Another Experiment with Teaching of
Programming Languages
by
Farhad Mavaddat

Research Report (CS-80-40
Department of Computer Science
University of Waterloo

September 1980

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada

N2L 3Gt

Another Experiment with Teaching of
Programming Languages
by
Farhad Mavaddat

Research Report CS-80-40
Department of Computer Science
University of Waterloo

September 1980

ANOTHER EXPERIMENT WITH TEACHING OF PROGRAMMING LANGUAGES

by

FARHAD MAVADDAT

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada

ABSTRACT

The key issue in successful teaching is that of keeping
the interest of students alive. In a first course on
computer programming, this can be achieved by presenting
interesting problems of reasonable complexity early in the
course. This is often a difficult task, as most of the
common programming languages used for instruction are
intangible and therefore cumbersome to master before any
serious programming may start.

Here a simple and tangible programmable machine is
introduced. It is shown that important programming concepts
can be defined and exercised in terms of possible operations
on this machine. It is also shown that a seemingly
difficult problem can be solved by novice programmers within
the first few sessions of an introductory course.

Farhad Mavaddat -2-

INTRODUCTION

Any reasonable introduction to computer programming
should focus on at least two objectives. The first is
destructive in nature and consists mainly of undoing the
popular 1image of computers created by the vast and often
misleading influence of the media and of people uninformed
about computing. It should be achieved by showing that a
digital computer is nothing but a fast and obedient servant,
capable of following exactly the instructions presented to
it by its human master. The 1instructor should emphasize
that a computer will obey all such instructions and nothing
but those instructions. It is only based on this shattered
image that the instructor is able to get into constructive
programming and, to the student's surprise, show that many
of his original beliefs have in fact been true and possible,
though in a different way.

It 1is unfortunate that many first courses on computer
programming deal only with the destructive aspects and leave
the constructive side to subsequent courses. This may not
be so serious for those who are required by the nature of
their studies to take additional programming courses. But
it does have serious consequences for those who don't get
the chance to go through any such additional courses. They
are left with a faulty image of what computation is and are
ignorant of its 1inherent power beyond that of a number

cruncher.

Farhad Mavaddat -3-

Based on these observations I have been examining ways
of bringing some of the constructive aspects of computing
into a first course on computer programming. The favourable
results of one such experiment were reported in [1]. This
paper deals with a second technique which can be applied to
less sophisticated students or can precede the method of [1]

for a more mature audience.

Farhad Mavaddat -4-

OBSERVATIONS

Both experiments are based upon the observation that
in most first courses on computer programming the instructor
sets himself the task of simultaneously teaching two rather
distinct concepts, namely "algorithmic design" and "language
machines”.

By the knowledge of "algorithmic design" I mean the
body of programming know-how shared by all programmers
regardless of the 1language in which they are programming.
It is what aids (does not have to be re-learned) any
programmer fluent in one programming language in learning
another distant language, without going through all that is
required for a novice to programming.

By any "language machine" I mean those concepts
peculiar to any given language, usually defined through its
syntax and semantics. It 1is important to note that
"language machines" are the vehicles by which "algorithmic
design” concepts manifest themselves and as such they are
inevitable to any discussion of algorithmic concepts.

The point that I would now like to stress is that the
choice of real "language machines" such as Fortran, Algol,
or Pascal 1is often inappropriate as the wvehicle for
introducing algorithmic concepts. The student must absorb
too many concepts and details before being able to start any
constructive thinking, something which is beyond the time

tolerance of most fashionable, term-oriented courses.

Farhad Mavaddat -5-

One solution to this problem is that of looking for new
programmable machines which are more tangible, less
complicated, and therefore more suitable as a vehicle for
discussing the "algorithmic design" concepts. Such a
"language machine" would be considerably simpler to master,
and if it has certain necessary pre-requisites then the
instructor would be better able to show some of the
constructive power of programming early in the course. One
such machine was reported in [I1]. In the rest of this
paper, we shall study another such machine that I have used

with reasonable success.

Farhad Mavaddat -6-

The Maze Machine

The aim in programming a maze-machine is to supply a
sequence of instructions (a "program") which will take a
person though an arbitrary maze from a "start" point to an
"end" point. To do this we must assume a maze exists and
must list the instructions which a person walking the maze
can understand and obey.

Towards the first point, students are given a number of
maze configurations. A typical maze is shown in Figure (1).
The "start" position and orientation of the person are also
shown. Students are told that the person walking through
the maze is capable of understanding and executing only two

instructions: STEP and RIGHT. A person obeying the STEP

instruction advances in his present direction by one unit of
the maze without changing his direction. He will turn to
the right by 90 degrees, without changing his position 1in
the maze, upon execution of the RIGHT instruction. We will

refer to STEP and RIGHT as "basic capabilities".

. Formulations of the maze problem wusing other basic

capabilities are discussed in Appendix I.

1. Sequencing

At this point students are asked to write a sequence of
instructions (a program), using only basic capabilities
which, when obeyed by the person, will guide him from the
"start" to the "end" point of a specific maze (see Fiqure

(2-a)). By wvarying the maze and/or the set of basic

Farhad Mavaddat -7-

capabilities (see Appendix I), the importance of following a

particular sequence of instructions can be emphasized.

2. Procedures or Subprograms

After seeing only a few programs students are already
aware of the need for more power ful instructions.
Repetitive use of three RIGHTs to perform a "left" and of
consecutive STEPs for multi-step forward movement 1is a
nuisance which gives the instructor the occasion of
permitting them to use such more powerful instructions.
Nonetheless, by way of pointing out that the person's basic
capabilities are not changed, students are required to
describe these more powerful instructions by separate
smaller ©programs (subprograms). Such subprograms are
referred to as "extended <capabilities". It is explained
that the person obeying these instructions is required to
search a list of such extended descriptions on encountering
an instruction that he does not recognize as one of his
basic capabilities. If such an extended definition is found
he is required to obey it and, upon completion, returning to
the instruction following the "extended capability". Return
to the calling point can be accomplished by use of the END
instruction in the subprogram.

The reader should now appreciate the ease with which
the concept of a subprogram can be introduced this early in
the course. Those who prefer top-down approach can also

benefit from this by proper reversal of the presentation

Farhad Mavaddat -8-

sequence. Figure (2) shows the basic program and its more

interesting form, in which extended capabilities are used.

3. Looping

So far things have been rather dull. The first step
towards eliminating some of this dullness can be
accomplished by writing programs for mazes with repetitive
structure.

Figure (3) shows one such maze, consisting of three
repetitions of the maze in Figure (1). The use of a do n
times ... construct in this paper is quite arbitrary, and
in fact the instructor will be better off using a construct

more similar to the one that he intends to use for the main

language of the course.

4, Conditional Statements

If the programmer, when writing his program, 1is not
aware of the number of repetitions required, or if he wants
to write it for a class of mazes with a varying number of
repetitions of the same format, then he must expect from the
person executing his instructions some co-operation in
inspecting the maze and in returning information about it to
his program.

This 1is a very important concept which will be used
later when generalizing the maze algorithm. But for the
time being it is sufficient to expect that the person be

able to realize, at least, if he is out of the maze or not.

Farhad Mavaddat -9-

Representing this by the boolean basic capability ouT?, the
program can be generalized into any number of repetitions.
Figure (4) shows one such program for any number of

repetitions of the maze shown in Figure (1).

5. Extension of Boolean Capabilities

For the sake of unifomity we also allow the students to
write extended capabilities of boolean type. Under this
scheme an extended capability will return to the calling
program with a TEND statement if the condition under
investigation is found to be true. Similarly it will return
with a FEND statement for false cases. Figure (5)
introduces a new extended capability, namely IN?, which is
the complement of the basic capability OUT?. It is further
used for writing the maze program of Figure (4) in a new

way, as shown in Figure (5).

6. Generalized Maze Algorithm

As the last step in the process of building more
general algorithms, students are asked to write a program
which will guide the person through any maze subject to the
existence of at 1least one path between the start and end
points. Compared to the steps taken so far this is a giant
step and will probably shock some of the students
(especially the more intelligent ones). The fact is that it
is possible and can be managed rather easily (though perhaps

not very efficiently) with the capabilities which have been

Farhad Mavaddat -10-

discussed so far, supplemented by one other basic capability
which will be introduced now.

In Section (4) we discussed the need for testing a
property of the maze and feeding the results back 1into the
execution sequence of the given algorithm. Now we require
that a person also be able to inspect the possibility of
further progress in the maze by one unit in the direction he
is currently heading. This new basic capability will be
represented by the boolean basic capability FRWD?. With
this added capability students should be able (in principle)
to write a program which will guide a person through any
unknown maze.

For those who <can not write such a program on their
own, the instructor may describe the "right hand" algorithm
which enables any person to cross an unknown maze by
constantly trying to keep in touch with the wall on his
right (or left) side while walking forward. An
implementation of this rule using the capabilities discussed
so far is shown in Figure (6).

Subroutines RSTEP? and LSTEP? respectively test

whether stepping to the right or left is possible. They do
not affect the position or orientation of the person.
Subroutine RET performs a 180 degrees rotation without
affecting the person's position.

The main algorithm always tests the possibility of

stepping to the right, forward, or to the 1left, in this

Farhad Mavagdat -11-

order and steps in the first possible direction (the right
hand rule). After each step a test is made for the

possibility of having exited the maze.

7. Summary

The material in this paper has been presented in the
order in which I usually present it in class. The number of
lectures varies according to the level of the students and
is wusually between two and six lecture hours. Some obvious
details and personal touches have been left out. They are
the sort of thing which should be worked out according to
the taste and style of the instructor.

Undoubtedly the most important step in a student's
progress is that of writing the general program in
traversing a maze. It 1is precisely here that the
constructive side materializes and it is very important that
the instructor emphasize the fact of constructing apparently
very intelligent machines out of .very unintelligent and
sometimes dull instructions.

A simulation program, displaying the maze and the
movements of the person in it on a video display, has proved
to be a useful tool in teaching of the course and also
debugging of the maze programs.

I believe that both this maze-machine and the one
reported in a previous paper [1] are only two examples of a
probable wealth of useful machines that exist and could be

exploited profitably.

Farhad Mavaddat -12-

References
Mavaddat, F., "An Experiment with Teaching of Programming
Languages", SIGCSE Bulletin, ACM, Vol. 8, No. 2, 1976.

Appendix I
Other possible basic capabilities are { STEP , LEFT},

{ 2STEP, BSTEP , RIGHT } and { LEFT , BSTEP }. Here LEFT

has its obvious meaning and 2STEP and BSTEP are used to step
forward by two maze units or backward by one maze unit,

respectively. The 2STEP, BSTEP, combination is particularly

useful in cases where the person has to be advanced by an
odd number of steps.

Useful exercises can be designed for writing extended
capabilities based on these new basic capabilities.
Finally, it is worthwhile to ask the students to rewrite the
main program for the generalized maze, using the 1left hand

rule.

Farhad Mavaddat - 13 -

NS
Y
E
N

gsx
N\
§§

FIGURE (1) - A typical maze

STEP: LEFT MAIN
STEP; RIGHT STEP3
STEP; RIGHT LEFT
RIGHT; RIGHT STEP?
RIGHT END LEFT
RIGHT STep
STEP STEP? RIGHT
STEP R STEP2
RIGHT STEP e
RIGHT STEP STEP3
RIGHT END STeh
STEP
RIGHT STEP3 EEE$2
STEP STEP STEP
STEP STEP END
RIGHT oTEP
STEP 2D
STEP
STEP
RIGHT
STEP
STEP
RIGHT
RIGHT
RIGHT
STEP
END (b)

(a)

FIGURE (2) - A sequence of instructions to guide a person
through the maze. (a) wusing basic capabili-
ties only, and (b) wusing an extended
instruction set.

- 14 -

Farhad Mavaddat

NN
RN

RN /,./,ﬂ”,,.,/_mw i RN
u,,m,m,W,././ﬁ,,,/f/ ,//uﬁa/w///mw N
S N &

RS N NN

)

//,,. /.///N,.m//w./%
SR
BANNN NN
NS NEXNE
///, W,mm///////w/wﬂ///, //1
R)

N\

\

N |)

D N —ﬂw,./ yvz/w,/ ,,u

W »,%M #/ SN
AW

R
A ‘mw4%wa%mez
N

DO 3 TIMES

STEP3
LEFT
STEP2
LEFT
STEP
RIGHT
STEP2
RIGHT
STEP3
RIGHT
STEP2
LEFT
STEP
END

FIGURE (3) - Apptication of the looping concept to three
repetitions of the maze in Figure (1).

Farhad Mavaddat - 15 -

MAIN

STEP3=—
LEFT
STEP2
LEFT
STEP
RIGHT
STEP2
RIGHT
STEP3
RIGHT
STEP2
LEFT
STEP
OUT? = no—

END

FIGURE (4) - Applying condidiional capability to repetitive
mazes of any length.

IN? MAIN

OUT? 22 STEP3 =y
FEND | LEFT
TEND STEP2

FIGURE (5) - Introducing extended conditional capabilities
through the use of FEND and TEND instructions.

Farhad Mavaddat

RSTEP?

RIGHT
FRWD?
LEFT
FEND
LEFT
TEND

Y

“RET
—

LEFT
FRWD?
RRGHT
FEND
RIGHT
TEND

Y

RSTEP? emm

FRUD? et

Y

LSTEP?
S .-——T

LEFT <

e

RIGHT

L,

END

RET

RIGHT
RIGHT
END

FIGURE (6) - The generalized maze algorithm

	

