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Abstract

The method of normal equations, the Peters—
Wilkinson algorithm and an algorithm based on
Givens rotations for solving large sparse linear
least sgquares problems are discussed and compareds.
Numerical experiments show that the method of
normal equations should be considered when the
observation matrix is sparse and numerical
stability is not important. However, if numerical
stability is the major issue, the algorithm based
on Givens rotations is then preferable.

i Introduction

Let A be an m by n sparse matrix with m 2 n,
and consider the system of linear equations
{1-1) AXx = b
where b - and x are vwvectors of length m and n

respectively. In general, there may not exist a solution x
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such that {(1.1) is exactly satisfied. In those cases,
{1.1) is usually solved in the "least squares"™ sense; that
is, the solution x is chosen to minimize the Euclidean
norm of the residual vector
(1.2) r = A X~—=Db
Throughout this paper, we will assume that the columns of A
are linearly independente Under this assumption, it is easy
t0o show that the unigque solution x sat;sties the symmetric
positive definite n by n system of linear equations
(1.3) A" A x = AT b ,

which is referred to as the normal eguationse.

However, it is well-known that computing ATA
explicitly may not be desirable since the condition number
of ATA is the square of that of A. Thus the matrix ATA
may be quite ill-conditloned if A is poorly conditioned,
and the solution x will be sensitive to perturbations in
(1.3)s Moreover, severe numerical cancellation and roundoff

may result in computing ATA [6].

Several numerically stable algorithms have been
proposed for solving {1.1) without computing ATA
explicitly. In this paper, we will compare two such
algorithms. In addition to being numerically stable, the

two algorithms also attempt to expleit gparsity in A.

The first algorli thm was originally proposed by Peters
and ¥Wilkinson for solving (1.1) without considering the
sparsity of A [8]. Recently, Bjorck and Duff have
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advocated its use for sparse A [17 The algorithm is
based essentially on Gaussian elimination with complete
plivotinge. The second algorithm is due to George and Heath

[4], and is based on the use of Givens rotations.

An outline of the remainder of this paper is as
follows. In sections 2 and 3, we review briefly the two
algorithms. Then some numerical experiments are provided in

section 4 and some concluding remarks appear in section 5.

I1. The Peters—¥ilkinson (P-¥W) Algorithm

The first step of this algorithm is the computation
of an LU~-decomposition of A using both row and column

interchangess Thus, we have

(2.1) PAQ = LU *
where P and Q are respectively mnm by m and n by n
permutation matrices, L is an m by n unit lower

trapezoidal matrix and U is an n by n upper triangular
matrixe. WYhen A 18 sparse, the matrices P and Q are
chosen to sSimultaneously maintain numerical stability and
preserve sparsitys Then (1.1) can be written as
PAQOY x = Pb 4, or
(2.2) LUQV x = Pb .
If ¥y = Q¥x and d = Pb, then (2.2) becomes

(203’ LUy = o »



When m = n, the matrix L is unit Lower
triangular, and the solution x can be obtained by solving

two triangular systems

Lz = d ’
Uy = =z *
and then computing
X = QF
However, 1if m > ny we let z = Uy and (2.3)
becomes
(2.4) Lz = a4 ,
which is also a least squares problem. Apparently, nothing
has been gained so fars However, experience has shown that

if both row and column interchanges are used to limit the
slze of the off-diagonal elements in Loy then L is
usually well—-conditionede. Thus (2.4) can be solved via
the normal equations; that is, we can solve

(2.5) LY Lz = LTV d .

Then the solution X can be obtained by solwving

and X = Qy o«

This algorithm is an attractive candidate for solving
{1.1) when A is sparse, because there already exist
efficlient sparsity—exploiting algorithms for computing the

LU-decomposition of A and for solving (2.5).



I1I. An Algorithm Based on Givens Rotations [4]

The basic step in this algorithm is to determine an
m by m orthogonal matrix which reduces A to an

upper trapezoidal matrix

R
{321) QA = ?
0
where R 1Is an n by n upper triangular matrixe. Then
{1«1) can be written as
{3:2) Q A x = Qb .
Let
c
Qb = 1
d
where c and d are vectors of length n and {m—-n)

respectivelyes Then (3.2) is

and the solution x can be obtained by solving a triangular
system

(3.3) R x = < -

Note that if m = n, the vector d will be null.

Even though it is well—-known that application of
orthogonal transformations is numerically stable (except for
some pathological situations), this approach is not as
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popular as the previous one for solving (1.1) when A is
sparse. Apparently it has been assumed that orthogonal
transformations will cause unacceptable fill-in during the

reduction of A

Recently, George and Heath have proposed a new and
efficlent way to compute R [4], which we will refer to as
the George—Heath {(G-H) algorithm. They observe that the
lower triangular matrix RY is mathematically equivalent to
the Cholesky factor of the matrix ATA, Furthermore any
column permutation on the columns of A Induces a symmetric
permutation on the rows and columns of ATA, or vice versae
Thus one can choose a column permutation P for A s0 that
the Cholesky factor of FPYATAP suffers low fill—-in. Note
that since no row or column interchanges are necessary
during the Cholesky decomposition [9], the pivotal seguence
is known once the permutation matrix P {(or ordering) has
been determinede. Thus the positions of the non—-zZeros, and
the storage requirement for the Cholesky factor (hence R)

can be determined before the actual numerical decomposition

beginsa. These two steps can be done without actually
carrying out the transformation on Aj only the non-zero
structure of A is requirede The readers are referred to

[4] for more details.

After the data structure for R has been determined
and set up, the rows of A can then be rotated one by one

into R using Givens rotationse Thus, this algorithm has



the advantage that the storage requirement can be deterained

and fixed before any numerical computation is carried out.

Moreover, if the orthogonal matrix Q is discarded, this
algorithm requires no more storage than the normal
equationse

IVe Numerical Experiments

Two sparse matrix packages were used to implement the
P-¥ and G-H algorithms. The first package was MA28 from
Harwell [2], which was designed to solve general sparse
systems of equatlonses It was used to compute the LU~
decomposition of A in the P-W algorithm (equation (2.1)).
The plvoting stratezy, due to Markowitz [7], attempts to
maintain numerical stabillty and preserve sparsity at the
same times This involves the use of a so-called "threshold
pivoting"” technique; during the decomposition, an element in
the diagonal of the partially reduced matrix may be
considered as a pivot if its magnitude is larger than the
product of a user—-specified threshold parameter and the
absolute value of the element with the largest magnitude in
that row and columne The threshold parameter we used in the

experiments was (.1l

The second package was SPARSPAKX, developed at the
University of Waterloo [3] and designed to solve sparse
symmetric positive definite systems. It was aused to

-7 -



determine the non—zero structure of the Cholesky factor RT
in the G—-H algorithm and to solve the normal equations in
{2.5) in the P-¥ algorithme In both cases, the ordering
{(i.es the column and row permutations) used was provided by
the minimum degree algorithm [5] which is a symmetric

version of the Markowitz's pivoting strategy.

The experiments were performed on an IBM 4341, and
all times reported are in seconds. The storage reguirements
reported were provided either explicitly or implicitly
through some variables appearing in the  internal labelled
common blocks used by the two packazes. The programs were
written in FORTRAN and compiled using the IBN Extended
Optimizing FORTRAN Compiler. There are three sets of test
problems which are typical least sqguares problems from

finite element applications and surveyinge.

In the G-H method, only the ordering P of the
columns of A is specified, since the non—-zero struc ture
0of the Cholesky factor RY depends only on A and the
column permutations The row ordering does not have any
effect on the sparsity of RV, However, the ¢ogst of
computing the Cholesky factor depends very much on the row
ordering. Experience has shown that if the rows of AP are
sorted in increasing order of last column subscripts, the
cost of computing R <can be reduced substantiallye. This

heuristic strategy was used in the experiments.

As a comparision, we have also provided results from
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solving directly the normal equations in (1.3) using

SPARSPAK.

Method of normal eauations

There are four distinct phases in the method of
normal eguations:

(1) Ordering phase —= this determines a sSymmetric
permutation P for the matrix ATA via a minimum
degree algorithm.

{2) Storage allocation phase —- after the permutation (or
ordering) 1s determined, the data structure reqguired
to store the non—zeros is determined and set up.

{3) Numerically compute ATA, It is assumed that the
rows of A reside on an external filea. Thus the
time reported for this phase includes some /0
overheado.

{4) Solution phase —— this factors the matrix PTAT P

and solve for the solution xa.

The storage and time reported in each phase in Tables
1{a)y 1(b), 2, 3(a) and 3{b) are respectively the minimal
storage and the processor time required to successfully
execute that phase. Note that in phases 1 and 2, only the
non—zero structure of A is required. The numerical values
of A are used in the last two phases.
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Table

No» of 219
rows
Noa. of 85
columns
non—zZeros
Ordering phase
storage 1642
time D113

1( a)

958

292

191%

6461
D563

Storage allocation phase

storage 1418
time 0.020
Time to 0.513
compute ATA

Solution phase

storage 1490
facte time 0037
solne time D.010
Total time D+693
Maxes reles 1+ 2E-5
error

55690
0.067

2303

6264
0.260
0.067
J.260

Problem set

331
104

662

2261
0.157

1880

0.023

0.877

1995
0.067
0.023
1.147

1.62—5

1

608

188

1216

4125
0.379

3558

0. 043

1.460

3969
0.153
0.043
2. 069

2.2E-5

313
176

1557

6821
0.857

4573

D.057

1.500

3547
0140
0.040
2594

S+5E~4



Table 1(b)

Noe of 1033 1033
rows

No. of 321 321
columns

Nos of 5765 5765
non—zeros

Ordering phase

storage 11478 11478

time 19.233 18.710
Storage allocation phase
storage 7906 71906
time {10107 00107

Time to 5.490 50547
compute ATA

Solution phase

storage 6513 6513
facte. time 0273 0.293

soln. time 0,073 0.077

Total time 25.176 = 24.734
Maxs rele fedE~1 14E-1
error

-1

Problem set

1850
713

10608

26094
41.1886

19311

0277

10.057

17646
0.933
0.197
52.650

8» 18'1

1 -

1

1850
713

10608

260924
40.790

19311

0.260

10.013

17646
0.9547
0.207
52.217

9: 6E"1



Table 2 Problem set 2
No. of 132 360 696 1140
rows

No. of 72 186 352 570
columns

No. of 624 1704 3296 5400
non—~zZeros

Ordering phase

storage 2137 5695 10913 17791
time 0127 0.410 0.837 1.803
Storage allocation phase

storage 1524 4111 7979 13107
time D.017 0.047 0.090 0.150
Time to 0.573 1.570 3.073 4.957
compute AVA

Solution phase

storage 1415 4027 8138 13787
facts time 0.057 D.183 0433 0.780
solne time 0.017 0.050 0.097 0.167
Total time 0.791 2260 4.630 7.857
Maxe rels 204E"‘4 6.98‘4 1'75-3 Q;SE'—*’!

error

- 12 -

1692
840

8016

26329
3.090

19514

04227

7373

21201
1357
0260
12.307

2. 33"’3

2352

1162

11144

35527
4.927

27093

D.307

10.227

30361
2243
0.387
18,091

6' 23—3



Table 3(a)

No» of 324
rows

Nos of 100
columns

Nos of 1256

non—zZeros

Ordering phase
storage 2269
time 0O« 167

Storage allocation phase

storage 1931
time 0.023
Time to 1.183

compute ATVA

Solution phase

storage 2176

facte time 0083

soln. time 0.023

Total time 1.489

Maxe rels 3+:6E—4
error

484

144

1936

3321
0257

2872

0.033

1.803

3389
0.163
0.040
2.296

4e1E-4

Problem set

676

196

2704

4573
0.403

4000

0.050

2+603

4915
0.273
0.060
3.389

9.1E—-4

3

900

256

3600

6025
0.550

5305

0.0790

3.513

6945
0.467
0.083
4.683

3.8E-4

1156
324

4624

1677
D.723

6765

0.087

44523

9043
D.647
D.110
6.086

8.8E-4



Table 3{b)

Nos. of 1444
rows

Nos+ of 400
columns

Nos of 5776

non-zZeros

Ordering phase

storage 9529
time 0.833
Storage allocation phase
storage 8442
time 0.103
Time to 5.49D

compute AVA

Solution phase

storage 11706

facts. time 0.800

solne time 0.147

Total time 71573

Maxs rele. 1+9E—-4
error

1764

484

7056

11581
1.240

10357

0.137

6.760

14885
1.273
0.130
9.600

4. 1E-4

Problem set

2116
576

8464

13833
1.387

12384

0.150

7.893

18254
1.670
0.233
11.333

1. 55‘3

3

2500

676

10000

16285
1.647

14623

0.180

9.470

21898
2.217
D.287
13.711

2916

784

11664

18937
1.963

170561

0.217

10.936

25962
2.597
0343
16.056

2.0E~-4



The Georze-Heath algorithm

they a

(1)

(2)

(3)

{4)

report
6({b)

time r
met hod

A is

There are also four phases in the G~H algorithm, and

re similar to those in the method of normal eguations:?:
Ordering phase —— this determines a symmetric
permutation P for the matrix ATA via a minimum

degree algorithme
Storage allocation phase —— after the permutation P
is determined, the data structure for the non-zeros

is determined and set upe.

Sort the rows of AP in increasing order of last
column subscripts. As in the method of normal
eguations, the rows of A are assumed to reside on

an external file and must be read before sorting can
be performed. Thus, the time reported also includes
some I/0 overhead.

Solutjion phase —-— the rows of AP are rotated into
R using Givens rotations and the solution x is

computed.

As in the previous case, the storage and time
ed in each phase in Tables 4(a), 4(b), 5, 6{a) and
are respectively the minimal storage and the processor
equired to successfully execute each phasee As in the

of normal eguations, only the non—zZero structure of

required in phases 1 and 2.
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Table 4(a)

rOows

No. of 85
columns

No. of 438

non-zZeros

Ordering phase

storage 1642
time 0120
Storage allocation phase
storage 1418
time 0.020

Time to sort 0.473
rows of AP

Solution phase

storage 1490

facte. time 0813

soln. time 0.010

Total time 1.436
Maxe rel. 1 9E—~5
error

282

1916

646 1
0 .587

5560

0.067

3.270

6264
5.0890
0.037
9.051

2.2E-5

Problem set

331

104

662

2261
De1690

1880

0.020

0.853

19985
1.590
0.013
2.636

1 .’;E"S

1

608

188

1216

4125
0.380

3558

0.040

1.623

3969
3.297
0.023
5363

2.2E-5

313
176

1557

6821
2.887

4573

9.057

0.793

3547
1.730
0,027
3.494

4. 1E-5



Table 4( b)

Nos of 1033
rows

No. of 321
columns

No. of 5765

non~-zZeros

Ordering phase

storage 11478
time 18.346
Storage allocation phase
storage 79206
time 0.103

Time to sort 2470
rows of AP

Solution phase

storage 6513
facts time 8.003

soln. time D.040
Total time 28962
Maxe rels 4 45E~-2
error

1033
321

5765

11478
18.423

7906
0.103

2.453

6513
7987
0.040

29.006

30 33“2

-17 -

Problem set

1850

713

10608

26094
40.816

19311

0.260

T+413

17646
27.673
0,110

1

1850
713

10608

26094
40.860

19311

0.263

7.470

17646
27.916
0.103
T6.612



Table 5 Problem
Noe. of 132 360 696
rows
No. of 72 186 352
columns
Nos of 624 1704 3296
non—zeros
Ordering phase
storage 2137 5695 10913
time 0130 0447 0.963
Storage allocation phase
storage 1524 4111 7979
time 0020 0.047 0.093
Time to sort D287 0.940 2.140
rows of AP
Solution phase
storage 1415 4027 8138
facte time 0783 2+.463 5.453
soln. time 0010 0.027 0.057
Total time 1+ 240 34924 B+ 706
Maxe rel. 12E—4 3.2E—~4 6.4E—4

error

- 18 -

set 2

1140

570

5400

17791
1.873

13107

0.157

46350

13787
10.377
0.090
16.847

1 olE"s

1692

840

8016

26329
3.073

19514

0223

B.437

21201
19.010
0.133
30.876

1+5E-3

2352

1162

11144

36527
5.113

27093

0.313

13.783

30361
37.856
0207



Table 6(a)

Noe. of 324
rows

Nos of 100
columns

No. of 1286

non-zeros

Ordering phase

storage 2269
time D177
Storage allocation phase
storage 1931
time 00023

Time to sort 0.837
rows of AP

Solution phase

storage 2176
facts time 2293

soln. time 0017

Total time 3347
Maxes rele. Je«bE—4
error

484

144

18936

3321
0.273

2872

0.040

1.333

3389
J.810
0.023
5.479

6.5E-4

Problem set

676

196

2704

4573
0.377

4000

0.050

1.980

4915
6.087
0.030
8.524

3

900

256

360D

65025
0.547

5305

0.070

3.017

6945
10.683
D.047
14.364

1156

324

1624

7677
0.690

6765

0.080

4.287

8043
14.680
0.063
19.800

3 - 4E-4



Table 6{b)

Npos of 1444 1764
rows

No. of 400 484
columns

Noe. of 5776 70556

non—-zeros

Ordering phase

storage 8529 11581
time 09907 1.157
Storage allocation phase

storage 8442 10357
time D.103 0.127
Time to sort 6420 8.497

rows of AP

Sclution phase

storage 11706 14885

facte time 20213 29,173

solne time 0077 0.100

Total time 272720 35.054
Maxe rel. 2-7E_4 102E*3
error

Problem set

2116

576

3464

13833
1.413

12384
D.157

10.900

18254
39.853
0.120
52.543

303E-4

3

2500

676

10000

16285
1. 653

14623

0,180

15.063

21898
47.199
0. 146
644241

104E-3

2916

784

11664

18937
2.040

17061
0227

19.510

25962
56.769
0173
73.719

2e4E~4



Ihe Peters-Wilkinson algorithm

The P-¥ algorithm is more complicated than the method

of normal egquations and the G-H algorithm in terms of

implementation. There are six phases?

(1)

{(2)

(3)

(4)

(5)

{(6)

Initial LU decomposition ~- +this computes an LU-
decomposition of A as in equation (2.1).

Ordering phase == this determines a symmetric
permutation § for the matrix LTL using a minimum
degree algorithme.

Storage allocation phase —-— after the symmetric
permutation is determined, the data structure for
storing the non—~zeros in SYLYLS is determined and
set ups

Numerically compute the matrix SYLYLS.

Solution phase -- the matrix SVLYLS is factored and
the solution te the normal equations in {25) is
computeds

Back subsitution phase —-— the solution to the orginal
least squares problem is finally computed using the

upper triangular matrix obtained in the first phases

As In the previous cases, the storage and time

reported in each phase in Tables 7(a), 7{b), 8, 9(a) and

9(b)

reflect the minimal storage and processor time

required to successfully execute that phases Note that the
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numerical walues of A are required only in the first
phase. In phases 2 and 3, only the non—zero structure on L
is needed. Thus the storage required for the initial LU-
decomposition can be released by writing the LU
decomposition onto an external file and reading back when
they are needed in phases 4 and 6. This means that the
storage reported in the solution phase only includes the
storage required for LYL; it does not include any storage
required for the upper triangular matrix U which |is
obtained in the initial LU-decomposition. The matrix U
remains on external storage. It is read back in the back
substitution phase. Thus, the times reported in phases 4

and 6 include some I/0 overhecad as wella



Table 7(a)

Nos» of 219
rows

Nos. of 85
columns

Nos of 438

non-zZeros

Initial LU decomposition

storage 4209
time 0+ 28D
Ordering phase

storage 1670
time 0.130
Storage allocatlion phase
storage 1423
time 0.017
Time to 0550

compute LTL

Solution phase

storage 1483
facte time 0040
solne. time D.013

Back substitution phase

storage 801
time 0.003
Total time 1.033
Maxs rele. 1.0E-5
error

Problem set

958

292

1916

18254
1.217

6473
0.593

5581

0.070

2343

6352
0.287
0.067

J105
0.007

4.584

30 4E“5

- 23 -

331
104

662

6318
0.303

2261
0.197

1384
0.027

0.873

2015
0.067
0.020

1087
0.003
1.490

1.2E-S5

1

608
188

1216

11596
0.767

4141
0.403

3585

0.043

1.467

4005
0.153
0.037

1987
0.007
2.877

3.1E-5

313

176

1557

9252
0.847

7145
5.897

4829

0.063

1.473

3762
D.153
D.043

1861

0.010

3. 486

1 »® 7E"3



Table T{b)

Nos of 1033 1033
rows

Nos. of 321 321
columns

Noe. of 58765 5765

non-zeros

Initial LU decomposition

atorage 32764 32759
time 11.070 11.050
Ordering phase

storage 12470 12346
time 17.900 18.390
Storage allocation phase
storage 8499 8413
time 0.110 0.110
Time to S5.640 5.690

compute LVL

Solution phase

storage 6611 6567
fact. time D283 0.280
soln. time 0.073 D.070
Back substitution phase

storage 56989 5679
time 0.020 0.020
Total time 35.096 35.610
Max. rel. 1.7E~-1 J+8E~-1
error

- 2

Problem set

1850
713

10608

59254
34.710

29674
40. 076

21169
0.293

10. 260

17815
0.987
0.203

11075
0.043
86.572

4093"1

4 -

1

1850
713

10608

59127
34.433

28694
39.289

21123
0.29D

10.217

17743
0.960
0.197

11039
0. 040
85.426

8. SE—I



Table 8

Nos of 132 360
rows

Nos. of 72 186
columns

Nos of ; 624 1704

non~zeros

Initial LU decomposlition

storage 4253 10793
time 04740 2.417
Ordering phase

storage 2809 6599
time Da213 0:567
Storage allocation phase
storage 1836 4626
time 0.023 D.053
Time to 0. 830 1.800

compute LY¥L,

Solution phase

storage 1437 4238
fact. time ﬂoﬂﬁ? 002“7
solne time 0.017 0.053
Back subsitution phase
storage B93 1985
time 0'007 00007
Total time 1.897 5204
Maxe. rel. 1573“2 2'18—3
error

Problem set 2

696

352

3296

20751
7823

12633
1.217

8900

0.107

32630

8277
0-430
0.097

3747
0.013
13.317

8.7E-3

1140

570

5400

33979
18.657

20607
2.303

14569

D.180

65.177

14013
0.817
0.173

6065

0.023

28.330

5.7E-3

1692
240

80156

50223
40226

30209
3.723

21525

0263

9.167

21456
1.490
0.280

8937

0.033

55. 185

2+5E~-2

2352
1162

11144

69855
73.016

41927
62330

29906

0.373

12.746

30576
2.223
J.390

12289

0.043

85.121

2+3E-2



Table 9 a) Problem set 3

Nos of 324 484 676 8500 11586
rows

No. of 100 144 1946 256 324
columns

No. of 12986 1936 2704 3600 4624

non—zZeros

Iinitial LU decomposition

storage 8121 12121 16921 22521 28921
time 0«.447 0+660 D.923 1273 1.587
Ordering phase

storage 22717 3329 4581 6033 7685
time 0163 D260 0373 D.517 0687
Storage allocation phase

storage 1948 2864 3976 5291 5764
time 0023 0,033 D.047 0. 063 D.D83
Time to 1t.163 1.760 2.520 3270 44257

compute LYL

Solution phase

storage 2171 3458 4886 6854 9210
facts. time 00083 00173 00257 00439 00679
solns time 0.023 0.040 0.053 0. 083 D.117
Back subsitution phase

storage 1107 1611 2211 2907 3689
time 0.003 0.007 0. 007 0. 007 0.010
Total time 1.805 2933 4.180 5643 T.411
Maxes rele. 5.0E-4 4+5E—-4 2+:6E-4 8,7E-4 9,.8E~-5
error
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Table 9(b) Problem set 3

Noe. of 1444 1764 2116 2500 2916
rows

No. ot 400 484 576 676 784
columns

No. of 5776 7056 8464 10000 11664

non—-zeros

Initial LU decomposition

storage 36121 44121 52921 62521 72929
time 22030 2470 24957 J.510 3.030
Ordering phase

storage 9537 11589 13841 16293 18953
time D.800 1107 1.463 1.5640 1.937
Storage allocation phase

storage 8428 10248 12354 14592 17040
time 0.107 0,127 0.160 0.193 D.217
Time to 5320 6627 8.263 94523 11.140

compute LYL

Solution phase

storage 11650 14428 18183 21899 26229
facte time D.883 1160 1.833 2.130 2917
solnes time 0143 0.183 D.247 0.283 D.357
Back subsitution phase

storage 4587 5571 6651 7827 2103
time 0.013 0.013 0.020 0.017 0020
Total time B.396 11.687 14.943 17. 296 21.618
Maxs rels 4‘1E"4 501E‘4 9o95"4 304E"4 9098-4
error
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The following table is a summary of the numerical
experiments. The columns labelled "max. store¥® and "total
time™ in each algorithm represent the maximum storage and

total time (in seconds) required to successfully execute the

whole algorithme

Table 1D Summary
normal G—-H P-v
Nos Noe Nos egqua tions algorithm algorithm
of of of
rows cols non-— maxe total maxe total maxs total
zeros | store time | store time | store time

219 85 438 1642 0.693 1642 1.436 4209 1.033
958 292 1916 6461 3260 5461 89.051 | 18254 4.584
331 104 662 2261 1.147 2261 24636 6318 1.450
608 188 1216 4125 220692 4125 5363 | 11596 2877
313 176 1557 6821 2.594 6821 3.494 9252 3.486
1033 321 5765 | 11478 25.176 | 11478 28.962 | 32764 35.096
1033 321 5765 | 11478 24.734 | 11478 29.006 | 32759 35.5610
1850 713 10608 | 26094 52.650 | 26094 76272 | 59254 86.572
1850 713 10608 | 26094 52.217 | 26094 76.612 | 59127 85.426
132 72 624 2137 0.791 2137 1.240 4253 1.897
360 186 1704 5695 2+260 5695 3.924 | 10793 5.204
696 352 3296 | 10913 4.630 | 10913 B.T706 | 20751 13.317
1140 S70 5400 17791 T«857 | 17781 16.847 | 33979 28.330
1692 840 8016 | 26329 12.307 | 26329 30.876 | 50223 55.185
2352 1162 11144 | 36527 18B.001 | 36527 57.272 | 69855 95,121
324 100 1296 2269 1.489 2269 3.347 8121 1.908
484 144 1936 3389 2296 3389 5.479 | 12121 22933
676 196 2704 4918 3.389 4915 8.524 | 16921 14.180
900 256 3600 6945 4.683 6945 14.364 | 22521 5.643
1156 324 4624 8043 6.086 9043 19.800 | 28921 T.411
1444 400 5776 | 11706 7573 | 11706 27.720 | 36121 9.396
1764 484 7056 | 14885 9.600 | 14885 039.054 | 44121 11.687
2116 576 8464 | 18254 11.333 | 18254 52.543 | 52921 14.943
2500 676 10000 | 21898 13.711 | 21898 64.241 | 62521 17.296
2916 78B4 11664 | 25962 16.056 | 25962 78.719 | 72929 21.618

averajge e»seo
1154 402 5034 | 12605 11.468 | 12605 26.620 | 31224 22.090
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Ve

Concluding remarks

Following are some observations about the

experimentse.

(1)

(2)

3)

4)

(5)

(6)

The storage requlrements for the normal eguations and
the G-H algorithm are the samee. This is not surprising
since the basic steps in these two algorithms are the
same. Recall that the Givens rotations used in the G-H
algorithm are not saved.

The storage requirements for the method of normal
equations and the G—H algorithm are better than the P-W
schemes. The minimal storage required to successfally
execute the P—-¥ algorithm can be 2 to 3 times that
required for the other two methodse.

The method of normal equations executes much faster
than the other two methods.

¥Vhether +the P~-¥ algorithm or the G-H algoritha is
faster seems to be problem—-dependent.

In the P-¥ algorithm, the most expensive phases are the
computations of the LU~decomposition of A and normal
eguations. The storage requirement and the execution
time are large in the initial LU-decomposition phase.
On the other hand, the most expensive phases in the G-H
algorithm are the sorting and reduction phases.

Among the test problems we have tried, the method of
normal equations is apparently the most accurate
method, except for some test problems in the first set.
( See Tables 1{b), 4(b) and 7(b)). However, if we
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ignore the normal eguations, then the G—-H algorithm
glives, in general, more accurate results than the P—-¥W
algorithm.

{7) It is interesting to note that the storage required to
determine the non—zero structure and store the non-
zeros of the Cholesky factors of the normal equations
in (1.3) and (2.5) are very close. This suggests

that AYA and LYL may have similar structure.

The above observations suggest that if numerical
stability is not important, the method of normal equations
should be seriocusly considered because of its small storage
requirement and execution time. However, since there exist
problems in which the normal equations will fail due to
numerical difficulties ( for example, consider the first set
of test problems), the G—H algorithm should be used in those
situations if the available storage is restricted and time

is not a major issue.

Note that it is assumed in the method of normal
equations and the G-H algorithm that 1f the matrix A is
sparse, then the matrix product ATA is also sparsee. 1r it
is not the case, these two methods are likely to be
ineffjicient, However in most of the latter cases, this
phenomenon is due to the presence of a few relatively dense
rows in Ae George and Heath have proposed a solution in
[4]. Those dense rows are temporarily discarded, yielding a

problem in which AYA is sparse. After the solution x to
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the

modified least sqguares problem is determined, the

solution to the original problem can be obtained by

modifying x wusing those discarded rows (see section 5 of

[4]

VI.

{1]

[2]

[3]

(4]
(5]
l6]
[7]
(8]

{9]

for details )e
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