive results
in a message (or messages) being transmitted and not received (equivalent
to the loss of the message), and an unpaired receiving primitive results
in a process being blocked forever. (Remember that we are considering

a blocking receive and a nonblocking send operation). Unpaired primitives
indicate an incomplete specification of the program (except for some in-

tentional bizarre design).



- 14 -

Example 3.3:

Process 1: ((s(2))* or (s(3)*))

Process 2: (s(3); r(3))*

Process 3: ((r(2))* or r(1))

The two distinct cases of unpaired primitives are present in
this example. There is an omission of a receiving operation in
process 2 (the primitive s(2) in process 1 is unpaired) and of sending
operation in process 3 (the primitive r(3) in process 2 is also unpaired).
Although we have the sending operation s(3) in process 1 and the corres-
ponding receiving operation r(1) in proccess 3, there is a possible case
of unpaired primitives since the first primitive s(3) appears inside an
iteration.

Example 3.4:

Process 1: ((s(2); r(2))* or s(2))

Process 2: ({r(1); s(1))* or r(1))

In this situation, we have a case of potential unpaired primi-
tives. For example, if process 1 uses the second alternative (s(2)) to
send a message to process 2 which in turn makes use of r(1) in the first
alternative ((r(1); s(1))*) to receive the message, then the next
transmitted message from process 2 will not be received by process 1.
However, it may be derived from the program that the two subexpressions
s(2) and (r(1); s(1))* are never activated at the same time. (In this
example, it looks 1ike the first and the second alternatives in process 1
are related with the first and the second ones in process 2, respectively.

In general, a well structured program should be able to reach a final



- 15 -

state (a state at the end of some complete activation of the sf's)
where all the messages transmitted were also received. We will refer

to this state later as a normal termination state.

3.3 Boundedness

Bounded communication means that there is a least upper

bound for the number of slots needed in the input buffer of any pro-
cess. (Otherwise, if the communication requires an infinite buffer
then it is referred to as unbounded.) The unbounded buffer problem
arises when there are no synchronization constraints in preventing
one process from sending messages uninterruptedly. The guarantee of
finite input buffers for the several processes involved in a message
oriented program is a very important analysis question.
Example 3.5:

Process 1: (s(2); r(2))*

Process 2: (r(1); s(1))*

This is an example of bounded communication because the
positions of the two receiving operations (r(2) and r(1)) in the pro-
cesses 1 ard 2 force an interleaving of the sending of a message and
its corresponding receiving. In this special case, we can see that
the least upper bound is equal to one. If we had considered the sf's
for processes 1 and 2 as being just (s(2))* and (r(1))*, respectively,
then the communication would be unbounded. (We are not making any

assumption about the relative speed of the processors.)



- 16 -

4. The Synchronization Calculus

As we know, the synchronization formulas represent the possible
sequences of sending and receiving operations for each of the processes
that form a message oriented system. During the execution of the system
what happens is an interleaving of these formulas due to the interaction
of the processes. (Of course, this interleaving is subject to the
definition of the primitives send and receive.) In this section, we
present a synchronization calculus to detect (potential) design errors
in these interactions. Our technique is based on some of the ideas
underlying vector addition systems [19,21]. The description of our
technique, called the synchronization tree, follows but before that

some definitions are needed.

4.1 The Synchronization Tree

Let us assume that in a certain configuration of a message
oriented system we have n processes represented by the corresponding
sf's. To each of the sf's, we associate a formu]a pointer and a set
of at most (n-1) different input counters (one for each possible
sending process). The formula pointer specifies the next communication
primitive to be activated in the sf and each input counter the number

of messages sent from some given process that were not yet consumed.



-17 -

Def. 4.1:

An sf-state of a synchronization formula is a vector where
the first component belongs to the set {p0, pl, . . . , pi} u {pf}
where i is the length of the sf (considering only the number of
send's and receive's) and the other components belong to N (the set

of non-negative integers).

The first component of an sf-vector is the formula pointer
and the other components are the input counters. The two values p0
and pf of the pointer denote an initial position before the execution
of the sf and a final position after its execution, respectively. The
definition 4.1 above can be extended easily to a system state in the
following way:

Def. 4.2:

Let'{(p], Clys = =+ » C]n])’ (p2, Cops + + 3 C2n2)’ C e e

(pm, Cu1® * * + > Sun )} be the set of sf-states of the system (each

m
sf-state representing the state of a process). The system state is a

new (m + ny+tny, + .04 nm) length vector formed by the join of the
sf-states in the format SS = (p], R A I T

1
Cops » v o s 02n2, c e s Gy e e e s Cop ). We refer to the com-

m
ponent of SS corresponding to Cij(pk) by SS(cij)(SS(pk)).



- 18 -

In the initial state of a system, all pointers have value
pO and all input counters have value zero. (From now on, we will use
the terms "state" and "system state" in the same sense.) When a pro-
cess sends or receives a message, the system moves from one state to
another. If a message is sent then the corresponding input counter
is incremented by one. Similarly, if a message is received then we
decrement the corresponding input counter by one. (A receiving
operation can only be performed if the value of the related input
counter is greater than zero.) In both cases, the associated pointer
moves to one of the next possible positions in the sf. We introduce
the notation S1C2152 to mean that the system moved from the state S]
to state 52 by execution of the communication primitive cp; in sfi
(a sending or a receiving operation).

Def. 4.3:
Pic i . L. e s

A move S, +'S, is said to be valid if and only if it sat-
isfies the following conditions:

i) The pointer associated to sfi in S] refers to cp4 and

moves to a next allowable position in Sps

ii) Ifcp = si(j) then the value of the input counter for

process 1 vrelated to process j (sf-state for sfj)
in S] is incremented by 1 in 52. Otherwise, if

cp = ri(j) then the value of the input for process j
related to process i in 31 is greater than zero and

is decremented by one in 52’ and

iii) A1l the other components of S] remain the same in 52.



- 19 -

Def. 4.4:
A state S_ is reachable from another S, if there is a sequence
n e et e
. : Py, P2 CBs an-%
of valid moves from S] to Sn (1.e.,S] > 32 - 53 ... > n).
Def. 4.5:

The reachability set for a set of sf's (message oriented

system) consists of all states reachable from the initial state.
(i.e., the state in which all pointers have value p0 and all input

counters have value zero.)

Informally, the reachability set of a message oriented system
is the set of all configurations which the system can enter by any
possible execution of its communication primitives. Most of the syn-
chronization questions such as the ones presented in the last section
can be stated in terms of the reachability set. However, the reach-
ability set is often infinite. (When the reachability set is finite
or there are definite bounds for the input counters as in many
practical systems, all these analysis questions can be easily answered.)
We are going to develop a technique called the synchronization tree
to give a finite representation for the reachability set. This
synchronization tree is conceptually similar to the idea of reachability
tree used in vector addition systems [19.,21].

In order to construct a finite representation of an infinite
set (as in the case of the reachability set), we have to map many states
into the same state (node) of the synchronization tree. The solution
will be the introduction of a special symbol "w" with semantic value

"arbitrarily large" (or infinity) to represent values in the input



- 20 -

counters that can be made arbitrarily large. The interpretation of this
special symbol w 1is such that if n 1is any non-negative integer number
then it follows that n <w, w+ n=wandw - n =w. We can now define
the algorithm which constructs the synchronization tree (ST) for a given
set of sf's.

Algorithm 4.1:

Step 1:
Take the initial state (p0, . . . , p0, 0, . . . , 0) as the root of the
tree. Move each of the pointers to any possible starting configuration
in the sf's. (That is, the pointer is moved to any of the first
primitives that can be activated in the sf's.) Make each of these
starting configurations a direct descendent of the initial state and
label the corresponding arcs with the null symbol €.
Step 2:
For each level in the tree in turn, while there is a node v at that
level which has not been processed do:
(a) Make each state s, which is a valid move from v, a son of v in
the tree (referred as s(v)) and label the arc with the primitive
that was activated (Sij or rij)' (Mark v as having been processed.)
(b) For each s(v) generated above do:
(1) If there is any p 1in the tree such that p = s(v) then
make s(v) a leaf and mark it with "r1" (repetition-leaf).
(ii) If there is a predecessor p of s(v) in the tree (s(v) is
reachable from p) such that p # s(v), the pointer components

in p and s(v) are the same, and the counter components in p



- 21 -

are less than or equal to the corresponding ones in s(v)
(i.e., for all i, j p(cij) < S(V)(Cij)) then change the
(i,j)th counter component of s(v) to w if p(cij) < S(V)(Cij)

(iii) In node s(v) look for one or more chains of processes
blocked on each other. (Process i is blocked on process
j if it is waiting to receive a message from process j.)
If such chains (or just one) exist and they involve all
processes then make s(v) a leaf and mark it with "d1"
(deadlock-leaf). Otherwise, if only a subset of the
processes is involved then mark s(v) with "pdn" (partial
deadlock node).

(iv) If all pointer components in s(v) are equal to pf or the
ones that are different involve processes that are blocked
on terminated processes (value pf in the corresponding
component) or unexistent processes, then make s(v) a leaf.
If s(v) = (pf, . . . , pf, 0, . . . , 0) then mark it with
"nt" (normal termination); otherwise, mark it with "at"
(abnormal termination).

Step 3:
Stop.



- 22 -

The last part of the algorithm (section 2.b.iv) which refers
to normal and abnormal termination is the test for unpaired primitives.
Although the second (at) is a potential error (the possible occurence
of which will depend on the data part of the program), the first (nt)
should appear in any synchronization tree because it expresses the
complete match of the primitives. Note also that we have abstracted
from the sf's the type and consequently the sequence of messages trans-
mitted. If necessary, we could label the arcs in the ST with the type
of the message that was sent and then by looking at these labels in the
path from the root to some specific node figure out the associated
sequence of messages transmitted. (However, for our applications this
is not needed.) The example below helps to clarify the description of

the algorithm.



- 23 -

Example 4.1:
Process 1: (s(2); r(2))*

Process 2: (r(1); s(1))*

Level:

0

(p0,p0,0,0)
: e
(p1,p1,0,0)] (pf,p1,0,0)2
(at)
s(2)
?PE,H_foV
r(1)
(p2,p2,0,0)
s(1) (1)
(p2,p1,0,1) (p2,pf,0,1)
r(2)\ r(2) r(2)\ r(2)

(p1,p1,0,0) (pf,p1,0,0) (p1,pf,0,0) (p1,pf,0,0)
1)

(re-

(re-2) (re-3) (re-4)

£ [
(pf,pf,0,0)" (p1,pf,0,0)°
(nt)
s(2)
(p2,pf,1,0)
(at)



- 24 -

In our example we begin with the initial state as the root
of the tree which has as possible successor states the four possible
starting configurations in level 1. State (p1,p1,0,0) in the tree
moves to state (p2,pl1,1,0) when process 1 sends a message to process 2.
Similarly, the state (p2,p2,0,0) in Tevel 3 can move to two different
nodes by activating s(1) because at this point process 2 can either
repeat the loop or enter the final state. This procedure continues
until all nodes have been processed and thus indicating the complete
construction of the synchronization tree. Note that in our example

the reachability set is finite.

4.2 Analysis Using the ST

There are a number of important questions that can be answered
using the synchronization tree. Let us consider some properties related
to the questions raised in the previous section. Consider F as being any
set of synchronization formulas (representing the corresponding set of
processes). The associated synchronization tree ST(F) has the following
properties stated in terms of informal lemmas.

Lemma 4.1:
The synchronization tree ST(F) is finite.

Proof:

In the construction algorithm for the synchronization tree
ST(F) every time there is a valid move to a new node (state) which is
a repetition of a previous node (state) generated in the tree we make
this node a Teaf. Since this is a repetition node all states reach-

able from it will also be added to the identical node in the tree.



- 25 -

On the other hand, we cannot have an infinite path in ST(F) (without
repetition). Firstly, there is a finite number of possible configura-
tions for the pointers since the sf's are finite. (We cannot keep the
configuration of pointers changing forever.) Secondly, every time we
move to a new node s(v) (an ancestor of some node v) where the pointer
components are the same as in v and the counter components in s(v)
are greeter than or equal to the corresponding ones in v, we replace
those components in s(v) which are strictly greater by the special
symbol w (semantics "unbounded"). Again we cannot keep the config-
uration of pointers always different and the values of the input
counters always decreasing because there is only a finite number of
possibilities. The inclusion of an w component has the effect of
decreasing the size of the system state (vector) because the value of
w does not change and consequently, a repetition node is eventually
reached. We have shown that there is no infinite path in the tree

and therefore, the synchronization tree ST(F) is finite.

Lemma 4.2:

If the largest i th input-counter value of a vector in the
reachability set RS(F) is finite then it also appears as the largest
i th input-counter value of a node in the synchronization tree ST(F).
Otherwise, the w component appears as the i th input-counter value of

a node in ST(F).



- 26 -

Proof:
In the synchronization tree, we show all possible values of
the i th input counter except when this component in the vector involves
an w value. The introduction of an w value is the only way that we
can lose information about the content of some input counter in the
synchronization tree because it has the effect of mapping many states
into the same state. Otherwise, if an w value appears in the i th
input counter arywhere in the ST(F) then this component can become
arbitrarily large (value infinite). As we know, when an w value
is introduced in the i th input counter of a node s(v) (an ancestor
of node v) then there is a node v where all the pointer components
are the same as in s(v) and all ccunter components are less than or
equal to the corresponding ones in s(v). In view of this, any se-
quence of valid moves from v is also possible from s(v) and, in
particular, the sequence from node v to node s(v) in ST(F) can be
infinitely repeated making the value of the i th input counter
arbitrarily large. Therefore, the largest i th input counter in RS(F)

is shown in ST(F) where we consider the value of w as being infinite.
]

Corollary 4.3:

The communication between a set of synchronization formulas
F -is bounded if no w component appears in the synchronization tree

ST(F).



- 27 -

In the Temmas above, we have shown that if the symbol w does
not appear anywhere in the synchronization tree then the reachability
set is finite and the communication between the sf's is bounded. Con-
sequently, a practical result that can be derived easily is that we can
determine the necessary bounds for each of the input buffers of the
interacting processes by inspecting the ST and finding the Targest
value for the corresponding input counter.

Another important question raised in the last section and
related to the synchronization tree is deadlock freeness. A deadlock
situation always refers to a certain configuration of pointers (or
specific primitives) in the sf's. In general, we may have an infinite
number of deadlock states involving the same configuration of pointers.
Note that a repetition leaf in the ST represents a loop and therefore
the same deadlock node can be reached in several different situations.
Indeed, a deadlock node in the synchronization tree is a representative
of a class of deadlock states in the reachability set involving the
same configuration of pointers. These ideas can be clarified in the
example below.

Example 4.2:

Process 1: (s(2))*; r(2)

Process 2: (r(1))*; r(1)

Different deadlock situations involving the same configuration of pointers
and using shuffled expressions: (r(2); r(1)), (s(2); r(1); r(2); r(1)),
(s(2)s r(1)s5 s(2); r(1); r(2); v(1)), . . .



- 28 -

We can have different number of matches (and also in
different orders) between the primitive s(2) in process 1 and the first
primitive r(1) in process 2 before these two processors may enter a
deadlock state. The first deadlock situation (r(2); r(1)) represented
by (p2,p1,0,0) in the ST-notation would be the one to appear in the
corresponding synchronization tree. The following theorem is an
important result for the validation of the ST with respect to the
deadlock-freeness property.

Def. 4.6:

A message oriented programming is deadlock-free iff there is
never a set of processes blocked on receive operations such that the
blocked receive operations form a circular chain.

Theorem 4.4:

A message oriented program is deadlock-free iff there is no
deadlock node in the synchronization tree.

Proof:

a) First we will prove that if a message oriented program is deadlock-
free then there is no deadlock node in ST. Assume that the message
orientec program is deadlock-free and the ST(F) contains a deadlock
node where F is the set of sf's associated with the program. Thus
there is a path in the tree IS 5 S0 tg ... ti d where d
is a node which contains a deadlock and t, are of the form r.. or

k ij

1] for some i, j belonging to the set of process names. We will
t0o t
€ n

now construct a valid sequence of moves IS -~ S0 > .. .= d

S



- 29 -

where n = i. The components of d 1involved in the deadlock must
have value zero as must the corresponding components of d'. Also,
the non-zero components of d' will equal the corresponding compon-
ents of d unless this component is w. Assume d contains no
w component. Then the algorithm generates the sequence of valid
moves for the fozmu]ae F sg as to reach that node in the tree.

0 .

€
Thus IS - S0 R is a valid sequence of moves for

the program (so i = n and d = d').

The non-trivial case occurs when d dontains w. Then the problem
is that, since this component is arbitrarily large, receive opera-
tions can be "done" in the tree to construct a new node without the
existence of corresponding send operations (labelling arcs in the
path). If an w component is introduced in the tree then we
reach in ST nodes Sq > Sp (where Sp is a predecessor of Sq). In
this case, we do not introduce an w component in the corresponding
state of the valid sequence of moves but we insert a repetition
factor for this subsequence in order to supply enough sending
operations for the corresponding receiving operations. That is,

we add to the sequence of valid moves the subsequence

t tg-1
(Sp PO N sq)*

where £ is equal to the length of the path
in the tree. In this way, we have replaced a number that is
"arbitrarily" large (infinite) by a number "sufficiently" large
(finite). Thus, the generated sequence of valid moves for the
formulae F Teads to a deadlock situation in the program. But this

contradicts the assumption that the program is deadlock-free and

therefore, the first part of the theorem is proved.



- 30 -

b) In order to complete the proof of the theorem, we have to show
that if there is no deadlock node in ST then the message oriented
program is deadlock-free. Assume no deadlock node in the tree and
that there is a deadlock situation in the program. Let us represent
this deadlock by the following sequence of valid moves

e . b R S

IS = 5, =~ S] > ... > 5; > d where the S's are states,
the t's are primitives, and "d" is the state which contains a dead-
Tock involving a set DC of n input (deadlocked) counters. Starting
from the root (which corresponds to the initial state IS) in ST we
will try to build a path in the tree by applying the same sequence
of communication primitives (tO’t]""ti—l’ti)' If this path does
not introduce an w component in ST then obviously d 1is in the
synchronization tree. Otherwise, if an w component is introduced,

then we reach in ST nodes r_ > D (where r_ is a predecessor of r

q p q
in the tree). Now we have two different cases for the introduction

of an w component. Firstly, there is no problem if all w com-

ponents that are introduced involve input counters which do not

~ belong to DC. This is clear from the following reasoning: There

is a 1-1 correspondence between states in the above sequence of

moves and nodes in the corresponding path in ST up to state Sq_]

q being exactly sq, some

components of rq are now w. From here on, in the path, these

(node rq_]). At this point, instead of r

components always equal w. Thus for each Sio k > q, the

corresponding components of r, are always equal to w. Note that
k



- 37 -

a node with components which are w can never lead to nodes in
which the system is blocked on these components since the "meaning"
of w is that as many messages as are needed are actually avail-
able. Thus no receive can be blocked on these components. Other
w components (not in DC) may be introduced in nodes corresponding
to states Sp for £ > q, and the above discussion holds for these

components as well.

Secondly, if any of the w components that are introduced involve
an input counter which belongs to DC then the value of the counter
is being made arbitrarily large in this path and consequently, the
deadlock node corresponding to d 1is not reached on any path from
this node. (Note that the counter must be zero to be part of DC
but the introduction of w never allows this counter to become
zero again on any path leading from this node.) In this case, we
will construct a new sequence of valid moves using the one given
above as a model and this sequence of moves will have the following

properties. The initial portion of the sequence of moves will be

> ... Sp. The new sequence will be shorter

(i.e., fewer moves than in the original sequence). A1l moves in

€
IS ~ S0

the new sequence will have appeared in the old one but not
necessarily in the same order. The new sequence will end in a
deadlock state but not in general d and not necessarily involving

the same set DC.



- 32 -

We will use primes to distinguish states of the new sequence from

the corresponding states of the old sequence. The construction of

tre new sequence of valid moves is defined by the following

algorithm.

(1)

(i)

(i11)

(iv)

Make the initial portion of the new sequence of valid moves
€ té tl_ t t_'l
IS' > sy - ...szF') equal to IS 5 55 & ... "%

Erase from the original sequence all the primitives (and
associated states) which appear between the states Sp and Sq
and belong to any of the sending processes that caused an in-
troduction of an w component in a deadlocked counter. (This
is equivalent to a removal of the iteration which caused the
introduction of the w component from the execution of the
corresponding process. )

Let us consider the last state reached in the new sequence
of valid moves S% and make the set of blocked processes BP
empty. Take the first unmarked valid move m 1in the
original sequence after Sp by considering the corresponding
primitive and associated process p(m).

If the move m 1is also a valid move from S% then make it

the next valid move in the new sequence and mark it in the

original sequence. Go back to step (iii).

S

D’



- 33 -

(v) If the move m 1is not a valid move from S% then include
the process p(m) in the set of blocked processes BP. Take
the next unmarked valid move in the original sequence which
is not a primitive of any process in BP as the new m and
go back to step (iv). If there is no such next move (i.e.

we have reached d) then stop.

The removal of the primitives of process i because of the intro-
duction of an w component in a deadlocked counter Cij now makes
the number of sij less than the number of rji in the original
sequence. This imbalance assures the correctness of the termina-
tion condition of the algorithm (in step (v)) since we know that
at lTeast the last primitive rji cannot be a valid move and it will
not be marked. By construction of the algorithm we assure that
the new sequence is also a sequence of valid moves. The new
sequence is shorter because some moves in the original sequence

were erased in the execution of step (ii) above.

Now we have to show that the last state d' in the new sequence
of valid moves is also a deadlock state. Note that all the
primitives erased in the original sequence (in step (ii)) were
from processes involved in the deadlock state d. (The input
counters that do not belong to DC were not affected.) A1l the
deadlocked prccesses associated with the input counters in DC

continue blocked in the new sequence of valid moves. They may



- 34 -

be blocked at some earlier point because of the possible removal
of primitives in step (ii) above. There are two cases to consider
for the processes associated with input counters that do not belong
to DC. Firstly, if the process executes all its previous primitives
from the original sequence (i.e., all its primitives in the original
sequence were also included in the new sequence) then it cannot block
in the state d' a process which is involved in the deadlock situation.
This is because the process was not supposed to do this blocking in
the original sequence and we know that all its primitives in the
original sequence were also included in the new sequence (i.e., the
process has performed all sending operations). Secordly, if the
process does not execute all its previous primitives from the
original sequence then it is blocked on some process which is
related to DC by an input counter. (As explained before we know
that it cannot be blocked on a process that has executed all its
primitives.) In this case the input (deadlocked) counter is added
to DC. Thus, we have in the state d' a set of n' (where n' > n)
processes, each of them blocked on another process of the group and
consequently, there is a deadlock situation in state d'.
e to ot
%@ven th%!new sequence of valid moves IS - So S] >
' 1;'15% i d' we repeat the same process described previously of
trying to build the corresponding path in the tree. If we do not

manage to build the path in the tree then we use the algorithm

above to construct another new sequence of valid moves. As shown



- 35 -

before, this new sequence is always shorter and eventually, we
will be able to build the path in the tree corresponding to the
sequence of valid moves. Thus, the deadlock state (the last
state in the sequence) is represented in the tree and this con-
tradicts the initial assumption that there is no deadlock node

in ST. Consequently, the second part of the theorem is proved.
0

Unpaired-primitives nodes appear in the synchronization tree
when we have possible imbalances between the sending and corresponding
receiving operations in the sf's. It is easy to see that this verifi-
cation really happens in the construction of the ST because the algor-
ithm tries all different matches between the iterations in the sf's.
(In fact the introduction of w components in ST id due to an
imbalance between these iterations.) Other properties may be analyzed
and solved by using the synchronization tree. For example, the
reachability problem which seems to be still open for Petri nets (in
spite of an unpublished reference in [19]) and was solved for
symmetric nets [14] could be investigated for ST's. (The reachability
problem asks for a given net if a state S] is reachable from another
state SO.) We will Teave other cuestions that may have significance
for message oriented programming to be studied in future works. Now we
give another example of the use of the synchronization tree to answer

the questions treated above.



36

Example 4.3:

Process 1: (s(2))*; r(2)

Process 2: (r(1); r(1))*

Level:
0 (p0,p0,0,0)
1 (p1,p1,0,0) (p2,p1,0, o (p1,pf,0,0)
Aahv Amﬁv
s(2) 5(2) s(2) s(2)
2 (p2,p1,1,0) (1,01,7,0) (p2,pf,1,0)10 (p1,pf,1.0)
(at)
&\\\\\\ x\\\\\\\\\ s(2)\r(1) s(2) \s(2)
W 4 %
3 (p2,p2,0,0)8 p2,p1,w,0) nd,u_,s 0)(p1,p2,w,0)2 (p1,pf52,0)"(p2,pf,2,0
Aamv (re-1) \ (at)
r(1) \/ (1) s(2)\s(2)
4 (p2,p2,w, o (p1,p2,w,0)(p2,p2,w,0)(p1,p1,w,0)(pl,pf,w,0) (p1,pf,w,0) Avm.uﬁ,s,ovm
(re-2) (re-3) (re-1) (re-4) (re-4) (at)
r(1)\r(
5 {p2,p1,2,0)(p2,pf,w,0)

(re-5) (re-6)



- 37 -

Deadlocks are identified in the syncrhonization tree by nodes
in which we have a set of input counters (one for each receiving pro-
cess) with value equal to zero, the pointers in the corresponding
processes indicate receiving operations involving these counters and
the blocked processes form a cycle. The nodes 7 and 8 are
examples of total deadlock. Unboundedness is characterized by the
introduction of an w component in ST. In this case, we have the
introduction of w components in the nodes 1 and 4. Unpaired
primitives are identified by final states (leaves) in the tree where
some processes are blocked forever trying to receive messages from
processes that have finished or these final states contain unprocessed
messages. The nodes 6, 9, 10 and 11 in the ST above show examples of

unpaired primitives.




- 38 -

5. Conclusions

In this report we have outlined a calculus to treat in a
systematic way the synchronization properties for message oriented
programming. These properties include such things as absense/presence
of deadlocks, unpaired primitives, use of unbounded buffers (capacity
of the channels involved in the communication), etc. In order to
answer these questions, we introduce a technique (called the synchro-
nization tree (ST)) which is a finite representation for the reach-
ability set. The correctness of the technique was supported by a
number of results proved in the lemmas above.

Zafiropulo et al; [22] and Gouda [12] have studied synchro-
nization properties of two-processes protocols. In their models, they
keep the order in which the messages have arrived. This ordering forces
the storage of the whole sequence of messages which have arrived in any
cf the input buffers. This assumption makes sense for protocols but may
not be necessary for programming. Their requirement makes some of the
synchronization questions (such as deadlock) undecidable (Brand [31]).
In our model for message oriented programming, we have removed this
constraint by introducing one input queue for each sending process and
we have only considered the counting of the types of messages (not the
sequence). The result in Theorem 4.4 compensated for the simplicity of
our approach. In [12], Gouda also analyzed the case of n-processes
communication by developing sufficient conditions under which his
protocol machines (n-ary communication) could be represented by free

choice Petri nets ( a subclass of Petri nets). In this sense, our




-39 -

result car be considered as more general since we know that Petri nets
can be represented as vector addition systems [19].

As mentioned earlier, we want to emphasize again that our
technique with slight modifications also works for other combinations
of "blocked" and "unblocked" primitives. Other directions for further
research include: (i) extension of the calculus to allow the analysis
of other properties, (ii) to study to what extent the sequence of
messages can be introduced in our technique, and (iii) to study the
usefulness of the synchronization calculus in other areas such as

verificetion of protocols.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

- 40 -

References

Baskett, F., Howard, J.H., Montague, J.T.: Task Communication in
DEMOS; Proceedings of the 6th ACM Symposium on 0.S. Principles,
1977.

Brinch Hansen, P.: The Nucleous of an Operating System; CACM,
April 1970 (pp. 238-241, 250).

Brand, D., Zafiropulo, P.: Synthesis of Protocols for an
Unlimited Number of Processes; Proceedings of the Computer Network
Protocols Conference, 1980.

Cheriton, D.R., Malcolm, M.A., Melen, L.S., Sager, G.R.: Thoth,
A Portable Real-Time Operating System; CACM, February 1979.

Cunha, P.R.F., Lucena, C.J., Maibaum, T.S.E.: On the Design and
Specification of Message Oriented Programs; Research Report
CS-79-25, University of Waterloo, June 1979 (to appear in the
Int. J. of Computer and Informat1on Sciences).

Cunha, P.R.F., Maibaum, T.S.E.: A Communications Data Type for
Message Oriented Programming; Lecture Notes in Computer Science,
Springer-Verlag, Vol. 83, 1980.

Cunha, P.R.F., Lucena, C.J., Maibaum, T.S.E.: A Methodologv for
Message Oriented Programming; Proceedings of the 6th GI Confer-
ence on Programming Languages and Program Development, Darmstadt,
March 1980.

Cunha, P.R.F., Maibaum, T.S.E.: "Resource = Abstract Data Type
+ Synchronization" - A Methodology for Message Oriented Program-
ming; Research Report CS-80-28, University of Waterloo, May 1980.

Cunha, P.R.F., Lucena, C.J., Maibaum, T.S.E.: Message Oriented
Programm1ng - A Resource Based Methodology, Research Report
CS-80-32, University of Waterloo, June 1980.

Dykstra E.W.: Hierarchical Ordering of Sequential Processes;
in Operating Systems Techniques, Academic Press, New York, 1972
(pp. 72-93).

Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.F.: An
Initial Algebra Approach to the Specification, Correctness and
Implementation of Abstract Data Types; IBM Research Report

RC 6487, 1976.

Gouda, M.: Protocol Machines, Towards a Logical Theory of
Communication Protocols; Ph.D. Thesis, University of Waterloo,
1977, also CCNG TR-T-74, University of Waterloo, Canada, 1978.



[13]

[14]

[15]

[16]

[17]

[18]

[191]

[20]

[21]

[22]

[23]

- 41 -

References - Cont'd.

Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract Data Types
and ?oftware Validation; CACM, Vol. 21, No. 12, 1978 (pp. 1048-
1064).

Hack, M.: Decidability Questions for Petri Nets; Ph.D. Thesis,
MIT, Cambridge, Mass., Dec. 1975, also TR-161, Laboratory of
Computer Science, MIT, June 1976.

Hoare, C.A.R.: Proof of Correctness of Data Representations;
Acta Informatica, Vol. 1, No. 1, 1972, (pp. 271-281).

Hoare, C.A.R.: HMonitors, an Operating System Structuring Concept;
CACM, October 1974 (pp. 549, 557).

Hoare, C.A.R.: Communicating Sequential Processes; CACM August
1978 (pp. 666-677).

Jammel, A.J., Stiegler, H.G.: Managers Versus Monitors;
Proceedings of the IFIP 1977 (pp. 827-830).

Karp, R.M., Miller, R.E.: Parallel Program Schemata; J. Computer
and Systems Science, Vol. 3, No. 4, 1969 (pp. 167-195).

Manning, E.G., Peebles, R.W.: A Homogenous Network for Data-
Sharing Communications; Computer Networks 1, 1977 (pp. 211-224).

Peterson, J.L.: Petri Nets; Computing Surveys, Vol. 9, No. 3,
Sept. 1977 (pp. 223-251).

Zafiropulo, P., West, C.H., Rudin, H., Cowan, D.D., Brand, D.:
Toward Analyzing and Synthesizing Protocols; IEEE Transactions
on Communications, April 1980.

Zave, P.: On the Formal Definition of Processes; Conf. on
Parallel Processing, Wayne State University, IEEE Computer
Society, 1976.



	

