FINDING MAXTMUM CLIQUES IN CIRCLE GRAPHS
by
+ *
D. Rotem and J. Urrutia
Research Report CS-80-38
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

+ Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl
*

Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

This research was supported by the National Sciences and Engineering
Research Council of Canada under grant numbers A8142 and A3055 and
the Consejo Nacional de Ciencia Technologia (CONACT) of Mexico.

To appear in NETWORKS

ABSTRACT

A circle diagram consists of a circle C and a
set of n chords. This diagram defines a graph with =n
vertices where each vertex corresponds to a chord, and
two vertices are adjacent if their corresponding chords
intersect in C . A graph G 1is called a circle graph if
it is defined by some circle diagram.

An algorithm which requires O(nzi steps to
generate one maximum clique is presented. The algorithm
can also be used to generate all maximum cliques where the
number of steps needed to generate each additional maximum
clique is linear in its size. This compares favourably

with Gavril's algorithm [4] which works in O(n3) steps.

1. Introduction

A circle diagram C(v ’;2""’;n) consists of a circle C

1
with a set of chords 61’52"'°’§n' This diagram defines a graph G
with a vertex set V(G) = {vl,vz,...,vn} such that v is adjacent

to Vj if their corresponding chords ;i and v, intersect in

C(vl,...,vn). (See Fig. 1).

(o))
o)

Figure 1 : A Circle diagram and its

corresponding graph.

A graph G 1is called a circle graph if there exists a circle
diagram which defines G. These graphs, sometimes under different
names, have appeared from time to time in the literature (Read [81,

Read and Rosenstiehl [9] and Zelinka [10]). Algorithms for finding a

maximum clique and a maximum independent set of a circle graph are
given in Gavril [4]. These algorithms require 0(n3) steps.

In this paper we present an algorithm for finding a maximum
clique in O(nz).steps.This algorithm is based on a representation of
circle graphs by Even and Itai [1] and some properties of permutation
graphs ([21 [6]) which are a special type of circle graphs.

In Section 3, we present the-algorithm of[l]‘for representing
a-circle graph by a permutation P 1in order to prove some
properties of P which are required in our algorithm. In Section 4
we generalize this algorithm and show how to generate all (or any number
of) maximum cliques of a circle graph. 1In this algorithm, the cost of
transforming from one maximum clique to the next is linear in the size

of the maximum clique and no clique is generated more than once.

2. Preliminaries and Definitions

v) 1is called a permutation

A circle diagram C(;l’GZ""’ 0

diagram if it is possible to draw a line L inside the circle C such
that L crosses all the chords ;l""’;n' (See Fig. 2.) A circle
graph G which can be defined by a permutation diagram is called a
permutation graph (PG). The class of PG was studied in Pnueli et al
[61 and Even et al [2] where it is shown that the vertices of a PG
G can be labelled with the set N = {1,2,...,n} to obtain a labelled
graph G(N) such that there exists a permutation P = <P(1),...,P(n)>
where vertices i and j are adjacent in G(N) if and only if

-9 e tw-pa <o,

or in words i and j form an dinversion in P.

- 6 3

Figure 2. A circle graph which is a permutation

graph. The representing permutation is P = <5,2,6,3,1,4>,

A maximum clique is <5,3,1> which is an LDS in P.

Clearly the vertices of a PG can be labelled with any set

of numbers I = {i,,...,i } with i, < i,,..., < i such that there exists a
1’ ’Tn 1 2 n

permutation P on I where 1, i1is adjacent to i,Q if and only if

k

ik and 1 form an inversion in P.

L
A decreasing subsequence in P is a sequence of elements

i, > i, > ... > i such that P_l(il) < P_l(iz) < ... <p?T

175 K (1. It

follows from these definitions that the vertices of a clique in G(N)
correspond to a decreasing subsequence in P and vice versa. A
maximum clique corresponds to a longest decreasing subsequence (LDS)

in P. (See Fig. 2.) Clearly an LDS becomes an LIS (longest increasing
subsequence) if P is read from right to left. An element xeP is
a left to right maximum in P if all elements on its left are smaller
than it. The above observations are used in the algoritbhm of Section 3
where the problem of finding a maximum clique in a circle graph G 1is

reduced to finding maximum cliques in certain permutation subgraphs of G.

3. Representation of Circle Graphs

In [1] Even and Itai present an algorithm which constructs a
permutation P from a given circle diagram C(Gl,gz,...,Gn). They also
show that C(Gl,...,an) can be reconstructed from P. By using P,
it will be shown that we can find permutation subgraphs Pl""’Pk whose
union is G (the circle graph defined by C(;l,...,sn)). We only present
here the algorithm for the construction of P, the interested reader is
referred to [1] for proof of correctness and other related results.

Given C(;l’GZ""’Gn):
Step 1: i <« 1.
Step 2: Mark a point (not an endpoint of a chord) on the circle.
This is the current artificial vertex.

Step 3: From the current artificial vertex move clockwise along C.
Label each unlabelled endpoint of a chord encountered

by i' and its other endpoint by i, incrementing i

by 1 after each labelling, until a labelled endpoint j
is met.
Step 4: Assign the label i to the current artificial vertex and
increment i by 1.
Step 5: If all endpoints are labelled go to Step 6;else continue
moving clockwise from j dignoring all labelled endpoints
until an unlabelled endpoint p 1is met. Mark a point
between p and the last labelled endpoint found. This
point becomes the current artificial vertex. Go to
Step 3.
Step 6: The representing permutation P for G is obtained by
reading the unprimed labels from C moving clockwise from
the first artificial vertex. (See Fig. 3 .) The permutation P
will be called a representing permutation of G (cleérly theré

are many such permutations) and its size is ntk where k is

the nunber of artificial vertices introduced. 0

Remark 1: Note that all the endpoints labelled in Step 3 get labels
which are smaller than the current artificial vertex.
Therefore, for every primed label j' there exists at
least one artificial vertex with a label bigger than j',
which precedes j' on C.

Remark 2: During the labelling process, when an artificial vertex
is assigned a label, it is bigger than any of the unprimed
labels which precede it on C. Therefore, an artificial
vertex has a label which is bigger than all elements on

its left in P , and hence the artificial vertices form

the sequence of left to right maxima in P.

4'
3!
25

FIAVAR'
\

)

7'

p.

Z

473
?igure 3.
Labelling of a circle graph. P = <5,1,8,3,4,2,7,6> with

artifical vertices 5 and 8. RSP(S) = <1,3,4,2>

Remark 3: After the first artificial vertex is created in step 2,
a new artificial vertex is introduced in step 5 only when
an unlabelled endpoint is met. Therefore k < n , and k = n
only when C(GI,GZ,...,GH) has no intersections and it is
drawn such that an artificial vertex appears before each

primed label.

In what follows, chords or artificial vertices are simply
called by the label i assigned to them by the above algorithm.
For an element m in P, we denote by RSP(m) the sub-
sequence of elements in P which appear to the right of m in P and

are smaller than m (See Fig. 3.).

In the remaining part of this section we prove some properties
of P which allow us to obtain a set of permutation subgraphs of G such

that any maximum clique of G 1is contained in at least one such subgraph.

Lemma l: For an artificial vertex i, the chords whose labels are
elements of RSP(i) form a permutation graph.

Proof: Assume that during the labelling process the current artificial
vertex is labelled i (in Step 4) after encountering a label
j (in Step 3). We construct a line L passing through the
first artificial vertex P(l) and an interior point zs in the
arc between (i-1)' and j on C (see Fig. 4). We now
show that L crosses all chords whose labels are in RSP(i)
which proves the Lemma by the definition of a permutation
graph.
An element X is in RSP(i) if it corresponds to a chord
with endpoints x and x' such that x appears after
i on C and x < i, Since all labels on the arc from i to zi
are primed, x appears on the arc from z; to P(1l). The other
endpoint x' cannot appear on the arc from z, to P(1)
since in that case we would have x > i, Hence the chord x

must cross L.

Theorem 1: Let G be a circle graph with a representing permutation P

and artificial vertices

Proof

(a)

(b)

(a)

(b)

» @158 es8y then:
An induced subgraph K of G 1is a complete subgraph if the
labels of V(K) form an increasing subsequence in at least
one of the subsequences
a .
RSP(al)’RSP(aZ)’°'°’RSP(k)

For 1 < j <k, any increasing subsequence in RSP(aj)

corresponds to a complete subgraph in G,

Let the vertices of a complete subgraph K din G be labelled

k.< k., < ... <k . Then <k. L,k

1 2 - 1’ ..,km> forms an

95
increasing subsequence in P. Also, the endpoints labelled
kl,...,km appear after k& on C. By Remark 1, there exists
an artificial vertex q, where q > km which precedes k;

on €. Therefore k ..,km belong to RSP(q).

10"
This part follows from Lemma 1 and the 1-1 correspondence
between complete subgraphs in a permutation graph and
increasing subsequences in its representing permutation
mentioned in Section 2. Note that RSP(aj), read from right

to left, is a representing permutation for the chords whose

labels belong to this set.

5

\

N
N\

Figure 4
Permutation graphs for RSP(S) and RSP(B)

We observe that by using Theorem 1, the problem of finding
a maximum clique in G is now reduced to that of finding the longest
LIS in the subsequences RSP(al)’RSP(aZ)""’RSP(ak)'

In Algorithm - 2, we present a well known method for finding
the length of an LIS of a given sequence. This problem is closely
related to the problem of constructing the first row of a Standard Young

Tableaux (Knuth [5, Sec. 5.1.4], Fredman [3] and Schensted [7]).

Algorithm - 2

The input sequence § = <sl,sz,...,sn> is scanned
from left to right aﬁd an ordered set of queues Ql’QZ""’QQ is
formed from it.

Step 1: s1 is inserted as the first element of Ql'

Step 2: Assume Ql,Qz,...,Qi_l were formed from Sl’sz""’sj—l°
The element sj is attached to the first queue which has its
last element bigger than sj. If no such queue exists, s,
is inserted as the first element of a new queue Qi.

0

The next lemma summarizes the properties of this construction

and is proved in [7 1.

Lemma 2: If £ queues are formed by the above construction from §
then:
(a) The length of the LIS in S is 2.
(b) The elements in Qi (1 <i < %) form a decreasing sub-
sequence of S.
(¢) During the execution of the algorithm, if m non-empty
queues were formed, the last element of Qi is bigger than

the last element of Qi-l for 2 <1i<m. g

Let Qj = <Qi,Qj,...,Qi> be the ordered set of queues

generated from an input sequence RSP(aj) by Algorithm 2. It follows

from Lemma 2 that the size of a maximum clique in G 1is equal to the
cardinality of a largest set among the k sets Ql,Qz....,Qk. Next, we prove
some properties of P which allow us to generate all the sets Ql,Qz,...,Qk
using one scan of P from left to right.

For an element peP which does not correspond to an artificial
vertex, let a_ and a_ o be the smallest and biggest artificial vertices
such that pe RSp (ar) N RS, (ar+s) . By Remark 2 it follows that
pe RSp (aj) for r £ j<r + s. Let us assume that by applying
]

Algorithm-2 to RSP(aj) p joins Qm for r < j<r+s. Then p is

called monotonic if m =2mnm Z ... 2 Mm
—— T r+1 r+s

Lemma 3: Every peP dis monotonic.

Proof: Let xeP be the leftmost non-monotonic element in P. Then

there exist two sequences RSP(aj) and RSP(a) such that

F+1
. . i j+1 .
xeRSP(aj) N RSP(aj+l) and x is in Qm and Qm‘ with
m<n'
We consider the situation at the time when x 1is inserted

. j+1 . .
into Let g be the last element in Qi'-l at this time,

j+1
Q.
m
then g < x and qe RSP(aj)' Also, since q is to the left
of x in P, g must be monotonic and therefore qe Q% where
£ >m' - 1. It follows from Lemma 2(c) that the last elements
in QJ,Q%,...,QiLl are all smaller than x and therefore the

queue Qi into which x can be inserted satisfies m >m'- 1.,

This contradicts the assumption that x is non-monotonic.

1.

2.

3.
4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

10

Algorithm - 3

Given P = <p1,... >, we generate a vector <a >

’Pn+k l,az,...,ak

of artificial vertices and the sets Ql,Qz,...,Qk by scanning P from

left to right. The algorithm inserts each non artificial vertex Py

into every QJ such that p; € RSP(aj). The variable 'temp' is used

for recording the queue in QJ into which p, was inserted. By Lemma 3
. j-1 . j-1

and Lemma 2(c), the search in Q can continue from Qtemp thus

saving all the comparisons with the last elements of Qi_l with m <'temp2

a; <« Py m <« 1; (pl is the first artificial vertex)

For 2 <1i< nt+k do
begin
temp <« 1;

if 1 > a then do (check whether Py is an artificial vertex)

begin

m < m+l ;

a, < p.;
i = Py

end

else begin (insert 1 into all QJ such that p; € R%)(aj))

j*m;

while 1] < aj and j > 0 do

begin

insert 1 into QJ using Algorithm-2 ;

In Step 2 of Algorithm-2, start the search by comparing

j . J.
Py to the last element of Qtemp and assume p; Joins Qt’
temp < t;
j < 31
end;

end
end

11

An upper bound on the total number of comparisons made by
Algorithm 3 can be obtained as follows:

Let G be a circle graph with n vertices, k artificial vertices and
a maximum clique of size L.

The insertion of each non artificial vertex into the queues
requires at most £ + k + 1 comparisons (lines 12-16) whereas for each
artificial vertex we make only 1 comparison (line 5). This gives a total
of n(kH+1l) + k = O(nz) comparisons. The number of assignment statements

is easily seen to be also O(nz).

4. Generating Maximum Cliques

In this section we present a method to generate any required
number of maximum cliques in a circle graph. It was shown in the previous
section that given a sequence S, Algorithm - 2 generates Ql""’Qﬂ from
it where £ is the length of an LIS in S. First, we shall have to
modify Algorithm - 2 in order to keep track of elements which belong to
an LIS such that subsequently all LIS of S can be generated.

It follows from Lemma 2 that if I 1is an LIS of S then
L has exactly one element in each Qi' In order to generate an LIS
we need a method to select correctly an element from each queue. To
this end, we introduce the following extension which follows Step 2 in

Algorithm - 2 and call the resulting algorithm Algorithm - 2%,

Step 2b: Attach two pointers to the element sj when it is inserted
into Qi (i > 1). These pointers called FIRST(sj) and LAST(sj)
show the positions of the first and last elements in Qi—l
which are smaller than sj. Clearly, LAST(sj) is equal to

the number of elements in Qi—l at the time of insertion.

12

Lemma 4: Let S be an input sequence to Algorithm - 2% from which &
queues are formed. A subsequence L = <s, ,s, ,...,8, > of
i
S dis an LIS if and only if:

(b) the position m of s4 in Q._l satisfies

FIRST(Si) < m < LAST(si)
J J
for 2 < j < Q.
Proof: A subsequence L of length £ in S 4dis an LIS if and only

if its elements satisfy:

(1) s, < s, and (2) s, is to the left of s,
. i. i, i,
j-1 J j-1 A

Lemma 2 and (2) imply that s; is present in Qj—l
j-1

when 54 is inserted,also by (1) the position m of s,
J j-1

in Qj—l must satisfy (b).

Conversely, if (a) and (b) are satisfied, then from (b)

s, < s, and s, must appear on the left of s,
. i, i, i.
j-1 h| j-1 3

in S. Therefore L 1is an LIS.

We now proceed to generate all LIS (or any required number)

of S as follows. We pick the first element si in Qg’ and by
2
Lemma 4 all its immediate successors in an LIS must be selected from

QQ—l from positions rangihg from FIRST(Si) to LAST(si). After
) 2

13

selecting an element 8, from QQ 1 we can proceed to select
2-1 -

elements from queues QR—Z’ Q2_3,...,Q1 in the same way, thus obtaining
an LIS. The problem of generating all LIS is equivalent to a
depth first search of a tree T such that the root of T on level O

is a dummy element with its sons being all the elements of QQ. In general,

on‘the ith level of T we have elements of Ql—i+l such that

the sons of an element in level i are all igs”imﬁediéte

successors in an LIS arranged from left to right according to their
position in Ql—i' The leaves of T are elements of Ql' A new LIS

is generated each time that a leaf of T is reached during this

traversal.

EXAMPLE 1
Consider an input sequence § = <2,5,1,3,6,4,9,8,7>. The queues formed from
S are given below where the underlined numbers are elements of S followed

by the two pointers FIRST and LAST.

Ql = g’i

Q2 =5:1:1,3:1:2

Q3 =6:1:2,4:2:2

Q4 =9:1:2,8:1:2,7:1 2

This system of queues can be shown as the tree T (repetition of subtrees

is given only for illustration purposes).

14

The LIS will be generated in the following order
1) <9,6,5,2> 4) <9,4,3,2> 7) <8,6,3,2> 10) <8,4,3,1> 13) <7,6,3,1>
2) <9,6,3,2> 5) <9,4,3,1> 8) <8,6,3,1> 11) <7,6,5,2> 14) <7,4,3,2>
3) <9,6,3,1> 6) <8,6,5,2> 9) <8,4,3,2> 12) <7,6,3,2> 15) <7,4,3,1>
‘ ,) 0
In order to generate all maximum cliques in a circle graph G

we use Algorithm 3 which now uses Algorithm - 2% in line 14.

Assume that maximum {[Qll} =f for-1<i<k . By Lemma 2(a), the

size of a maximum clique in G is £. We therefore proceed by taking

the sets Qll,le,...,Qlj with cardinality £, and then generate all
the

LIS contained in each of them using the depth first search scheme.

Note that while processing Q1t we can avoid
LIS which appeared previously for Qll,le,...,Qlt"l.
if the biggest element in an LIS generated from Qlt

the artificial vertex ai then this LIS
t-1

Qlt'l and should not be generated again. To implement

is already

generating any
We observe that
is smaller than
included in

this, we can

check the elements of ta, the last queue in Qlt. This queue contains

the largest elements of every LIS generated from Qlt, therefore if

. i
any element in Qﬁt is smaller than a,

it can be omitted.

If no

. i i . .
elements remain in Qﬂt, then Qt does not contain any new maximum

clique.

15

EXAMPLE 2
Consider a circle graph which is represented by the permutation

P = <9,3,11,2,4,1,6,10,8,7,5>. The artificial vertices here are a; = 9

and a, = 11, (the left to right maxima in P).

RS,(9) = <3,2,4,1,6,8,7,5> and RS,(11) = <2,4,1,6,10,8,7,5> ;

Applying Algorithm-3 we get

3, 2, 1
4 ¢+ 1 : 2
1 - -
Q E.: 1:1,5:1:1
8:1 1,7 1 1
and

2, 1

Q2 _ i:l:l
6:1:1,5:1: 1
10 = 1 1, 8:1 1, 7 1 1

The LIS generated from Q1 are:
<8,6,4,3>

<8,6,4,2>
<7,6,4,3>

<7,6,4,2>

o A2 i :
We observe that in Q4, 8 and 7 are smaller than 9, the previous
artificial vertex, and can be omitted. The only new maximum clique is

therefore <10,6,4,2>. [

16

Let us consider now an upper bound on the total number of
steps which are needed to generate all maximum cliques. First, we show
that step 2(b) which is now added to Algorithm - 2 can be implemented
efficiently so that Algorithm 3 still runs in O(nz) steps. We recall that
step 2(b) updates two pointers FIRST and LAST for each element that joins
a queue. Assume that the queue Qi contains the elements ql,qz,...,qm.
Then by Lemma 2

FIRST (q;) < FIRST (q,) < ... < FIRST (q,)-

This can be used to conduct a 'catenated' search in Qi—l
so that the search for FIRST (qz) starts from position FIRST (ql) etc.
In this way, updating all FIRST pointers in Q requires lQii+IQi_l|
comparisons.

By the same arguments used in the analysis of Algorithm 3, it
can be shown that in total at most O(k.n) comparisons are required by
Algorithm 3, to update the pointer FIRST for all elements in Ql,Qz,...,Qk.
The pointer LAST requires only 1 assignment statement per each insertion.
We conclude that Algorithm 3 uses at most 0(n2) steps as claimed.

The number of steps for generating each additional maximum

clique is clearly bounded by £ which is the height of the 'depth first

search' tree whereas the number of such cliques can be exponential [4].

17

6. Conclusions

A method of finding all maximum cliques of a circle graph
was presented. The algorithm works in O(nz) steps in order to
find the size of a maximum clique, and then requires at most O0(L)
steps to generate each additional maximum clique where £ is size of a
maximum clique in the graph. The efficiency of the method depends also
on the number k of artificial vertices where in all non-trivial cases
k<n. However, for a given circle diagram, we can obtain at most 2n
different representing permutations depending on the choice of the
first artificial vertex on C. Different labellings can result in a
different number of artificial vertices and it is still not known which

of those labellings will give the best performance.

Acknowledgement

The authors thank the referee for a suggestion which helped

to improve the running time from O(nzlgzn) to O(nz).

[1]

[2]

[3]

[4]

[5]

[é]

[7]

[&]

[9]

18

References

Even, S. and A. Itai, "Queues, Stacks and Graphs'", Theory of
Machines and Computations, Z. Kohavi and A. Paz, ed.,
Academic Press, New York, 1971, pp.71-86.

Even, S., A. Lempel and A. Prueli, "Permutation Graphs and
Transitive Graphs', J. ACM, 19, 1972, pp. 400-410.

Fredman, M.L., "On Computing the length of longest increasing
subsequences. Discrete Math. 11, (1975), 29-35.

Gavril, F., "Algorithms for a Maximum Clique and A Maximum
Independent Set of a Circle Graph", Networks, 3, 1973,
pp.261-273.

Knuth, D.E., "The art of Computer Programming, Vol. 3, Addison
Wesley 1973, Reading Mass.

Prnueli, A., A. Lempel, and S. Even, "Transitive Orientation
of Graphs and Identification of Permutation Graphs',
Canadian J. Math. 23 (1971) pp. 160-175.

Schensted, C., "Longest Increasing and Decreasing Subsequences",
Canadian J. Math 13 (1961) 179-191.

Read, R.C., "The Chord Intersection Problem'". To appear in
Anuals N.Y. Academic Sciences.

Read, R.C. and P. Rosenstiehl, "On the Gauss Crossing Problem"
Collog. Math. Societatis Janos Bolyai, 18, Combinatorics,
Keszthely (Hungary) 1976, pp.843-876.

[10] Zelinka, B., "Graf Systemu Tetiv Dane Kruznice', Matematicko-

Fyzikalny Casopis SAV. 15.4, 1965, pp.273-279.

	

