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ABSTRACT

A set of vertices D is a dominating set for a graph if every
vertex is either in D or adjacent to a vertex which is in D. We show
that the problem of finding a minimum dominating set in a chordal
graph is NP-complete and exhibit a linear time greedy algorithm for
the problem restricted to the subclass of directed path graphs.
Streamlined to handle only trees, our algorithm becomes the
algorithm of Cockayne, Goodman and Hedetniemi. An interesting
parallel with graph isomorphism is pointed out.
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1. Introduction

A set of vertices D is a dominating set for a graph G = (V,E) if every vertex
is either in D or adjacent to a vertex which is in D. A smallest such set is a
minimum dominating set. For arbitrary graphs the problem of finding a minimum
dominating set is NP-complete [6]. For the special case of trees there are
algorithms which run in linear time [3,14]. We improve upon both of these results
by showing that the problem remains NP-complete when restricted to chordal
graphs but that a further restriction to directed path graphs admits a linear time
solution,

Our method is a simple greedy algorithm which walks a tree representation
of a directed path graph. It utilizes a linear time recognition algorithm for
directed path graphs devised by Dietz, Furst and Hopcroft [4]. If the graph is a
tree (trees are a subfamily of the directed path graphs) our algorithm can be
streamlined to the original procedure of Cockayne, Goodman and Hedetniemi [3].

The remainder of this section is devoted to notation and a brief review of
chordal graphs. Further details are available in the cited references.

We make heavy use of the term clique. A cliqgue is any maximal set of
vertices which are all mutually adjacent. Some authors do not insist on
maximality; our usage follows Harary [11].

An edge is a chord of a cycle if it connects two vertices of the cycle but is
not itself an edge within the cycle. A graph is chordal if and only if every cycle of
length greater than three has a chord. For our purposes a more useful definition
of chordality is the characterization proven by Gavril. His result can be used to
classify a hierarchy of chordal graphs in terms of intersection models.

A graph is an intersection graph if there is a correspondence between its
vertices and a family of sets (the intersection model) such that two vertices are
adjacent in the graph if and only if their two corresponding sets have a nonempty
intersection. Restricting the sets to subtrees of a tree determines the class of
chordal graphs [8].

If the intersection model is further restricted, so that each subtree must be a
path, a proper subclass called the undirected path graphs results {10]. Further
restricting the model to rooted trees with paths directed away from the root yields
the directed path graphs [9]. Requiring that the tree itself be a path defines the
class of interval graphs [12].
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As Gavril has shown in his papers, the intersection models can always be
chosen so that the nodes of the tree are the cliques of the original graph. Each
vertex then corresponds to the subtree comprised of exactly those cliques to which
it belongs. We call such an intersection model a cligue tree for the graph.
Because we want to extract as much structural information as possible from the
graph, we insist that the clique tree have each vertex correspond to a subtree,
undirected path, directed path or subpath depending upon whether the original
graph is chordal, undirected path, directed path or interval.

7,5,4,3

(esd) @32 (@as)

Figure 1{b). An undirected path graph with its clique tree.

The hierarchy of chordal graphs is illustrated in Figure 1 which shows (a) a
chordal graph, (b) an undirected path graph, (c) a directed path graph and (d) an
interval graph. Each belongs to its subclass but does not belong to the next more
restrictive subclass. These four graphs are closely related. Each successive graph
is obtained from the previous graph by vertex or edge deletion where the deleted
elements are indicated with dashed lines. The examples are drawn from Gavril
[8,9] and Lekkerkerker and Boland [12].
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Figure 1(d). An interval graph with its clique tree.

A polynomial time algorithm for constructing the clique tree of an interval
graph is easily obtained from an algorithm of Fulkerson and Gross [5].
Polynomial time algorithms for the other three classes of chordal graphs were first
given by Gavril [8,9,10]. Linear time algorithms are now known for all but one of
these classes. Lueker, Rose and Tarjan [16] have an algorithm for chordal graphs.
Dietz, Furst and Hopcroft have a recognition algorithm for directed path graphs
[4] which can be modified to produce a clique tree. Booth and Lueker [2] have a
recognition algorithm for interval graphs which already produces the equivalent of
a clique tree. To our knowledge there is no published linear time algorithm which
builds a clique tree for undirected path graphs.

The notion of a path graph has been around for more than ten years. Renz
introduced the idea in 1970 when he gave a partial characterization for undirected
path graphs [I5]. Dietz, Furst and Hopcroft base their work on a more recent
paper by Truszczynski [4,17]. He refers to the problem as the generalized
consecutive retrieval problem (see [2] for references to this and related concepts).
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2. NP-Completeness for Chordal Graphs

No one has produced a polynomial time algorithm for finding a minimum
dominating set of an arbitrary graph. The problem is NP-hard. As is usual for
combinatorial minimization problems the NP-complete version is stated as a
recognition problem: “Given a graph G and an integer k, is there a dominating set
of size k for G7” We will use the latter formulation of the problem throughout
this section.

The general dominating set problem was shown NP-complete using a
reduction from the vertex cover problem [6, p. 190]. A slight variation of that
reduction suffices to prove that even for the restricted case of chordal graphs the
dominating set problem is NP-complete.

Theorem 1: The dominating set problem for chordal graphs is NP-complete.
Proof:

Let G =(V,E) be an arbitrary graph and let kX be an integer. We
demonstrate that the vertex cover problem for G and k can be polynomially
reduced to the dominating set problem for G' and k where G’ is a chordal graph
constructed from G.

Let G’ =(V',E') where V' = VUE. The vertices of G’ which are in V are
called V-vertices and those in E are called E-vertices. The edge set E’ consists of
edges between every pair of V-vertices and also between every E-vertex and its two
incident V-vertices. Equivalently, G’ is the union of the subdivision graph of G
and a clique of the original vertices {11]. (The subdivision graph replaces each
edge with a new vertex and two edges joining the new vertex to the old endpoints.)
Figure 2 shows (a) the construction of G’ from G and (b) the resulting clique tree.
We claim that G has a vertex cover of size & if and only if G’ has a dominating
set of size k.

Figure 2(a). A graph G and its chordal graph G'.

Every vertex cover for G is also a dominating set for G'. This follows
because every edge of G is incident to a vertex in the cover for G hence all vertices
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Figure 2(b). The clique tree for the chordal graph G'.

in G’ are adjacent to some V-vertex in the cover: V-vertices because they form a
clique and E-vertices because they are adjacent to their incident V-vertices from G.

Conversely, given a dominating set for G' we can assume without loss of
generality that it contains no FE-vertices; replacing such a vertex with either
incident V-vertex maintains a dominating set. With this assumption every
dominating set for G is a vertex cover for G because each FE-vertex in G’ is
adjacent to a dominating V-vertex.

The proof is completed by noting that G’ is the intersection graph of a clique
tree whose root is the clique of all V-vertices and whose leaves are the cliques
containing an E-vertex and its two incident V-vertices. Each E-vertex appears in
precisely one clique (a subtree) and each ¥-vertex appears in the root plus each of
the cliques for its incident edges {again a subtree). Thus G’ is a chordal graph. O

3. A Linear Algorithm for Directed Path Graphs

This section describes a linear time algorithm for finding a minimum
dominating set in a directed path graph. We will not give all of the details for our
algorithm. Instead we will explain how to build it from pieces of other
algorithms,

First we assume that a clique tree has been constructed for the directed path
graph G =(V,E). This requires only linear time using an easy modification to the
recognition algorithm of Dietz, Furst and Hopcroft. The result is a rooted tree
each of whose nodes is a clique of . 1t has the property that the cliques
containing any vertex form a contiguous path directed away from the root.

We next coliect the following information, all in linear time, walking (or

while constructing) the clique tree and using the original graph G.

[1] For each clique C find the integer depth [C] which is the length of the path
from the root of the clique tree to C. A list of all vertices contained in the
clique is also generated.

21  For each vertex v find the integer high [v] which is the depth of the highest
clique to which v belongs. A list of all adjacent vertices is also generated.
The rest of the algorithm is straightforward. TInitialize the dominating set D

to be empty, mark as “undominated” every vertex, then walk the clique tree in

preorder (or any order in which all children are visited before their parent)
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performing the following operation.

[3] If there is a vertex v in the current clique C marked ‘“undominated” and
high[v]=C then choose a vertex x in C haVing the smallest value high[x ]
among all vertices in C. Add x to D and mark as “‘dominated” x and all
vertices adjacent to x.

A linear running time for the algorithm is easily established. Each of the
steps is linear either in the size of G, in the size of the clique tree (known to be
linear in the size f G), or in the size of a clique. For any chordal graph the sum
of the sizes of all cliques is linear in the size of G hence the entire algorithm is
linear.

With the exception of the clique tree building, which uses the Dietz, Furst
and Hopcroft algorithm, our solution is built entirely of standard algorithms from
graph theory. Each of these is almost trivially linear time. Their algorithm is a
bit more complicated and the proofs of linearity and correctness are quite
involved. We remark that even without their algorithm we can substitute the
polynomial time algorithm of Gavril to obtain a guaranteed polynomial running
time for our algorithm.

Correctness of the algorithm follows from the next theorem. We introduce
the notation DOM{u) to denote the set of vertices dominated by a vertex u and
DOM(U) to denote the set of vertices dominated by a set U of vertices. A vertex
dominates itself and any adjacent vertex.

Theorem 2: At the termination of the dominating set algorithm DOM(D )=V and
| D| is minimum among all dominating sets for G.

Proof:
We show by induction on the number of cliques visited that there is a

minimum dominating set D’ which contains D and that DOM(D) contains at least
those vertices which appear only in visited cliques.

The basis is trivial. After zero iterations D is empty and clearly contained
within any minimum dominating set. There are no vertices which D is required to
dominate.

For the inductive step, if no v satisfies the condition of Step [3] in the
algorithm the hypothesis continues to hold. Otherwise suppose that x is added to
D while visiting C in the clique tree. By the induction hypothesis D —{x} is
contained within some minimum dominating set D'. If x is in D' we are done.
Otherwise let v be the vertex of C which is not dominated by D —{x}.

The condition on v is that high[v]= depth[C]. Hence we know that v
occurs only in cliques within the subtree rooted at C. Let y be any vertex in D’
which dominates v. Consider the set D' = D' —{y}U{x}. We claim that D" is a
dominating set for G.

Assume to the contrary that there is a vertex z not dominated by D"'. Note
that z appears in at least one clique which is not below C in the clique tree or it
would be in DOM(D) and hence in DOM(D'"). Similarly z cannot be in C or it
would be in DOM(x) and hence in DOM(D’). The cliques containing z form a
path so z appears in no clique of the subtree rooted at C.
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We conclude that y must appear in a clique of the subtree rooted at C
because it dominates v but that it must also appear in a clique not in that subtree
because it dominates z. The requirement that the cliques containing y form a path
forces us to conclude that y actually appears in C.

This produces the desired contradiction because the choice of x dictates that
high[x ]>high{y] which in turn implies that for vertices appearing in C or in
cliques above C, x can substitute for y as a dominator, whereas for vertices
appearing only in cliques below C other vertices of D can be substituted. The
path constraint on cliques containing z guarantees that these are the only two
cases which arise. The induction is now complete. D' is a dominating set for G,
| D'| =|D"| so D" is a minimum dominating set, and D dominates every vertex
appearing only in cliques which have been visited. O

Cockayne, Goodman and Hedetniemi actually solved a more general
problem for trees. They allowed a set R of required vertices and a set F of free
vertices to be specified. Required vertices must always be in D while free vertices
are not required to be dominated by D. Initializing D to be R and marking all
vertices in F plus all those in or adjacent to R as “dominated’”’ converts our
algorithm to this purpose.

If G is an interval graph we can certainly apply the directed path graph
dominating set algorithm, but there is a substantially simpler method. Instead of
building a directed path model, which uses the Booth-Lueker interval graph test as
a subroutine, we can simply run the interval graph test and use the data structure
it builds to directly find a linear arrangement of the cliques [2]. The bottom-up
walk of the clique tree becomes a left-to-right scan of the cliques. In practice we
would expect this algorithm to be easier to implement and more efficient at run
time than the general directed path graph algorithm, although both are of course
asymptotically linear in the size of G.

Finally, it should be noted that every tree is a directed path graph so our
algorithm applies, but there is obviously no need to explicitly compute a clique
tree. The cliques of a tree are its edges. Visiting the edges in a depth-first order
corresponds to our algorithm and in fact is the original algorithm of Cockayne,
Goodman and Hedetniemi.

4. A Possible Relationship with Graph Isomorphism

The construction used in Theorem 1 to reduce the general vertex cover
problem to the dominating set problem for chordal graphs is the same
construction used to prove that isomorphism testing of chordal graphs is complete
with respect to graph isomorphism [2, Theorem S5]. This suggests a possible
parallel between the two problems. There is such a parallel, but the picture is not
quite complete.

The situation is summarized in Figure 3. For the dominating set problem
we have just shown that the chordal case is NP-complete and that directed path
and interval graphs have linear time algorithms. The status of the problem for
undirected path graphs remains open. For graph isomorphism both the chordal
and undirected path graphs are known to be isomorphism-complete [1, p. 13]
whereas interval graphs have a linear time algorithm [2]. Only the question for
directed path graphs remains open for isomorphism.



8 KELLOGG S. BOOTH

chordal

NP-Complete graphs

___________ Isomorphism
U Complete

undirected

___________ Ut e

directed

ath
gFr,ophs 1

Linear e
Time Ut —==—m-

interval Linear
araphs Time

'

Figure 3. The current status of the dominating set and graph
isomorphism problems for chordal graphs.

One possibility is that the two problems are somehow related and therefore
the dominating set problem for undirected path graphs is NP-complete and the
isomorphism problem for directed path graphs has a linear time (or at least
polynomial time) solution. We have not been able to prove or disprove either
conjecture, but the following observations may be useful.

If we assume that the two problems are in fact similar we want to prove that
the dominating set problem for undirected path graphs is NP-complete and that
directed path graphs have a linear time isomorphism test. The isomorphism-
completeness proof for undirected path graphs doesn’t seem to carry over to an
NP-completeness proof because the isomorphism construction does not produce a
vertex cover in the original graph, even though it is quite similar to Theorem 1
(the only difference is that the roles of vertices and edges in G are interchanged).

Similarly the linear time isomorphism test for interval graphs follows from
the fact that a canonical representation of all possible clique trees is built for the
interval graph; the algorithm of Dietz, Furst and Hopcroft does construct a clique
tree but not a canonical one. The same is true of Gavril’s recognition algorithm,
Thus we currently see no obvious way of extending either result.

If the similarity between the two problems turns out to be a red herring we
should actually be attempting to prove that the dominating set problem for
undirected path graphs has a linear time (or at least polynomial time) algorithm or
that directed path graph isomorphism is isomorphism-complete. Our intuition is
that neither is the case.
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The success of our current algorithm hinges upon the fact that clique paths
can onlv descend from the root and that they are not allowed to travel up one
branch and back down another. By wav of contrast. the isomorphism-
completeness proof for undirected path graphs demands precisely this property of
the constructed paths. Again we sce no way of extending the results.

Settling these two remaining cases looks like o fine topic for further
rescarch.
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