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ABSTRACT

Using an automated protocol synthesis system which can handle certain
types of potential design errors such as unspecified receptions, "dead codes”, state
deadlocks, and state ambiguities, we validate a subset of the packet level of the
X.75 protocol recommended by the International Telegraph and Telephone Consu-
lative Committee (CCITT). The problem of the uniqueness of a single, composite
state diagram for the STEs is discussed. The validation procedure identifies a
number of points where the state diagram specification does not completely define
the behavior of the X.75 packet level protocol.
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L. INTRODUCTION

The increasing complexity of communication protocols for computer networks and
distributed systems in recent years has intensified the demand for computer tools for protocol syn-
thesis and validation. One such tool, a synthesizer similar to the one developed by Zafiropulo et
al. [1], allows the designer to construct his protocol in a stepwise interactive manner such that the
synthesized protocol is free from certain types of errors such as unspecified receptions, "dead
codes”, state deadlocks, and state ambiguities. This synthesis tool which is based on a set of pro-
duction rules, can also be used for protocol validation. Indeed, from a given protocol specification,
we can apply the synthesis procedure to construct an error-free copy of the given protocol, and
thus carry out the validation by simply comparing the original protocol specification with the
synthesized one.

In this paper, the validation system using the production rules is employed in a real environ-
ment to validate a subset of the packet level of X.75 as an example of a reasonably complex proto-
col. The X.75 protocol has been chosen because it is a standard protocol for network interconnec-
tion, an area which is currently of widespread interest, and because it is formally specified in state
diagram form and so it can be readily validated. '

We first describe the X.75 protocol and how we interpret its specification for the purpose of
validation. Then we outline the validation procedure and a decomposition method which facilitates
the validation process. Finally the validation results are presented and their significance discussed.

II. X.75 DESCRIPTION

The CCITT Recommendation X.75 [2] is a standard protocol which provides virtual circuit
service for the interconnection of public data networks. The use of X.75 is illustrated in Figure 1,
where a virtual circuit between two DCEs connected to two different packet switching networks
(PSNs) is formed by the concatenation of an X.75, two X.25 and two internal virtual circuits. The
term DTE (Data Terminal Equipment) is used for customer equipment (host, terminal) using the
public network, DCE (Data Circuit terminating Equipment) for access to the source or destination
network switching node, and STE (Signalling TErminal) for network interconnection node
(sometimes called gateway half).

The X.75 protocol is in principle based on Recommendation X.25 suitably adapted to meet
the requirements of a terminal and transit interexchange call control system. The basic system
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structure consists of three levels, the physical. link and packet levels:

1) the physical level specifies the mechanical, electrical, functionai, and procedural interface
characteristics between the transmission media and the signaling terminals (STEs) of the two
networks, and so, it provides a bit-serial, full-duplex, point-te-point circuit for digital
transmission;

il)  the link level consists of the packet transfer procedures which operate over the error-prone
physical circuits and provide a mechanism for reliable transport of packets between the two
STEs; and

iii) the packet level specifies the packet signalling procedures for the exchange of control and
data packets between the two STEs. This level provides facilities for establishing, maintain-
ing, and terminating virtual circuits. Multiplexing of several virtual circuits onto a single
data link, and flow control are also functions of the packet level.

We have only applied the validation procedure to the X.75 packet level protocol without the
Restart and Flow Control procedures. In fact, the term "X.75” is often used in this paper to mean
just this major subset of the X.75 packet level protocol.

From the X.75 document, X.75 consists of a number of procedures which are described in
three ways:

1. A text description of the states of the channel between the two STEs (Section 3 of [2]).

2. State diagrams specifying the packets sent between the STEs and the possible state sequences
(Annex 2 of [2]). The state diagrams describing the Call Establishment, Clearing, Reset, and
Interrupt Transfer procedures are reproduced as shown in Figure 2.

3. Action tables describing the action, if any, to be taken by an STE on receipt of any kind of
packet or upon a certain timeout, and specifying the state the STE enters following the
action (Annexes 3 and 4 of [2]).

Because state diagrams generally provide a more precise protocol description than prose, and
as clearly stated in [2], "Annex 2 defines the states of the X/Y interface and the transitions
between states in the normal case”, we interpret the state diagrams as being the definitive
specification of X.75 and the text description and action tables as providing supplementary infor-
mation to help understand the state diagrams. In a later section, after the normal case has been
validated, we present the discrepancies among the text description, the action table description and
the state diagram specification, and discuss their implications.

With this interpretation, our next task was to derive the logical structure of the STE-X and
STE-Y processes which were to communicate according to the combined state diagrams shown in
Figure 2. This task was necessary because the validation procedure can only be applied to a pair
of separately defined processes. Besides, the protocol specification must be derived in terms of a
pair of local state diagrams in order to implement the protocol.

Whereas the provision of the combined state diagram specification in the X.75 document
implies that one can derive a unique pair of state diagrams from a combined state diagram, an
algorithm for such derivations is not given in the X.75 document. We are thus led to investigate
the existence and construction of such an algorithm.
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II1. X.75 SPECIFICATION IN TERMS OF LOCAL STATE DIAGRAMS

Figure 2a explains the notation used in the X.75 combined state diagram specification. All
transitions in a combined state diagram represent either an STE-X or STE-Y initiated transition.
This is indicated by a label (STE-X or STE-Y) on the arc between each pair of states. Another
label on the arc represents an event type transmitted by the specified STE and subsequently
received by the other STE. This notation apparently implies that each transition in a combined
state diagram is associated with an information exchange between the two processes STE-X and
STE-Y. As such, it can be modeled by a related pair of send/receive transitions in the separate
local state diagrams of STE-X and STE-Y as illustrated in the example of Figure 3a. In this
example, the transition labeled "STE-X” and "Call request” from the Ready state (pl) to the
STE-X Call Request’ state (p2) is transformed into a pair of send/receive transitions, one in
STE-X and one in STE-Y as follows:

1) in STE-X, the transition is from state 1 to state 2 to transmit a Call request packet (denoted
by the negative label -CAR); and

i)  in STE-Y, the transition corresponds to the reception of the Call request packet (denoted by
the positive label +CAR) to go also from state 1 to state 2.

By repeatedly applying this transformation to each transition of a combined state diagram,
the corresponding local state diagrams for STE-X and STE-Y can be simply derived. This deriva-
tion was introduced by West and Zafiropulo [3] with regard to the X.21 state diagrams.

The state diagrams for STE-X and STE-Y derived this way obviously have the same topol-
ogy (as the original combined state diagram) and the "send/receive pairwise” property, i.e. there is
a one-to-one correspondence between a transition transmitting an event in one process and a transi-
tion receiving the same event in the other process. We call such a protocol a "send/receive sym-
metric” protocol.

Using a deterministic algorithm such as the one described above to derive the logical struc-
ture of the two processes, the combined state diagram specification can only model a restricted
class of interactions, namely the symmetric and half-duplex interactions (half-duplex interactions
ensure the ”send/receive pairwise” property). In full-duplex interactions, however, message
collisions are possible (two messages are said to collide when neither is received before the other is
transmitted). Thus, to model symmetric full-duplex interactions, a transition in a combined state
diagram would have to be interpreted either as a pair of send/receive transitions (Figure 3a), or as
a single reception transition (Figure 3b) resulting from a collision. The former interpretation is,
clearly, the normal case. The latter interpretation can only be adopted under the following
conditions:

i) the transmission transition cannot possibly be specified owing to some semantic considera-
tion; and

ii)  the reception transition occurs because of a collision.

We explain these latter conditions for each and every case in the X.75 specification where a
combined state diagram transition has been simply interpreted as a single reception transition in a
local state diagram.

In the Call Establishment procedure (Figure 2b), the transition from ’Call Request’ state p2
(or p3) to the "Call Collision’ state {p5) is interpreted simply as a reception transition from state 2
to state 4 in STE-X (or from state 3 to state 4 in STE-Y), as shown in Figure 4b. We have the
following justifications. First, the companion call request transmission arc from state 2 in STE-X
(or state 3 in STE-Y) should not be specified because it would not make sense for an STE to
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request for a call setup after it received a call request from the other STE; Indeed, it should only
confirm the call request received by sending a Call connected packet. Secend, the reception of a
call request in state 2 in STE-X (or state 3 in STE-Y) can be specified as the result of the
transmission of a call request in state 1 {Ready state) by STE-Y {or STE-X) in collision with the
call request transmission by STE-X (or STE-Y).

Similariy, in the Call Clearing procedure (Figure 2d), the self-loop transition with label "Call
Connected, Data, Interrupt, Flow Control, or Reset” from reception transition from state 11 in
STE-X (or state 12 in STE-Y), as shown in Figure 4a. The companion self-loop transmission arc
from state 12 in STE-Y (or state 11 in STE-X) is omitted as it is, obviously, meaningless to
transmit a packet of any of the above types while in a Clear Request state. This packet can be
received, however, as the result of the transmission of the same packet by the other process in col-
lision with the clear request transmission by the former process.

Likewise, the self-loop transition with label “Data, Interrupt, or Flow Control” from a Reset
Request state (d2 or d3) in the Call Reset procedure (Figure 2d) is also mapped into a self-loop
reception from state 8 in the appropriate diagram, as shown in Figure 4c.

We have, thus, derived the local state diagram specification for the four procedures of X.75,
shown in Figure 4 and simply combined these procedures to form the entire X.75 specification,
shown in Figures Sa and 5b.

It should be mentioned that the effect of timeouts is not specified in the local state diagram
specification of X.75. A transition which may take place after a timeout is simply treated as a
normal transition which may occur as though there were no timeout. We have, therefore, not
addressed the problem of validating the timeouts which are defined to ensure continuing operation
of the protocol when either STE fails to respond to the other within a reasonable time. The
timeout lengths generally depend on the operating environment and the implementations. An
evaluation of the actions taken can only be made after a detailed study of the possible causes of a
response failure. Such a study is beyond the scope of our current validation.

In deriving the specification of X.75, we have faced the same problem of state confusion and
inadequate representation of the combined state diagram model, which has been discussed before
by West and Zafiropulo [3] with regard to the X.21 protocol, and by Belnes and Lynning [4] and
Bochmann [5] with respect to the X.25 packet level protocol. In the next section, we comment on
the state confusion problem from a different point of view, and demonstrate that the current
combined state diagram model can be slightly modified to result in a complete and concise model
for defining symmetric protocols such as X.75.

IV. MODIFIED STATE DIAGRAMS AND STATE CONFUSION PROBLEM

Although by using a nondeterministic algorithm, we have derived the local state diagram
specification of X.75, which, we believe, is correct, a nondeterministic algorithm is generally
undesirable because every time the algorithm is applied to the same combined state diagram, we
have no guarantee that a unique pair of local state diagrams will be produced. Consequently, it is
conceivable that equipment designed by different manufacturers to implement the same protocol
standard may not be compatible. A desirable alternative is, therefore, to modify the combined
state diagram specification such that once a combined state diagram is given, the desired pair of
local state diagrams can be uniquely derived. This can be done by simply distinguishing the two
cases, shown in Figure 3, of a combined state diagram transition. We propose to add a cross mark
(X) to each transition which is to be interpreted as a single reception transition. Thus, assumming
the local state diagram specification of X.75 in Figure 4 captures the concept intended by the X.75
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designer(s) (as we believe it does), the corresponding modified combined state diagrams should be
as shown in Figure 6.

In the previous discussion we have simply viewed a combined state diagram in the X.75 docu-
ment as a superposition of a related pair of local state diagrams, i.e. as a concise specification from
which the local state diagrams can be derived. We did not attach any physical meaning to a state
(or node) in such a combined state diagram. However, according to the X.75 document [2], such a
state is interpreted as a state of a logical channel. We find this interpretation confusing for the
reasons which follow. Indeed, as a logical channel logically interconnects two STEs for the
exchange of information pertaining to a virtual circuit, a logical channel state must have the pro-
perty that both STEs at any time see the same state of the logical channel. But this ’global’ pro-
perty of a logical channel state simply does not exist in a combined state diagram specification, as
demonstrated by the following example. Looking at the Call Establishment procedure in Figure
2b, we see that the transmission of a Call Request packet by STE-X on a "logical channel” in the
Ready state (pl) causes the "logical channel” to enter the STE-X Call Request state (p2). As soon
as such a transmission is initiated, process STE-X enters the ’STE-X Call Request’ state. At that
instant, process STE-Y views the "logical channel” to be in the 'Ready’ state (pl); it will only
enter the state described by p2 when it receives the Call Request packet. Process STE-Y may,
however, enter the 'STE-Y Call Request’ state (p3) if it transmits a Call Request packet before
receiving the Call Request packet from STE-Y. So, when the "logical channel” is said to be in the
'STE-X Call Request’ state (p2), process STE-X views the "logical channel” to be in the *STE-X
Call Request’ state (p2), but process STE-Y may view the "logical channel” to be in one of the
following possible states: i) the "Ready’ state (rl), ii) the 'STE-X Call Request’ state(p2), or iii) the
’STE-Y Call Request’ state (p3). Hence, if we view the state in a combined state diagram as the
state of a "logical channel” then the interpretation of this state is often ambiguous (states in a
combined state diagram represent just states of an individual process STE). To avoid such
ambiguity, we can represent a state of the logical channel by a pair of states of the combined state
diagram, e.g. (p2,rl), (p2,p2), and (p2,p3); The first identifier in the pair indicates the state of
STE-X, and the second identifier, the state of STE-Y. If we want to describe actions in an STE
without imposing any actions on the other STE, we can still refer to states of the logical channel
by simply using a special symbol, say **’, in place of the state identifier of the other STE. For
example, (p2,*) represents the state of the logical channel when STE-X is in state p2, irrespective
of the state of STE-Y (whether STE-Y is in rl, p2, or p3 is irrelevant).

V. OUTLINE OF THE VALIDATION PROCEDURE

The procedure used to validate the X.75 specification, namely validation via resynthesis, is
based on the synthesis rules developed by Zafiropulo et al. [1], which can handle the following
types of errors:

i) unspecified receptions: An unspecified reception occurs when a positive arc that can be
traversed is missing, in other words when a reception that can take place is not specified in
the design. Unspecified receptions are harmful because the implication of an unspecified
reception is that the respective process enters an unknown state via a transition not specified
in the design. As a consequence, the occurrence of an unspecified reception means the subse-
quent behavior of the interaction is unpredictable
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i)  state ambiguities: The pair (x,y) is said to be a stable state pair if a state x in one process and
a state y in the other can be reached with no packet in flight. In such a case, states x and y
coexist (stably) until the next transmission occurs. Now, a state ambiguity exists when a
state in one process can coexist stably with more than one state in the other process. State
ambiguities do not necessarily represent errors, but they are well worth examining as an
indicator of potential errors.

iiiy state deadlocks: A state deadlock occurs when each and every processes has no alternative
but to remain indefinitely in the same state. So, a state deadlock is present when no
transmissions are possible from the current stable state of each process.

iv)  nonexecutable interactions: A nonexecutable interaction is present when a design creates arcs
that can never be traversed (i.e. the receptions specified cannot occur) under normal operat-
ing conditions. A nonexecutable interaction is equivalent to dead code in a computer pro-
gram,

This synthesis procedure is based on a set of three production rules that create only those
arcs needed to prevent unspecified receptions (the reader is referred to [1] for a detailed description
of the production rules and the synthesis procedure). Starting from the initial state, the protocol
designer must specify the transmission transitions and the destination state for each transition,
based on the semantics of the function he is trying to implement. The reception transitions are
generated mechanically by applying the production rules repeatedly for each transmission arc
created. Thus, at the completion of the synthesis process, the protocol specification is guaranteed
to contain no unspecified receptions and nonexecutable interactions. State ambiguities and state
deadlocks can also be detected by maintaining a table of stable state pairs. A test for state
ambiguity can be performed every time a new pair of stable states is generated. A state ambiguity
occurs if there are two or more pairs of stable states containing a common state in one process. A
state deadlock is detected, however, at the end of the synthesis process by the presence of a pair of
stable states with no outgoing transmission arc.

For validation, we simply apply the synthesis procedure described above to generate a good
duplicate copy of the original protocol, i.e. a protocol specification which corresponds to the origi-
nal one, but which is free from unspecified receptions and nonexecutable interactions. This can be
done because the given protocol specification provides us with the transmission transitions and the
destination states (for each transition) to be specified in the synthesis process. Thus, a protocol can
be validated against unspecified receptions and nonexecutable interactions by simply comparing the
original protocol specification with the synthesized one. A protocol specification has no unspecified
receptions and nonexecutable interactions if it is identical to the synthesized specification.
Nonexecutable interactions may be detected at the completion of the entire synthesis process, by
checking if there are any arcs or nodes specified in the original specification but not in the
synthesized one. An unspecified reception may, however, be detected at an early step in the
interactive synthesis process by checking if a generated reception arc is not specified in the original
specification. Clearly, the state deadlocks and the state ambiguities can be detected in the same
way as described previously in the synthesis procedure.

VL. DECOMPOSITION OF THE X.75 SPECIFICATION

The validation procedure presented above becomes less tractable when the protocol
specification to be validated is large and complex. Diagnosis of detected errors may be unwieldy,
and a great deal of time is likely required to generate a large number of redundant arcs in the syn-
thesis process. To facilitate the validation process it is desirable to decompose a large specification



-7 -

into a number of smaller, more manageable components.

We have applied a decomposition method to segment the X.75 specification in Figure 5 into
four components as shown in Figure 7, and validated each component separately to achieve the
"equivalent” result of validating the entire X.75 specification. The decomposition method used is
discussed in detail in the companion paper [6] and so is only briefly presented here.  This decom-
position method has the property that if every component of the decomposed specification has no
state ambiguity, then the entire specification has an UR if and only if a component of the
decomposed specification has that UR. Moreover, if a state ambiguity exists in a component of
the decomposed specification, then any UR in the decomposed specification is also an UR in the
entire specification and state ambiguities in the decomposed specification are the ones from which
other state ambiguities and subsequent URs in the entire specification, if any, originate, i.e. the
latter state ambiguites result from the propagation of the former.

Basically, the decomposition method is based on two common structures, i) the so called
nested structure and ii) the so called sequential structure, of the class of call-based protocols.

i) The nested structure: A protocol specification exhibits the nested structure if a number of
states in the specification can be combined (into a special state called a superstate) so as to pro-
duce two much simpler specifications: the external component and the internal component. As
illustrated in Figure 8a, the external component specifies the interactions among the superstate and
the remaining states while the internal component specifies the interactions among the states within
the superstate, as illustrated in Figure 8a. The rules and conditions for the nested structure
decomposition and their validity are presented in the companion paper [6].

ii) The sequential structure: A protocol specification with some initial state S exhibits the
Sequential structure if it consists of two sequential components which are connected by only a sin-
gle unambiguous stable state (i.e. the interacting processes can coexist stably and unambiguously,
each at this linking state). This state is the final state of the first component (having initial state S)
and also the initial state of the second component. Clearly, the protocol specification can be
decomposed into these two sequential components, as illustrated in Figure 8b.

The overall structure of X.75 is illustrated in Figure 9 in which the circle represents the
superstate in a nested structure and the box represents the first component of a sequential structure
or the final (irreducible) component of the protocol specification. From this illustration, it is clear
that the nested structure can first be applied to the X.75 specification to produce the external com-
ponent "Call Clearing” as shown in Figure 7a where the superstate contains the states from 1 to 10.
The internal component in this decomposition, i.e. the interaction among the states from 1 to 10,
in turn, exhibits the sequential structure (with state 5 being the linking state) and can, therefore, be
decomposed into two sequential components. The first component is the Call Establishment com-
ponent (Figure 7b). The second component, the interaction among states 5 to 10, can be further
decomposed into the Call Reset component and the Interrupt Transfer component owing to the
nested structure as shown in Figures 7c & 7d respectively.

We note that this decomposed specification is very similar to the X.75 specification in Figure
4 derived directly from the combined state diagrams of the X.75 document. This similarity
apparently reflects the *modular’ design of X.75. However, it should be mentioned that the few
additional arcs in the decomposed specification (in Figure 7) are crucial for the validity of the X.75
validation.
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VIIL. VALIDATION RESULTS AND DISCUSSIONS

Applying the validation procedure to the components of the decomposed specification of X.75
separately, we have found a number of protoco! design errors.

- The first error detected is the unspecified receptions of the Call Request (CAR) packet in
state 11 in STE-X and in state 12 in STE-Y. This happens when both STEs are in the initial state
1 and the Call Request (CAR) packet is transmitted in collision with the Clear Request (CLR)
packet (using production rule 1).

- Other unspecified receptions, which occur in the Call Clearing and Call Reset components,
result from the self-loop retransmissions of the Clear Request and Reset Request packets when the
effect of timeout is not taken into consideration. Indeed, as explained below, the timeout self-loop
retransmissions of the Clear Request packet (or the Reset Request packet) may perturb the system
to an abnormal state, (1,11), (12,1), or (12,11), and subsequently give rise to the following
unspecified receptions (URs):

State of STE-X | UR packet || State of STE-Y | UR packet
1 CLC 1 CLC
12 CLC 11 CLC
CAR CAR

Starting in the initial state (1,1), if the STE-X transmits and retransmits the Clear Request
packet while the STE-Y also transmits a Clear Request, then the STE-X will be in state 1 and the
STE-Y in state 11, i.e. a state ambiguity occurs with the STEs now being in stable state (1,11). At
that instant, if the STE-Y transmits a Clear Confirmation, and STE-X transmits a Call Request,
then this will cause an UR of the CLC in state 1 in the STE-X and an UR of the CAR in state 11
in STE-Y. Symmetrically, we can see the occurrence of the stable state (12,1) and the subsequent
UR of the CLC in state 1 in STE-Y and the CAR in state 12 in STE-X. On the other hand, if
both STEs transmit and retransmit the Clear Request packet from the initial state (1,1), then
stable state will be reached, giving rise to the URs of the CLC in state 12 in STE-X and state 1
in STE-Y.

It may be argued that these state ambiguities and URs could have been prevented should the
timeout effect be taken into account, e.g. a timeout interval greater than the maximum packet
delay can ensure that a CLR would not be retransmitted unless a CLR or CLC gets lost. How-
ever, in the case where a CLC packet gets lost, perturbation from the normal interaction may force
the STEs to loop back and forth between the two states (11,1) and (1,12) with no progress.
Indeed, in state (11,1), STE-Y may transmit a CLR which arrive at the STE-X before STE-X
timeouts to retransmit a CLR (the timeout interval is long). The STEs are subsequently in state
(1,12). A CLR may then be transmitted by STE-X to get the STEs back to state (11,1). The
timeout interval for STE-Y is reset again; and so the system of two STEs may flip flop forever
between states (11,1) and (1,12), causing tempo blocking.

Similar results are obtained for the Call Reset component. We found the following URs:
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State of STE-X | UR packet || State of STE-Y | UR packet
5 REC 5 REC
10 REC 9 REC
INT INT
DAT DAT
FLC FLC

It is important to point out, however, that retransmissions of the CLR and RER packets (in
state p6 (or p7) and state d2 (or d3) as specified in the combined state diagrams of Figure2c and 2d
respectively) are only optional according to the action table description in Annex 4 of the X.75
document [2]. One can alternatively choose to wait indefinitely in state p6 (or p7) for a CLR or
CLC packet, and to signal a CLR packet in state d2 (or d3). Obviously, the UR problem
discussed above vanishes, should this alternative be adopted.

- The last set of errors are found in the Interrupt component when we allow for further Inter-
rupt transmission and reception. Without this provision, the specification of the Interrupt com-
ponent as derived strictly from the combined state diagram (Figure 2e) passes our validation
successfully. However, as stated in subsection 3.3.5 of the X.75 document, "An STE receiving a
further Interrupt packet in the time between receiving one Interrupt packet and transferring the
Interrupt confirmation, may either discard this Interrupt packet or reset the virtual circuit.” This
clearly implies the provision of a reception and consequently the provision of a transmission of a
further packet in the specification. That interaction obviously can be specified in the local state
diagram specification as a self-loop transition which transmits an INT packet in state 6 in STE-X
and the corresponding self-loop reception of the INT packet in state 7 in STE-Y; or similarly, the
self-loop transmission and reception of an INT packet in state 7 in STE-Y and in state 6 in STE-X
respectively. Perhaps a well-behaved STE is never expected to issue an Interrupt before having
received the confirmation to the previous one. But the point is that if there exists such an ill-
behaved STE which may issue a further Interrupt, the preventive solution prescribed in the X.75
document, discarding this Interrupt packet or resetting the virtual circuit, is simply not adequate.
There is still the problem of unspecified receptions resulting from the further Interrupt as explained
below.

As in the case of Call Clearing and Call Reset components, the self-loop transmission transi-
tion in state 6 of the Interrupt component gives rise to state ambiguities, e.g. (5,5) and (5,7), and
URs of packet INC in state 5 and state 7. From initial state (5,5), STE-X can transmit an INT to
get to state (6,6). If STE-X transmits an INT in collision with an INC transmitted by STE-Y, a
perturbed state will be reached, namely (5,6). Now, STE-Y can transmit an INC which causes an
UR of the INC packet in state 5 in STE-X, or STE-Y can transmit an INT and STE-X receives
the INT to get to state (7,8) in which STE-Y can transmit an INC to cause an UR in state 7 in
STE-X. Likewise, we have URs of the INC in state 5 and 7 in the STE-Y. We note that the state
ambiguities and URs occur irrespective of the option to handle the reception of further Interrupt
packet, whether discarding it or resetting the virtual circuit. So, it would be simple to avoid the
problem by stating in the X.75 document that further interrupt is not allowed.

We also tried to resynthesize the entire X.75 specification to verify the above results of
validating the X.75 decomposed specification. Excluding the self-loop transmissions of the CLR
and RER packets, the resynthesis of the entire X.75 specification was sucessfully completed (with
no error), except for the UR of the CAR mentioned earlier. But as soon as the self-loop transmis-
sion arcs are introduced in the synthesis, state ambiguities and several URs prevail. The 31 pairs
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of URs found, including 8 pairs identified in the validation of the X.75 decomposed validation
above, are shown in Figure 10. In figure 11 we present duologues leading to URs to explain how
these URs can occur from the initial state {1,1). Many of these URs are non-trivial and they would
hardly be detected without the aid of an automated tool.

VIII. CONCLUSIONS

Using a subset of the X.75 packet level protocol as an example we have demonstrated that
the validation procedure together with the decomposition method we have described can be applied
to a reasonably complex protocol. The results from validating this well defined protocol may not
be as significant as the ones which may be obtained from validating a protocol at an earlier stage
of its development. But they are interesting enough to show the usefulness of the validation pro-
cedure and the decomposition method in reducing the design time and increasing the correctness of
communication protocols.

The validation experiment did not identify any errors in the X.75 specification which could
result in incorrect operation of the protocol for the most probable interaction cases.

It did, however, identify an unspecified reception of the Call Request packet at each "Clear
Request’ state (p2 and p3) in the Call Clearing procedure. A similar error with regard to the X.25
packet level specification has been uncovered in an early version of the X.25 specification in a sub-
mission to CCITT by 'IBM Europe’ [7] and by Belnes and Lynning [BELS 77] independently and
was subsequently corrected in the X.25 final version.

It further identifies several errors owing to the self-loop transitions (which "may take place
after a certain timeout”) in the Call Clearing and Reset procedures and points out the problem
when further Interrupt (INT) packet transmission and reception are allowed in the Interrupt
Transfer procedure.

We have also discussed some difficulties which arise from the combined state diagram
specification of X.75 and proposed a modified combined state diagram model for the formal
specification of the class of ”send/receive symmetric”, full-duplex protocols including the X.75
packet level protocol. This modified specification is only slightly different from the former
combined state diagram specification, and yet it allows every designer implementing the protocol to
simply and uniquely derive the related pair of local state diagrams for the two interacting
processes.
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