FINDING DIAGONAL BLOCK ENVELOPES OF
TRIANGULAR FACTORS OF PARTITIONED MATRICES*t

by

Alan George*
and
Joseph W-H Liu®

*

Research Report CS-80-35
July 1980

* Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

** SBS Computer Shoppe
82 University Avenue
Toronto, Ontario, Canada M5J 1T5

+ Research supported in part by the Canadian Natural Sciences and
Engineering Research Council under grant A8111.

ABSTRACT

Let A be a partitioned sparse symmetric positive definite
matrix, and let L be its Cholesky factor, correspondingly partitiohed.
An important problem which arises in connection with allocating computer
storage for L 1is to determine the envelope structure of the diagonal
blocks of L, given the structure of A. The envelopes of A and L
are known to be identical, because fill-in occurs only within the
envelope, but the envelopes of their diagonal blocks in general differ.
In this paper we provide an efficient algorithm for finding the

envelopes of the diagonal blocks of L.

§1. Introduction

Let A be an N by N sparse symmetric positive definite

matrix having a Cholesky factor L, where A = LLT.

For the i-th row
of A, i=1,2,...,N, let

(1.1) fi(A) = min{jlaij#O}.

The envelope of A, denoted by Env(A), 1is then defined by
(1.2) Env(A) = {{i,j}lfi(A) <j <i}.

This notion is important because in some contexts, computer storage
methods involving the envelope of the matrix are very efficient (2,8].
Another attractive feature is that it can be shown [4] that Env(A) =
Env(L+LT), so it is easy to determine the envelope of L from the
structure of A. In what follows we denote the matrix sum L + LT by F,

and refer to F as the filled matrix correspohding to A.

Suppose A is p by p symmetrically partitioned as shown

in (1.3) and (1.4).

T N T
; .
Mo Ry oo Ay
(1.3) A = |
T T
A Ao o v . A
|l 2 PP

The block diagonal matrix of A with respect to the given partitioning

is defined to be

(1.4) Bdiag(A) =

pp

Let the triangular factor L of A be correspondingly

partitioned as

C Ly
Loy Lo O
(1.5) L = : :
L L L
- pl p2 pp —

Then the associated block diagonal matrix of the fi]]edvmatrix F owill

be

1

(1.6) Bdiag(F) =

22 . ()
0

for 1 <

.
* Lo

l
o=
A

where Fkk = ka

p.
In this paper, we consider the problem of determining the

envelope structure of Bdiag(F), given the structure of A. We are

motivated to consider this problem because some important storage schemes

for the partitioned L require a knowledge of the envelopes of its

diagonal submatrices [3,5].

§2. Graph Theory and Preliminary Results

The envelope structure of Bdiag(F) can be best studied
using a graph theoretic approach. The reader is assumed to be familiar
with the basic terminologies of graph theory, reference to which can

be found in [11.

Let A be an N by N symmetric matrix. The labelled graph

Ae MY,

X,E is one for which the

associated with A, denoted by G

N nodes are labelled from 1 to N and {Xi’xj} e BN <> a5 = 845 £ 0,

i# j. Here X; denotes the node of XA with label 1.

The function fj(A) in (1.2) can be expressed in terms of
the graph GA simply as

fi(A) = min{jlxj € Adj(xi) u {x;}}.

To determine this value, we need only to inspect the adjacent set of

the node Xi'

In order to study our problem posed in section 1, we first
associate graphs with partitioned matrices. Let A be an p byp

symmetrically partitioned matrix. Corresponding to the partitioning of

the rows and columns of A, we associate a set partitioning of XA.

Let F be the filled matrix of A. The envelope structure

of Bdiag(F) 1is completely determined by the numbers fi(Bdiag(F)),

that is, the column index of the first nonzero in each row of Bdiag(F).

To determine these numbers, it is helpful to establish a relationship

A F

between the structures of G and G . The notion of reachable sets

[6] serves this purpose.

Consider the graph G = (X,E). Let S be a subset of the

node set X with x ¢ S. The node x is said to be reachable from

a node y through S if there exists a path (y,v],...,vk,x) from
y to x such that Vi€ S for 1 <1i <k. Note that k can be zero,
so that any adjacent node of y not in S 1is reachable from y through
S.
The reachable set of y through S, denoted by Reach(y,S),
is then defined to be
(2.1) Reach(y,S) = {x ¢ S | x 1is reachable from y through S}.
The significance of the notion of reachable sets is embodied
in the following theorem, which provides a relationship between the

A and £F

sets in terms of reachable sets. The proof is given in
[9] and is omitted.
Theorem 2.1

EF = {lxg0x5) |xj e Reach(x;,{xysx,5-000x; 11}
g
In terms of the matrix, the set Reach(xi,{x],...,xi_]}) is
simply the set of row subscripts that correspond to nonzero entries in
the column vector L*i‘ (For more details, the reader is referred to

(61.

§3. Main Results

In what focllows, we shall use fi to stand for fi(Bdiag(F)).
Let row 1 belong to the k-th block in the partitioning; in other
words, we let X; € Yk' In terms of the filled graph, the quantity

fi is given by

. . F
f. = min{s | s =1 or {Xs’xi} ¢ E (Yk)}.

We now relate it to the original graph GA through the use of reachable
sets introduced in Section 2. By Theorem 2.1 which characterizes the
fill via reachable sets, we have

(3.1) fi = min{s | Xg € Yk’ X; e Reach(xs, X]""’Xs—l}) u {xs}}.

In Theorem 3.2 below, we prove a somewhat stronger result. We begin

with a lemma.

Lemma 3.1 Let xi € Yk’ and let

] U ... U Yk-]'

That is, S contains all the nodes in the first k-1 blocks. Then
X5 e Reach(xf.,S) u {xf.}.
i i
Proof By the definition of f].,{xi,xf } e EF, so that by
. i
Theorem 5.1.2, X € Reach(xf ,{x],...,xf _]}). We can then find a path
i i

(X5oX 5-aesX 5Xe) where {x ,...,xrt} c {x],...,xfi_]}.

1 t i 1

We now prove that X; can also be reached from Xg through
‘ i
S, which is a subset of {x],...,xf -} If t =10, clearly
1 ,
X; € Reach(xf ,S). On the other hand, if t # 0, let X, be the node
i S

with the largest index number in {x_ ,...,x_ }. Then (x,,x
r ry i

is a path from x; to x through {X],XZ,-~-erS_]} so that

RIS X)
r -1’
™ S s

s

F
{X-,X } € E .
1 Y‘S

But r. < fis so by the definition of f. we have x_ ¢ Y, orin
s

other words X, € S. The choice of re implies

3
{X s...,x_}cS
" 't
and thus X3 € Reach(xf ,S).
i ; U
T =
heorem 3.2 Let Xy € Yk and S Y] U ..o U Yk—1' Then
fo = min{s | X € Yk’ Xs € Reach(xS,S) u {xs}}.
Proof By Lemma 3.1, it remains to show that x, £ Reach(xr,S)

for X, € Yk and r < fi' Assume for contradiction that we can find

Xp € Y With r < fo and x; e Reach(x.,S). Since

S ¢ {X],...,x },

r-1
we have X5 € Reach(xr,{x1,...,xr_]}) so that {xi,xr} € EF(Yk). This

contradicts the definition of fi'
O

Corollary 3.3 “lLet X and S be as in Theorem 3.2. Then

f, = min{s | xg e Reach(xi,S) u {x,13.

The proof follows directly from Theorem 3.2 and the symmetry of the
“Reach" opevator. It is interesting to compare this result with that

given by (3 .1).

To illustrate the result, we consider the partitioned matrix

example in Figure 3.1.

‘\\\\\\\\\\

SO -,

/W/ \\/

R
Figure 3.1 An 11x11 partitioned matrix A,

Consider Y2 = {xs,x6,x7,x8}. Then the associated set

S = {x],xz,x3,x4}. We have

Reach(x5,S) 1

0%
Reach(x6,S) = {x7,x8,x9,x]0}

Reach(x7,5) {x6,x8}
Reach(x8,5) = {x6,x7,x10,x]]}.

By Corollary 3.3,

1

fS(Bdiag(F)) 5

fG(Bdiag(F)) fo(Bdiag(F)) = f,(Bdiag(F)) = 6.

7 8

§4. An Algorithm and Execution Time Analysis

Corollary 3.3 readily provides a method for finding
fi(Bdiag(F)) and hence the envelope structure of Bdiag(F). However,
in the actual implementation, Lemma 3.1 is more easily applied. Our
algorithm can be described as follows.

let P = {Y],...,Yp} be the partitioning. For each block

k in the partitioning, do the following:

Step 1 (Initialization) Se¥yu.ouY,
T+Squ.
Step 2 (Main Loop) For each node X, in Yk do:

2.1) Determine Reach(xr,S) in the subgraph G(T).
2.2) For each X € Reach(xr,S), fi = r.,

2.3) Reset T <« T - (Reach(x_,S) v {Xr})'

r’
Reset S «S - {s eS| s is reachable from X, through a
subset of S}.

2.4) If T =S then stop.

Step 2.3 needs some elaboration. For each node in Reach(xr,S),
its first envelope subscript is given by r. Once determined, we can
remove these nodes from the set T in step 2.3. Furthermore, those
nodes in S that have been traversed in finding Reach(xr,S) can also
be removed from S, since they cannot lead to new reachable nodes in
T. These observations are important in obtaining the following

execution time bound.

Theorem 4.1

Let G = (X,E) and P = {Y1,Y2,...,Yp} be a partitioning of

X. Then the complexity of the algorithm described above is O(plEI).

Proof In performing the algorithm for the k-th block Yk’

the nodes and their neighbors in Y] v Y2 U ... U Yk are inspected
at most once. The upper bound O(plEl) then follows from summing over

all p blocks.
O

Of course the actual running time of the algorithm depends
on the way the blocks are connected, in addition to the quantities p
and [E| appearing in Theorem 4.1. In many realistic situations, the
execution time is of lower order than that given in Theorem 4.1. For
example, for so-called one-way dissection orderings [3], the bound is

O(IET).

10

§5. An Algorithm for Finding an Approximate Diagonal Block Envelope

In most applications, it is not necessary to obtain the exact
envelope structure of the diagonal blocks. An approximate structure is
acceptable as long as it comes reasonably close to the exact envelope.
In this section we provide an algorithm which is faster and simpler
than the one described in Section 4, and for some applications usually
provides the exact solution.

Let P = {Y]’YZ""’Yp} be the given partitioning. Let
X;e¥ o and S=Y uY, v ... 0¥ 4. As in previous sections, we

denote
fi = fi(Bdiag(F)).
Lemma 5.1 Either Xe € Adj(xi) or Adj(xi) nS# ¢ and
i

Adj(xf.) nS#é¢.
1

Proof By Corollary 3.3,

fi = min{s | x_ e Reach(x,,S) v {x;}}.

Assume i # fi' Then X ¢ Reach(xi,S); that is, there is a path
i

(xi,s],...,st,xfi).

If t =0, then Xg € Adj(xi). Otherwise,
i
Adj(xi) nS=4¢

Y nS = 9.

and Adj(xf \
i O

Experience shaws that in numerous situations, the converse of
Lemma 5.1 provides a good approximate to the block envelope structure.

For xi,xj € Yk’ if

Adj(xi) n S_# 9
and Adj(xj).n S ¢ ¢,

11

then we assume {xi,xj} is in the cnvelope structure of the diagonal

blocks. The algorithm is as follows.

For each block k in the partitioning, do the following.

Step 1 (Initialization) io <« N, S« Y] u Y2 U ..o U Yk—]’
Step 2 (Main Loop) For each node X € Yk do:

2.1) fi = min{s { Xg € Y, n (Adj(xi) u {Xi})}‘
2.2) fi <« min{fi,io}.
2.3) If Adj(xi) nS# ¢ then

o minfi i1
i, 1n{10,1}

It is obvious that this algorithm can be implemented to run
in O(|E!) time. In the next section, we shall consider some experi-
mental results comparing the performance of this algorithm with that

of Section 4.

12

§6. Numerical Experiments and Concluding Remarks

In this section we report on some numerical experiments
designed to show the performance of the algorithm described in the
previous two sections, and to support the claims made there. The
Fortran implementations of the algorithms of Section 4 and 5 are
referred to as FNBENV and FNTENV respectively in the tables which
follow.

As a feasible alternative for solving this block envelope
problem, we could simply apply a standard symbolic factorization pro-
cedure to the whole matrix, obtaining the entire structure of L; we
could then gasi]y obtain from this the block envelope structure. The
state of the art for the general problem has reached a high level, so
as a basis for timing comparison, we have included the times for a
full symbolic factorization of the matrix problem in our tables. The
name of the computer subroutine_is SMBFCT; it is the fastest one we
know about. Listings of this subroutine, as well as those for FNBENV
and FNTENV, can be found in [7]. Of course we should point out that
SMBFCT usually requires much more storage than either of the other two.
Another point to remember is that the SMBFCT times reported should be
regarded as lower bounds on the time required to solve the block
envelope problem. We have not included time that would be needed to
find the block envelope structure from the full structure of L pro-
vided by SMBFCT.

We used the set of "graded-L" mesh problems from [6, page 10621,
which consists of a sequence of similar problems typical of those
arising in finite element applications. We used two different ordefing

algorithms, both of which produce partitionings of the correspondingly

13

ordered matrices. These are the one-way dissection ordering algorithm
(TWD) [31, and the refined quotient tree ordering (RQT) [5]. in both
cases the diagonal blocks of the partitioned matrices tend to be sparse,
but also tend to have full envelopes. Thus, it makes sense to use a
storage scheme which exploits this fact, and in order to set up such a
data structure we must solve the problem addressed in this paper. The
results of the experiments are summarized in Tables 6.1 and 6.2.
Execution times are in seconds on an IBM 3031.

Figure 6.1 shows that the approximate algorithm of Section 5
can pay handsomely. Note that its execution time appears to be O(lE|)
as expected, while both FNBENV and SMBFCT appear to be O(plE{). The
reason that SMBFCT appears to be O(p|E|) has nothing to do with the
partitioning per se, since the algorithm does not use it in any way.
The apparent connection is due to the fact that fqr these problems, we

3/2)

expect the execution time of SMBFCT to be O{|E] , and we also

expect the RQT algorithm to yield p = l—‘;!Ell/2

Table 6.2 shows that FNTENV is no panacea; for some problems
it fails to find an envelope that is acceptably close to the correct
one. The data in the table also shows that FNBENV may execute mﬁch
faster than the bound provided by Theorem 4.1; It can be shown that
for one-way dissection orderings, FNBENV executes in O(JE|) time [73,
and the numbers in the fourth column of Table 6.1 certainly support
this result. Note that FNBENV executes substantially faster than
SMBFCT for these problems.

Ideally, we would like an algorithm which combines those of

Section 4 and 5, so that the "short cut" scheme of Section 5 is used

only when it is applicable, and the algorithm of Section 4 is used

14

otherwise. So far we have not discovered a cheap test to indicate
that FNTENV is inadequate for a problem, although one may exist. In
any case, we feel that FNBENV provides an acceptable solution to our
problem, even when it may be somewhat slower than the full symbolic
factorization SMBFCT approach. One important practical disadvantage
of the latter approach is that storage requirements are unpredictable,
while FNBENV uses a fixed predictable amount of storage consisting of
only a few arrays of length N, in addition to that required for the

graph of A.

15

*2d0|3AUS 30BXd BY3 punoj ANILN4 €sosed (e ul [G] wody wyjiaobie
104 2yl Aq pauolrjijaed pue padapdo swa|qousd 40 aouanbas e 03

patidde ‘104gWS Pu® “ANILINA ANIGN4 404 SBWLI UOLINIIXJ L9 9lqel

| (c.0tx) (,.01x) (5-01%) (g-0L%) (,.01x)
s AR e v G 9¢” 10°1 9€" L 28"y €/ 2859 €g£22
Gp° l0°€ 99" 1 2€°§ 62° 20°1 18°9 L€ L9 LSS 288l
Sp° LL°2 92" 1 AR 62" 70" 1 v€"9 68°2 19 095 196t
8" 29°2 16" 1€°G 0z° 70" 1 2L S 2Lz SG 6695 0L2ZL
8y L£°2 69° GE"G 9L" 90" 1 02°G 2571 6y 8262 6001
0§” 9l°2 6Y° £€9°G gL 80" L v9" ¥ 0" 1 €y Lv2Z 8LL
25" £6° 1 2¢” £8°6 oL ZL L ey 89" L€ 9591 L[S
85" 6L° 1 A 8v's 90 IR 85°¢€ Lt 1€ GGLL 90%
29" L5711 AN LE°S 0" 0z 1 00°€ 22" 62 Ll 592
(131d)/3wWIl 131/73WIL 3WIL |31 /3WIL 3JWIL (131d)/3WIL 131/3WIL 3WIL d 13l N
1048WS ANFINS AN3ENS

16

swd|goad

3Sayj 404 33enbape 30u St ANJIINA Ag pasn poyjlsu ojewixousdde
3Y3 3ey3 moys ANJIN pue ANIGNd Aq punoj sazis ado[sAua ayj
‘(€] wo4y wyltaobie uoL3dassLp Aem-3uo sy} Aq pauotitijued
PUR P343PJ0 [Q] wo4) swaqoad ;o adusnbas e 03 poLidde

“10484S PUR ANILNZ “ANIENA 404 SBWL} UOLINOSXI g'9 Alqel

(,.01%) (.01 |

al'e [0°2 8lE0s Le’ 99682 92'6 L9° 0L 2859 ££22
862 69'L 8Lv6E 12" 180€2 l£'6 1§’ oL Llss z8sl
8/'z L2 €6962 S¢° pLESL 05°6 € | 6 095% 1951
09'z 96 61z 8L 2€8€1 9’6 g€ 6 669t 02l
g’z oL syl bl 6£201 sv'6 8z g gz6z 6001
02'2 6t ozvoL LU LobL pe's L2 8 bz 8LL
00'z €€ 9.9 80" 1605 96 9L [989l LLS
9L 02 09/ SO° €0LE 256 Ll 9 S5l 90V
G9°1 L’ L10Z p0° (€41 lv°6 [0’ 9 A G92

EIVE T S TR B S Mg gosing 1A/BMIL L |4 13 N
1048WS AN3LNA ANIENA

§7. References

(13 C. Berge, The Theory of Graphs and Its Applications, John Wiley
& Sons Inc., New York, 1962.

(21 C. A. Felippa, "Solution of linear equations with skyline-stored
matrix", Computers and Structures 5 (1975), pp. 12-39.

[33 Alan George, "An automatic one-way dissection algorithm for
irregular finite element problems", Proc. 1977 Dundee Conf. on
Numerical Analysis, Lecture Notes No. 630, Springer Verlag, 1978,
pp. 76-89.

[4] Alan George and Joseph W-H Liu, "A note on fill for sparse
matrices", SIAM J. Numer. Anal. 12 (1975), pp. 452-455.

[5]1 Alan George and Joseph W-H Liu, "Algorithms for matrix partitioning
and the numerical solution of finite element systems", SIAM J.
Numer. Anal. 15 (1978), pp. 297-327.

(6] Alan George and Joseph W-H Liu, "An automatic nested dissection
algorithm for finite element problems", SIAM J. Numer. Anal. 15
(1978), pp. 1053-1069. ‘

[7] Alan George and Joseph W-H Liu, Computer Solution of Large
Positive Definite Systems, to be published by Prentice-Hall Inc.

(8] A Jennings, "A compact storage scheme for the solution of
simultaneous equations", Comput. J. 9 (1966), pp. 281-285.

{93 D. J. Rose, R. E. Tarjan, and G. S. Lueker, "Algorithmic aspects
of vertex elimination on-graphs", SIAM J. on Computing 5 (1976),
pp. 266-283.

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

TECHNICAL REPQORTS 1979

Report No., Author
CS5=79-01* E.A. Ashcroft
W.W. Wadge
CE~T9-02* T.5.E. Maibaum
CS-79-03* D.R. McIntyre
C§-79-04* K. Culik IT
A. Salomaa
C5-79-05* T.S.E. Maibaum
C5-79-06% C.J. Colbourn
K.S5. Booth
CS~79~07% K. Culik, II
N.D. Diamond
CS~79~-08% M.R. Levy
T.S.E. Maibaum
CS-79-09 K.0. Geddes
CS~79-10* D.J. Taylor
J.P. Black
D.E. Morgan
CS-79-11* G.H. Gonnet
CS~79-12 M.O. Afolabi
CS=~79~13* W.M. Chan
J.A. George
¢5-79~14 D.E. Morgan
C5~79~-15% M.H. van Emden
G.J. de Lucena
CS=-79~-16%* J. Karhumaki
I. Simon
CS=79-17* K. Culik II
J. Karhumaki
CS~79~18* F.E. Fich

Title

Generality Considered Harmful - A
Critique of Descriptive Semantics

Abstract Data Types and a Semantics
for the ANSI/SPARC Architecture

A Maximum Column Partition for

Sparse Positive Definite Linear
Systems Ordered by the Minimum Degre=
Ordering Algorithm

Test Sets and Checking Words for
Homomorphism Equivalence

The Semantics of Sharing in Parallel
Processing

Linear Time Automorphism Algorithms
for Trees, Interval Graphs, and Planar
Graphs

A Homomorphic Characterization of
Time and Space Complexity Classes of
Languages

Continuous Data Types

Non~-Truncated Power Series Solution
of Linear ODE's in ALTRAN

Robust Implementations of Compound
Data Structures

Open Addressing Hashing with Unequal-
Probability Keys '

The Design and Implementation of a
Package for Symbolic Series Solution
of Ordinary Differential Equations

A Linear Time Implementation of the
Reverse Cuthill-McKee Algorithm

Analysis of Closed Queueing Networks
with Periodic Servers

Predicate Logic as a Language for
Parallel Programming

A Note on Elementary Homorphisms and
the Reqularity of Equality Sets

On the Equality Sets for Homomorphisms
on Free Monoids with two Generators

Languages of R-Trivial and Related
Monoids '

* Out of print - contact author

Technical Reports 197¢

C5=79=-19*

cs-79-20*

Cg-79-21"

£5-79-22

CS-79~-23*

CS~-79~24*

Cs=-79-25*

C5~79-26*

Cs8-79-30

C5-79-31+%

CS-79~-32+

CS-79-33*

CS-79-34~*

C5~79-35

CS-79-36

C5-79-37

D.R. Cheriton

E.A. Ashcroft
W.WN. Wadge

FE.A. Ashcroft
W.W. Wadge

G.B. Bonkowski
W.M, Gentleman
M.A. Malcolm

K.L. Clark
M.H. van Emden

D. Dobkin
J.I. Munro

P.R.F. Cunha
C.J. Lucena
T.S5.E. Maibaum

T.5.E. Mailbaum

D. Dobkin
J.I. Munro
T.

A. Cargill

R.J. Ramirez
F.W. Tompa
J.I. Munro

A. Pereda

R.L. Carvalho
C.J. Lucena
T.S.E, Maibaum

J.I. Munro
H. Suwanda

D. Rotem
J. Urrutia

Brader

=

.

Taylor
Morgan
Black

MG W0

o

Taylor
Morgan
Black

Beatty

QoYU QuUyg
[e

.

[}
[T <

E.A. Ashcroft
W.W. Wadge

Multi-Process Structuring and the
Thoth Operating System

A lLogical Programming Language
Structured LUCID

Porting the Zed Compiler

Consequence Verification of Flow-
charts

Optimal Time Minimal Space Selection
Algorithms

On the Design and Specificaﬁion of
Message Oriented Programs

Non-Termination, Implicit Definitions
and Abstract Data Types

Determining the Mode

A View of Source Text for Diversely
Confiqurable Software

Optimum Reorganization Points for
Arbitrary Database Costs

Data Specification Methods

Implicit Data Structures for Fast
Search and Update

Circular Perimutation Graphs

PHOTON/532/Set - A Text Formatter

Redundancy in Data Structures:
Improving Software Fault Tolerance

Redundancy in Data Structures: Some
Theoretical Results

On the Relatiénship between the LL (1)
and LR(1l) Grammars

Rx for Semantics

* Out of print - contact author

Regort NQ;
C5-80~01

C5-80-02

C5-80-03

C5-~80~04

C5-80-05

CS-80-06

CsS-80-07

c5-80~-08 -

Cc$-80~09

8-80~10*

¢5-80-11

Cs-80-12

CS-80~-13

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

RESEARCH REIMQRTS 1980

Author

P.T. Cox

T. Pietrzykowski

K. Culik I

J. Brzozowski

H. Suwanda

M.H. van Emden

Y. Kobuchi

K. Culik II

G.H. Gonnet
J.I. Munro

1., Suwanda
J.P. Black
D.J. Taylor

D.E. Morgan

J.L1l. Morris

N. Santoro

H. Suwanda

T.S5.E. Maibaum
S. dos Santos

A.L. Furtado

R. Apt

.H. van Emden

.A. Geoxrge
.T. Heath

T.5.E. Maibaum

J.P. Black
D.J. Taylor
D.E. Morgan
K.0. Geddes

P. Calamai
A.R. Conn

Title

On Reverse Skolemization

Homomorphisms: Decidability,
Equality and Test Sets

Open Problems About Reqgular
Languages

Implicit Data Structures for the
Dictionary Problem

Chess~Endygame Advice: A Case Study
in Computer Utilization of Knowledge

Simulation Relation of Dynamical
Systems

Exegesis of Self-Organizing Linear
Search

An Introduction to Robust Data
Structures

The Extrapolation of First Order
Methods for Parabolic Partial
Differential Equations II

Entropy of the Self-Organizing
Linear Lists

A Uniform Logical Treatment of
Queries and Updates

Contributions to the Theory of
Logic Programming

Solution of Sparse Linear Least
Squares Problems Using Giveng
Rotations

Data Base Instances, Abstract Data
Types and Data Base Specification

A Robust B-Tree Implementation

Block Structure in - the Chebyshev-
Padé Table

A Stable Algorithm for Solving the
Multi-facility Location Problem
Involving Euclidean Distances

Technical Reports 1979

CS-79-38

Cs-79-39

C5-79~40

C8~79-41%

CS=-79-42

E.A. Ashcroft
W.W. Wadge

J. Albert
K. Culik II

F.W. Tompa
R.J. Ramirez

P.T. Cox
T. Pietrzykowski

R.C. Read
D. Rotem
J. Urrutia

Some Common Misconceptions about LUCTID

Test Sets for Homomorphism Equivalence
on Context Free languages

Selection of Efficient Storage
Structures

Deduction Plans: A Basis for Intell i-—
gent Backtracking

Orientaticns of Circle Graphs

* Out of print - contact author

Regearch Reports 1980

Cs-80~18

C5-80-19

CS-80-20

Cs--80~-21

CS-80-22

C5-80-25

C5-80-26

cs-80-27

)

CS-80-28

CS-80-29

Cs-80-30

Cs-80-31

Cs-80-32

CS-80-33

CS-80-34.

CS-80-35

R.J. Ramirez
D. Therien
J. Buccino
N. Santoro

L. de Carvalho
S.E. Maibaum
H.C. Pequeno
.A. Pereda
A
H

O m

.5. Veloso

. Gonnet

J.P. Black
D.J. Taylor
D.E. Morgan

N. Santoro
J.A. Brzozowski

J. Bradford
T. Pietrzykowski

P. Cunha
T.S.E. Maibaum

K. Culik II
Arto Salomaa

T.F. Coleman
A.R. Conn

T.F. Coleman
A.R. Conn

P.R.F. Cunha
C.J. Lucena
T.S.E. Maibaum

Karel Culik II
Tero Harju

K.S. Booth
A. George
J. W-H Liu

2 -

- Efficient Algorithms for Selecting

Efficient Data Storage Structures

Classification of Reqular Languages
by Congruences

A Reliable Typesetting System for
Waterloo

Efficient Abstract Implementations
for Relational Data Structures

A Model Theoretic Approach to the
Theory of Abstract Data Types and
Data Structures

A Handbook on Algorithms and Data
Structures

A Case Study in Fault Tolerant
Software

Four O(n**2) Multiplication Methods
for Sparse and Dense Boolean Matrices

Development in the Theory of Regular
Languages

The Eta Interface

Resource = Abstract Data Type Data
+ Synchronization ...

On Infinite Words Cbtained by
Interating Morphisms

Nonlinear Programming via an Exact
Penalty. Function: Asymptotic Analysis

Nonlinear Programming via an Exact
Penalty Function: Global Analysis

Message Oriented Programming - A
Resource Based Methodology

Dominoes Over A Free Monoid

Dominating Sets in Chordal Graphs

Finding Diagonal Block Envelopes of

Triangular Factors of Partitioned Matrices

	

