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Abstract

This paper is concerned with sets of infinite strings
(w-Tanguages) and mappings between them. The main result is that there
is an algorithm for testing the (string by string) equality of two
homomorphisms on an w-regular set of infinite strings. As a corollary
we show that it is decidable whether two functional finite-state

transducers define the same function on infinite strings (are w-equivalent).



0. Introduction

Infinite strings and sets of them (w-languages) have been
extensively studied, see e.g. Eilenberg (1974), Cohen and Gold (1977).
Finite transducers on infinite strings were considered by Boasson and
Nivat (1979).

Our main interest here is testing the equivalence of finite
transducers on infinite strings. We consider finite transducers with
accepting states (for precise definition see Section 2). It is known
that for finite transducers (rational transductions) the equivalence on
finite strings is undecidable in general but decidable for functional
transducers (Berstel, 1979). The latter result holds even when the
domain is restricted to a context free language (Culik 1979). Our main
goal is to prove analogous results for finite transducers working on
infinite strings (but we do not consider any domain restriction). The
equivalence of two finite transducers on finite strings implies also
their w-equivalence, however the converse does not hold since two
w-equivalent transducers might produce their outputs at different speeds.
Thus w-equivalence is a necessary condition for equivalence but does not
easily reduce to it.

In Section 2 we show some auxiliary results on deterministic
w-reqular languages. In the next section we extend the techniques from
Salomaa (1978), Culik and Salomaa (1978) and Culik (1979) and show that the
‘(string by sfring) equiVaiénce.o% twd homomorphisms on an w-regular set is
”dééidab1e.r Then‘we show that the w-equivélence prob]em for functional

transducers reduces to it. Finally, we note that the undecidability of



the w-equivalence for nondeterministic finite transducers (or gsm) easily

follows from the undecidability of their equivalence.

1. Preliminaries

Our basic terminology is a mixture of (Eilenberg, 1974) and
(Cohen and Gold, 1977).

For a finite alphabet I , let I* be the set of finite
strings over I , t¥ the set of infinite strings over I , and
27 =52 U ® . The empty string is denoted by e , the length of a

string w in I* by |w]

We consider two classes of subsets of I (w-Tanguages):
w-regular and deterministic w-reqular w-languages. We write a

(nondeterministic) finite state automaton as M = (K, %, &, dg° F) ,

where K is a finite set of states, I 1is the input alphabet,

§ : Kx I~ 2K is the transition function, g € K is the initial state
and F ¢ K {is the set of final states. For a ¢ 2¥, o= 3p2q35- -+ 5
and an infinite sequence r = PgP1Pp- - of states Py € K ; we say that

r isarunof M on o if p,=gq, and p. € 8(p; ;, a, ,) for
0 0 i i-17 7i-1

i=>1. For an infinite sequence of states r = PgP1P2- - > the set
of states that appear infinitely many times in r is denoted by INS(r) .

The w-language accepted by automaton M s defined as

LM) = {a@ ¢ ¥ | there is a run r on o such that INS{(r) N F # ¢}.

In the notation of Cohen and Gold (1977), L¥(M) = TZ(M) : in
the notation of Eilenberg (1974), L®M) = M| .



An w-language is w-regular (deterministic w-reqular) if

L = L(M) for some finite state (deterministic finite state) automaton
M . We refer to Eilenberg (1974) and Cohen and Gold (1977) for the

basic properties of these two (distinct) classes of w-languages. A set

oo}

Lcx is «-regular (deterministic »-regular) if L N £* 4s a regular

language and L N ¥ is an w-regular (deterministic w-regular)

w-language.

Amap g : > A7 s a proper homomorphism if g(Z) c a* ,

g : Z* > A* s a homomorphism and g(aoa]az...) = g(ao)g(a])g(az)...
for every w-word Apqds - - - ¢ 2% For g : N , We write

lg| = max{|g(a)] | a € z}.

A proper homomorphism g : > AT ds effectively given by

listing g(a) for all a €z . An w-regular language L is effectively

given by giving a finite state automaton M such that L = L®(M)

When o,y ¢ £, we write a < Yy to mean that o 1Js a prefix

of vy . When v € £* , we denote the string wwv... by ¥

For basic notions in formal languages see Salomaa (1973).

2. Deterministic w-reqular w-languages

Here we state three simple results that will be needed later.

The first lemma is probably known but we have found no reference.

Lemma 1 Deterministic w-regular w-languages are effectively

closed under intersection.



Proof: Let M, = (Ki’ Ly 855 Qg Fi) , 1=1,2 , be two
deterministic finite state automata. Define M3 = (K3, T, 63, d3q> F3)
by

= {0,1,2} x K] x K

N
1

2

{2} x K1 X K2

-n
1]

930 = (0> 9390 9z
85005 ay5 9y)5 @) = (3", a7, ay)
if q% = Si(qi’ a) for 4§ =1,2

and j' = m(j, a) s qé) ,

where the function = : {0,1,2} x K] X K2 + {0,1,2} 1is defined by

m(2, p, q) = 0

m(0, p, gq) = 0 if p¢ F
= ] if p ¢ F]

(1, p, q) =1 if q¢F,
=2 if qeF

2

From the definition of m it follows that a run of M3 on
a € £ enters a state in F3 infinitely many times if and only if both
the corresponding runs of M] and M2 on o enter final states
infinitely many times.

Therefore L“(M,) = LM, ) n L%m
3
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Lemma 2 Deterministic w-regular w-languages are effectively closed

under union.

Proof: See Eilenberg (1974).

a
Lemma 3 If g: 7> 4A" is a proper homomorphism then
g'](ﬁn) n ¥ is a deterministic w-regular set.
Proof: 9'1(Aw) n ¥ = LYM) for this finite state automaton
M = (K9 Z’ 69 qu F) : K = {qO, q'l} b F = {qo} 3
8(a;, a) = q if g(a) = ¢, i=1,2;
§(a;, a) = q, if g(a) # e, i=1,2.
a

3. w-equality Sets

Throughout this section we consider two

phisms g,h : £~ > A" ; for s in I* we define

B(s) = [g(s)] - [n(s)]

where |w| denotes the Tength of w ¢ A* . Let

|8] = max{|8(a)] | a ¢ I}

The w-equality set is denoted by E¥

are not understood) and defined as

fixed proper homomor-

the balance of s by

(or E%(g, h) if g,h



E¥%g, h) = {q ¢ ¥ [ g(a) = h(a)} .

For k =1,2,3,... Tlet

= W w
= Ek = {a € E I [B(s)] <k for each s ¢ 1* s < a} U

U { w
O<|v|=k by ek , b,y et [8(s)] = k for each s <t

2

and  [g(y) = v* or h(y) = vw]]

f .

Clearly, EycEjc...cE¥.

Theorem 1 Each Et(g, h) 1is a deterministic w-regular w-language.
Moreover, if k, g and h are effectively given then we can effectively

give a deterministic finite state automaton M such that Et(g, h) = LY(M).

Proof : For v eA*, 0< |v] =k, let D(g, h, k, v) be the set of

the a € ¥ with these two properties:

(1) for each finite s < a we have

g(s) = h(s) or h(s) = g(s)

(2) either (2a) |[B(s)| < k for each finite s <a
or (2b) o=ty , tezx, veiz¥ [8(s)| = k for each
s<t, and g(s1) = v, h(ts1) = g(t)v¥ for each

finite SR

We shall show that each D(g, h, k, v) 1is (effectively) a deterministic

w-regular w-language. Then E s the union of the sets
k



{a e ¥

|8(s)| = k for each finite s <a and
g(s) = h(s) for infinitely many s < a} ,

D(g, hy ks V) N g (8 nn 0 , 0< v =k , and
D(hy g, ks V) N g7 ) N b (0, 0< |v] <k

The first set is deterministic w-regular (this follows from
(Salomaa, 1978), Theorem 2.4); the remaining sets are deterministic
w-regular by Lemmas 1 and 3. Hence the (effective) existence of M
follows from Lemma 2.

The deterministic finite state automaton M] accepting
D(g, h, k, v) works as follows: For an w-word o« on input, M, keeps
comparing the values of g and h on finite prefixes s of a« as
Tong as [B(s)| = k . If and when |B(s)| exceeds k , the tails of

both g(a) and h(a) are matched agains v

Formally, M] has five kinds of states:
(1) the state S(+, ) = S(-, ¢) ,
(i1) states S(+, w) and S(-, w) for each wea*, O0< |w <k,
(i11) states S(+, w, u) for weoar*, O< |w/ <k, usv,
(iv) states S(ug, uh) for u_ =v, u <V

g
(v) the state S(*) (dead state).

A1l states of M] except S(x) are final; the initial state is

S(+, €) = S(-, ) .




The transition function & is defined by

S(S(+, w), S(+, w') if  wg(a) = h(a)w'

[o1]
~—
it

§(S(+, w), a) = S(-, w") if  wg(a)w' = h(a)

§(S(+, w), a) = S(+, w', u) if |wg(a)| > |n(a)| + k ,

for some i =

§(S(+, w), a) = S(ug, u ) if lwa(a)| - |n(

v'u
9

h(a) = wvmuh

g(a)

8(S(-, w), a) = S(+, w") if  wh(a)w' = g(a)
§(S(-, w), a) = S(-, w') if  wh(a) = g(a)w'

8(S(~, w), a) = S(ug, uh) if lwh(a)| - |g(
g(a) = viug

wh(a) = vmuh
§(S(+, w, u), a) = S(+, w', u') if ug(a) = vju
w = h(a)w'

S(S(+, w, u), a) = S(ug, uh) if ug(a) = v'u

- 1 ) > 1 H
6(S(ug, uh), a) = S(ug, uh) if ugg(a) v g

m
uhh(a) viup

g
h(a) = wme.Jh
u

A1l other values of & are S(x) .

It follows from the construction that for x € I*

g(a) =

0, w= h(a)w'

a)l| >k,
for some

for some

a)[| >k,

for some i
for some m
" for some
, W' # ¢

for some i
for some m

for some i

for some m

v

3
Y

i
vVu

, W # ¢

we have
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S(+, w) iff g(x) = h(x)w and |B(s)| = k for each
S =X

= S(-, w) iff g(x)w=h(x) and |8(s)| =k for each
s < X

= S(+, w, u) iff there is t < x , t is the longest
prefix of x such that |B(s)]| < k
for each s =t , h(x)w=g(t) and
g(x) = g(t)viu for some i =0

= S(ug, uh) iff there is t < x , t 1is the longest

prefix of x such that |[B(s)| = k

for each s =t ,

g(x) = g(t)v1ug for some 1 =0, and
hix) = g(t)vmuh for some m= 0 .
= S(*) otherwise

Observe that, in terms of Cohen and Gold (1977), M also
1'-accepts D(g, h, k, v) ; hence D(g, h, k, v) 1s even a reqular
adherence set in the sense of Boasson and Nivat (1979).

Theorem 1 together with the following Theorem 2 enable us to

deal with w-regular subsets of Et effectively.

Theorem 2 If Rc:® is w-regular and R c E%(g, h) then
R g_Ef(g, h) for some k . More precisely, if R = L®(M) for a finite
state automaton with n states then R g_Et(g, h) where

k = n-max(1, [8], [g], [n]) .



Proof:  Take M such that R =L®(M) and M has n states; put

k = n-max(1, [8], |g|, |h|) . Choose any o ¢ R . If |B(s)| =k for
each finite prefix s of o then a ¢ Ei . Otherwise, there is y =< a
such that  [B(y)| > k ; take the shortest such y and write o = Yoy

“ | We have 18l+lyl = |8(y)] >k =n-|g] and so |y|] >n. It

OL]EZ
follows that y = tuw with 0 < Jul =n, B(u) #0 and tujwa] €R
for each j =10 .

First assume 8(u) >0, i.e. |g(u)| > [h(u)| . Let
Y = uwo, and v = g(u) . If h(u) = € then h(tWa1) = g(tujwa]) for
all j , hence g(y) = v and therefore o ¢ Et . If |h(u)|] >0 then

for every s in I*, s <y there are j =0 and x € £* such that

o(tu™) = n(euPs)x , |n(t)] = 5in(w)] . g(t) = n(tud) and |g(u)]

t

divides j . Hence jlh(u)| = i|g(u)| for some i , and by Lemma 4

below (with aj = h(t) , by =h(u)) , ¢ = h(s)x , a,=g(t),

by = g(ui) » Cp = g(uz(j'i))) we get h(ts) = g(tqu) . Therefore
g(ty) = h(ty) = g(tu®) , and g(y) = g(u®) . Thus either g(y) = V¥
(hence o ¢ Ei) or g(y) € aA* . We show that the latter is impossible:
if g(y) € A* then there are s € I* and ay € ¥ such that o = tsa2 s
g(ts) = h(ts) and g(az) = h(az) = ¢ . Since tusa, € R, we get
g(tus) = h(tus) , in contradiction with

l9(tus)| = Ig(ts)] + |g(u)| > [n(ts)| + [n(u)| = [n(tus)| .

Finally, if B(u) <0, i.e. |g(u)| < |n(u)| , then the same

argument shows that  h(uwa,) = h(u)® , hence a ¢ EE .-

10
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Lemma 4 If a]b1c1a2b2c2 € * | a] < azb2 s a2 =< a]b1 s

2 2
a;bycy = asbsc, and lb1| = [bzl then a;cq = a,c, .

Proof: Without loss of generality, assume a; = a,, i.e. 3y = AW,

w € ZI* . Since a1w < a]b] , we have b] = WU, Uu€z* ., Next

a1by = asb, 5 50 b, = uv , and |v| = |w| . Now

- 2. _ 2
a;wuwuc, = alb]c] = a2b2c2 = a]wuvbzc2 R
hence v = w . Since a;wuwuc, = a wuwuwe, , we get Cq = WC, and

a1c] = a1wc2 = a2c2 .

a0
Corollaries to Theorems 1 and 2 :

Corollary 1 If the set E”(g, h) is w-regular then it is deterministic
w-regular.

0
Corollary 2 For given finite state automaton M and two homomorphisms
g and h , it is decidable whether or not g(a) = h(a) for each
a € L¥mM) .
Proof: By Theorem 2, g(a) = h(a) for each o 1in L®(M) if and only if

L(M) E_Ef where k = nemax(1, [8], |g|, |h|) and n is the number of
states in M . By Theorem 1, Eﬁ = Lw(M]) for some (deterministic)
finite state automaton M, . The property LL(M) g_Lw(M]) is

effectively testable by (Cohen and Gold, Th. 2.2.5).
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4. Finite State Transducers

In this section we Took at the infinite behavior of finite
state transducers. We write a (nondeterministic) finite state fransducer
as T = (K, Z, A, S, dq> F) , where K is a finite set of states, I
is the input alphabet, A is the output alphabet,

§ : Kx (z U {e}) » ZKXA* is the transition (and output) function,

9g € K s the initial state and F c K 1is the set of final states. If

@« €L ,a-= 338500 5 @, €L U {e} for iz20,vyean ,

= * ; = i
Y = UgUqUpeen s U € A* for 120, and r PgP1Po- - is an

infinite sequence of states P € K, wesay that r dis a run of T on

o with output y if Py = 99 and (pi, ui_]) € 6(pi_], ai_]) for

i=1 3 in symbols we write o & Y .

Now we will introduce two relations R (T) and R(T) defined

R™(T) = {(a, v) € 57 x A7 | « £y for some run r such that

INS(r) N F # ¢} >

R(T) = R™(T) N (2% x 2%)

The relation R (T) describes the behavior of transducer T on both
finite and infinite strings, the relation RY“(T) on infinite strings only.
Note,however,that the range of R“(T) might contain finite strings,

because T might read infinite input and produce empty output.
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The analogue of Nivat's factorization theorem (Eilenberg 1974,

Theorem IX.2.2) takes this form:

Theorem 3 For a set A g_Zw x A" , two conditions are equivalent:
(i) A =R(T) for a finite state transducer T ;
(1)  there is an w-regular set B g_Fm and two proper homomorphisms

g : > 1™ and h 1" such that

A= {(g(y), hiy)) | v € B}

The following Temma is easy to verify.

Lemma 5 Let g : £+ 2" be a proper homomorphism. If R g_Zm is
w-regular then g(R) E_Am is ow-regular. If R g_AOo is c-reqular then

9'](R) c $° is w-regular.

d
Theorem 4 If T 1is a finite state transducer, then the domain and the
range of R7(T) are wo-regular sets.
Proof: Follows by Theorem 3 and Lemma 5.

0

Moreover, the domain and the range of R (T) can be effectively
given when T is effectively given (because the constructions in
Theorem 3 and Lemma 5 are effective); this fact will be used in the proof
of Theorem 5.

A finite state transducer T 1is called functional if the.re1ation

co

R(T) ¢ 1= x &” is a partial function from = to A~.
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Theorem 5 There is an algorithm to decide, for two given functional

finite state transducers T, and T, , whether Rw(T]) g_Rm(TZ) .

Proof: Let T, = (K;s 2, 8, 645 9505 F2) 5 1 =1,2. Let X be
another copy of A , disjoint from A ; the correspondence between A*
and (A)* will be written as x » X , X € A* . Define two proper
homomorphisms g,h : (A UZ)” + A" by g(a) =a, g(3) = h(a) = ¢ and
h(a) = a for a €A

We shall construct a finite state transducer T3 such that
R%(T)) R™(T,) if and only if

(i) the domain of Rm(T]) is contained in the domain of

R™(T,)

and (i1) g(a) = h(a) for each a 1in the range of Rw(T3) .
This together with Corollary 2 (in Section 3) and Theorem 4 establishes

the result.

The transducer T3 simulates the simultaneous operation of T]
and T2 and produces their two outputs intermixed (the outputs are then
separated by g and h).

Formally, we define Ty = (K3, I, AUA, 63, 430 F3) where

K3 = {0,1,2} x K1 X K2
F3 = {2} x K1 X K2

To define 63 » first define two other functions 54 and 65 ; the
formula for 6, employs the function = : {0,1,2} x Ky x Ky = {0,1,2}

defined in the proof of Lemma 1.
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Let

%) |

54005 s a0, a) = {(nld, 0] az)s af» ay), x,

(qi, Xi) € Si(qi’ a) for i = ],2} ,

a€zuU{e};

1]

85((3s a75 9,), a) ¢ for a €z ;
85((0, a5, a,)5 €) = {((J, q1s Gpls xq) |
(qi, x]) € 6](q1, e) and either
[of ¢ F, and j=0] or [q} ¢F, and j=1]}
010, 0y a3y %) | {age xp) € oplays )} 3
o501 aps a0 ©) = {((1 afs a), %) | (g x)) € 8 (ap, o))

u {((j, Ays 95)s X5) | (a5, X5) € 85(gy, €)

and either [qé ¢ F2 and j = 1] or
[q2 € F2 and j = 2]} ;
s5((2, a5 8)5 20 = {00, 0t p) x)) | Lafa x)) € 8(ay, )
0 {100, 0y 930, ) | (30 7)€ 8ylays 00}
Finally, Tet

63(p, a) = 64(p, a) U 65(p, a) for p €K a €U {e}

3 b
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The definition of d3 and F3 ensures that if

r= (gs 902 900y 9975 9990055 g5 Gpp) oo is @ runof T5 on
a €I and r and r, are the corresponding runs of T1 and T2 on
@, then INS(r) N Fy# o ifF INS(r)NF #¢ and ~

INS(rz) n F2 £ ¢ . Therefore T3 has the desired properties and the

proof is completed.

Corollary 3 Given two functional finite transucers T] and T2 , 1t
is decidable whether Q”(T]) = R“(TZ) )

Proof: The decidability of inclusion implies the decidability of
equality.

il

We say that two finite transducers T] and T2 are

w-equivalent if Rw(T1) = R“(TZ) .
Corollary 4 The w-equivalence problem for functional finite
transducers is ‘decidable.
Proof: Follows from Corollary 3 and the following lemma, which
says that finite transducers on infinite strings are closed under the
restriction to an w-regular set.

a

Lemma 6 Let T = (K, z, A, 6§, dg> F) be a finite transducer and

Lc s an w-regular set. Then we can construct a finite transducer

T, such that Rm(T]) = R(T) n (L x &™) .
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XK 0 (e 0] co

Proof: As in Theorem 3, find T , g : T =+3% ,h:T -A and

B c I such that R (T) = {(g(y), h(y)) | v € B} . The set

g'](L) g_rw is «-regular by Lemma 5,-and B N g_](L) g_Pw is w-regular
because w-regular sets are closed under intersection (Eilenberg, 1974;
Chapter XIV). Since R™(T) n (L x &%) = {(g(y), h(y)) |y € B n g ' (L)} ,

the result follows by Theorem 3.

We conclude this section by showing that the w-equivalence is

undecidable for general finite transducers, even for gsm as defined in

(Salomaa, 1973).

Theorem 6 The w-equivalence problem for (nondeterministic) gsm is
undecidable.
Proof: Consider any gsm M = (K, £, A, 6, dgs F) . Modify it to M'

so that M' = (KU{f}, zU{#}, AU{#}, &', dg> {f}) where f ¢ K,
#¢IUA,and & is extended to &' by (f, #) € 8'(q, #) for each
q€F , (f, #) € d'(f, #) .

Clearly M] and M2 are equivalent iff Mi and Mé R
constructed as above, are w-equivalent. That completes the proof since
the equivalence for (nondeterministic) gsm is undecidable (Berstel, 1979).

a
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