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1. Introduction

Decidability and cther problems concerning morphisms on {ree
monoids have been extensively studied recently, sce survey [2]. Here
we introduce the notion of a domino which seems tc be a very useful
tool in this area. It is motivated mainly by the problem of testing
the (string by string) equivalence of two morphisms o a given set of
words [4]. A number of sther problems reduces to such a test, for
example, the DOL sequence equivalence problem [3] or equivalence pro-
blem for various types of transducers [1].

Intuitively, for any strfngs u,v in * we will call the

construct

u

a domino over &*, providing that the cverlapping portions of u and
v are identical. For a ﬁrecise definition see section 3. The strings
u and v are called the components of the domino. They might not over-
lap at all or they might overlap completely as in the following example,
which indicates the\app1ication of dominoes to testing of equality of
morphisms on certain strings.
When two morphisms g and h on I* are equal on a string

win I*, i.e. when g{w) = h(w), they might not agree on substrings
of w. Consider morphisms g and h on {a,b}* given by

g(a) = ¢, g(b) = dcdcdcd, h(a) = cdedc and h{b) = d.
We have g(ababa) = h(ababa) but g and h differ on every substring
of ababa. Here one of the dominoes with components g(ababa) and h{ababa)

s

cdcdcdcdcdcd

(@]
oL QA

cdecdcecdcdcecdedc




Such domino is called an equal domino. However, Gy decomposition of
the string ababa 1in substrings yields a decomposition of the above
domino into nonequal dominocs, for example the decomposition of ababa

into single letters yields cominoes:

C dcdcdcd c dcccdcd c
cdc Q_EL Id ‘ cdcdc [gjn' cdedc

We notice that there are three distinct deminoes vitn the same components

g(a) end h(a) and two distinct dominoes with cempoiients -gi{b) zid
h(b).

In the following two sections we formally introduce the notion
of a domino, some operations on dominces and corresponding algebraic
systems. We will study their properties and also some problems con-
cerning sets of dominoes.

In the last section we present a domino algerithm for testing
DOL sequence equivalence. It is far the simplest such algorithin known
to us. However, it should be stressed that we are not giving a new
proof of the decidability of the DOL sequence equivalence problem. When
proving that our algorithm terminates we are using the crucial property
of DOL systems, namely that every two sequence equivalent DOL systems

have so called bounded balance. This pioperty has been shown for normal

systems in [3] and extended to all DOL systems in [5].
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~2. Freliminaries
] ke use some elementary notions of formail language theory, we

refer the reader to [7]. In the last section the theory of dominoes is
applied to testing of the DOL sequence equivalence. Ve will remind you
of the notions from [3] which we use, see also [6].

DOL system is a construct G = (I,h,w) where I 1s a finite
alphabet, h is a morphism I* - I* and w is in I*. System &
generates the language L{G) = {h"(w) | n = 0}. Two DOL systems

1

G = (Z,q,u) and G = (Z,h,v) are sequence equivalent if g"(u) =

h*(v) for ail n = 0.
let g and h be morphisms on £*. The balance of a string
w in Z* 1is denoted by B(w) and defined by
B(w) = lg(w)| - [h{w)]
where [x]| denotes the length of string x.
We say that a pair of DOL systems G = (Z,g,u) and G] = (2,h,v)

has bounded balance if there is C > 0 such that [B{(w)] < C for all

prefixes w of all strings in L(G).



3. Basics on dominoes

Let S be a set with a binary associative operation o and
A a subset of S. The semigroup, the monoid ana tﬁe semigroup with
zero generated by A with the operation o are denoted by So(A)’
S;(A) and Sg(A), respectively. The corresponding semigroups with
defining relations R]’RZ""’Rk are denoted by So(A;Rl""’Rk)’
Sl(A;R],...,Rk) and SO(A;R],...,Rk). In the case the semigroup
operation is concatenation of alements weromit the operation index from
the co.responding notations.

For an alphabet I we define the quotient alphabet Eq as

the set
5 ={-§—:a,bgzu{1},a-bf1}

of abstract symbols. As a convention we shall write as a whenever

_llg)

a is an element of Z.

Let a, b and ¢ vary over £ v {1} and define two generating

relations E and I  as foilows:

b.a,
(E) a P b,
a _
(1) a‘"]
Lemma 1. S](Zq;E,I) is a group, with identity element 1, and the
inverse element of %— being g:
-1
Proof. We shall only verify that (%J = g—, the rest of the claim
being obvious. We have
a b a b (E) 1 (E)
B—na—~]ogo—a—_~t)—oac] —_— =
1 1 (E) 1  a (1)
B—oa'-a—nb_,.b_og.-b_
E) , (I)
B, [
B b o 1. O
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-1 -1 -1

Henceforth we shall write a1s0 as (%& and (BJ )

oo

as %— also when these are considered to he eliements of the munoid

S](Xq). Thus a symbol %— of Zq will be wiritten as a-]. However,
it should be remembered that this is only a conventional notation for
elements of S](E ).

q

Example. Aword x=a b~ %—- %.. . g— may be rewritten as

)=

A b e'(c-b-a)."I . (

Lo Pl
g

or p
ae«h- (a-b-c)"R (%0 ,

where R denotes the minor image of a word, i.e. R is the anti-

T, . . R_ RR _ “R e . chae
isomorphism defined by (xy) =y x , and X is & short-handed

-1.R
notation for (x ]) . The word x is reduced in S](Zq), but in
S](Zq;E,I) we would have
-1 -

X =6 *

oo
[

ﬁThe rest of the paper will be devoted to special kinds of
elements in S](Zq), which we call domfnoes.

A word x in S](Zq) is called a domino if it has a
presentation

(1) X=Xy 0yt Xy

where X, and Xy are in ST(Z) v S](Z']) and y =1 in Si(zq;l).
Here E'] denotes the set {a-] : a e I}. The presentation (1) is
" canonical if xy is of maximal Tength in S](Z) v S}(Z-]) as a prefix
. of x. The words Xy = £(x), y = m(x) and X = r(x) are the left,

middle and right parts of x, respectively.

As an example let us censider a word

-l,a, b ..
. b b b « a .

(2) x=a =-b 3



. 1 -1 -
By. the definition x 1is a domino, since £(x) = a lb i in S](E 1),

m(x) = g—- %— is reducable to the identity by the cenerating relation I,

and r(x) = bba is in S](Z). Furthzrmore (2) is a canonical presen-
tation of x; in fact the only presentation. The domino x may be

illustrated graphically as foliows:

abbba
abab]

The concept of a cancnical presentation comes into use when
in (1) we have y =1 (in S1(Eq)) and both X1 and X, belong to
the same semigroup S(I) ecor S(Z_]).

Clearly, each domino has a unique canonical presentation.

Let DT denote the set of dominoas in S](Zq). The set DT
is not a submonoid of S](Zq). To see this let us consider dominoes

X = a-af] and z = a. Tneir concatenation x-z = a-a"]-a is not a

]}

domino and thus D. . is not closed under catenation of elements.

X
However,
Lemma 2. Dz generates S](Zq;E .
Proof. The claim follows from the observation that by the relation
E each word in S](Eq) can be reduced to a domino. O

Now we shall define some technical terms for dominoes 1o be

used later on.

s Let hu and hL be two morphisms from S](Zq) into S](E)
such that if %- is in Zq then
ay _ ay _
hu(E) = a and hz(b) b.



The words h (x) and hf(x) are called the upper and the

lower components of the domino %, respectively.

The balance of a domino x s an integer

B(x) = max{{€(x)!,Ir(x)1},
 (where |w| denotes the length of the word w). A domino x is said
te be fine if it is reducable in S](Zq;I) and. x is p-fine if
p-B(x) < Im(x)!, where p 1is a rational number. Furthermore x is
called a B-domino, if it is B-fine and B(x) = B.

b . b .

Example. let x=a+*besa-g- ¢ - % The upper component
__.__L b a

c
a
cf x 1is the word

hu(x) = ababbaa
and the lower component of x is

hz(x) = bbaa . .
The balance of x 1is equal to 3 (B(x) = max{3,0}) and x 1is a fine

domino, since it can be reduced by using the generating relaticns I.

The following lemmas are simple consequences of the definitions

above.
Lemma 3. A domino x s fine iff m(x) # 1. : .o
Lemma 4. If x=1 1in S](Zq;I) thén B(x) = 0. 0

If a domino x satisfies the conclusion, B(x) = 0, of the previous

lemma we shall say that x 1is an eqpé] domino. Thus an equa]Idomino

has empty left and right parts, and hence x = m(x). By this observation
we derive

Lemma 5. Let x be an equal domino. Then x 1is a B-domino for

each B in Q. As a special case of this we have that x 1is p-fine
domino for all rational numbers p. - a

Dominoes x and y are called shiftable with respect to

each other, x~y, if x =y in S](Xq;E). The shift of dominoes x



and y such that x ~y, is the integer
L(x) 1+1£(y) 1, i 2(x) € ST(2), £(y) e ST(z7T)
s(x,y) = s{y,x) = o -
[12(x) 1-12(y) 1], if £(x),L(y) ¢ S'(z) or
L)Ly < s Yy .

In case x and y are shiftable we also say that y 1i5 a shift of x.
Lemma 6.

(i) The relation ~ is a congruence relation among dominoes.

(i) xn~y iff hu(x) = hu(y) and hﬂ(x) = h,ly).
(iii) s{x,y) = 0 iff x=y.

The following Temma is frequently used in chapter 5. Its
proot follows closely the "shifting argument" as given in [2].
Lemma 7. If x~y and s(x,y) >0 then x is of the form
(1) x = a8,8%, :

where B 1is an equal domino, B, @ postfix of 8, tq = £{x), o, = r{x)

and |B] £ s{x,y). Furthermore we have

. | |
(2) «k : [—S—m()((—%y] ,

where [c] denotes the greatest integer = c.

Proof. Let us consider the middle part of the domino x, i.e. the
equal domino m(x). Because s(x,y) > 0 this middie part will be aiso
shifted by the amount s(x,y) 1in the domino y. Thus we have the
situation in y:

- et cmm e - - — e m- —




for a prefix z4 of z and for a postfix z, of z each of length

s(x,y). Thus by (3) 2z can be written in the form

for a postfix’ Z, of z, and some integer k. By choosing B to be
the dominb wifh hu(B) = hé(B) =z, ahd B to be the domino with
hu(B]) = ht(B]) =z, the result (1) fellows. The inequality (2) is
an immediate corollary of (1) and the fact that |B] = s(x,y). 0

A domino x of the form (1) will be called periodic.

A domino x s called standard if there is no other domino
y such that x ~y and either

(1) 1ely)l < 12(x)1
or .
(1) 1)1 = 121 and £y) € S(E) .

Thus we require that the left part of a standard domino is of minimal
1eﬁgth and if there are two such dominoes then we are to take the one
which has the left part in S](Z). As an example let us consider a

domino

-1

X=a = b—]

o |
.
oo
.
oo

.b.oa,
b a

This is not a standard domino, since

y:boao—g—o%.-g—oaoaobob_

fulfils the condition (ii) in the definiticn of a standard domino, and
X vy,

In order to operate with dominoes we now introduce binary
operations for dominoes. We say that a domino z is a matching of

dominoes x and y if z = xy in S](Zq;E). We immediately derive



i0

from this definition that z is a matching of x and y if and enly

it hy(2) = h ()b (y) and hylz) = hy(x)+h,(y). -
A matching is called standard if it is a standard domiro.

© From this definition we conclude the following iemma.

LEEBELEQ- Each pair of dominoes (x,y) has a unigue standard

matching, which is denoted by x*y. The dominces form a semigroup,

S*(DX)’ with this oberation. O
We note that S,(D.) does not contain any identity element.

The enipty word serves as a centre element for the semigroup: T#x = x#]

for each domino x. However, if x 1is not a standard domino then

X # 1«x. But we have the relation x ~ lsx for all dominoes x and

thus the following Temma.

Lemma Q,A The set of standard dominoes, DS] is a monoid with the

5o
cperation *., This monoid is isomorphic to the monoid SL(D‘)/%, the
factor monoid of Sl(DE) modulo the congruence . 0
The operation of standard matching does not p?eserve the
structures of the component dominoes because of the possible shiftings
made. We shé]]_define now a new operation which preserves the structures
more faithfully. |
A matching z of dominoes x and y 1is called faithful if
2(z) = &(x) and r(z) = r(y), i.e. if the left part of x and the
right part of y vretain the same in the matching. We immediate}y note

that there are dominoes, which have no faithful matchings. One such

example is: x = ag-, y = a%a .

Lemma 10.
(i) If the faithful matching of x and y is defined then it is unique
and is denoted by x x y.

(i) x xy is defined iff r(x)" = £(y)
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>
)
|

!

<

Proof. The lemma follows from the conditions £(z) = 2Z(x) and -
r(z) = r(y), since these guarantee that no shifting can occur when
dominoes are matched faithfully. 0
The operation of faithful matching is cancellable, i.e. if
¥xy = xxZ or yxx = zxx then y = z when these matchings are defined.
The operation of standard matching does not have this property, but we
have a weaker condition: x*xy = x*z and y*x = zxx both imply that
y v z. The relationship between standard and faithful matchings is
given be]ow.,’

Lemmna 11. For each x and y there are dominoes Xy and 1 such

that x Xy ¥ VY and x *y = X)X Yy -
We shall now define a new operation e in order to have

faithful matchings everywhere defined. let (@ be a new symbol and let

X x y; ff defined

Xoey

0, otherwise .
With this new operation the dominoces form a semigroup with a zero element,

“
L

0. This semigroup, denoted by Sg(D }, 1s not a monoid as is seen from

the conditions for faithful matchings.
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Lemma 12. CIf Yoy £ 0 than X fer fcft Tavt equaf to 1.
- Furthermore if 1 e x e 1 # 0 *hen X 1is an equii womino.

“We shall now define and study the concept of domino equivalence,
which will be an important toel in chapter .

bomihoes X énd y ére gggiiglggg; xzy, if 2(x) = £(y)

and r(x) = r{y), i.e. if their left and right parts are equal words,
respectively. The next lemma is a direct corollary to this and previous‘
definitions.
Lemma 13.

(i) The relation = 1is an equivalence relation in DE'

!

]

. . . . Ofn »
(ii) The relation = 1ds a congruence relation in S@(DZ).

(iii) x =1 4ff x 1is an equal domino.

(iv) If x and y are nonfine and x = y then x = y. _ O
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4. Domiro lancuages

We sha]] now study svme decidabiiity problems for families of
Sets of dominoes. Let F = {A{ : ied} be a set of domino sets indexed
over J such that each of the_e}ements Ai is a subset of DZ for a
fixed aiphabet z. | o

The equality pfob]em for F is the following décidabi]ity

problem: Is is decidable if A = {1} 1in S](Zq;I) for elements A of
F, i.0. 1is it decidable whether or not a dominc set A in F consists
of equal dominoes only?

The unity problem for F 1is stated as: Is it decidable if

A n {1} s nonempty in S](Zq;I) for elements A of F? This problem
may be restated in the form: Is it decidable whether or not a domino
set A in F contains an equal domino?

The finiteness problem for F asks if it is cecidable whether

or not an element A of F is finite?

Our first result deals with families F the elements of which
are finite sets of dominoes. Since the claim of the theorem is obvicus
we shall omit the proof.

Theorem 1. The equality, unity and ffniteness problems are decidable
for families F consisting of finite sets of dominoes. | O

A more interesting case arises when we allow the elements of
r to be infinite. In the next theorem we let the domino sets vary
through the semigroups S*(A) and Sg(A), where A is a finite set
of generators.

Theorem 2. Let F = {A; : ieJ} be the family of finite domino
sets. Then the following hold true. -

(i) The equality and finiteness problems are decidable for
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F

= {s(

o A.) : ied} and F2 = {S*(Ai) : ied}.

1 i

(ii) The unity problem is undecidable for F, but decidable for Fy-
Proof.

(i) The semigroups 'Sg(A)‘ and S,(A) consist of equal dominoes if
and only if the set A - consists of equal dominoes. The latter case.
is clearly decidable since A is a'finitelset. Thus the equality
problem is decidable for both F] and F?. |

 For the finiteness problem let us first consider the family

F If A= {1} then we shail have also S,(A) = {1}. On the ocher

2.
hand suppose A has a nonempty word x. In this case S,(A) contains
the dominoes

X = XXXk Lk X,

where the product has k factors x, for each k 2 1. By the defi-

nition of standard matching the length sequence {!xkl}:=] must tend

to infinity. Hence S,(A) is infinite if and oniy if A 1is nonempty
and different from {1}.

For the finiteness conditions for SZ(A) let us assume that

#A =k, 1i.e. the cardinality of A equals k. If k=0 then
Sg(A) is finite. Suppose that k =z 1, and that Sg(A) contains a
word x  such that | -

(1) x = X] X Xy X }\. X Xpy1s X5 € A .

Since there are more factors in (1) than the cardinality of A two of
| these factors must be equal, say X; and xj. Then

= X ue X Xe X {Xeiq X oo x X.) x X ... X
X = Xy x5 x (X544 xJ) X Xy

i+ +1
and by the definition of faithful matching we héve that i’_(xiﬂ)R =

"] Y - ' o
r(x;)"". Now x, X; and thus the subword X ; x ... x X5 may be

repeated indefinitely, i.e. the words
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Y. X .. X K.y Xo X .. X X, %X X, X eue KXoy an
i+l 3’ T+l J i+l °3’

are all different Trom 0. Thus the condition (1) implies that Sg(A)
is infinite. On the other hand if there are no words x satisfying
the conditicn (1) theh Sg(A) fé finite. Therefore the

finiteness problem is decidable for F], too.

(i1) The proof of the decidabiTity.of the unity prcblem for F1
follows closely the above argumentation for finiteness and is omitted
“here.

In order to prove that the unity problem is undecidab]e'for
F2 we shall consider instances of the Post correspondence problem, PCP

in short. let

(2) <a],a2-,..’,ak; B‘I’Bz""ﬂsk)
be an instance of the PCP. Define a finite set,.A of dominoes by
seiting an element | |

X, = 0. % '
i i B1 ?

into A for each 1 =1,2,...,k. By this construction it immediately

follows that S,(A) contains an equal domino x = xi1xi2"'xin if and

only if '1112;..in is a solution to the problem (2). Because the PCP

is an undecidable problem so must be the unity problem for F2. 0
From the proof of the previous theorem we already see that

the Semigroups Sg(A) possess some regularity preperties. We shall

formalize this in the foilowing way.

Theorem 3. Let A be a finite set of dominoes and o an isomorphism

from an alphabet A onto the set A. Then the set



16

B
e

is a regular set.

it

| wes(a), o(w) e SO(AN{0}}

Proof. Let A = {x1,x2,;.;,xk} and A = {b],bz,...,by}. We shall:

design a right Tinear grammar for Bp. This grammar has starting

Tetter S, nonterminals Y]’YZ""’YP’ and productions:

5 - Yi (i =1,2,...,n),
Y. > Db.Y.
i i
for each i and j in {1,2,...,n} such that X; and xj are faithfully

matchable, and

Y, > b, (i=1,2,....n) .

From this construction the claim follows immediately. 0

A direct corollary to this result states that the upper and

. . 0 X :
lover components of dominoes in S,(A) have reguiar properties.
Corollary 4. Let A be a finite set of dominoes. Then hu(s@(A))

o] .
and h£(3®(A)} are regular sets. 0

The above considerations can be generalized to wider classes
of dominoes. Let A be an alphabet and ¢ a morphism from S(A) 1ir o
S*(DZ)' For a subset L of S{A) we define the set ¢(L) to be a

domino language of L defined by ¢. Similarily a faithful doming

language of L defined by a morphism ¢ : S(a) -~ S (D.) 1is the set

w(L) of dominoes. |

Theorem 5. If A 1is a subset of a finitely generated semigroup S*(A]),
then A is a domino language (of some L).

Proof. First of all we note that S*(A]) is a domino Tanguage of
S{a) defined by an isomorphism ¢ : A » Ay. Now A is a domino

language of L defined by ¢, where L is & set
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L = {byby...b, | biea, ¢(bb,...b ) < A}. - a
In quite the same way we can prove
Theoren 6. If A is a subset of a finitely generated semigroup
Sg(A]), then A 1is a faithful domino language (of some L). | -0
By these two theorems we may consider dominc languages and
-faithful domino languages instead of sets of dominoes. o
Next we shall reduce the domino problems (equality and unity)

to problems concerning ordinary formal languages.

A morphic equality problem for a language L is the pf0b1em:

Given two morphisms h and g: do they coincide on L, 1i.e. does

h(w) = g(w) hold true for each w in L?

Theorem 7. The morphic equality problem for L is equivalent to
the equality problem for domino languages of L.

Proof. Let L be a subset of S](A) and h,g two morphisms from
1.

Define a morphism {q : S](Z) into S \Zc) by

S](A) intc S](Z. {

setting Iq(a) =
ou) = Toh(w) » .<1qg(w>>'R

be a morphism from AS(A) inte S*(DE)' Then by the definition of ¢
we have that h(w) = g{w) 1if and only if ¢(w) 1is an equal domino.

On the other hand let ¢ be given for L. We shall now
define two morphisms h and g' by

h{w)

hu¢(w)

and

glw) = hyolw) .

Now hn(w) = g{w) 1if and only if ¢(w) 1is an equal domino. a
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5. DOLs and dominoes
In this chapter we apply dominoes to the DOL sequence equiva-

lence problem in ofder to obtain for it a simple neW‘aIgorithm. |
Given two morphisms h-and ¢ on an anHabet Z and a word |

Wy in S?(Z), we ask whether hn(wc)bf gn(wo) for all integers

n=20,1,2,... . This prob]em,cah be restated using the fo]]owing

Temma. -

lemma 14. hn(wg) = gn(wo) for all n i and only if hn+](w0) =

ghn(WO} for all n. »

Proof. Cbvious. : : : o ]
Hence, by Theorem 7 the DOL sequence equivalence problem is

equivalent to the equality problem for a dominc language of L =

{hn(wo) : nz0} defined by a morphism ¢ such that

o) = Toh(w) = (1,900) 7" -

We shall now fix the morphisms h and g as well as the
starting string Wy We begin our considerations with some definitions.

Let X1 be a given 3om1no. Then Xy will result a sequence
of new dominoes xz;x3,.., defined by iterative using of the morphisms
h and g. Suppose that hu(x]) = vy and hﬁ(x]) = Wy. At the first

step Xy results a domino
%, = h(w,) * (g(wy)) "
2 Y 1 )
In general we have

Xip1 = hlh (x:)) = (gh (x NN,

El

which can be written as

X1 = ¢h1(w]) = ¢h1hu(x1) .
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We shall say that a domino x is repetitive modulo t (t>1)

if x =z y for some y such that y ¢hthu(x). Furthermore x 1is a

(B,t)-domino if it is a B-domino and is repetitive modulo t.

In the following lenmas we study the properties of (B,t)-
dominoes 1in the framework of the system (h,g,wo).
Lgmmg_lg. risuppbse %] anc‘i,x2 are (B,t)-dominoes such that Xy Y Ko
Then either X = xérror >x ‘is repetitive modulo t whenever x mvx].
Proof.  Assume that X #.XZ in which case s(x];xz) # 0 and
s(x],xz) < 2:B. let %5t be a domino such that Xj ¢ ™ ¢hthu(xi) for
i=1,2. Since Xy v X, wWe have also that X1, %2t Moreover,

X:. & X,

i = %54 implies that s(xy 4%, ) = s{x;>x,), where i =1,2

By Lemma 7 the following hold
~ k
(]) x] = a'IB B]OLZ s
- r
(2) %, = 4B By
for some equal domino 8, B] and 82 being prefixes of B, k 2 [%~*i
and o = K(x]), a, = r(x]).v Here the period HB‘ may be assumed t
of minimal length.
Claim. B] = 62 R
Assume the contrary, i.e. 81 # 62 .
~ The deminoes x; and X5 4 (i = 1,2) can be written as
' = * *
Xg = ap ¥ zo *o,

i i i
and

it “1‘ it %2

The equivalences Xj 2 X5 ¢ imply that also 23 224 4 for i = 1,2.

Now the dominoes z4 and zy t Took like



20

— ——— —— —

o — -

8 B B,

— e - o— —

Thé dominoes z, and Zy y are equivaient and thus their right
paﬁts are’equa] to each other. Beciuse of X1 o Xo and x]’t Y X2,t
this may happen only if the upper component of X is shifted some B
blocks to the right or to the left. Thesé two shifting directions are
clearly symmetrical when we consider the dominoes Zi and Zi,t and
thus the same proof applies to both of them.

This shifting and the equivalence z, = ZZ,t imply that

Vow o Y o i
- (3) r(z,) = Ugiiuy = uguuy = riz, L),

where u = hu(s), v20, u; = hu(Bi) for 1 =1,2, and
) \‘ - ' -
(4) u = Ujlg = Uyl .
y
8 B u ]
- Ve
o) g
Uz
8 B ]
u 1(ug) u,
i

By assumption By # B, we have that Uy a u, and thus also ug # Uy -

Let us suppose that lu,| > Euii. The reverse case is clearly symmetrical.
[



lie have

e

'

[
£

<
—

for some nonempty word Vi- In 211 we obtain from {(4) and (5) that
(6) u-= UplgVy = Valiql, .
Here Uy, and Vi are nonempty words which commute in 'u; Thus u

k form some” k z 2. Hence the domino

is a periodic word of the form v
p=u.” u"R would be pefiodic contradicting our assumption o7 the
minimality of |8] in (1). The proof of the claim is completed by
this contradiction.

- The claim now implies that Xy and X],t are always shiftab1e
by the same amount because in the equations {1) and (2) we have that
Bi = 82. The results of these shiftings remain équivaient, and thus
the 1enma follows. o | i | | | u
Lemma 16. Let x, x y; x z; bea faithful matching of (B,t)-
cdominoes xi; y] ahd'zi; Suppose Xy x'y2 Xz, is a matching of
(B,t)-dominoes Xo " Xy and Zy v Zys and a B-domino Yo v y].: Then
y, isa (B,t)-domino. )
Proof. Suppose that Yo # 2 in which case also Xy # Xo _and
z, #_22. Now the domiroes X] X Yy X Zg and Xo X Yo X Z, 2re A
shiftable with respect to each other and thus
(1) xp vy =2y = o8ty

LS
oc1o.|A6 .62(12 s

(2) ’ X]

k2
(3) | Y1 = By838 "8,

| kg
(4) 21 = Y848 oY,
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Vi ’
where & s a minimal period and 6, x (aZ*B]) x 85 = 8 7, (52*Y1) x 8 =
§C for s integers i : te that « gR and 8, = y:R |

or some integers vy and v,. Note that «, = 8, a 5 = Yy -

]

[»2]
o
‘o
]
Q
N
w
o
9
™
)

The domfhoés'tx] and xz'7afe'both,(B,f)«dominoes such that
Xy v Xge By the proof of Lemma 15 we obtain that

. NP TN
(3) x],t = G]G]S 8,0,

for some integerr ™ (Here X E Xy g modulo t). The same argument
applies to 21 ¢ 22y

35

r
(6] z) 4 = ¥18,8 "85, »

for some integer rs.

Mor vy o= - 1 3 o it el
Moreovey ¥y = y]’1t and the domino yl,t is now sandwiched .
between X],t and Z],t in the domino X],t x y]’£ x Z},t' Tn1s con-
dition with the periodicity property in (1) implies that
, r2
(7 yy,0 = 81835 78,
for some integer ry. By (3) and (7) the result follows. Ly

We shall call a B-domino x unique (with respect to B and t)

if x has exactly one shifting y such that y is a (B,t)-domino.

By Lemma 15 if x 1is hot unique then it has either no shiftings, which
are {B,t)-dominoes or all its shiftings'which are B-dominoes are also . .
(B,t)-dominoes. | | |

With this terminology Lemma 16 can be reformulated as follows: .
Lemma 17. Let x = Xp x ¥y xzy be a faithful matching of (B,t)-

dominoes ST and Zys where X ang z, are nonunique If x has
]




a proper shift which is a B-domino then, ¥q is ncnunique. oo 0
In order to simplify the conditions for the equality problem

we shall now introduce a stronger version of the equivalence relation

for dominoes. The dominces x and y ' are B-equiva]ent, X 5'By‘ if.
they are equivalent and m(x),m(y) have common prefix and postfix of

length B.

S

——

Clearly, B-equivalence implies equivalence. Analogously, we call a

"B

dominio X sirongly vepetitive modulo t 21 if x = ,y for some N
t " ' n 3 ‘
such that y ~ ¢h“hu(x). Moreover x is 2 strong (B,t)-domino i it

is a .B-dominc and is strongly repetitive modulo t.
We now prove that a faithful matching of unique strong domi-
noes is unicue, |
Lemma 18. Let Xy X Yy be a faithful matching of unique strong
—{B,t)-dominoes xpand y,. If y = Xo x Yy 15 a (B,t)-domiro, whers

Xo VX and Yo % y]. are B-dominoes theﬁ X = y.

Proof. Suppose that x‘# y. Let Xis Yoo X1,¢ and y]’t be thev

corresponding repetitions mod t of X, y, X, and y,. We shall write
~ 170 i .

Yo T Kp g X Vo, WhEreT Xy vxy poand yylL vy, L.

From the assumption x # y and from the uniqueness of X4
and Yy we conclude that X5 * X5 4 and Yo 2y This means that

afy V2 7"V‘ Py Y = R i :“ “'
}(kzj # r(x2 t). However, L(k2; K(xz’t) since y =z y, and thus

3
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Ir(x,)1 = Ir(xz,t)l.
The dominoes x and y are shiftable and hence pericdic with
a minimal period é. Thié holds also for X¢ and Y since the}sh{ft

must be the same for both of these pairs and because of the equivalences

]

X = X yt"the minimal period is B for all of these four

t
dominoes.

and y

Now‘ Xy wi]lnbe'ofnthé form
X = 0By,
and xi,t of the form |
' x],t = aldldkaz s

for some &, which is a cyclic conjugate of B, i.e. B = 8283 and
§ = 8382 for some 82 and 63. But since we assumed that X is

strongly repetitive, we must have that B = 6. By the same reason we
Eave also that B] = 6]. These conditions would imply that Ko is a
(B,t)-domino by the proof of Lemma 15. This contradicts the uniqueness
assumption for Xy ‘Hence X5 = X and in all x = y. O

In the next lTemma we consider sequences of matchable dominoes.

Lemma 19. Let x = Xg X %y * ... x X, be a faithful matching of
B-dominoes XgoXqse e oXy such that Xq is a (B,t)-domino and

| ,(]) each pair (Xi’xi+1) has a matching z; = y. x u;, where
Y5 and u, are strong (B,t)-dominoes and Yy Xss Uy v X5 fbr each
i=20,1,...,k-1.
Then either all of thé dominoes x; are (B,t)-dominoes or there is an
integer j such that XgaXqaeeeaX ] are (B,t)-dominoes and Xj""’xk
are unique, but not (B,t)-dominoes.
Proof. Assume that not all of the dominoes x., i =1,2,...,k, are

(B,t)-dominoes and let Xj be the first domino in x which is not a



n
w

(B,t)~-dominc. Then j 21 and xj must be unigue by Lemma 15. The
domino %51 is nonunique because it is a (B,t)-domino and can be
shifted to another (B,f)-domino by Condition (1) and by the féctrthat

xj is a unique domino _in a wrong position, i.e. xj # uj_1.

- Suppose now that X34y -is a (B,t)-domino for some minimal

rz1. Then Xj+r is nonunique by the same arguments as for Xj-]'

bThus"the dominoes Xj,.;.,x., are alil hnique'but not'(B,t)deminbes.

jir-1
Let

Yy = ‘yj X Yj+] X el ¥ yjﬂ""]

be a domino obtained from Condition (1). Here Yt is a unique strong
(B,t)-domino for each i = 0,1,...,r-1. By Condition (1) also Xj-]
and Xj+r may be shiftably matched te y yielding a domino
(2) Yio1 X Y5 % o X Y1 X Yape
all the facters of whiéh are strong (B,t)-dominoes.
Appiying Lemma 18 to the domine y we obtain that y i3 a
unique domino itself. But from (2) we have a domino z = Vi XY % uj+r-];

where yj_] and u are nonunique. Furthermore, the domino z is

jrr-1
properly sh*ftable to the domino X, ¢ x X. x ... x X, and thus vy
j-1 J Jtr :

must be nonunique by Lemma 17. This contradicts our previous result for
the uniqueness of y. In all the éounter assumption fails and hence the
claim follows. : u

Now, we shall construct the necessary and sufficient condi-
tions for a solution to the domino equality problem.

Let us denote the DOL language {hn(wO) : nz0} by L. We

define the set of adjacent symbels in L as

Init(L) = {w : MW, € L for some Wy and w2} .

Furthermore, two words W1 and W, are said to be adjacent in L if



Wy, is in Init(L). Dominoes x = ¢hn(w]) and y = ¢hn(w2) are
adjacent in ¢(L) if w; and w, are adjacent in L.

Let A bhe a set of dominoes and B,n positive integers.
The set A is called a Qg§g_w.rﬂt. Band n (i.e., with ;eébect fo-
B and n), if A consists of dominoes x such that either (1)

x = oh"(a) and x| z B2
for a letter a in I, or -

x = ¢h"(w) and B% = Ix| = 2-8°
for a woerd - w -in Init(L), or {2)

X ='x] X Xo X X3 s
where Xo is from the case (1) and X3 v ¢h"(wi), Ix:1 < B2 such that
w, s Init{L) for § =1,3.

Thus a base (w.r.t. B and n) consists of dominoes of the
form ¢hn(w) which are sufficiently large with respect to B. A base
is always a finite set.

We shall now state the necessary and sufficient conditions
for a domino language ¢(L) to be a set of equal dominoes.
Condition 1. There are positive integers B, n and t, and a base A
of ¢(L) w.r.t. B and n such that

1.1. If elements x and y of A are adjacent in ¢(L) then
they have faithfully matchable (B,t)—dominoes x]_and ¥y as shifts.
Furthermore, if Xp ¢ ¢ht(x), T ¢ht(y) and Xp g B Xy Yy B

then the factors of x and Y1t from A are B-dominoes.

1,t
1.2. If x isin A and begins (ends, resp.) a word in ¢(L)
then x has a (B,t)-domino Xy as a shift such that Iﬁ(x])l =0
(Ir(xq)1 = 0, resp.}.
1.3. ¢hj(w0)r is an equai domino fof jsn+ t; the factors

{in A) of which are B-dominoes.



The next lemma shows that this condition is sufficient to

guarantee that ¢h3(w0) is equal for cach § z 0.

Lemma 20. Condition 1 implies that ¢h3(w0) is an equal domino for
all jzo0. - )
Procft. . From Condition 1.3. we know that ¢h3(wo) ~is an equal

domino for j s n+ t.
Let us consider the equal domino '¢hn+1(w0).’“We‘have that

(1) ¢hn+](w0) = Xg X Xp X ... X K

for some B-dominces X in A by as.umption. Moreover the domino Xg

is a (B,t)-domino by Condition 1.2. Hence by Lemma. 19 either all the

~~

cominoes X, are (B,t)-dominoes {for 1 = 0,1,...,r) or there is an

integer j such that xj,,,.,x are unique dominoes, which are not

r
(B,t)-dominoes. The second case does not hold true since by Condition

1.2. the domino Xy has a shift, which is a (B,t)-domino with right

part equal to the empty word, but X itself has !r(xr)i =0 and

thus it must te a (B,t)-domino.

From this reasoning we conclude that the dominoces L SERRREE. Y
are (B,t)-dominoes. This implies that ¢hn+t+](w0) = ¢hn+](w0) and thus
¢hn+tf3(w0; is an equal domino. By Condition 1.1. the equal dominc
¢hn+t+1(wo)' is expressible as a faiihful matching of B-dominoes from
N , o . 4 .

| ’By pfoceeding inductively we obtain the result of the
lemma. S : : g

The necessity of Condition 1 follows from the crucial property
of DOL syétems, namely that every two equivalent DOL systems'have a
bounded balance. This property has been shown in [3] for "normal® DOL
systems as essential step in proving the decidabiiity of the DOL sequence

equivalence problem. It has been extended to all.DOL systems in [5].



Lg@égmgl, If ¢hj(wo) is an equal domino for each j = 0, then
Condition 1 holds. ,
,lfgggf, Let us suppose that L ='{hj(w0) : jz0} 1is infinite. Other-
wise the claim in trivial.

The dominoes ¢hj(w0) are equal dominoes for all j 2 0
if and only if hj+](w0) = ghj(ws) holds for all j =z 0. In particular
this impliesrthat if ¢(L)-= {¢hjzw0)}: jzoi vis a set of equal dominoes

then h and g have a beunded baiance; i.e.
fh(w)! - 1g(w)i| =8

for all words w, which are prefixes of words in L.
Let a be a ietter in I and consider a word
J =
(1) h (wO) W avy
where j = 0 and w;, w, are words in Init(L). Applying the morphism
h repetitively we cbtain
j+k" - k X % k k:
h »(ho) = h (w],h (a)h (wg)
and '

itk

oh ‘(wo) =u X 3 x v,

for k 2z 0, where uy = ¢hk(wT), z) ¢hk(a) and v, ¢hk(w2) are
a2ll dominoes with balance at most B.

The infinite séquence {Zi} Qrgggggg_by an occurrence of a,-
in (1), contains only dominoes which ha&e balance bounded by B. Thus
in this sequence-there are only finitely many equivalence classes with:
respect to the relation of equivalence of dominoes. Furthermore, each
of the dominoes Zie1s i=1,2,..., 1is produced from z; by using - the
morphisms h and g. This means that the equivalent dominoes in the
sequence {Zi} occur periodically, i.e. there are integers s and r

such that z. =z 2 whenever 1 2 s.

i itr
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Different occcurrences of a may produce different sequences,
but since the elements of each of these sequences have balance bounded
by B, there are only a finite number of different ones. Thus we may
select integers N, and ta such th&t'every sequence '{fi} 'prodﬁéed

by a is periodic, that is

=it
whenever 1 z n,-
Let ng = max{na : aer} and ty = [ta : 2eZ], the least

common multiple of the integers ta’ a8 € I. By this choice if {pi}

is a sequence produced by some occurrence of a letter then
(2) py =p;+t,
for all i 2 ng-

Let ny 2 m, be an integer such that either |hn1+1(a)l > B¢

for each iz 0 or the set {hd(a) : j=0} is finite, where a runs

through the letters of the alphabet E. Furthermore, let AO

be a

base-at B and n, for ¢(L).

1

The elements of A, are all B-dominoes and each of them has

0
a shift, which is a (B,to)-domino by the above arguments. Now we shall

to obtain the

repeat the above considerations for elements of AO

result.
Claim. There are integers n and t such that if an occurrence of

an element in AO produces an infinite sequence {pi} then

pi EB p"i'!'t 3
whenever 1 2 n.
Since the proof of this fact follows closely the proof of (2)

we omit it here.
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The lemna follows immediately from this claim whén we select
A as a base w.r.t. B and n for ofi). | 0

We remind here that L s a DOL Tanguage of the form |
{hn(wo) : nz0} and that the morphism ¢ is defined using the given
morphisms h and g as indicated in the beginning of the chapter. AFov
clarity we shall write'a}so ¢ as ¢h,g in ordet to specify the
morphisms h énd g wﬁich define ¢. | ‘. |

- From the previous two lemmas we deduce
Thecrem 8. Condition 1 holds for the domino language ¢h,g(L) if
and only if ¢h,g(L) is a set of equal dominoes. 0

A direct corollary to this thecrem states
Corollary 9. Let L] = {hn(wo) : nz0} and Lo = {gn(wD) : nz0} be
two DOL languages. Condition 1 holds for‘the domino language ¢h,g(L])
if and only if ¢"(wy) = A"(w;) for all n z 0.

Thus Condition 1 provides a necessary and sufficient condition
for two DOL sequencés to be‘equal. | ,

By Cerollary 9 an algorithm for testing Condition 1 will be
also an algorithm for the DOL sequence equivalence problem. We shall
now proceea to give such an algorithm for Condition 1.

Let G] = (X,h,wo) and G, = (Z?g,wg) be two DOL systems
and let

%= {a],az,...,ar} .

We shall denote by I' the set of all letters of £ such that the

morphism h is growing on these, i.e.

1

' ={a :aeX and {Ih"(a)! :n=0,1,...}

is an infinite set} . ' f”Lg,

The algorithm advances in stages n, the initial stage being
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Algorithm for testing Condition 1

- Stage n.
(i) Let
Bn = max{B(x) : x is a factor of ¢hn(w0) of the form

| X " ¢hn(ai)} .

(ii) Let B be the maximal integer such that B z Bn and
|¢hn(ai)l 2 8% for each a; in 1’.

(iii) Construct the base A w.r.t. B and n.

(iv) Evolve the sequences Bn+j’ <bh"+j(wO

J =1 onwards, for each element u of A, until either
(

) and ¢hn+j(u) from

. +3 . . : - .
iv 1). ¢h" J(wo) is nonequal in which case Condition 1 is
not true, or

(iv2). B > B in which case the procedure will continue to

n+j
stage n + j, or
(iv 3). all dominces Uy and U, from A which aré adjacent
in "¢(L) have faithfully matchable strong (B,j)-
domfnoes as shifts. In this case the algorithm stops
~and Condition 1 is true. r
We are now to prove that the ébove algorithm is an effective
method for testing Condition 1.
Theorem 10. The above algorithm is a test algorithm for Condition 1.
Proof. Clearly parts (i) and (ii) are effective. Part (iii) is
effecti?e Since a base is always é finite set which can be constructed
by first constructing the finite set
InitM(L) ={w:wel and Jwl s M},
where

n C e
M = max{|h (ai)l :a, is in Ll



It remains to prove that the part (iv) of the algorithm will be finitely
processed during each stage n and that there is a stage n which ends |
up to cases (iv 1) or (iv 2).

The first of these claims follows immediately from the proof
of Lemma 21 since otherwise the condition (iv 1) implies that the
dominoes ¢hn+j(w0) are equal for all j 2 0, the condition (iv 2)
‘imp1ies that the factors of each éhn+j(w0) have bounded balance and
these two results would contradict the part (iv 3) and the claim
presented in the proof of Lemma 21.

If Condition 1 does not hold then there is an integer n such
thet ¢hn(w0) is nonequal, in which case the algorithm would stop at
stage n and would reveal this nonequal domino in part (iv 1).

On the other hand if Condition 1 holds true for ¢(L) then
eventually a correct base is found for ¢(L) w.r.t. some B and n.
This happens at stage n and the algorithm will stop in part (iv 3)
when an integer j = t 1is reached which fulfils the réquirements of
Condition 1. | | | 3]

The above algorithm serves as an effective procedure for
testing DOL sequence equivalence problem. |

Theorem 8 has also another direct corollary.

Corollary 11.. Ltet h and g be two morphisms and L = {hn(wo) : nz0}.

If the dominc Tanguage dp g(L) is a set of equal dominoes then it is
inciuded in a finitely generated semigroup SZ(A), for some set A

of dominoes. 0
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