2

J

A Two Dimensional
Mesh Verification Algorithm

By
R.B. Simpson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

£S-80-37
August, 1980

Faculty

of

Mathematics

University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

A Two Dimensional Mesh Verification A]gorithm

R.B. Simpson*

Abstract

A finite element mesh is usually represented in a program by lists of
data, i.e. vertex coordinates, element incidences, boundary data. This
paper is concerned with conditions on the list data which ensure that the
lists describe a 'tiling' of some planar region without overlap or gaps.
For a particular format of lists, a set of such conditions is given

which is proven to be sufficient to guarantee such a 'ti]ing'. These
.conditions have been chosen so as to be verifiable by the algorithm
referred to in the title, which is described in detail and is claimed to

be of reasonable efficiency.

Keywords - mesh, finite element, triangu]ation

* This research was carried out at the Brunel Institute of Computational
Mathematics, Uxbridge, U.K., while the author was on sabbatical leave
from the University of Waterloo, and was supported by a grant from the
Natural Science and Engineering Research Council, Canada. The author,
and hopefully the manuscript, have benefitted from referee's suggestions.

A Two Dimensional Mesh Verification Algorithm

§ 1 Introduction

A mesh on a region of the plane generally appears to the reader of a
text book or research paper as a diagram showing a partition of the region
into finite elements of simple geometric shapes, usually triangles or quad-
rilaterals. Intuitively, the partition can be thought of as a tiling of
the region up to its boundaries by the finite elements as tiles. On the
other hand, it appears to the user of the method in the source code of
his programs as lists of numbers of specific types, e.g. positive integers
less than M, real numbers, etc. In general, however, if the lists are
filled with arbitrary data of the correct type, they only represent some
collection of elements, which may overlap each other, or leave gaps in the
region's interior. Whether the collection represents a proper tiling or
not is data dependent. The purpose of this paper is to make an explicit
statement of this dependence in the form of a set of four conditions that
the data must satisfy, these conditions being specific to two dimensional
meshes. Although the conditions are geometrically simple, their verifica-
tion for the lists of a particular mesh involve non trivial computations
which have been organized in this paper into an algorithm which is referred
to as the mesh verification algorithm. One consideration in the choice of
these conditions, then, has been that the mesh verification algorithm be

sufficiently efficient to be practically viable.

Implemented in a program, the algorithm can be used to check a mesh
produced for a particular computation. It is a common practice in employ-
ing the finite element method to prepare a mesh using a mesh generation

program, possibly store it in a file, and plot it to examine its correct-

ness and suitability to the region and the problem before proceeding to
the subsequent stages of the method. Often this procedure is repeated a
number of times because the mesh is shown to be incorrect, typically due
to error in input data to the mesh generation program, or weaknesses in
its algorithm 6r 'bugs' in its programming. An algorithmic verification
of the output lists based on the criteria in this paper is viewed as being
a check on the mesh which is complementary to a graphical examination in
the sense of being faster and not dependent on graphic facilities, but not
providing the positive evidence of the suitability of the mesh that a

visual inspection gives.

A second motivation for these conditions is to give a mathematically
rigorous definition of a finite element mesh that can serve in the study
and development of mesh generation programs, allowing eXp]icit specifica-
tions for algorithms and providing a debugging tool. A number of methods
for mesh generation have been discussed in the published literature,

e.g. [31, [6]1, [11], [15], which have been implemented in programs giving
extensive satisfactory use. There is no doubt that mesh generation programs
can be written which are pragmatically successful without a mathematical
definition of a finite element mesh. However, to say whethef such a program
is correct or not, or to state under what conditions it fails, or to com-
pare two such programs is difficult because of the vagueness about the
specifications for output as well as input even at the algorithmic level.
The programs produce meshes in their 1ist form, but as we have mentioned
above, not all Tists correspond to legitimate meshes. It is a generally
held tenet of software engineering that one of the sources of debugging

and reprogramming efforts, and lack of reliability in modular systems,

is the imprecise specifications of the inputs to and functions of the
modules. If this is the case, then a more precise statement of the
function of a mesh generating module might be eXpected to contribute to
the more efficient production of finite element packages. In particular,
it is believed that the four conditions of the definition can be used as
verification conditions for proving mesh handling programs correct (see
Van Emden [18], for a pragmatic discussion of the use of verification
conditions in programming). While the question of whether, or in what
measure, program correctness procedures will aid program synthesis is

an area of speculation; there seems little doubt that a better under-
standing of the mathematics of an algorithm and its data generally leads

to programs which are better in a variety of senses.

In §2, the list representation that we will use for a collection of
elements is introduced, and with it, four conditions on the collection
are stated geometrically which form the proposed definition of a planar
mesh. These conditions are then justified in §3, on a mathematical
level by proving that a set of 1ists which meet the conditions describe
a tiling of some region of the plane. The definition is restricted to
apply to meshes for regu]ar planar regions (possibly multi-connected,
or disconnected); in particular, it does not extend to meshes for
describing regions with cracks as used in some finite element applica-
tions. Readers who are not interested in the formal justification of
these conditions may proceed to the development of the mesh verification
algorithm in §4 and §5. In these sections, the conditions stated for the
collection of elements represented by mesh lists are expressed as computa-

tional checks on the 1ist data.

In these computations, information about the element sharing a common
edge with a given element (i.e. an element's neighbour) is required. This
information is used in a variety of other contexts in the finite element
method, e.g. averaging stresses over neighbouring elements ([17], page 168),
improving the triangulation of a region [11], or performing local mesh
refinements [13], [15]. The process of obtaining and verifying this infor-
mation involves a 1ist inversion of one of the mesh lists, and is of some
independent interest, so it is discussed separately in §4. The other
aspects of checking the conditions are dealt with in §5. At this stage,
the generality of the elements' geometry becomes a significant factor, so
the discussion is specialized to triangular meshes to avoid unwarranted

complexity.

In composing the algorithms of §4 and §5, a compromise between
simplicity and optimality has been sought. Some comments on the perfor-
mance of a FORTRAN implementation are given in §6. An inspection of the
components of the verification algorithm indicates that it should run in
times linear in the number of triangles in the collection being verified,
subject to some restrictions on the mesh topology that are quite natural

for finite element meshes.

While the author is unaware of other algorithms for verifying a mesh
in this sense, several algorithms for verifying other geometric 'objects'
have appeared. There is a substantial Titerature on algorithms for
verifying graph p]aharity (e.g. Hopcroft and Tarjan, [9]). Recently, a
linear time algorithm for verifying the planarity of a 2 complex has been
published by Gross and Rosen [8], and in [14], Shamos and Hoey give an

algorithm for verifying when a planar polygon is simple. In these

references, the algorithms tend to be described at a high level, with the

primary emphasis placed on the analysis of the comp]eXity of the process.

§2 List Definitions and the Conditions for a Mesh

The 1ist representation for a finite element mesh which we will assume
here consists of two basic Tists:

- the vertex coordinate 1list of length Nv

- the element incidence 1list of length Ne
and an auxiliary Tlist

- the boundary reference table of length Nb'
The basic Tists contain independent data, but the boundary reference table's
information about the mesh can be obtained from the other two. The kth
entry of the vertex coordinate 1ist is the coordinates (xk, yk) of the kN
vertex of the mesh, also denoted P(k) in the sequel. The term 'vertex’
here refers to the points which determine the geometrié shape of the element
as a region (e.g. the 3 vertices of a triangle), as opposed to the term
'node’ which is commonly used for points associated with degrees of freedom
of the element shape function. The entries in the vertex coordinate list
are required to be unique, i.e. if j = k, then P(j) = P(k). The jth
entry in the element incidence list is itself a sublist of the indices
in the vertex coordinate 1ist of the vertices of the jth element. E(J)

th

will be used to denote the j~ element and if it has I(j) = 3 vertices,

h

then the jt entry of the element incidence list consists of integers

v(1,3), v(2,3)5 ..., v(I(3),3) with 0 < v(i,j) <N, and v(i,j) = v(k,J)

h vertex of E(j) 1is P(v(i,j)) and i will be referred

h

if i =k. The it
to as the Tocal vertex number of P(v(i,j)). The it edge of E(j) 1is the

directed line segment running from P(v(i,j)) to P(v(i+1,j)), where

7= 4 mod I(3j) (2.1)

is a notation used in the sequel for indexing the 'next' vertex around

E(j), and i will be referred to as the local side number of this side.
kth entry of the boundary reference table consists of a pair
h

The
of integers (b(1,k), b(2,k)) which describe the Kt boundary edge of the
mesh by giving the index of the element to which it belongs,

0 < b(1,k) = Ne’ and the local side number, 0 < b(2,k) < I(b(1,k)). This
list is ordered first by b(1,k) and within entries having the same value

for b(1,k) by b(2,k) i.e.,

Ky < ky = b(],k]) < b(],kz)
and if b(1,k;) = b(1,k,) (2.2)

then b(2,k]) < b(2,k2)

1

This 1ist is the least standard of the three in the literature on finite
element programming. It was proposed by J.A. George in his thesis, [7],
and doubtless has been used independently by other implements of the
finite element method. As mentioned above, the mesh information contained
in it is redundant, as it is contained implicitly in the element incidence
list information. The algorithms that we discuss below could either build
the boundary reference table from the element incidence list, or check
that it is consistent. In view of the use of meshes in the finite element
method, we have chosen to describe the latter. Typically, the table con-
tains additional problem specific data concerning boundary conditions and
is generated with this data at the time the mesh is generated (i.e. the
other two Tists are constructed.) The ordering of the table is done to
facilitate synchronizing a scan of the element incidence 1ist with a

scan through the table. An example of this occurs in (4.7) of §4;

however, the primary instance of this, for the finite element method,
occurs in the scan of the elements to generate local stiffness matrices.

In some implementations, these boundary data are added as extra fields in
the entries of the element incidence sublists either directly or through
pointers. A discussion of some alternative representations for meshes,

and issues associated with them may be found in [16]. While the definition
given here clearly does not conform directly to a variety of implemented
data structures for mesh representation, it is eXpected that a fairly
simple identification or translation can be made between the representation

used here, and the data structures of most implementations.

We now specify the four conditions on the collection of elements
described by the mesh lists that qualify this collection to be a mesh.
C1 The directed polygonal curve formed by traversing the element

sides in local side number order forms a simple closed curve

with bounded interior (i.e. bounded region on the left of the

curve).

The finite element E(j) 1is defined to be the closure of the interior
of this clirve.

€2 The ith

edge of E(j) 1is either the only edge joining its

end points or there is one other element, E(£) , having an
edge joining these vertices. In the latter case, the line
segment joining these vertices must have the opposite direction
as an edge of E(j) to its direction as an edge of E(2).

h:edge of E(j) 1is a boundary edge and

In the first case of C2, the it
E(j) is its boundary element. To be consistent, the boundary reference

table must have an entry with b(1,k) = j, b(2,k) = i. In the second

h‘edge of E(j) is an interior edge with E(j) and

case of C2, the i
E(£) as neighbours across this edge. The requirement concerning the
directions of the 1ine segment as an edge of E(£) and E(j) will be
referred to as edge consistency and if it holds then the vertex of

th

index v(i+1,j) will be the m~" vertex of E(Z) for some value of m

which is referred to as the complementary local edge number in §4.

C3 No interval of a boundary edge intersects an element other

than its boundary element

C4 A vertex can have at most one boundary edge directed away
from it.
Vertices with one such edge will be referred to as boundary vertices in

this paper.

The first requirement is really a definition of the finite element as
a point set in the plane. The generality of the element's shape in this
definition is intended to avoid introducing geometric considerations
extraneous to mesh definition rather than to imply that a broad range of
element shapes is useful or desirable. While meshes of elements with mixed
shapes have been reported (e.g. [12], quadrilaterals and triangles), the
programming complexity which arises from implementing variable length
records for the element incidence Tist or element stiffness matrices is
generally not justified and hence the common practice of using elements
of a fixed number of edges. Further requirements on the element's geo-
metric shape arise from the need to define shape functions on these element
domains, and from the approximation properties required of these functions

(e.g. [2] or [13] §3.3).

10.

In 83, we want to establish that these requirements are sufficient
to ensure that the 1ists describe sets of elements which 'tile' a region
of the plane. However, first we will discuss some eXamp]es in which C2 -
C4 are violated to illustrate the senses in which they are necessary. The
requirement in C1 that edges have the direction that puts the element on
the Teft coupled with the edge consistency restriction of C2 ensures that
neighbours Tie on opposite sides of their common edge, i.e. that a short
line segment which intersects an interior edge passes from the interior
of one neighbour into that of the other. Witﬁout these requirements, for
example, the configuration of Figure 2.1 would qualify as a mesh with the
Tist of vertices P(1) = (1,1); P(2) = (1,-1}); P(3) = (-1,-1); P(4) = (-1,1);

element incidences v(i,j) given by

Figure 2.1

11.

e o {—
Wilwld |wl—
NI NN
Y G QIR N PR

Table 2.1 - v(i,j) for Figure 2.1

and an empty boundary reference table.

In Figure 2.2, the vertical and horizontal lines are intended to be
an interior section of a mesh of squares, described by 1ists meeting the

definition. In addition, one 'extra' quadrilateral element is

22

10

Figure 2.2

included in the lists, by extending the vertex list to include the vertex

not on the square mesh, to be indexed as NV . The 'extra' element can be

given index Ne » Say, and has incidence list v(],Ne) = 17, v(2,Ne) = 22,

v(3,Ne) = N,» v(4,Ne) = 10. If each one of the edges of the extraneous

N th

o element is declared as a boundary edge in four entries of the boundary

12.

reference table, then the resulting lists meet all the requirements of the
definition but C3. The necessity of this requirement can also be seen in
a somewhat different sense from the obvious overlap in Figure 2.3, referred

to as mesh ‘'overspill' in [6].

Figure 2.3
In Figure 2.4, an example in which the region covered by the elements of
the mesh has both overiap and a 'gap' is shown. The elements are the
eight outer squares plus the four triangles, and the boundary reference
table records the outer edges of the squares, and the oblique sides of
the triangles as boundary edges. The triangles share their horizontal
or vertical edges with a square, but are not strictly neighbours because

the edge consistency along their common edge cannot hold, or counter

13.

clockwise 1isting of vertices fails, i.e. C1 and C2 cannot both hold.

A

A

7
2
V

V

Figure 2.4
The central square of the figure is not an element of the mesh, but is
a region of the plane not separated from the elements of the mesh by a
boundary edge. It is a form of 'gap' in the mesh. C3 and one of C1 or

C2 are violated in this case.

The role of C4 seems less clear; certainly it precludes undesirable
anomolies such as a mesh with every edge a boundary edge, 1ike the black
squares of a checkerboard. However, it appears that its primary implica-
tion is that the boundary curves form simple closed curves as in Theorem 1,

and no example has been constructed in which C2 and C3 are satisfied, C4

14.

is violated, and an overlap of element interiors occurs.

§3 Proof of Sufficiency

We turn now to establishing that the requirements C1 - C4 are
sufficient to ensure that the lists of (2.1) correspond in some rigorous
way to the intuitive idea of the elements tiling a region of the plane.
First it is shown that the set of boundary edges of the mesh form a set
of disjoint simple closed curves in Theorem 1. We then show that these
curves are oriented in a consistent manner, so that their interiors define
bounded regions of the plane for which they are the boundaries in Lemma 3.
It is then shown in Theorem 2 that this region is covered without gaps by
the elements of the mesh and in Theorem 3 that it is covered without over-
lap. To avoid repetition of 'poliygonal' in this gection, we shall assume
henceforth that all arcs or curves are polygonal. For a helpful, if

elementary, reference on curves and regions in the plane, see [1].

The following lemma concerning a type of connectivity of the mesh
will be quite useful in the sequel.
Lemma 1 Let P be a point lying in the interior of m elements of
the mesh for m =0 and let P be joined to a point Q by an arc
which passes through no mesh vertex and intersects no boundary edge.
If Q does not Tie on an element edge, then Q 1lies in the interior of

m elements of the mesh.

Proof As a point moves along the arc from P towards Q , it can
only leave an element through an interior edge, at which point it enters

its neighbour (C2).

15.

Lemma 2 A vertex is a boundary vertex if and only if it has a boundary
edge directed towards it. The incoming boundary edge of a boundary vertex

is unique.

Proof Let P be a vertex and let £ be the set of edges having P
as an endpoint. Assign e ¢ £ a value 1 if it is directed towards P;
-1 if it is directed away from P. Since each element for which P is
a vertex contributes two edges to Z , one incoming and one outgoing, it
is clear that the sum of the values of edges in £ 1is zero. By require-
ment C2, the contribution to this sum from all interior edges in E is
zero, and by C4 the contribution from all outgoing boundary edges is 0
or 1 . Hence the contribution from all incoming boundary edges at P

must be 0 or -1, from which the Temma follows.

Theorem 1 The boundary edges of the mesh form a set of simple closed

oriented curves, C], C2, vees CM’ which do not intersect each other.

Proof Let P be a boundary vertex and consider the curve traced

out by following the unique outgoing boundary edge from each vertex to

the boundary vertex to which it is directed (Lemma 2) starting from P.
Since this process can be continued indefinitely, and there are only a
finite number of boundary vertices, one must be traversed twice by this
curve. If the first one to occur twice is not P, then there are two
distinct boundary edges Teading to it, in violation of Lemma 2. Hence

the curve formed by carrying out this process until P 1is encountered a
second time is a closed oriented curve which can be labelled C]. To see
that this curve is simple, we note that from C3 it cannot intersect itself

on the line segments between vertices, and as no vertex other than P is

16.

visited twice in a circuit starting at P , it cannot intersect itself

at a vertex. If not all the boundary vertices lie on C1, then the argu-
ment can be applied to another boundary vertex to establish a simple closed
oriented curve C2 and so on. Two of these curves cannot intersect at the
interior of a line segment by C3 nor at a vertex by Lemma 2, hence they

must be disjoint.

The region on the left of a simple closed oriented curve, C, is
conventionally referred to as its interior while the region on the right
is referred to as its exterior. Such a curve divides the plane into a
bounded region and an unbounded one, and whether the bounded region is
the curve's interior or not depends on the curve's orientation, of course.
Although we can expect from C1 and C4 that the elements of the mesh should
1ie in the interiors of these curves in some sense, Theorem 1 does not
give any information about the relative orientations of these boundary
curves. E.g. it is conceivable that both C] and C2 have bounded interiors
and that C2 lies in the interior of C]. If no curve Ties between C] and
CZ’ then there is no region for which C] and C2 are oriented boundary
curves, as shown in Figure 3.1A, with the interiors shaded. However, if
C3 lies between C] and C2 as in Figure 3.1B, and is oriented so as to
have an unbounded interior, then the shaded region is a (disconnected)

region with C], C2 and C3 as its oriented boundaries.

17.

Figure 3.1

Our aim now is to show that the boundary curves established in Theorem 1
are oriented in a consistent way, so that each curve of bounded interior
defines a connected region of possibly multiple connectivity, the
boundaries of the 'holes' in this region coinciding with boundary curves
of unbounded interior. A curve Ci will be said to be maximal in Cj if
Cf lies in the bounded domain determined by Cj, but not in the bounded
domain of any other curve lying in the bounded domain of Cj, (e.qg. C3

is maximal in C1 in Figure 3.1b, while C2 is not).*

Lemma 3 i) Let Cj be a boundary curve of bounded interior and let
Ci be any curve maximal in Cj. Then Ci is oriented so that its interior

is unbounded.

* This terminology is motivated by the fact that inclusion generates a
partial ordering on the unoriented simple closed curves and Ci is

maximal in the set of Ck‘< Cj in the sense of this ordering.

18.

ii) Let Ci be a boundary curve with unbounded interior, then

there is a curve of bounded interior, Cj, such that Ci is maximal in Cj.

Proof i) Let D be the domain obtained by removing from the bounded
interior of Cj the bounded regions determined by all curves maximal in
Cj. If there are no such maximal curves, then there is nothing to prove,
so let us assume there is at least one, and designate it Ci‘ Let E be
a boundery element with a boundary edge on Cj and let P be a point of
the interior of E arbitrarily near Cj. Let Q be in D arbitrarily
close to ar edge of Ci and not 1ying on an element edge. Then we can
join P to Q by a polygonal arc in- D , which does not cross any
boundary edges and can be adjusted to avoid any vertices (since D is
an open, connected set). By C2, P is in exactly one element and hence
by Lemma 1, Q 1is in one element, E'. However, Q may be arbitrarily
close to Ci so E' has a boundary edge on Ci and Ci must be oriented

so that D 1ies in its interior.

ii) Let T be a circle sufficiently large to contain all the
elements. If the statement were not true, then C. would be maximal
either in C or in Cj where Cj also has unbounded interior: We will use
C to refer either to the circle or to’Cj, and note that in either case,
points of the bounded region of C near C do not 1ie in any element of
the mesh. Then, as in part (i) let D be the domain formed by removing
from the bounded region of C the bounded regions of all curves maximal
in C. Then we can pick P in D close to C so that P Ties in no
element and, since D is connected and open, join it to a point Q in
a boundary element near Ci by an arc in violation of Lemma 1. This

contradiction establishes 3 (ii).

19.

This lemma shows then that every mesh boundary curve of bounded
interior defines a possibly multiply connected region with mesh boundary
ctirves as the region's boundary, and that every mesh boundary curve is a
part of the boundary of such a region. While finite element problems
typically require meshes for one connected region, there does not seem
to be a compelling reason to restrict the definition of a mesh so that
its boundary curves determine only one. However, for ease of exposition,
we shall now assume that there is only one boundary curve of bounded
interior and label it C]. Then, from Lemma 3, it follows that if K > 1
there are K - 1 curves C2’ cees CK inside C] oriented to have un-

bounded interiors, so that the region

D=

R = (interior of Ck) (3.2)

1]

k=1

is a bounded region of connectivity K - 1 , which will be defined as the

covered region of the mesh. This terminology will be justified by showing

that the elements of the mesh cover this region without gaps (in Theorem 2)

and without overlap (in Theorem 3).

Theorem 2
Ne
U E(i) = R
i=]
Ne
Proof To show that U= E(1) < R, suppose that for some i and j, E(i)
i=1 '

N (the exterior of Cj) is not void. Then, since the exterior of Cj is
connected, we can join P e E(i) to Q ¢ Cj by an arc in exterior of Cj

which passes through no mesh vertices. Since the exteriors of the Ck are

20.

disjoint, this arc will not pass through any boundary edges between P

and Q. But near Q it lies outside every element, which contradicts
N

Lemma 1. If there were a point Q ¢ R - Ue E(i) then an arc from C]
i=1

to Q could be similarly constructed which again violates Lemma 2, so

R € E(i). To establish no overlap, we have

H
- =

Theorem 3 Let P be a point of R which is neither a mesh vertex nor

Ties on an element edge. Then P 1ies in the interior of one element.

Proof If the (x,y) plane is identified as the complex plane in the
usual way, then the winding number of P with respect to a simple closed

oriented curve, D , can be defined as

W(D) =f (z-P)~1 dz/(2mi) (3.3)
D

(see [1], e.g.), and its significance is that, if D has the orientation
that gives it a bounded interior, then W(D) = 1 if P is in this interior,

and W(D) = 0 if it is in the exterior of D.

If we denote the boundary of R by
K .
c=U Ck (3.4)
k=1

then for P ¢ R

1]
pu—

K
W(C) = = HW(C,) (3.5)

21.

since
w(c]) =1, W(ck) =0 k>1 . (3.6)

The proof consists of showing that (3.4), (3.5) holds while R and C are
consecutively modified by removing elements not containing P until R
consists of one element containing P. Suppose that there is a boundary
edge in C which is the edge of an element, E, not containing P. The edges
of E can be separated into two subsets, 3E(b), consisting of boundary
edges and 3E(i) consisting of interior edges. It may happen that 3E(b)

is a simple arc on Ci for some i; and that 3E(i) is a simple arc with no
points in common with C other than its end points. In this case Ci can
be replaced by a new simple closed curve, C% formed by replacing 3E(b)

by 3E(i) with the directions of its edges reversed. By C3, no boundary
segment of C other than E(b) is affected by this change and (3.4) - (3.6)

are valid with,C¥ replacing Ci'

If 3E(b) is not a single arc, or if 3E(i) has interior vertices in
common with C, the situation is more complex. Its discussion can be
simplified somewhat by introducing, for each vertex, Q of each element a
circle of radius € centred on Q, with € so small that only edges of the
mesh incident on Q intersect the circle, and P does not 1ie in any of these
circles. An element circuit will then be defined to be a simple closed
curve resulting from following an edge of the element along its direction
until it encounters a circular arc and then entering the element along
the arc until it leaves the element and so on. If ¢ is a subset of
elements of the mesh, then the algebraic sum of element circuits for

elements in ¢ will be denoted y(¢) and referred to as the circuit of &G.

22.

This curye will consist of the edges of E ¢ ¢ for which there is no neigh-
bouring element in G, traversed between the circular arcs about the vertices
of E exactly once,plus a section of such an arc, plus possibly a number of
circles about vertices which are interior to G. While it can be seen, for
arbitrary choice of ¢, that v(¢) is a collection of closed curves, it is
less obvious that they are simple closed curves and we do not use this for
general choice of G, but establish it only for the particular choices

required by the proof.

'The proof proceeds inductively by constructing a finite sequence of"

subsets of elements, G], Gz, cees GF, such that

a) each piecewise linear segment of Y(Gi) is the directed (3.7)
edge of exactly one element in Gi’ which lies on its left. -

b) Y(Gi) is a set of simple closed curves, C ., k = 1, 25 eus Ky

with Ck c interior of C1 for k=2, ..., Ki

if Ki > 1
c) if P 1ies in an element E of the mesh, then E c Gi

d) (3.4) - (3.6) hold for Y(Gi)‘

The sequence is constructed by starting with G] = the entire mesh,
which clearly satisfies (3.7a)-d)), and by consecutively removing elements
with edges in v(¢G 1._]) which do not contain P. It terminates when there
are no such elements left, with Ge a subset of elements such that each
piecewise linear arc of Y(GF) is an edge of an element containing P. It
is then shown that there can only be one element in GF, which completes

the proof.

23.

Suppose’we have constructed subsets G], GZ’ cees Gi and let £ ¢ Gi
with 3E n Y(Gi) = 3E(b) be non empty and P ¢ E. Let 3E(i) = 3E-3E(b);
in order to establish a) for Gipp> We show that an edge of 3E(1)
does not intersect any other edge of the mesh. Suppose, to the contrary,
that there were an element, H, for which an edge of H intersects 3E(i).
Then the intersecting edge of H cannot be a boundary edge, by C3, and
the intersection must take place outside the circles of radius e about
each vertex. Consider part of an element circuit for E which starts at
a point Q1 on 3E(h) and terminates inside H n E at Qz; If necessary, we
can move 02 from the edge of E slightly inside E, in which case, by the
induction hypothesis (3.7a)) Q1 1ies in one element while Q 1ies in two
e]ementg and they are joined by an arc passing through no verteX or
boundary edge of the mesh, violating Lemma 1. Clearly, then, in the
circuit of Gy - E, at no point can a linear segment intersect another
linear segment and so by the construction of the circular segments, the

closed curves of y(Gi-E) are simple.

However, these curves may haye disjoint interiors. If we denote by
By> Boy «ees BM for M > 1, the curves of Y(Gi'E) of bounded interior
then one of them contains the connected component of the interior of
y(Gi—E) containing P, which we relabel B, . Then Gial is defined to be
the set of elements intersecting the interior of B], and it follows that

(3.7a)) through d) follows for Gitq

Eventually this induction process leads to a subset of elements, GF’

for which every element with an edge in Y(GF) contains P. If Gp contains

more than one element, then y(GF) has edges from more than one element, so

24.

suppose this latter to be the case. A point, Q, on an edge in Y(GF)
belonging to element E ¢ GF can be joined to P by an arc lying in E. At
Q, this arc Ties in eXact]y’one element, whereas at P it 1ies in more
than ore, violating Lemma 1. Hence Gp consists of one element and the

theorem is proven.

§4 Verifying C2

In the process of verifying C2, we build two lists, a list of elements
incident on a given vertex, and a 1ist of the neighbours of each element.
As mentioned in §1, these 1ists are useful in a variety of contexts in
the finite element method that require geometric adjacency information
that is not directly available from the basic mesh lists. A convenient
method for building these lists is described by Lewis and Robinson in [11],
and the basic ideas have doubtless been used in one form or another by
many implementors of finite element programs. By adding some refinements
to the basic idea (for which no published algorithmic description seems
to be available) we obtain an algorithm which serves both the purposes of
building these lists and checking C2 of the mesh definition. This

algorithm is developed in this section.

The method involves first constructing a vertex incidence list, i.e.

1, 2, ..., K{k), where

a list whose kth entry is the sublist e(i,k), i
e(i,k) is the index of an element which has vertex k as one of its vertices.
K(k) is then the number of elements incident at vertex k, which, in general,

varies with k. The vertex incidence list is the 'inverse' 1list to the

th

element incidence 1ist in the sense that for the j th

element and its 1

25.

vertex, j is in the sublist e(s, v(i,j)), s =1, 2, ..., K(v(i,j)).*
In the following algorithm to construct e(i,k), K(k) is used as an array

of pointers to the last entry made in 1ist e(i,k) for each k.
for k =1 to N,
K(k) « 0 (4.1)
for j =1 to N
for i=1¢t 1(j)
k < v(i,J)
L« K(k) + 1
e(L,k) <« j
K(k) < £
When operating on an element incidence 1ist as defined in §2, this
algorithm produces a vertex‘incidence sublist for vertex k, which is

sorted into increasing order,
e(1,k) < e(2,k) < ... < e(K(k),k), (4.2)

which can be used to advantage in searching these sublists. Note that
the success of this algorithm does not depend on the order of the vertex
indices in the element incidence sublists. In particular, then, its
success does not depend on the vertex orientation requirements of C1 nor

the edge consistency requirements of C2.

From this Tist, the algorithm constructs an element neighbour's list,

th

which is a list of Ne entries in which the j~ entry is a sublist,

1, 2, ..., I(j), with n(i,j) being the index of the neighbour
th

n(i,j), i
of element j on its i~ edge, or zero if this edge is a boundary edge. In
outline, the algorithm for constructing this list consists of a synchronized

scan over the element incidence 1ist and the boundary reference table

* Such inverted lists are discussed, usually rather briefly, in texts

on list processing, see e.g. Knuth, Sorting and Searching, for remarks.

26.

examining the edges of elements in order. If, on the current edge of the
current element, it is determinéd that there is a neighbour of higher
index, then this fact is recorded in the neighbour's sublists of both the
current element and its neighbour. However, prior to recording this, a
check is made to be sure that for the current edge of the current element
the presence of a neighbour of Tower index has not already been recorded,
which would be a vio1afion of c2. If neighbours of neither higher nor
Tower indices are present, the edge is presumed to be a boundary edge and
the bouncary reference table is checked for consistency. The remainder
of this seétion describes these steps in further detail and need not be

read prior to §5.

th

If element j has a neighbour on its i~ edge, of index £ > j then

this can be determined by searching the vertex incidence sublists of

th edge, for a

vertices-v(i,j) and v(i+1,j), the end points of the i
common entry (recall (2.1), ¥ = 1 mod I(j)). This search is described
in the following algorithm, which is labelled as a procedure returning
the common entry's value in a variable named £ so that it can be referred
to in the subsequent part of 4. The variables of our discussion are
regarded as global to the procedure, and comments are enclosed in face

brackets.

27.

procedure find common entry [£]

vl < v(i,j)

v2 < v(i+1,3)

{p1 and p2 are pointers into the vertex incidence sublists
for vl and v2}

pl <« 1

p2 <« 1
(4.3)

while (e(pl,vl) < j) pl <« pl+l
while (e(p2,v2) < j) p2 « p2+1
" {look for common entry in these sublists above j in value}

while e(pl,vl) = e(p2,v2)
if e(pl,vl) < e(p2,v2)
then pl « pl+l
else p2 < p2+l
£ <« e(pl,vl)

After locating £, n(i,j) can be set to £ and it is known that element j

is the neighbour of element £ for some local edge number, m. More precisely,
it is known that the vertex indices v(i,j) and v(i+1,j) appear in the element
incidence sublist for E(Z), but it is not assured that v(i+1,j) immediately
precedes v(i,j) as is necessary to meet the edge consistency requirements

of C2. The following procedure returns m if the edges of E(j) and E(£)

are consistent and -m otherwise.
procedure find complementary local edge number [m]
m<« 1

T« 1 mod I(j)

whtle (v(m,L) = v(i+1,3)) m <« mHl (4.4)
m « m mod I(L).

if v(mt1,2) = v(i,j) then m = -m

28.

If no such £ exists, then (4.3) will fail by pl or p2 becoming an invalid
pointer into the corresponding sublist. This failure can be ayoided by
extending the element incidence 1ist by a 'guard' entry at the end of each

sublist, i.e.

fork=1 to N | (4.5)

e(K(k)+1,k) « Ne + 1

which maintains the order of the sublists (4.2). Then 'find common entry'
(4.3) ends either with £ in the range j < £ < Ne indicating the presence of

a neighbour of higher index, or £ = Ne + 1 indicating none.

The verification of C2 requires a check that each edge of each element
is either an internal edge or a boundary edge. This information can then
be used to verify that the boundary reference table contains refe}ences to
boundary edges exclusively and exhaustively. Initially, the néighbours

list is set to zero, i.e.

for 3=1 2o N

for i=1¢2 I(j) (4.6)
n(i,j) « 0

The verification is then carried out as in algorithm (4.7) by a scan over

the mesh edges in element order, and for each element, in local edge number

h

order; the current edge of the scan will be the ith edge of the jt element.

The first step of the check is to establish the presence or absence of a
neighbour on this edge. Procedure (4.3), find common entry, is used to
determine the presence of a neighbour of index £ > Jj. If one is found,

then a check is made to ensure that a second neighbour of index Tess than -

29.

j has not already been recorded in the neighbours 1ist. If not, £ is
assigned tc n(i,j); the edge consistency between these neighbours is
checked using (4.4), and the presence of element j as a neighbour of
element £ is recorded. This latter assigmment is made regardless of edge

th

consistency so that the m~ edge of element £ will not be interpreted as

a boundary edge later in the scan.
h

th element

When the status of a neighbour for the i~ edge of the jt
has been determined, the consistency of the boundary reference table can

be assessed. A scan of this table is synchronized with the scan of

element edges by maintaining a pointer, k, into the table. If the current
edge of the scan coincides with the table entry pointed to by k, then the
table is consistent if the current edge is a boundary edge, and inconsis-
tent if it is not a boundary edge. In this case, when the consistency

has been checked, the pointer k must be incremented by one to maintain
synchronization. Conversely, if the current edge is not referenced by the
table entry pointed to by k, then the table is consistent if the edge is

an internal edge, but inconsistent if it is a boundary edge. The discovery
of a violation of C2, or the inconsistency of the boundary reference table
are marked in the algorithm by comments, which in an implementation would
be replaced by an error recording and/or reporting mechanism. If no
‘yiolation of C2 is encountered, a valid element neighbours 1list is con-
structed. If the boundary reference table were not constructed a priori,

then the section of (4.7) which validates it could be replaced by a

section which constructs it.

30.

for 3 =1 to Ny
for i to I(J)
{first - establish presence of a neighbour}
find common entry [£2] {via (4.3)}
if £ <N
then
if n(i,j) =0
then {violation of C2, multiple neighbours}
else {one neighbour of index £ > j}
n(i,j) < ¢
find complementary local edge number [m] {via (4.4)}
if m>0 |
then n(m,L) < j
else {violation of C2, edge inconsistency} (4.7)
n(-m,L) < j
{second - check consistency of boundary reference table}
if b(1,k) =3 and b(2,k) = i
then
if n(i,j) 20

then {brt inconsistent - contains reference to internal edge}

if k< Nb
then k « k+1
else
if n(i,j) =0

then {brt inconsistent, reference to boundary edge omitted}

When, as is usual in practice, the elements have a fixed number of
edges, the implementation of the element incidence and element neighbours
lists are simplified considerably because their sublists have fixed length
and hence the Tists are two dimensional arrays. This simplication does
not extend to the vertex incidence 1ist so readily, as a typical case of a

modestly irregular triangular mesh shows. However, the extent of variation

31.

in the number of elements meeting at a vertex (= the length of the sublist
for that vertex) is usually fairly small; even for triangular meshes these
lengths could be eXpected to range between 4 and 11 (allowing for the
terminating guard entry of (4.5)] for most meshes. Hence, particularly

if the vertex incidence 1ist is to be created temporarily using working
space storage as in this algorithm, the simplicity to be gained by using

a two dimensional array~of'makima1 sublist length to implement it can be
expected to usually justify the resulting inefficient use of memory space.
In our FORTRAN implementation of the algorithm this is done, and since

the array K(k) of sublist lengths is only needed during (4.1), the first

column of n(i,j) is used for this purpose.

As a rough guide to the expebted running time characteristics of (4.7),
it can be seen from the looping stru;ture that if the elements have a
fixed, or bounded, number of sides, and a bounded number of them can be
incident on any one vertex, then the running times can be expected to be
linear with respect to Ne and Nb’ with dependence on Ne being the dominant

effect.

§5 Verification of C3 and C4

Algorithm (4.7), which checks condition C2 of the mesh definition and
the consistency of the boundary reference table, is the first of three
major steps in verifying the mesh. The second involves a pairwise compari-
son of entries in the boundary reference table to check C4 and part of
condition C3 of the definition. In this step, the number of independent
boundary curves is determined for the third major step, which verifies

condition C1 and the remaining part of C3 in a scan over the element 1ist.

32.

The algorithms for these steps are designed so that they can each be run.
independently of the outcome of the previous ones to provide as much diag-

nostic information as possible about invalid meshes.

Several comments are in order before we embark on a more detailed
discussion of these steps. In the preceding sections, the geometric shape
of the finite elements of the mesh played little role so there was no
benefit to restricting this shape beyond its being a general polygonal
domain. However, such generality adds considerable complexity to the discus-
sioh of this section, which seems unwarranted since most of the meshes 1in
comron use consist of triangle and quadrilaterals. We shall discuss tri-
angular elements, pointing out that the algorithm extends directly to
elements which can be triangulated conveniently. For example, if E(j) is
convex, with I(j) vertices, then by introducing the I(j)-2 traingles
Ti(j) with vertices v(i,j), v(i+1,j) and v(i+2,j), we have the triangulation
for E(j) of

I(j)-2
E(3) = U T;Q) . (5.1)
i=1

We have assumed that the 1lists to be verified do represent a valid
collection of traingles, e.g. that the values of the entries in the
incidence 1ist and boundary reference table fall in the correct ranges,
or that the entries in the vertex coordinate 1ist are unique. Such a
check would be a useful part of a mesh verification program, but conditions
that the 1ists represent triangles are fairly obyious and can be checked
by simple inspection algorithms. Another significant consideration in
implementing a mesh verification program is the fact that it depends on

real number arithmetic and comparisons. Despite its importance to a

33.

successful implementation, we shall not comment further on this because the
techniques for dealing with these difficulties are not peculiar to these

calculations and are well documented in texts on numerical computation

(e.g. [5]).

The third condition of the definition, C3, requires that no interval
of a boundary edge intersect any mesh element other than the one of which
it is an edge. It can be seen from the proof of Theorem 1 in §3 that the
boundary edges of a collection of triangles satisfying conditions C2 and
C4 of the definition form a set of simple oriented closed polygonal curves
which do not cross at the vertices of the'mesh; Suppose that one vertex
P, of such a curve is known to 1ie outside each element except those on
which it is incident. We shall refer to P as the sfarting yertex for
this boundary curve, and we shall refer to the order in which the edges
appear when the boundary curve is traversed from P in the direction of its
orientation as curve order. If any edge in the curve intersects an element
of the collection of triangles in the manner forbidden by C3, then there
must be a first such edge in the curve order of edges, and this first
edge must intersect some boundary edge. The intersection may occur at
the endpoint (=vertex) of one of the two edges involved, but not both, or
a violation of C4 occurs. Hence condition C3 may be divided into two sub-

criteria

34.

C3 1) Check one point of each boundary curve to ensure that
it Ties outside every element on which it is not

incident

C3 i) Check that no two Boundary edges intersect unless (5.2)

they are consecutive edges of a boundary curve.

The second major step of the mesh verification algorithm described
below at (5.6) checks criterion C3 i1) and condition C4. The outline of
an a]gorithm for determining when two or more of a set of Nb line segments
intersect which runs in times O(Nb log (Nb)) has been described by Shamos
and Hoey in their interesting paper, [14], which also shows that this
behaviour is asymptotically optimal for this task. We describe here a
much simpler algorithm which can be eXpected to run in times O(Ng). If
execution efficiency considerations justified the additional complexity
of implementing an optimal algorithm for this step, then the approach of
[14] could probably be substituted for the algorithm described here. How-
ever, since the first step of the verification process is generally O(Ne),

and for most region shapes O(Ng) = O(Ne), no improvement in the total

asymptotic running time behaviour for most meshes would be expected.

An edge will be referred to as checked when criterion C3 ii) has
been exgmined for it, which involves comparing the edge to every other
unchecked boundary edge of the collection of triangles, except its pre-
decessor and successor in curve order. The check of a boundary edge from

the vertex of index p to that of index q uses the function

35.

fp,q(x,y) = (y(q)-y(p))(x-x(p)) - (x(q)-x(p))(y-y(p)) (5.3)

which vanishes only for (Xx,y) on the line through the vertices and takes
values of opposite sign for points on opposite sides of this line. If r
and s are the indices of two other vertices, then the 1ine segment from

r to s intersects that from p to q only if

A
o

fp,qCX(r),y(r)) fp,q(X(S),y(S))

and (5.4)

In
o

fr,sX(0)sy(p)) . ((x(a),y(a))

The boundary edges are checked along each boundary curve in curve
order. For the scanning of a curve, three pointer variables into the
boundary reference table are used; a pointer named start which marks the
starting vertex of the first edge of a curve to be checked, a pointer, k,
into this table is maintained to reference the edge currently being checked,
and a pointer, next, is maintained to the successor of edge k. When next
coincides with start, the curve has been scanned. If unchecked boundary

edges remain, it is necessary to reinitialize start on a new boundary curve.

To keep track of which edges have bheen checked, algorithm (5.6) uses
a temporary boolean array of length Nb named 'checked' with 'checked (k) =

kth entry of the boundary reference

true' when the edge described by the
table has been checked. This step of the algorithm also determines the
number of distinct boundary curves, and the indices of one yertex on each

curve, which is used by the third step of the verification algorithm to

36.

check criterion C3 1). This information is stored in algorithm variable

' ncuryes' and array 'bv(i), 1 =1 to ncurves' respectively.

The Algorithm (5.6) requires a valid boundary reference table, as
provided from algorithm (4;7) of the preceding section; As Tong as C2
and C4 are not violated, then each boundary edge has a unique successor
(Theorem 1 of §3) so that the algorithm can proceed to check all edges.
However, if a violation of these conditions has occurred this is no longer
guaranteed, which could result in an infinite loop developing during the
scanning of a boundary curves edges. Hence, the outer control structure
of algorithm (5.6) is a while loop with two exit criteria, (a) nchecked =
Nb’ regarded as the 'normal' exit, although it may occur with invalid as
well as valid meshes, and (b) next = k indicating that no successor was
found for the edge referenced by the kth entry of the boundary reference

table, which can only occur for an invalid mesh. Algorithm (5.6) requires

the following initializations of variables

ncurves < 0 (5.5)

nchecked <« 0

k <0
next <« 1
start <« 1

for m=1 to Nb

chécked (m) « false

37.

while nchecked < Ny and next # k
{check if current boundary curve is completed}
if next = start
then {initialize next to start of new boundary curve}
next « 1
while checked (next) next « next + 1
start « next
ncurves <« ncurves + 1
bv(ncurves) « v(b(2,start), b(1,start))
k « next
p < v(b(2,k), b(1,k))
g < v(b(2,k) + 1, b(1,k))
for m=1 to N (5.6)
if m# k {check mth boundary edge against kth}
then
r < v(b(2,m), b(1,m))
s < v(b(2,m)+1, b(1,m)) *
i p=r
then {violation of C4}
if q=r
then {m
next «m

th edge is successor of kth edge}

else
<f not checked (m)
then
if edges intersect {using (5.4)}
then {violation of C3ii}

nchecked <« nchecked + 1
checked (k) « true
{end of while loop}

The third major step of the algorithm involves a scan over the elements
to verify C1, i.e. that their vertices are listed in the element incidence

1ist in counter clockwise order, and C3 i) of (5.2), i.e. the starting

38.

vertices of the boundary curves do not lie in elements other than those of
which they are incident as vertices. These checks can be conveniently
implemented for triangular elements using the familiar transformation to
the area coordinates of an element. For completeness, we review the

formulae for this transformation, which can be found, e.g. in [19]. Let
th

the coordinates of the j~ element be
X = x(v(k;3))s v = y(v(k,3)) k = 1,2,3 (5.7)
and let
D = det 1x (5.8)
1% ¥,
1 X3 ¥3

1 = (.VZ’.Y3)/D; B] = (.x3'x2)/D§ C-[= (x2y3-x3y2)/D
2 = (Y3‘y])/D; 32 = (X]-X3)/D; CZ = (X3.V]'X].Y3)/D
3 = (y]'yz)/D; 33 = (XZ-X])/D; C3 = (x]yz'xzy'])/D .

Then the area coordinates relative to the triangle E(j) of a point of the

plane having Cartesian coordinates (x,y) are the three numbers
Li(x,y) = Aix + Biy + Ci i=1,2,3 (5.9)

Their significance to our discussion is that (x,y) lies in E(j) if and only
if 0 < Li(x,y) <1 fori=1,2,3. Moreover, the vertices of E(j) form a
triangle and are specified in counter clockwise order if and only if

D> 0. The condition O < LT(X,y) < 1 means, geometrically, that (x,y) lies

39.

in the strip between the dashed lines of Figure 5.1

Figure 5.1

Even if there are sevéra] boundary curves, it can be expected that the
starting vertex of any of them will fall in this strip only for relatively
few elements. Hence, in algorithm (5.10) we compute and check the

A Bs, C; and Li(x,y) sequentially, expecting that Ly will not Tie
between 0 and 1 and we can avoid computing them for i = 2 and 3 for most
of the elements. An alternative test has been used by C.L. Lawson in [10]

for determing whether a point lies in an element or not.

40.

The scan for verifying C1 and C3 i) can be described by the following
algorithm, using data concerning the number of boundary curves and a starting
vertex on each, ncurves and by(i), 1 = 1 to ncurves from (5.6) and the

vertex incidence list, e(k,n) , k=1 toK(n) , n=1 to N, from (4.7).

for 3=1 N,
compute D {via (5.8)}
if D<O
- then {violation of C1}
for n=1 to ncurves
{check if element j is incident on vertex of index bv(n)}
for k=1to K(bv(n))
if J = e(k,bv(n))
- then incident « true
if not incident (5.10)
x + x(bv(n))
y + y(bv(n))
compute A, B], Cs L](x,y) {via (5.8)}
if 0=< Ly <1

then
compute A2’ Bys Cys Lz(x,y) {via (5.8)}
if 0slys1
" then
compute A,, B, Css L3(x,y) {via (5.8)}
if 0< Ly < 1

then {yiolation of C3.i)}

41.

§6. Pefformance of a FORTRAN Implementation

A FORTRAN implementation of the mesh verification algorithm has
been prepared and some tests run on regular meshes to provide some
evidence of run time performance which we discuss here, as well as
some tests to check out the various mesh errors detected, which are
not reported here. The meshes for the performance tests comprise
two families each characterized by a parameter N which is propor-
tional to the number of elements in the mesh. One family is a

collection of valid meshes on a hollow square, as shown in Figure 6.1,

/
a4

42,

and having 3/N triangle edges along each outer side of the square, and
YN triangle edges along the inner sides of the 'hollow'. The second
family is a collection of invalid 'meshes' created by folding the meshes
of the first family along the line y = x/3, i.e. by applying the trans-

formation

(X, ¥) = (x, y)
ify > x/3
= 3(ax + 3y, 3x - 4y) ify < x/3

The meshes are quite regular in the sense that 6 triangles meet at each
interior vertex, and less than 6 meet at each boundary vertex; hence
one would expect the algorithm's running time to be proportional to N.
The FORTRAN implementation used for the test was compiled using the IBM
optimizing compiler, FORTRAN H extended, and executed on the University
of Waterloo's IBM 3031. For the tests involving the invalid meshes,
the details of the mesh errors were determined in each case, but the
detailed output of these details was not performed.

The running time for the algorithm to check meshes 1600 to 4096
triangles are shown in Tables 6.1 and 6.2, along with slopes of
successive line segments of the graph of running times versus N. The
algorithm seems clearly to be behaving as Tinear in the number of
triangles in the mesh, at least over this range of meshes. It can
be seen that there is a slight premium to be paid for the determination

of the necture of the errors in the invalid meshes.

42.

Nq. of time = tj Slope =
i N Triangles (seconds (t;=t;_ 1)/ (N;-Ns)
1 100 1600 3.7
2 144 2304 5.3 .036
3 196 3136 7.3 .038
4 256 4096 9.5 .037
Test Timings for Valid Mesh
on Hollow Square
Table 6.1
No. of
No. of time = tj Slope = errors
N. Triangles (seconds} (ti-t. ;)/(N.-N.) reported
i : i Ti-1 i i-1
100 1600 4.4 254
2 144 2304 6.3 .043 375
3 196 3136 0.5 .042 522
4 256 4096 11.2 .045 692

Test Timings for Invalid
(folded) Mesh on Hollow Square

Table 6.2

44,

References

1. Ahlfors, L.V., Complex Analysis, McGraw Hill, 1966.

2. Babuska, I. and Aziz, A.K., On the angle condition in the finite
element method. SIAM J. of Num. Anal. 13, 214-226, 1976.

3. Bykat, A., Automatic generation of triangular grids, I-Subdivision
of a general polygon into convex subregions, II-Triangulation
of convex polygons. Int. J. of Num. Meth. Eng. 10, 1329-1342,
1976.

4. _ Cavendish, J.A., Automatic triangulation of arbitrary planar domains
for the finite element method. Int. J. of Num. Meth. Eng. 8,
679-696, 1974.

5. Forsythe, G., Malcolm, M.A., and Moler, C.B., Computer Methods for
Mathematical Computations. Prentice Hall, 1977.

6. Gorden, W.J. and Hall, C.A., Construction of curvilinear coordinate
systems and applications to mesh generation. Int. J. Num. Meth.
Eng. 7, 461-477, 1973.

7. George, J.A., Computer implementation of the finite element method,
Tech. Rep. STAN-CS-208, Stanford Univ., Stanford, Calif., 1971.

8. Gross, J.L. and Rosen, R.H., A linear time planarity algorithm for
2-complexes, J. ACM 26, 611-617, 1979.

9. Hopcroft, J. and Tarjan, R., Efficient planarity testing, J. ACM 21,
549-568, 1974.

10. Lawsor, C.L., Software for C] surface interpolation, Mathematical
Software III, ed. J.R. Rice, 1977. Academic Press.

11. Lewis, B.A. and Robinson, J.S., Triangulation of planar regions with
applications. Comp. J. 21, 324-332, 1978.

12. Mitchell, A.R. and Wait, R., The Finite Element Method in Partial
Differential Equations. J. Wiley, 1977.

13. Sewell, E.G., An adaptive computer program for the solution of

Div(p(x,y) grad u) = f(x,y,u) on a polygonal region. The
Mathematics of Finite Elements and Applications II, ed.
J.R. Whiteman, MAFELAP 1975, Academic Press, 1976.

45,

References - Cont'd.

14.

15.

16.

17.

18.

19.

Shamas, M.I. and Hoey, D., Geometric Intersection Problems, 17th
Annual Symp. on Found. of Comp. Sc. 208-215, IEEE, 1976.

Simpson, R.B., Automatic local refinement for irregular rectangular
meshes, Int. J. for Num. Meth. Eng. 14, 1665-1678, 1979.

Simpson, R.B., A survey of two dimensional mesh generation Proc.
Ninth Manitoba conference on Numerical Mathematics and
Computing, 1980.

Strang, G. and Fix, G.J., An Analysis of the Finite Element Method.
Prentice Hall, 1973.

Van Emden, M.H., Programming with verification conditions, IEEE
Trans. Soft. Eng. 5, 148-159, 1979.

Zienkiewicz, 0.C., The Finite Element Method in Engineering Science,
McGraw Hill, 1971.

	

