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ABSTRACT

Let A be a partitioned sparse symmetric positive definite
matrix, and let L be its Cholesky factor, correspondingly partitiohed.
An important problem which arises in connection with allocating computer
storage for L 1is to determine the envelope structure of the diagonal
blocks of L, given the structure of A. The envelopes of A and L
are known to be identical, because fill-in occurs only within the
envelope, but the envelopes of their diagonal blocks in general differ.
In this paper we provide an efficient algorithm for finding the

envelopes of the diagonal blocks of L.



§1. Introduction

Let A be an N by N sparse symmetric positive definite

matrix having a Cholesky factor L, where A = LLT.

For the i-th row
of A, i=1,2,...,N, let

(1.1) fi(A) = min{jlaij#O}.

The envelope of A, denoted by Env(A), 1is then defined by
(1.2) Env(A) = {{i,j}lfi(A) <j <i}.

This notion is important because in some contexts, computer storage
methods involving the envelope of the matrix are very efficient (2,8].
Another attractive feature is that it can be shown [4] that Env(A) =
Env(L+LT), so it is easy to determine the envelope of L from the
structure of A. In what follows we denote the matrix sum L + LT by F,

and refer to F as the filled matrix correspohding to A.

Suppose A is p by p symmetrically partitioned as shown

in (1.3) and (1.4).
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The block diagonal matrix of A with respect to the given partitioning

is defined to be

(1.4) Bdiag(A) =

pp



Let the triangular factor L of A be correspondingly

partitioned as
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Then the associated block diagonal matrix of the fi]]edvmatrix F owill

be

1

(1.6) Bdiag(F) =
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where Fkk = ka
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In this paper, we consider the problem of determining the

envelope structure of Bdiag(F), given the structure of A. We are

motivated to consider this problem because some important storage schemes

for the partitioned L require a knowledge of the envelopes of its

diagonal submatrices [3,5].



§2. Graph Theory and Preliminary Results

The envelope structure of Bdiag(F) can be best studied
using a graph theoretic approach. The reader is assumed to be familiar
with the basic terminologies of graph theory, reference to which can

be found in [11.

Let A be an N by N symmetric matrix. The labelled graph

Ae MY,

X,E is one for which the

associated with A, denoted by G

N nodes are labelled from 1 to N and {Xi’xj} e BN <> a5 = 845 £ 0,

i# j. Here X; denotes the node of XA with label 1.

The function fj(A) in (1.2) can be expressed in terms of
the graph GA simply as

fi(A) = min{jlxj € Adj(xi) u {x;}}.

To determine this value, we need only to inspect the adjacent set of

the node Xi'

In order to study our problem posed in section 1, we first
associate graphs with partitioned matrices. Let A be an p byp

symmetrically partitioned matrix. Corresponding to the partitioning of

the rows and columns of A, we associate a set partitioning of XA.

Let F be the filled matrix of A. The envelope structure

of Bdiag(F) 1is completely determined by the numbers fi(Bdiag(F)),

that is, the column index of the first nonzero in each row of Bdiag(F).

To determine these numbers, it is helpful to establish a relationship

A F

between the structures of G and G . The notion of reachable sets

[6] serves this purpose.



Consider the graph G = (X,E). Let S be a subset of the

node set X with x ¢ S. The node x is said to be reachable from

a node y through S if there exists a path (y,v],...,vk,x) from
y to x such that Vi€ S for 1 <1i <k. Note that k can be zero,
so that any adjacent node of y not in S 1is reachable from y through
S.
The reachable set of y through S, denoted by Reach(y,S),
is then defined to be
(2.1) Reach(y,S) = {x ¢ S | x 1is reachable from y through S}.
The significance of the notion of reachable sets is embodied
in the following theorem, which provides a relationship between the

A and £F

sets in terms of reachable sets. The proof is given in
[9] and is omitted.
Theorem 2.1

EF = {lxg0x5) |xj e Reach(x;,{xysx,5-000x; 11}
g
In terms of the matrix, the set Reach(xi,{x],...,xi_]}) is
simply the set of row subscripts that correspond to nonzero entries in
the column vector L*i‘ (For more details, the reader is referred to

(61.



§3. Main Results

In what focllows, we shall use fi to stand for fi(Bdiag(F)).
Let row 1 belong to the k-th block in the partitioning; in other
words, we let X; € Yk' In terms of the filled graph, the quantity

fi is given by

. . F
f. = min{s | s =1 or {Xs’xi} ¢ E (Yk)}.

We now relate it to the original graph GA through the use of reachable
sets introduced in Section 2. By Theorem 2.1 which characterizes the
fill via reachable sets, we have

(3.1) fi = min{s | Xg € Yk’ X; e Reach(xs, X]""’Xs—l}) u {xs}}.

In Theorem 3.2 below, we prove a somewhat stronger result. We begin

with a lemma.

Lemma 3.1 Let xi € Yk’ and let

] U ... U Yk-]'

That is, S contains all the nodes in the first k-1 blocks. Then
X5 e Reach(xf.,S) u {xf.}.
i i
Proof By the definition of f].,{xi,xf } e EF, so that by
. i
Theorem 5.1.2, X € Reach(xf ,{x],...,xf _]}). We can then find a path
i i

(X5oX 5-aesX 5Xe ) where {x ,...,xrt} c {x],...,xfi_]}.

1 t i 1

We now prove that X; can also be reached from Xg through
‘ i
S, which is a subset of {x],...,xf -} If t =10, clearly
1 ,
X; € Reach(xf ,S). On the other hand, if t # 0, let X, be the node
i S

with the largest index number in {x_ ,...,x_ }. Then (x,,x
r ry i

is a path from x; to x through {X],XZ,-~-erS_]} so that

RIS X )
r -1’
™ S s

s



F
{X-,X } € E .
1 Y‘S

But r. < fis so by the definition of f. we have x_ ¢ Y, orin
s

other words X, € S. The choice of re implies

3
{X s...,x_}cS
" 't
and thus X3 € Reach(xf ,S).
i ; U
T =
heorem 3.2 Let Xy € Yk and S Y] U ..o U Yk—1' Then
fo = min{s | X € Yk’ Xs € Reach(xS,S) u {xs}}.
Proof By Lemma 3.1, it remains to show that x, £ Reach(xr,S)

for X, € Yk and r < fi' Assume for contradiction that we can find

Xp € Y With r < fo and x; e Reach(x.,S). Since

S ¢ {X],...,x },

r-1
we have X5 € Reach(xr,{x1,...,xr_]}) so that {xi,xr} € EF(Yk). This

contradicts the definition of fi'
O

Corollary 3.3 “lLet X and S be as in Theorem 3.2. Then

f, = min{s | xg e Reach(xi,S) u {x,13.

The proof follows directly from Theorem 3.2 and the symmetry of the
“Reach" opevator. It is interesting to compare this result with that

given by (3 .1).



To illustrate the result, we consider the partitioned matrix

example in Figure 3.1.

‘\\\\\\\\\\
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R
Figure 3.1 An 11x11 partitioned matrix A,

Consider Y2 = {xs,x6,x7,x8}. Then the associated set

S = {x],xz,x3,x4}. We have

Reach(x5,S) 1

0%
Reach(x6,S) = {x7,x8,x9,x]0}

Reach(x7,5) {x6,x8}
Reach(x8,5) = {x6,x7,x10,x]]}.

By Corollary 3.3,

1

fS(Bdiag(F)) 5

fG(Bdiag(F)) fo(Bdiag(F)) = f,(Bdiag(F)) = 6.

7 8



§4. An Algorithm and Execution Time Analysis

Corollary 3.3 readily provides a method for finding
fi(Bdiag(F)) and hence the envelope structure of Bdiag(F). However,
in the actual implementation, Lemma 3.1 is more easily applied. Our
algorithm can be described as follows.

let P = {Y],...,Yp} be the partitioning. For each block

k in the partitioning, do the following:

Step 1 (Initialization) Se¥yu.ouY,
T+Squ.
Step 2 (Main Loop) For each node X, in Yk do:

2.1) Determine Reach(xr,S) in the subgraph G(T).
2.2) For each X € Reach(xr,S), fi = r.,

2.3) Reset T <« T - (Reach(x_,S) v {Xr})'

r’
Reset S «S - {s eS| s is reachable from X, through a
subset of S}.

2.4) If T =S then stop.

Step 2.3 needs some elaboration. For each node in Reach(xr,S),
its first envelope subscript is given by r. Once determined, we can
remove these nodes from the set T in step 2.3. Furthermore, those
nodes in S that have been traversed in finding Reach(xr,S) can also
be removed from S, since they cannot lead to new reachable nodes in
T. These observations are important in obtaining the following

execution time bound.

Theorem 4.1

Let G = (X,E) and P = {Y1,Y2,...,Yp} be a partitioning of

X. Then the complexity of the algorithm described above is O(plEI).



Proof In performing the algorithm for the k-th block Yk’

the nodes and their neighbors in Y] v Y2 U ... U Yk are inspected
at most once. The upper bound O(plEl) then follows from summing over

all p blocks.
O

Of course the actual running time of the algorithm depends
on the way the blocks are connected, in addition to the quantities p
and [E| appearing in Theorem 4.1. In many realistic situations, the
execution time is of lower order than that given in Theorem 4.1. For
example, for so-called one-way dissection orderings [3], the bound is

O(IET).
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§5. An Algorithm for Finding an Approximate Diagonal Block Envelope

In most applications, it is not necessary to obtain the exact
envelope structure of the diagonal blocks. An approximate structure is
acceptable as long as it comes reasonably close to the exact envelope.
In this section we provide an algorithm which is faster and simpler
than the one described in Section 4, and for some applications usually
provides the exact solution.

Let P = {Y]’YZ""’Yp} be the given partitioning. Let
X;e¥ o and S=Y uY, v ... 0¥ 4. As in previous sections, we

denote
fi = fi(Bdiag(F)).
Lemma 5.1 Either Xe € Adj(xi) or Adj(xi) nS# ¢ and
i

Adj(xf.) nS#é¢.
1

Proof By Corollary 3.3,

fi = min{s | x_ e Reach(x,,S) v {x;}}.

Assume i # fi' Then X ¢ Reach(xi,S); that is, there is a path
i

(xi,s],...,st,xfi).

If t =0, then Xg € Adj(xi). Otherwise,
i
Adj(xi) nS=4¢

Y nS = 9.

and Adj(xf \
i O

Experience shaws that in numerous situations, the converse of
Lemma 5.1 provides a good approximate to the block envelope structure.

For xi,xj € Yk’ if

Adj(xi) n S_# 9
and Adj(xj).n S ¢ ¢,
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then we assume {xi,xj} is in the cnvelope structure of the diagonal

blocks. The algorithm is as follows.

For each block k in the partitioning, do the following.

Step 1 (Initialization) io <« N, S« Y] u Y2 U ..o U Yk—]’
Step 2 (Main Loop) For each node X € Yk do:

2.1) fi = min{s { Xg € Y, n (Adj(xi) u {Xi})}‘
2.2) fi <« min{fi,io}.
2.3) If Adj(xi) nS# ¢ then

o minfi i1
i, 1n{10,1}

It is obvious that this algorithm can be implemented to run
in O(|E!) time. In the next section, we shall consider some experi-
mental results comparing the performance of this algorithm with that

of Section 4.
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§6. Numerical Experiments and Concluding Remarks

In this section we report on some numerical experiments
designed to show the performance of the algorithm described in the
previous two sections, and to support the claims made there. The
Fortran implementations of the algorithms of Section 4 and 5 are
referred to as FNBENV and FNTENV respectively in the tables which
follow.

As a feasible alternative for solving this block envelope
problem, we could simply apply a standard symbolic factorization pro-
cedure to the whole matrix, obtaining the entire structure of L; we
could then gasi]y obtain from this the block envelope structure. The
state of the art for the general problem has reached a high level, so
as a basis for timing comparison, we have included the times for a
full symbolic factorization of the matrix problem in our tables. The
name of the computer subroutine_is SMBFCT; it is the fastest one we
know about. Listings of this subroutine, as well as those for FNBENV
and FNTENV, can be found in [7]. Of course we should point out that
SMBFCT usually requires much more storage than either of the other two.
Another point to remember is that the SMBFCT times reported should be
regarded as lower bounds on the time required to solve the block
envelope problem. We have not included time that would be needed to
find the block envelope structure from the full structure of L pro-
vided by SMBFCT.

We used the set of "graded-L" mesh problems from [6, page 10621,
which consists of a sequence of similar problems typical of those
arising in finite element applications. We used two different ordefing

algorithms, both of which produce partitionings of the correspondingly
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ordered matrices. These are the one-way dissection ordering algorithm
(TWD) [31, and the refined quotient tree ordering (RQT) [5]. in both
cases the diagonal blocks of the partitioned matrices tend to be sparse,
but also tend to have full envelopes. Thus, it makes sense to use a
storage scheme which exploits this fact, and in order to set up such a
data structure we must solve the problem addressed in this paper. The
results of the experiments are summarized in Tables 6.1 and 6.2.
Execution times are in seconds on an IBM 3031.

Figure 6.1 shows that the approximate algorithm of Section 5
can pay handsomely. Note that its execution time appears to be O(lE|)
as expected, while both FNBENV and SMBFCT appear to be O(plE{). The
reason that SMBFCT appears to be O(p|E|) has nothing to do with the
partitioning per se, since the algorithm does not use it in any way.
The apparent connection is due to the fact that fqr these problems, we

3/2)

expect the execution time of SMBFCT to be O{|E] , and we also

expect the RQT algorithm to yield p = l—‘;!Ell/2

Table 6.2 shows that FNTENV is no panacea; for some problems
it fails to find an envelope that is acceptably close to the correct
one. The data in the table also shows that FNBENV may execute mﬁch
faster than the bound provided by Theorem 4.1; It can be shown that
for one-way dissection orderings, FNBENV executes in O(JE|) time [73,
and the numbers in the fourth column of Table 6.1 certainly support
this result. Note that FNBENV executes substantially faster than
SMBFCT for these problems.

Ideally, we would like an algorithm which combines those of

Section 4 and 5, so that the "short cut" scheme of Section 5 is used

only when it is applicable, and the algorithm of Section 4 is used
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otherwise. So far we have not discovered a cheap test to indicate
that FNTENV is inadequate for a problem, although one may exist. In
any case, we feel that FNBENV provides an acceptable solution to our
problem, even when it may be somewhat slower than the full symbolic
factorization SMBFCT approach. One important practical disadvantage
of the latter approach is that storage requirements are unpredictable,
while FNBENV uses a fixed predictable amount of storage consisting of
only a few arrays of length N, in addition to that required for the

graph of A.
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