MESSAGE ORIENTED PROGRAMMING
- A RESOURCE BASED METHODOLOGY

By

P.R.F. Cunha*, C.J. Lucena+
T.S.E. Maibaum*

Research Report CS-80-32
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada.

*Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

+Departmento de Informatica
Pontificia Universidade Catolica
Rua Marques de S. Vincente, 225
Gavea - CEP 22453
Rio de Janeiro, RJ, Brazil

This work was supported by a grant from the Natural Sciences and Engineering
Research Council of Canada and the Canadian International Development Agency.

ABSTRACT

The development of new technology and hardware systems provides many
new opportunities for their exploitation. These opportunities also present
us with certain responsibilities - namely, to develop appropriate tools for
the orderly and well founded management of these systems. In this report
we present a methodology for the development (and analysis) of programs
based on the structuring principle of processes which synchronize their
activities by message passing. The basis of the methodology is the resource
and this concept generalizes that of abstract data type to the message-
passing environment. The methodology is a natural outgrowth of methodologies
for sequential programs and parallel programs developed for shared address
spaces. We illustrate our ideas via solutions to some well known problems
such as the bounded buffer problem, the readers and writers problem, the dining

philosophers problem and the unreliable medium problem.

Keywords :

Methodology, distributed computing, message oriented programming, rescurce,
abstract data types, asynchronous condition formula, synchronization formula,

verification.

1. Introduction

Processes are building blocks for modelling of environments in which
parallel and distributed processing occurs. They play in parallel program-
ming the role of standard units (as do subroutines or procedures in
sequential programming). Process communication and synchronization can
be achieved either through shared variables (common address space) or by
message transmission. It has been shown that the message transmission
mechanism Teads to a more general ccmputational structure since shared
variables can be viewed as a special case of message transmission [30].
Moreover, modern technological developments preclude the use of shared
address spaces. Today there is no question about the need for the develop-
ment of methodologies which, starting from well formulated requirements,
guide the progress to a solution which is structured, manageable, and

meets these initial requirements [10, 8 , 27, 28].

Modern programming design methods are based on sound principles such
as structured programming [10], modular design [9, 26] and programming
with abstract data types [21]. These criteria make possible structurable
and manageable programs which facilitate the understanding and the verifi-
cation of the system. There is no question about the need for the develop-
ment of methodologies where we can state formally a procedure by which a
reliable piece of software can be built. The general hope is that starting
from well formulated requirements and using the guidelines from the
methodology, we should progress to a solution which meets these initial
requirements. The methodology should provide helpful criteria for
structural partition of the system and for refinement of intermediate

solutions.

Motivated by the above considerations, we develop in this paper the
beginnings of a methodology to deal with what we call message oriented
programming which refers to programming with processes and messages. 1In
terms of problem solving, two interrelated programming problems present
themselves: how much of the program should be contained in the message
structure and how much in the process structure. The inherent excessive
flexibility of message oriented programming suggests that careful attention
be paid to the methodological issues that it raises. (This inherent flexi-
bility arises from the possibility of being able to modularise a system in
various ways depending on various criteria: Are messages explicit ("send",
receive") or implicit (operation invocation [17, 19]? What "size" of
message is allowed (i.e. signals or any data item)? What kind of primitives
are allowed (i.e. blocked or unblocked sends and/or receives [23])? These
are just a few of the many variations which are possible.) We think that
the techniques for programming with messages and processes need to be at
least as well understood as the techniques for parallel programming with
shared variables. Similar concerns are being shown by other researchers
in program language design for distributed systems [11, 24] and design of

multiprocessor systems [1, 3, 16, 20, 5].

We note in passing that the methodology for programming with shared
variables is well developed and shows a development leading from operational
(automata oriented) constructs (semaphores) to high level programming
constructs (critical regions and then monitors). Recent mathematical
theories of message oriented programming ([25, 22, 14]) deal with the
subject from an operational (automata oriented) point of view. However,
the models are too far removed from the control and data structures of

programs to guide the designer in constructing a process. To be able to

bridge this gap between program specification and program implementation
(expressed in the high Tevel language that we use), we resort to a
definitional specification techniques (more fully described elsewhere [6])

based on the concept of abstract data type.

The specification technique is used in conjunction with some useful
design principles to illustrate our ideas via solutions to some well known
problems: the bounded buffer problem, the readers and writers problem,

the dining philosophers problem, the unreliable medium problem.

The first and most important of these design principles is the concept
of resource oriented programming. A resource is a simple modularising
principle which lends itself very nicely to the modularisation of distributed
systems as well to the definition of the internal structure of each module
(resource). This principle is derived from various other techniques which
have appeared in the literature - namely, programming through managers
[18] and proprietors [3]. Another close cousin of the resource concept
is the monitor of [15]. We might say that resources are to message
oriented programming as monitors are to programming with shared variables.
Like monitors, a resource implements an abstract data type [13, 21] together
with mechanisms for synchronizing the activities of the resource with its
environment (i.e. other resources) as well as internally (since we will
allow the use of the resource in parallel by various elements in the

environment).

In the next section we outline the programming language which will be
the vehicle for the statement of our programs. We also outline a
"synchronization language" to be used in program development. We then

define and justify the heuristics used in our methodology. In section 3

we develop a number of example programs by using the methodology. Finally,
in section 4 we make some remarks concerning the analysis of such programs
for the purposes of verification as well as some remarks on the future

developments of this work.

2. The Design Methodology

We begin this section with an outline of the languages used in our

examples. Then the methodology of message oriented programming is developed.

2.1 The Programming and Synchronization Languages
Our programming language is built around communications primitives
(defined in [6]) specified using the algebraic specification technique

([12,13 , 21]). Some of the operations are:

sendt(m,msg): process £ sends message msg to process m;

sendz(m): a signal from process £ to process m. (i.e.

the content of the message is unimportant);

receivez(m): process £ receives a message from process m;
rec-any,: returns a pair consisting of process name and
message;

rec-anyz(set-of-proc): process £ can receive a message from
any process in the given set;
istheremsgﬂ(m): a test to determine whether or not there is

a message from process m to process £.

Note that the subscripts are dropped in the body of code defining a
process as the value of the subscript is obvious in such a situation.
Also note that we are using the so-called "unblocked send" and "blocked
receive" primitives. This means that a process executing a send
immediately goes on to execute the next statement in the program without
waiting for the message to actually be received. On the other hand, a
receive blocks the program if there is no message to be received until
such a message arrives. We chose these particular primitives because
they resemble output and input statements in normal sequential programs
and will, we believe, lead to simpler analysis of the programs. However,
we should say that by using the operation "istheremsg" we can adequately
simulate the other possibilities such as blocking send and blocking receive

and so on.

The axiomatisation of these primitives is equational and from the
algebraic theory of abstract data types we know that we have defined a

unique object called the communications data type. Together with assignments

and operation invocations, these primitives constitute the basic statements
(P) of our programming language (PL). We then define (informally) PL as
follows in terms of programs PL1, ..., PLn:
(i) P = PL;
(ii) PL1; PL2 < PL;
(ii1) {PL1} < PL;
(iv) *{b: PL1} < PL; (b is a boolean valued expression)
(v) {b1: PL1 or b2: PL2 or ... or bn: PLn} < PL(b1, ...,
bn are boolean valued expressions and

n=1).

(i) indicates that the basic statements are programs;
(ii) dindicates that one program followed by another is a program;
(iii) gives us block structure;
(iv) gives us iteration which we will generally write as "while b do PL";
(v) 1is Dijkstra's nondeterministic alternative construct if ... fi.
In the special case that we have b: PL1 or Tb: PL2 we will write

"if b then PL1 else PL2". We suppress declarations, etc. in the programs,

but we add the reserved word process followed by the corresponding name.

An example of a program in PL is the following (which will appear in

the solution to the bounded buffer problem):

process p-avpl;
~{avpl :=n
while true do
“{avpl = 0: msg := receive(prod);
avpl := avpl - 1;
place item msg
or avpl = n: receive(cons);
avpl := avpl + 1;
get item into msg;

send(cons, msg)}

We now define the synchronization language (SL) which will be used

in the methodology to develop our programs by specifying the synchron-

ization mechanism for each process. The primitives of the language are

sij to indicate the sending of a message from process i to process j and
rij to indicate the reception of a message by process i from process j.
Calling these primitives S and letting SL1,..., SLn be elements of SL

we define SL recursively by:

(1)
(1)
(i)

(iv)

S < SL;
SL1; SL2 < SL;

{SL1} e SL;

*{SL1} < SL;

(v) {SL1 or SL2 or ... or SLn} < SL (for n = 1).

The interpretation of these various constructs is analogous to those

above for PL. The synchronization program in SL corresponding to the

example program above is:
process p-avpl;

*{avpl = 0 : receive(prod)

or avpl = n : receive(cons);

send(cons, msg)}

We will use the two languages SL and PL, which differ essentially
in the amount of detail included in the "programs" of the respective
languages in the stepwise development of programs. The first Tanguage
is used to express synchronization properties of programs and acts as

a first approximation to the program in PL which is the final solution.

2.2 The Methodology

Myers [26] proposes two criteria to be used in decomposing systems
into modules : module strength and module coupling. A balance between
high strength and low coupling must be attempted. Module strength tries
to achieve high module independence by maximizing the relationship within
each module (and so minimizing dependence between separate modules).
Minimizing module coupling is a process of both eliminating unnecessary
relationships among modules and minimizing the tightness of those relation-

ships that are necessary.

Myers postulates two methods for achieving high strength and low
coupling. The first sees a module as implementing a function (in the
purely mathematical sense). The second sees a module implementing an
abstract data type (i.e. a set of values and operations which can be
applied to these values). We have chosen the second alternative as the

basis for our methodology.

Informally, the methodology begins with the decomposition of a
system into a set of resources which must interact to “"solve" the problem
at hand. How this interaction takes place is specified by the second
major component of a resource-namely, the synchronization part. The first
major component is of course the abstract data type which the resource
implements. (At the first stage in the stepwise refinement process, we
assume that the operations of the data type implemented by the resource
can be invoked directly by the programs which manage the resource. Thus

the resource's programs are assumed to share a common address space, at

least insofar as they all have direct access to the operations of the
resource.) Thus the purpose of the managing programs is essentially

the synchronization of these operations. At the next stage in the
stepwise refinement process, this assumption of having a shared address
space (and thus being able to invoke the operations of the type directly)
can be changed to reflect a distributed representation of the data values.
This is done by replacing operation invocations by appropriate message
passing activities between the appropriate processes and it may involve
the use of more primitive resources for the implementation of the resource

in question. This stepwise refinement problem is treated in another

paper [7].

Granted that we want to do message oriented programming which is
based on resotirce management, the question of how to design our program
still remains. In this report we propose a two stage approach: firstly
we develop a fcrmula for a given resource, called the asynchronous
conditions formula (acf), to define in an explicit way the process structure
associated with the management of the resource. This formula will be of

the form

) = spor...or

(cqqne.oncqy,) gﬁ_(cz]A...ACan) or ... or (¢ 4A...aC

1 mnp,

for some (propositional) truth values Ci; (1<i<m, 1gjsni,niz]). The
motivation for the structure of this formula is the following. Associated
with each resource is a set of operations OPys---50P, which we would 1ike

to use to manipulate the resource. Each of these operations has associated

10.

with it a precondition which must be satisfied before the operation can
be applied. Thus S; is the precondition which must be satisfied before
op, is applied to the resource. This formula defines all conditions (and
the only conditions) under which any action concerning the resource can

take place. Thus, if (ci]A...Ac.) is true, then a particular use of

in
the resource may be made. (Note that the truth values c1.j may in turn

be defined in terms of some acf.) We note here that the ccnditions which
make S; and sj true, for izj, need not be mutually exclusive. This
corresponds to the idea that several parallel operations on a resource

may be compatible.

We then have two (opposite) criteria for defining process structures
associated with such an acf. The so-called functional strength approach
dictates that a single process be associated with the management of the
resource. This process has to handle the different conditions Syse--sSy
and take the appropriate actions. There are a number of possible ways
to implemert this. The obvious one is to handle S1s---s5y by cases
(closely related to the use of guarded commands). Another possibility
is to use a hierarchical decomposition of this one process by defining
processes which handle each (or some subset) of the conditions controlled
by some "master" process. The other extreme is informational strength
and the criterion used in this case is the explicit handling of the
resource considered as a data structure, in terms of operations defined

on it. Again the acf is conducive to this kind of structuring since the

conditions S; establish criteria for particular actions to take place in

11.

the maragement of the resource. Thus the so-called informational strength
approach associates with a resource one process for each of the conditions
si,lsism. These processes are dedicated in the sense that they manage only
a particular aspect of the given resource. This then leads to a highly
distributed or "horizontal" organizational structure for these processes

because we are looking for operations that can be executed in parallel.

Having established the process structure for the problem at hand,
can we now find some guide to help us design the processes themselves.
The following analysis leads us to a solution. Let us consider the
interaction of a resource with the "outside world" or its "environment'.
This interaction is accomplished purley via message passing. Messages
are received from other resources asking for the activation of some
operation. Messages are sent to other resources (or internally among
processes in the same resource) acknowledging the completion of some
operation or passing on results or Thus the sequence of message
passing actions in the system is of vital importance in defining the
internal structure of processes associated with the resource in question.
This suggests agein a solution based on a formula - the synchronization
formula (sf) fif,...f, where each f; is some primitive communcations
activity Tike send or receive and each f, identifies the process(es)
involved in the communications action. This formula concentrates on the
communications activities of a given process and specifies the intended
synchronization of the process with its environment via its message passing
activities. This formula is specified as a program written in the

synchronization Tanguage SL.

12.

Having established the sf, the message passing and receiving activities
of each process are now well defined and the appropriate actions to be taken
on the occurrence of each such communication have to be "filled in". Normal
structured programming techniques can be used to do this since these parts

cf the processes are implemented by "normal" (non-communicating) algorithms.

The methodology can then be summarized as follows:

(i) Identify the resources needed to solve the problem at hand. The
concept of data type is the main guide in this identification in
the sense that we want to group together in one resource what is
normally implemented as a cluster or a data abstraction in
sequential programs.

(ii) Having identified the resources, assume that the data type which
the resource manages has been implemented and thus the operations
associated with the resource are known as are the properties of
these operations.

a) Establish for each resource the asynchronous conditions under
which various operations may be invoked.
b) Establish the process structure for each resource by using
the criteria of functioral strength or informational strength
(or some compromise between the two).
(iii) Establish the synchronization formula (sf) for each process
involved in the management of a given resource.
(iv) "Fi11 in" the sequential parts of each process. That is derive

a program in the language PL by using the program in SL as a "skeleton",

Our intention in the next section is to illustrate these ideas via the

solutions to a number of interesting problems.

13.

3. Examples

This section contains solutions to familiar problems of parallel
programming using the methodology developed previously. For some
examples we give more than one solution using the possible criteria
involved in the technique. (Moreover, different levels of refinement
are presented for the same solution.) The comparison of the functional
and informational strength approaches helps us to understand the
differences between the implementation of the resource in a shared
address space and a distributed one. We start by presenting in sub-
section 3.1 a detailed illustration of our methodology by giving diverse
solutions to the bounded buffer problem. In subsection 3.2, other well

known problems are solved without the provision of too many details.

3.1 A Detailed Example

To illustrate the method described above we will develop a detailed
message-oriented programming solution to the bounded buffer problem.
This problem can be stated in the following way: a bounded buffer is
constructed in order to smooth variations in the speed of output by a
producer process and input by a consumer process [16]. The producer
and the consumer processes repeat their actions continuously and it is

known that the buffer area is large enough to hold n items.

14.

Taking the steps presented in the methodology, we have:

(i) Identification of the resources:

In this case, we are interested in the synchronization between the
buffer area and the producer and consumer processes. The buffer area can
be thought of as a data type where the items are the objects and the
operations are "place an item" and "get an item". For this example, we
consider the prcducer and consumer as external resources which interact
with the buffer-area resource. The resource directly involved in the
problem is the buffer area and its length of n buffers determines how
mary messages it can store at any time.

(ii) Establishment of the acf:

The resource identified for this problem is the buffer area. We
assume that the data type (and consequently the operations) associated
with the resource has been implemented. In this case, the operations
are "place an item at last" and "get an item from first" in which "first"
and "last" are pointers to, respectively, the next available item and
the next available slot in the buffer area. Let us consider, for the
purpose of defining the asynchronous condition formula (acf) associated
with the resource, the following two predicates:

« NE - buffer area is not empty

« NF - buffer area is not full
(If we consider the variable k as the current number of messages in the

buffer area, it follows that NE = k > 0 and NF = k < n.)

15.

The consumer process must not try to get a message from the buffer
area if this is empty. Similarly, the producer process must wait if the
buffer area is full. In view of this, the conditions under which the
operations "place an item" and '"get an item" may be invoked are "NF"
and "NE". Therefore, the asynchronous condition formula (acf) for the
bounded buffer problem is expressed as follows:

NF or NE = acf - producer or acf - consumer

Firstly, we consider a solution based on the criterion of functional
strength. As defined previously, this approach associates one process
for the management of the resource. A single process will handle by cases
the conditions Sy and So (acf - producer and acf - consumer) using the
alternative construct. We are not designing the producer and consumer
process because our main interest here is the control of the buffer area.
We assume the usual sequence of communications-primitives for a producer
or a consumer. The producer contains the primitive send(avpl, item) and
the consumer the pair of primitives (send(avit) ; x := receive(avit)).

(iifa) Estaklishment of the sf:

The synchronization formula (sf) is a representation of the intended
sequence of all communication operations ("sends" and "receives") performed
by a process. The set of synchronization formulas (one for each process)
specifies the intended synchronization of the system via its message passing

activities.

16.

In the functional strength approach, one process treats the producer
and consumer cases. The operations "place an item" and "get an item" are
invoked in the same process that manages the resource (buffer area) and
consequently, they are mutually exclusive. (Remember that we are assuming
here a shared address space for the resource's program.) The synchroniza-
tion formula feor the process p-avpl (number of available places in the
buffer area) used in the functional strength design is given below. This
expression (sf) gives the necessary sequence of communication primitives
for the process p-avpl in order to handle the instances of messages from
the producer and consumer prccesses as described previously. In the
process p-avpl we have the producer case and the consumer case subdivided
by the respective conditions "avpl = 0" and "avpl = n". Let us denote
receive by r, send by s, producer by pd and consumer by cs in the following
expression. The symbol ";" denotes sequentiality of actions, "*" an in-
definite number of repetitions of the enclosed communication sequence and

"or" that the expressions are disjoint in the code used for the process.

1. [(r(cs) ; s(cs, item)) or r(pd)]*
R S——
avpl = n ("cs" case) avpl # 0 ("pd" case)
(The expression inside the square brackets is intended to
specify one instance of the communication activity of the
process p-avpl with the producer or consumer.The same history

will then be repeated for the next activation of the producer

or consumer.)

17.

Using the sf established above, it is easy to derive the communica-
tion skeleton (or the synchronization program expressed in SL) of the
process p-avpl.We know that avpl = 0 (NF) is the condition under which
the operation "place an item" can be invoked and avpl = n (NE) is the
corresponding condition for the operation "get an item". The mapping
is almost direct considering ";" as the usual delimiter of statements,
"*'" 35 jteration and "or" as an indication of mutually exclusive se-
quences of communication primitives. The program in the synchronization
language (SL) is given below as a first approximation of the final program in PL.

process p-avpl ;
* { avpl = 0 : receive(prod)
or avpl = n : receive(cons);

send(cons, msg)}

(iv,a) Filling in of the sequential part:

The, fi1ling in of the sequential part is the last step. This part
is independent of the communication mechanism and it may depend on imple-
mentation details. One possible final form for the process p-avpl is given
below. We use the previous program in SL as a skeleton to derive the

final progrem in the language PL.

18.

process p-avpl ;

“{ avpl = 0 : msg := receive(prod) ;
avpl := avpl -1 ;
place item msg

or avpl = n : receive(cons) ;

avpl := avpl + 1 3
get item into msg ;

send(cons, msg) }

Secondly, we consider the criterion of informational strength. This
epproach associates with the resource one process for each of the pre-
conditions s; and s, (where sy = acf - producer and s, = acf - consumer) .
As indicated before, each process will manage a particular aspect of the
resource. It is possible to base the solution of the problem on the
processes p-avpl (number of available places (avpl) greater than zero)
and p-avit (number of available items (avit) greater than zero). The
first process will treat the operation "place an item" from the producer
if "avpl = 0" (assuring NF) and the latter will treat the operation
"get an item" to the consumer if "avit = 0" (assuring NE).

(iii.b) Establishment of the sf:

Based on the discussion above we have to design two process p-avpl
and p-avit to handle the operations "place an item" and "get an item",
respectively. The process p-avpl can receive messages from the producer

or the companion process p-avit. In the first case, the producer sends

19.

an item to be put into the buffer area while in the second case, the
process p-avit informs p-avpl that a new slot is available in the buffer
area. If "avpl = 0", the process p-avpl which cannot receive messages
from the prcducer blocks itself waiting for a signal from the process
p-avit; otherwise, it is free to receive messages from the producer or
p-avit. When the process p-avpl places an item in the buffer, it signals
the process p-avit that a new item is available. The companion : process
p-avit, related to the consumer case, has a behaviour similar to that of

the process p-avpl when considering the dual condition "avit = 0".

This informational strength design is less restrictive than the
functional strength one. The operations "place an item" and "get an item"
can be executed concurrently in this informational strength design and
therefore more parallelism is achieved. It is only required to assure
that these operations do not access concurrently the same buffer slot.
This condition is ensured because the process p-avpl only informs the
process p-avit that a new item is available after it has finished the
work related to that item. The same happens in the inverse case when
a new place is available. (Of course, there is not much advantage if

this solution is implemented on a single processor.)

The sf expressions for the two process p-avpl and p-avit used in
the informational strength design are given below. These expressions
give the necessary sequence of communication primitives between the
process p-avpl, p-avit, producer and consumer as explained before.

For example, the process p-avpl communicates with the process producer

end p-avit, and it handles the conditions "avpl = 0" and "avpl > 0".

20.

1. Process p-avpl:

[(r(pd) ; s(p-avit) or r(p-avit)) or r(p-avit)]*

e e)

avpl > 0 avpl = 0

2. Process p-avit:

[(r(cs) ; s(cs, item) ; s(p-avpl) or r(p-avpl)) or r(p-avpl)]*
- ——\Y__., s L
avit > 0 avit = 0

(When writing an sf, we use the other written expressions (sf's)
in order to help the design of this sf or to validate the whole
message passing activity. Comparing the expressions 1 and 2 above,
we can verify easily that there is a complete match of the sending
and receiving operations between them. The complete match is also
true, if we relate these expressions with the communication
primitives in the producer and consumer processes. A set of sf's
with a complete match of sending and receiving operations is said

to have no unpaired primitives.)

Using the sf's established previously, it is easy to derive the
synchronization program expressed in SL for the processes p-avpl and p-avit.
For example, in the process p-avpl where the condition "avpl = 0" is true,
it blocks itself until a place becomes available; otherwise, it can receive

messages from both the processes producer and p-avit.

21.

process p-avpl
*{ avpl > 0 :
{ receive(prod) ;
send(p-avit)
or receive(p-avit) }

or avpl = 0 : receive(p-avit) }

process p-avit

*{ avit > 0 :

" { receive(cons) ;
send(cons, msg)
send(p-avpl)

or receive(p-avpl) }

or avit = 0 : receive(p-avpl) }

(iv.b) Filling in of the sequential part:
We use the programs in SL as skeletons to write the final programs
in PL. One possible version of the processes p-avpl and p-avit in the

informational strength design is given below.

22.
process p-avpl
“{ avpl :=n ;

while true do

“{awpl >0 : t:

{ t.name = 'prod' : avpl := avpl - 1 ;

rec-any ;

place item t.msg ;
send(p-avit)

or t.name = 'p-avit' : avpl := avpl + 1 }

or avpl = 0 : t := receive(p-avit) ;

avpl := avpl + 1 }

}
process p-avit;
{ avit :=0 ;

while true do
‘{ avit >0 : v := rec-any ;
“{v.name = 'cons' : avit := avit - 1 ;
get item in v.msg ;
send(cons, v.msg) ;

send(p-avp1)

or v.name = 'p-avpl' : avit := avit + 1}

receive(p-avpl);

1l

oravit=0:v :
avit := avit + 1 }
}

(As mentioned in the last section, here we are assuming that the processes
p-avpl and p-avit use a shared address space and thus are able to invoke the
operations "place an item" and "get an item" of the data type "buffer" directly.
The stepwise refinement process where we consider a distributed representation
of the data values is described in [7]. Note also that with a small change in

this solution is applicable if there is more than one producer or consumer process.)

23.

3.2 Other Examples

This subsection contains other examples of the use of our resource

based methodology to derive message oriented programs. Some of the details

of the design process will not be repeated here and we will concentrate

mainly on the characteristics of the new examples.

a)

1)

The Unreliable Medium

We want to design a program to model the unreliable medium in a
communication system. The medium receives a message from a process
in the external environment and takes nondeterministically one of
the following actions: (i) sends the message intact to the
receiving process, (ii) delivers the message with an error signal,
or (iii) skips that message (i.e., it looses the message). This
resource is part of the specification of the "alternating bit"
protocol described in Bochmarn et al. [2]. Taking the steps
presented in the methodology, we have the solution below.
Identification of the resources:

The resource to be designed here is the unreliable medium. This
resource can be viewed as a data type where the messages in
transit are the objects and the operations are scorr (send a
correct copy of the message), sinc (send an incorrect copy of

the message) and skip (skip the present message).

Establishment of the acf:

The asynchronous condition formula (acf) for the resource
"unreliable medium", which expresses the conditions under which

the operations of the data type may be invoked, is now developed.

ii)

i)

24.

From the definition of the problem, we know that the operations
scorr, sinc, and skip should be mutually exclusive (the medium
arbitrarily just performs one of these operations). Thus, the
acf for the resource above is expressed as follows:

(NIS A NS) or (NCS A NS) or (NCS A NIS) = acf-scorr or acf-sinc

or acf-skip

where NCS, NIS, NS are the conditions "no correct sending",
"no incorrect sending", and "no skipping", respectively.
Establishment of the sf:
A functional strength solution will be designed for the resource
"unreliable medium" since it is not possible to achieve a higher
degree of parallelism (or any other apparent advantage) by using
more than one process to manage the resource. The following
synchronization formula (sf), which is trivial in this case,
establishes the sequence of message passing primitives that
the process medium will use to synchronize its activities with
the other processes (senders and receivers).
[r(sender-i); (s(receiver-k, msg) or s(receiver-k, ‘error') or

nil) J*

where sender i addresses receiver k.

25.

ii1) The program in the synchronization language (SL) which
represents a first approximation of the final program is
given below:
process medium ;
*{ receive(sender-i) ;
{ send(receiver-k, msg)
or send(receiver-k, ‘error')
or skip 1
iv) Filling in of the sequential part:
The acf given above is guaranteed in the solution because the
three conditions (separated by or in the acf) are handled by
the same process and therefore the operations are executed
sequentially (each time the medium performs one of the opera-
tions). 1In this case there is no sequential part to be filled
in the previous program. Rewriting the above code in the
Frogramming language PL, we have the following program for the
resource medium.
process medium ;
{ while true do
{ t := rec-any ;
"{ send(t.name, t.msg)

or send(t.name, 'error')

or skip 1}

b)

26.

The Readers and Writers

The problem of the readers and writers was originally proposed by
Courtois et al. [4]. The problem can be stated in the following
way. Readers and writers are processes which share a resource.

The readers can use the resource (e.g., a data base) simultaneously
but the writers require exclusive access to it. When a writer is
ready to use the resource, it is entitled to do so as soon as
possible (this is the so called writer priority version). Below

a solution is developed using our resource based methodology.
Identification of the resources:

The design of this problem involves the resources readers-writers
and scheduler. In the first resource we assume that the operations
read and write of the data type "data area" have been implemented
and they can be invoked directly by readers and writers. The
scheduler controls the sequence of accesses by readers and writers.
We are not going to design completely the readers and writers
processes because our main interest here is the resource scheduler.
The operations of the scheduler are gread (grant reading condition)
and gwrite (grant writing condition). A reader process asks
permission of the scheduler before it reads some data and when
finished it signals the conclusion of the operation. (The
situation is analogous for a writer process.) The parts of a
reader process and a writer process that refef to the scheduler

are given below. (In general, a reader or a writer may refer

to other resources.)

27!

process reader-i ;

...
send(sched, 'sread') ; receive(sched) ;
read(data-area) ;
send{sched, 'eread') ; . . . }

process writer-i ;
...
send(sched, 'swrite') ; receive(sched) ;
write(data-area) ;

send(sched, 'ewrite') ; . . . }

i1) Establishment of the acf:

The resource scheduler will control the sequence of reading and
writing in order to assure that these two operations do not
overlap and also a higher priority for writing. The conditions
under which the reading and the writing operations can be granted
are NWA A NWR (no reading activity and no writing request) and
NWA A NRA (no writing activity and no reading activity), respectively.
Therefore, the acf for the scheduler is:
(NWA A NWR) or (NWA A NRA) = acf-reading or acf-writing

iii) Establishment of the sf:
As we know, in the functional strength approach we associate with
the resource one process which treats the conditions of the acf
by cases. The solution for this approach has been extensively
pubTished in the Titerature. In view of this, we are going to

design an informational strength solution for the readers and

i11)

28.

writers problem. This solution associates with the resource
one process for each of the conditions acf-reading and acf-
writing. We will have two processes: r-sched (reading sched-
uler) and w-sched (writing scheduler), to grant reading and
writing permissions, respectively. Although the operations
read and write cannot be activated at the same time, some
parallelism is gained because now process r-sched will treat
the messages "sread" and "eread", and process w-sched the
messages "swrite" and "ewrite". (The solution is also a nice
example of cooperation between these two processes.) The
design of the message structure of the process r-sched proceeds
as follows: 1if there is a message from process w-sched
signalling a writing request then process r-sched waits until
all the readings that are in progress end to signal the writing
scheduler to go ahead. After the writer finishes the reading
scheduler is unblocked. (The design of the message structure
of the process w-sched matches the primitives above and it is
straightforward.) The sf's for both processes r-sched and
w-sched are written below:
1. Process r-sched:

[(r(w-sched) ; (r(readers-in-progress))*; s(w-sched, 'go');

r(w-sched)) or

(r(reader-i) ; (s{reader-i, 'oktoread') or nil)]*

29.

Process w-sched:
[r(writer-i); s(r-sched) ; r(r-sched); s(writer-i, 'oktowrite');

r{writer-i); s(r-sched, 'go')]*

Using these sf's, it is easy to derive the following program
in SL for the processes r-sched and w-sched. The condition
istheremsg(w-sched) assures the writing priority, the variable
msg stores the message received, and the variable rcount keeps

track of the number of readings that are still in progress.

process r-sched;

*{istheremsg(w-sched) :
{receive(w-sched) ;
*{rcount # 0 : receive(rprogress)}
send(w-sched) ;
receive(w-sched) }
or listheremsg(w-sched) :
{receive(reader-i) ;
{msg = 'sread' : send{reader-i, 'oktoread')

or msg = 'eread' : nil 13}

jv)

30.

process w-sched ;

*{ receive(writer-i) ;
send(r-sched) ;
receiver(r-sched) ;
send(writer-i, 'oktowrite') ;
receive(writer-i) ;

send(r-sched) }

Filling in of the sequential part:

We give below the code (in the language PL) for the processes
r-sched and w-sched which form the resource scheduler. We
make use of the data type "set" for which the operations
insert and delete are defined in the usual way (sreaders and

swriters denote the sets of readers and writers, respectively).

31.

process r-sched ;

{ rcount := 0 ;
while true do
if istheremsg(w-sched)
then { receive(w-sched) ;
while rcount = 0 do
{ t := rec-any(rprogress) ;

rcount := rcount -1 ;
delete(rprogress, t.name)}

send(w-sched) ;

receive(w-sched) }
else { t := rec-any(sreaders) ;
{ t.name = 'sread' :

send(t.name, 'oktoread') ;
rcount := rcount + 1 ;
insert(rprogress, t.name)
or t.name = 'eread' :
rcount := rcount - 1 3

delete(rprogress, t.name) }}

c)

32.

process w-sched ;
{ while true do
{ v := rec-any(swriters) ;
send(r-sched) ;
receive(r-sched) ;
send(v.name, 'oktowrite') ;
receive(v.name) ;

send(r-sched) }

The Dining Philosophers (E.W. Dijkstra)

Five philosophers spend their Tives thinking and eating. When
a philosopher is hungry, he enters the dining room and sits in
his own chair at a circular table which is set with five plates
of spaghetti and five forks (one between each plate). Because
the spaghetti is so tangled, a philosopher has to use both forks
(the ones on the left and on the right of his plate) to eat.
When a philosopher has finished eating, he puts down both forks
and leaves the dining room.

Identification of the resources:

This problem can be solved by coﬁsidering six resources: The
five philosophers and the dining room. As we know, the design
of the resource philosopher (identical for each of the philos-
ophers) is quite simple and involves the repetition of the

sequence "THINK ; EAT". Before starting the operation of eating,

i1)

33.

a philosopher signals his itentions to the resource room which is
responsible for access to the forks, and after he is finished
eating, he signals the conclusion of the operation. For another
application of the ideas presented in our resource based
methodology, we will concentrate on the design of the resource
called room. The code of the ith resource phil-i may be des-
cribed as follows:
process phil-i ;
{ THINK ;
getforks ;
EAT ;

releaseforks }

Establishment of the acf:

The resource to be developed is the dining room. This resource
controls the access to the forks by keeping a list of the phil-
osophers that are currently eating. We assume the implementation
of the two data types "forks" and "eating-i" (an array of
Boolean variables in which eating(i) is equal to "true" if
philosopher "i" is eating and "false" otherwise) for the design
of the resource dining room. The operations for the second data
type are valeat (gets the value of the variable eating (i)) and
wrteat (writes the values true (or 1) or false (or 0) into the
variable eating (i)). (Note that these two operations can be
executed in parallel and no special condition is necessary to

hold for their invocation. This is because the entries in the

111)

34.

array can assume only the values true (1) or false (0). See
the note after the presentation of the solution for further
clarification.) The operations for the data type forks are
getforks(phi1(i)) (get forks for philosopher i) and release-
forks(phil(i)) (release forks from philosopher i), and the
conditions under which these operations can be invoked are
expressed in the acf below. For the purpose of defining the
acf, consider the following two predicates : NE(i) (philosopher
i is not eating) and E(i) (philosopher i is eating). Then,

we have the following acf:

(NE(i 8 1) A NE(1 @ 1)) or (E(i)) = acf-gforks or acf-rforks

I

where ® and © denote addition and subtraction modulo 5,
respectively.

Establishment of the sf:

Using the informational strength approach we base the design

of the resource dining room on the processes gforks (one which
controls the access to the forks) and rforks (one which controls
the release of the forks). The first process waits until the
condition acf-gforks is true for some philosopher in order to
receive his request for eating, allocate the corresponding forks
and signal the philosopher back that he can start eating. The
latter process, as soon as the philosopher sends a signal

stating that he finished eating, releases the forks. The sf's

35.

(which are trivial in this case) for the process phil-i (ith
philosopher), the process gforks and the process rforks are
written below:
1. Process phil-i (all philosophers have a similar behaviour):
[s(gforks) ; r(gforks) ; s(rforks)]*
2. Process gforks:
[r(phil-i) ; s(phil-i)]*
3. Process rforks:

[r(phil-i)]*

The program in the synchronization language (SL) which represents

a first approximation of the final program is given as follows:

process phil(i:0 .. 4) ;
*{ send(gforks) ;
receive(gforks) ;
send(rforks) }
process gforks;
*{(i : 0 ... 4) (istheremsg(phil(i)) A
1 valeat(i @ 1) o 7 valeat(i @ 1)) :
receive(phil(i)) ;
send(phil(i)) }
process rforks;
*{(i : 0 .. 4) (istheremsg(phil(i)) A valeat(i)) :

receive(phil(i)) }

iv)

36.

(The condition istheremsg{phil(i)) assures that philosopher i
is ready to eat. Note also that the range (i : 0 .. 4) given
in the guarded commands above is simply a short form for a
nondeterministic construct with five guarded commands - one

for each of the permitted values of the variable i.)

Filling in of the sequential part:

The programs in SL are used as skeletons to write the final
form of the processes defined previously. We write the header
"process phil(i : 0 .. 4)" to express the fact that all the

philosophers have similar code.

process phil(i : 0 .. 4) ;
{while true do
{ THINK ;
send(gforks) ;
receive(gforks) ;
EAT ;
send(rforks) 1}

37.

process gforks ;
{while true do
{ (i :0..4) (istheremsg(phil(i)) a
1 valeat(i 0 1) Ao T valeat(i ® 1)) :
receive(phil(i)) ;
getforks(phil(i)) ;
send(phil(i)) ;
wrteat(i, 1) }
}
process rforks ;
{ while true do
{(i : 0 .. 4) (istheremsg(phil(i)) A valeat(i)) :
receive(phil(i)) ;
releaseforks(phil(i)) ;

wrteat(i, 0) }

Note that the operations valeat in process gforks and wrteat in rforks
could conflict in principle. However, if rforks sets eating(i © 1)

(or eating(i @ 1)) to false (0) then one of two things may happen.

Either valeat(i © 1) (or valeat(i ® 1))is true and so the guard in

gforks is false and philosopher i is delayed or valeat(i © 1)

(or valeat(i @ 1)) is false and so, depending on the values of the other
expressions in the guard in gforks, philosopher i may get the forks and
begin eating. The worst that can happen is that philosopher i is delayed

in his attempt to eat.

38.

The informational strength design here is much less restrictive
than the functional strength one because the operations getforks
and releaseforks ean work concurrently. The resource based
methodology conducted us to a concise, elegant and modular
solution which also contains a high degree of parallelism. We
are going to present below the functional strength solution

(in PL) for the dining philosophers problems in order to allow

the readers a chance to compare both solutions.

process phil(i : 0 .. 4) ;
{while true do
{ THINK ;
send(room, 'enter') ;
receive(room) ;
EAT

send(room, 'exit') }

process room ;

{ while do true

{(i :0..4) (istheremsg(phil(i))
T valeat(i © 1) A1 valeat(i ® 1)) :
msg := receive(phil(i)) ;
{msg = 'enter' : getforks(phil(i)) :
send(phil(i)) ;
wrteat(i, 1)
or msg = 'exit' : releaseforks(phil(i)) ;

wrteat(i, 0) }

39.

4. Concluding Remarks

The development of new technology and hardware systems provides many
rew opportunities for their exploitation. These opportunities also present
us with certain responsibilities - namely, to develop appropriate tools
for the orderly and well founded management of these systems. We have
tried in this report to present a methodology for the design of programs
based on the structuring principle of processes which synchronize their

activities by message passing.

The basis of the methodology is the resource. This concept general-
izes that of abstract data type to the message passing environment. The
purpose of a resource is to co-ordinate the use of the operations of the
data type with each other and with the environment of the resource

(i.e., the "users" of the operations).

The methodology consists of a sequence of steps of which the following
is a summary. The first step is the identification of the resources which
will be used in the design of the system being developed. This is
analogous to the identification of the abstract data types which would
be used in the design of a sequential program. The second step is the
establishment of the asynchronous condition formula (acf) for each resource.
This formula determines the degree of parallelism which is allowed in
the use of the operations of the resource. The third step uses the acf

to establish a process structure for the resource by using the criteria

40.

of functional strength, informational strength, or some compromise between
them. Once a particular process structure has been chosen, a synchroniza-
tion formula (sf) must be defined for each process. This formula establishes
(as a regular expression) the sequence of sends and receives which the
process will perform to co-ordinate its activities with other processes

in the resource and the resource's environment (i.e., invokers of the
operation{s) controlled by the process). At this point, it is assumed
that the operations of the resource can be invoked directly. Thus the
assumption amounts to having a correct implementation of the operations

on an address space shared by all the processes managing the operations

of the resource. (An important point not considered in this report is

how this correct implementation can be achieved and how distributed
implementations are constructed. This is dealt with in another report

[7].) The final step is the "filling in" of the program from the sf

defining the structure of the process.

The methodology is a natural outgrowth of methodologies for
sequential programs and parallel programs developed for shared address
spaces. The question remains as to how properties of such programs
may be verified. We do not intend to give a full treatment here but
give a brief description of the concepts. The two main criteria for
checking the correctness of an implementation of a resource are the
verification of the validity of the acf and the confirmation of certain
synchronization properties (such as the absence of deadlock). The former

involves two steps. The first of these is the proof that the acf

41.

correctly describes the conditions under which operations may be invoked.
This amounts to showing that the part of the acf pertaining to a particular
operation is an invariant for the process managing the operation at the
point(s) where the operation is invoked. The second part consists of
showing that the properties of the operations of the resource are not
violated by the possible parallel invocation of the operations, assuming
that operations are invoked only under the conditions specified by the

acf.

Synchronization properties are such things as absence/presence of
(partial) (potential) deadlock, starvation, unpaired primitives (a send
or receive in a process for which there exists no corresponding receive
or send in the corresponding process) use of unbounded buffers, etc.

That these properties can be treated in a systematic way is demonstrated

in [6,29].

We expect to refine the methodology further in the future and work
towards a complete system for the development and verification of message

oriented programs based on the concept of resource.

10.

11.

12.

13.

42.

REFERENCES

BASKETT, F., HOWARD, J.H., MONTAGUE, J.T.: Task Communication in
DEMOS; Proceedings of the 6th ACM Symposium on 0.S. Principles, 1977.

BOCHMANN, G.V., GECSEI, J.: A Unified Method for the Specification
and Verification of Protocols; Proceedings of the IFIP77.

CHERITON, D.R., MALCOLM, M.A., MELEN, L.S., SAGER, G.R.: Thoth, A
Portable Real-Time Operating System; CACM, February 1979.

COURTOIS, P.J., HEYMANS, F., PARNAS, D.L.: Concurrent Control with
"Readers™ and "Writers"; CACM, October 1971, (pp. 667-668).

CUNHA, P.R.F., LUCENA, C.J., MAIBAUM, T.S.E.: On the Design and
Specification of Message Oriented Programs; Research Report
CS-79-25, University of Waterloo, June 1979 (to appear in the
Int. J. of Computer and Information Sciences).

CUNHA, P.R.F., MAIBAUM, T.S.E.: A Communications Data Type for
Message Oriented Programming; Lecture Notes in Computer Science,
Springer-Verlag, Vol. 83, 1980.

CUNHA, P.R.F., MAIBAUM, T.S.E.: "Resource = Abstract Data Type
+ Synchronization" - A Methodology for Message Oriented Programming;
Research Report CS-80-28, University of Waterloo, May, 1980.

DAHL, 0.J., HOARE, C.A.R.: Hierarchical Program Structures;
Structured Programming, Academic Press, London, 1972.

DENNIS, J.B.: Modularity; an Advanced Course on Software Engineering,
Ed. F. Bauer, Springer-Verlag, 1973.

DIJKSTRA, E.W.: Notes on Structured Programming; Structured Programming,
Academic Press, London, 1972.

FELDMAN, J.: High Level Programming for Distributed Computing, CACM,
Vol. 22, June 1979, (pp. 353-368).

GOGUEN, J.A., THATCHER, J.W., WAGNER, E.G., WRIGHT, J.F.: An Initial
Algebra Approach to the Specification, Correctness, and Implementation
of Abstract Data Types; IBM Research Report RC 6487, 1976.

GUTTAG, J.V.: Abstract Data Types and the Development of Data
Structures; CACM, Vol. 20, No. 6, 1977, (pp. 396-404).

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

43.
REFERENCES - Cont'd.

HEWITT, C., BAKER, H.: Laws for Communicating Parallel Processes;
Information Processing 1977, pp. 987-992.

HOARE, C.A.R.: Monitors, an Operating System Structuring Concept;
CACM, October, 1974 (pp. 549, 557).

HOARE, C.A.R.: Communicating Sequential Processes: CACM August, 1978
(np. 666-677).

ICHBIAH, J.D., et al.: Preliminary ADA Reference Manual; Sigplan
Notices, Vol. 14, No. 6, June 1979.

JAMMEL, A.J., STIEGLER, H.G.: Managers Versus Monitors; Proceedings
of the IFIP 1977 (pp. 827-830).

LAUER, H.C., NEEDHAM, R.M.: On the Duality of Operating Systems
Structures; Proceedings of the 2nd International Symposium on
Operating Systems, IRIA, Oct. 1978.

LAUER, P.E., TORRIGIANI, P.R., SHIELDS, M.W.: COSY - A System
Specification Language Based on Paths and Processes; Acta
Informatica 12, Springer-Verlag, 1979, (pp. 109-158).

LISKOV, B.H., ZILLES, S.: Programming with Abstract Data Types;
Proc. Conference on Very High Level Lanugages, SIGPLAN, Vol. 9,
April 1974.

MACQUEEN, D.B.: Models for Distributed Computing; Proc. of
EEC/IRIA Course on the Design of Distributed Processing, Nice,
France, July 1978.

MANNING, E., LIVESEY, N.J., TOKUDA, H.: Interprocess Communication
in Distributed Systems - One View; to appear in the Proceedings of
the IFIP 80, North Holland, Oct. 1980.

MAO, T.W., YEH, R.T.: Communication Port - A Language Concept for
Concurrent Programming; IEEE Trans. on Soft. Eng., SE-6, 2(March 1980),
(pp. 194-204).

MILNE, G., MILNER, R.: Concurrent Processes and their Syntax.
JACM, Vol. 26, No. 2, April 1979.

MYERS, G.J.: Composite/Structured Design; van Nostrand Reinhold Co.,
1978.

27.

28.

29.

30.

44.

REFERENCES - Cont'd.

PARNAS, D.J.: A Technique for Software Module Specification with
Examples; CACM, May 1972, (pp. 330-336).

PARNAS, D.J.: On the Criteria to be Used in Decomposing Systems
into Modules; CACM, December 1972, (pp. 1053-1058).

ZAFIROPULO, P., WEST, C.H., RUDIN, H., COWAN, D.D., BRAND, D.:
Toward Analyzing and Synthesizing Protocols; IEEE Transactions on
Communications, April 1980.

ZAVE, P.: On the Formal Definition of Processes; Conf. on Parallel
Processing, Wayne State University, IEEE Computer Society, 1976.

	

