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ABSTRACT

In this paper we motivate and describe an algorithm to solve
the nonlinear programming problem. The method is based on an
exact penalty function and possesses both global and superlinear
convergence properties. We establish the global qualities here (the
superlinear nature is proven in [7]). The numerical implementation
techniques are briefly discussed and preliminary numerical results are
given
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1. Introduction
The nonlinear programming problem can be described as

minimize f(x) (1.1)
X
subject to ¢;(x)>0, i=1,..., m
where m is a positive integer, and f, ¢;, i = 1,...,m are twice continuously

differentiable and map R” to R'. [Our method and the theoretical results are not
limited to the inequality constrained problem: we omit the equality constraints in
this paper, to simplify the presentation.] The major purpose of this paper is to
describe and motivate a procedure to solve (1.1), and to establish that this method
possesses global convergence properties (regardless of starting point). The method
has a fast (2-step superlinear) asymptotic convergence rate: this is established in
[71.

In section 4 we describe a sound numerical procedure to implement the
conceptual algorithm, and we present some preliminary numerical results in
section 6.

2. Motivation

(a) The horizontal direction, A
We suggest transforming (1.1) into
m
minimize p(x,y) = f(x) — ”LE min(0, ¢;(x)). 2.1)
* i=1
Since, under certain conditions, local minima to (2.1) are also solutions to (1.1),

the unconstrained minimization of this exact penalty function p may yield a
solution to (1.1) [4,5,6]. The major difficulty in designing an algorithm to

This work is supported in part by NSERC Grant No. A8639 and the U.S. Dept. of Energy.
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minimize p is: how do we overcome the nondifferentiable nature of p?
Let us consider this problem in detail. Let e be a ‘small’ positive number

used to identify the near-active (or e-active) constraint set and suppose that the
first 7 constraints are e-active at x| . That is, suppose

lo:xD] <6 i=1,..., 1, 2.2)
and
pixh < —e i=t+1,....m (2.3)

[The clearly feasible constraints do not affect this argument, so we assume, for the
time being, that there are none.]

Let

pix) = f() = = B 4i0),

Hi=r+

and thus, in a neighbourhood of x 1,

p) = pix) - —Elmm(o 8i(x)). 2.4)
=
Clearly p is differentiable over R” we can view p as the differentiable portion of
p in a neighbourhood of x!. To develop a first-order method to minimize p, we
should con51der minimizing the first-order change in p. That is, if we are at the
point x!, and B8 is some positive scalar, we should consider solving

. 1 <
minimize  Vp xHTh — =D "V ", 2.5
minmize, pilx") ﬂf2=1 i (2.5)

" v

where the quotations are used here to indicate terms of that form. That is, "a” is
either 0 or —la|. (We use "h” instead of the more usual "4 since our
development will eventually lead to a direction termed the horlzontal direction, to
contrast with a vertical direction v, introduced later and satisfying Ry =0)

Clearly the computing of a direction to solve (2.5) will be nontrivial due to
the awkward term in quotations. The occurrence of this term is due, of course, to
the nondifferentiable nature of p at constraint boundaries. If we could restrict 4
so that

Volh =0, i=1,..., ! (2.6)

then we would have a computable problem. That is, let us attempt to find a
direction h which minimizes the change in the penalty function p (up to first-
order terms) subject to the change in the active constraints being zero (up to
first-order terms). Thus our constrained direction finding problem is,

minimize Vp 1(x )T subject to (2.7
pnimimize, pilx") ] 2.7

veih =0, i=1,..., L.
The solution to (2.7) is
h* = —aPVpi(x)), (2.8)
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where P is the orthogonal projector onto the space orthogonal to
Vo, i =1,...,t. (We assume for the moment, that PVp,; # 0, and « is
chosen so that || B*|| = 8.)

The method of Conn and Pietrzykowski [9] is, in large, based on the above
observations. This method has global convergence properties but possesses (in
general) only a linear convergence rate. Clearly we can expect no more since A * is
obtained by minimizing only up to first-order terms.

Let us consider attempting to find a direction which minimizes the change
in the penalty function p (up to second-order terms) subject to the change
in the active constraints being zero (up to second-order terms). That is,
consider

!
minimize  Vp[h + ¥hTV%p 1 — LSviveTn + wh 9% 9)
Hi=1

subject to
Voih + vk TV2%h =0, =1 t
Clearly (2.9) is equivalent to
minihmize Vplh + vh TV2p 1h subject to (2.10)
Volh + vhTV2%h =0, i=1,... .t

Unfortunately, a solution to (2.10) cannot be explicitly computed. We can
however obtain a computable and useable approximation to problem (2.10) in the
following way. Problem (2.10) is equivalent to

min max L (k) = Vp I + vwhT92% h (2.11)
= BNk + 3 o),
=~
which we can approximate by
min max LNy =VpTh + whT9% h — l/ziz;i,-h T92.h — iz;x,.v(p,fh,
or

! ~
Vi — 2NV, |k (2.12)

i=1

min max L(hA) = %hT
h A

+ AT

14
Vpi -~ EMV¢iJ,

i=1
where X is a computable approximation to A. [We discuss this approximation
later.] Differentiating L with respect to A gives

Voih =0, i=1,..., t (2.13)

Let us define a matrix 4 = (Vg (x ), . . . . Vé,(xY) and an n X(n —t) matrix Z
satisfying
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ATz =0, (2.14)
Z7Z = Iu—y (2.15)

Thus by (2.13) we can use the transformation # = Zw, and (2.12) becomes

t o~
min wIzT|v%p, - z)\,-quS,-]Zw + Vp{zw. (2.16)
w

=]

! -
If Z T{VZpi - E )\,~V2¢,- Z is positive definite, then the solution to (2.16) can be
i=1

obtained by solving

[
V- PNV

i=1

ZT

Z]w =-zTvp,. (2.17)

We gain an appproximate solution to our original system (2.10) by setting

h* < Zw*, where w* solves (2.17).

Provided ZTVp | # 0, the direction h* is a descent direction for p, at x\. In

addition, as our development suggests, A* is the second-order analog of the
projected first-order direction (2.8), used by Conn and Pietrzykowski [9]. In
practise, the projected Hessian need not be computed but rather approximated by
a positive definite matrix, Z T7. Since the sufficiency conditions for p ensure
that the true projected Hessian is positive definite at a local minimum of p [6], it
is reasonable to restrict the projected Hessian approximating matrices to this class.
This is not the full story however. In particular, when || Z79p 4| is ‘large’
(and thus we are likely far from a stationary point of p [6]), dual estimates {A;}
have little meaning. In addition, when far from a stationary point of p, the
objective function and the violated constraints should dominate the penalty
function changes: it is reasonable then, in this region, to ignore the second-order
changes in the current activities. Thus, when far from a stationary point, Z TB7 is
a positive definite approximation to Z T92y,Z, and X is not computed.
(Alternatively, one can view X as being approximated by the zero vector.)

-~

(b) The dual estimates, A

Let us suppose that {x k} — X, where X is a stationary point for p [6]. There
exists a vector A such that

VIE) - %%:Pvm(f) = 3 XVe®. 2.18)

> i €15

where I; and I are the violated and the active constraint sets of X. That is,
Iy = {i| ¢:(x) <0},

and
Iz = {i| ¢:(x) = 0}.

Clearly, if for all k sufficiently large, I §(x k) = Iy, and I,(x k) = I, then A= X,
where A is a least-squares solution to



NONLINEAR PROGRAMMING 5

A=V xh —— 3 vk (2.19)
€I e(xk)

where ¢K = ¢;(x%), and Ay = (Vok ..., Vd),];(), ty = |I,§(xk)|. Define an
n X (n—1ty) matrix Z; so that Z satisfies

AfZ; =0, and (2.20)

Z8Z = In—gy). (2.21)
It follows that if the active and violated constraints have been correctly identified
then || Z{Vp| =0, as x¥ > %, where Vp = Vf(x%) — — E VX Thus,

ielfx )

when | Z{Vp | becomes sufficiently small the least-squares solution to (2.19) will
usually give reasonable estimates to the multipliers {X;} used in (2.18). Conversely,
if zZ{vp | is large the least- squares solution to (2.19) will likely bear little
similarity to X (particularly if 7 §(x ) # I7).

The actual computation of the least squares solution to (2.19) will be
discussed in section 4.,

(c) The vertical step, v

Let us suppose that x* satisfies the second-order sufficiency conditions for
problem (1.1) [6]. Further, we suppose that e and ||xk — x*|| are sufficiently
small so that Ij (xk) =714 and [ (xk) = J. The horizontal direction hk
(obtained by solving a system similar to (2.17)) decreases p, while attempting to
keep the activities constant. But, at x¥ the activities are not precisely zero (they
are e-active). In addition, the step in the direction hk will change the active
constraint values to some degree. Therefore, it seems reasonable to try and satisfy
the e-active constraints more precisely, when xk is close to x* We do this by
means of a vertical step, v

K= —arAafA) '@k + aghh (2.22)

where & is the vector of active constraint values, ordered in the same fashion as
Ay, Ay is the n Xt matrix of active constraint gradients, evaluated at x* and
ay is the stepsize. (We assume, for the purposes of description, that the columns
of A, are linearly independent; v¥ is not computed in this fashion — we describe
the computation in section 4.)

Note that with the use of a Taylor expansion, it can be seen that
S(xk + aphk + vy = d(xk + aph*y + AfvE
=0

(d) Dropping a constraint

Again let us suppose that {x k} — X, where X is a stationary point for p.
Thus (2.18) will be satisfied (by definition). But suppeose that X ;&[0, 1/p].
Consider the direction

h = ¢;P/V (%) (2.23)
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where o; = —sgn(};), and PJ projects orthogonal to {V¢i%)|i€ Il — {j}}.
Assuming that the gradients of the active constraints at X are linearly independent,
it is easy to see that (2.23) gives a descent direction for p, at X, (part 2 of Theorem
1.

If x* is sufficiently close to X, and If(x ky = Iy, then the multiplier
estimate, \¥, will satisfy

AFE[0, 1/p). (2.24)
It is then easy to show that there is a neighbourhood of X in which
hk = okP{Ve;(xk) = afZi\;ZE ;Y 0,(x%) (2.25)

is a descent direction for p at xX. The matrix Zy\; satisfies ZkT\,-Zk\j =Ty +1

and V¢ (x)7Zp\; = 0if i €15(x0—-{j}.

We note that dropping a constraint and attempting a vertical step are
complementary activities. When || Z{Vp || is ‘small’ the dual variables {AX} are
computed: a vertical step is attempted if )\,-kE [0,1/p] for all i in I,j(xk),
otherwise we artempt to drop a constraint. (The size of || ZfVp | and the vector
A indicate whether or not to attempt these steps — the indicated step is actually
taken only if a sufficient decrease in p can be guaranteed.)

(e) Direction choice strategy
We have defined 3 directions:

) kK= -ZW(ZIBZi) ' Z{Vp (xP), (2.26a)
i) vk = —Ar(AFA) @K+ ayh®, (2.26b)
i) kK= o}z ZAVe(xh). (2.26¢)

Determining the optimal combination of directions to use in any given
circumstance (in combination with the best modification strategy for ¢) goes
beyond the scope of this paper. Here we suggest a strategy which is both simple
and reasonable for the well-scaled problem. The theoretical resuits will be limited
to this simple algorithm, however it is clear that more complicated strategies could
be used without violating the convergence properties.

When || Z#Vp | is ‘large’, that is when || Z{Vp] > A, we choose to use
only the direction hk, where Z{B,Zy approximates

1
zZE\Vieh - — F Vi | Zk.
i €f(xk)
When || Z{Vp| < A, then the multiplier estimates become important. A
direction iii) is attempted if there exists a multiplier estimate which is not in the

range [0, 1/u]. If this is the case, then direction iii) is accepted only if a sufficient
decrease can be guaranteed: that is we use A kif

Vp + min©,6 Ve )Th* < =5, for some & > 0, 2.27)

and
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ok = —sgnAf), A0 1/4l. (2.28)

If cither of the above situations occur, then a stepsize aj must be
determined, and

xktl e xk 4 o h* (2.29)
or
xhtl e xk 4 akhk.

Since p is a peicewise differentiable function, we use a special line search which we
describe in the next section.

The second use of the multiplier estimate is to properly include constraint
curvature information in the Hessian approximation. That is, when
W ZT9p || < A, ZIByZ) approximates

ZEVHahH -+ S vhieh- D AIBEH|Ze  (230)

i €8xk i €15 (xk)

In addition, provided the multiplier estimates are in the range [0, 1/u], our search
direction becomes

dk = nk + vk

Here we attempt a stepsize of one: if a sufficient decrease is not observed then a
line search is performed along the direction .

We have chosen to use a very simple strategy to modify ¢ and A. If the
dropping step iii) or the ‘Newton step’ h k 4+ vk are unsuccessfully attempted, then
we reduce both paramaters by a factor of 2. The initial choice of ¢, A is arbitrary
provided ¢, A > 0.

We realize that the direction choice mechanism described above is somewhat
arbitrary. As the form of the convergence proof will demonstrate, there are any
number of selection rules which will supply global convergence properties. The
particular process we have described is based on limited numerical testing. (It is
quite possible that further and more specialized numerical experimentation will
suggest an alternative selection scheme.)

In the next section we present statements of the basic algorithm and a sub-
algorithm (the special line search). The implementation of the numerical
procedures is discussed in the following section.

3. Algorithms

In this section we describe three algorithms. Algorithm 1 is the line search
procedure designed to exploit the piecewise nature of p. Algorithm 2 is our basic
method designed to minimize p with any given but fixed p. Finally, we describe
Algorithm 3: this procedure is wrapped around Algorithm 2 and automatically
reduces p when it appears that y is too large (that is, when it appears we are not
converging to a point feasible to (1.1)).

(a) Line search procedure

-
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Since a stepsize of one is always taken whén we are in a neighbourhood of
x* (a point satisfying second-order sufficiency conditions) it is expected that this
procedure will be used only when ‘far’ from a solution.

Suppose that we are at a point x' € R” and that we have determined a
direction A as in (2.26). If the functions f, ¢;, i=1, ... ,m are all linear, it is
easy to see that either p is unbounded below in the direction %, or a minimum
(along k) occurs at a ‘breakpoint’ of p. (x is a breakpoint along A, if for at least
one je&EI4(x 1), ¢j-(f) = 0. Since we are describing the linear situation here, we
can assume that e = 0.) Thus an algorithm to determine the minimum of p, in the
direction & is straightforward: determine all breakpoints and find the minimum
penalty function value at these breakpoints. Let us consider this linear case in
more detail.

Suppose that y ! is the first breakpoint along the (positive) direction A from
x|, corresponding to the function ¢;. Thus, ¢1(y ') = 0, and ¢ 1(x 1) # 0. Since h
is a descent direction for p at x !, it follows that Vp(x 3Th < 0. But the pseudo-
gradient of p, Vp, will remain unchanged (and thus p will continue to decrease)
until y! is reached (y; = x! + ajh, where o = —¢1(x1/Ve{h). As we move
past y! the pseudo-gradient of p becomes Vp( '+ Ah) =

Vp(x!) + sgn(Ve{h)Ve;, where ‘A is any small but positive quantity. (We
assume, for descriptive purposes, that the breakpoints are distinct.) Clearly if
Vp@!'+ An)Th >0, then y' is a minimum of p in the direction h. If
Vp(y1 + AmYTh <0, p continues to decrease along A — thus the next breakpoint
is determined and the argument is repeated. If we progress through the entire
sorted list of breakpoints and p continues to decrease past the last breakpoint then
the procedure returns with a pointer indicating unboundedness.

Define I'yy = {1, .. ., m},and Iq = Ly(x") = {i EIp] ¢i(x 1) = 0}.

Algorithm 1 (the line search — linear case)

(1) ag<«Vp Th < 0 (by assumption)
L o« 28D
! vold
lo<{i€Iy/Tq]y; > 0}
k<0, lpg<0, vy«0

iely/ly

(2) W Iy = ¢, return with a message that p is unbounded below

(3) Determine /; such that
Vi v, Vi€l

ar+1 < ax + o1, Voih (o = sen(Vesh))
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4 TIfag+1 >0, go to(5)
else Iy 41 < I — {Ix}
k < k+1,goto(2)

5) xlexl ¢+ 7lkh return

The extension of this procedure is not difficult if we are content with
estimating the location of a possible minimum breakpoint along k. (Note that, in
the nonlinear case, the minimum of p along A need not be a breakpoint. Our line
search makes linear approximation to all functions and, with two exceptions,
performs the version of Algorithm 1 listed above. In the nonlinear case, Iy = ¢
does not imply p is unbounded. Thus step (2) is replaced with

2y Ifly =¢andk =0, Tl <« 0, go to (5).
If Iy = ¢ and k > 0, Y1, <—7lk—1, go to (5).

The procedure we have described thus far is clearly not sufficient since the point
that is returned, x 2 does nor (due to nonlinearity) necessarily satisfy

p(x? < pixh.

We rectify this situation in the following way. Let § be a ‘small’ positive constant.
Step (5) is replaced with

(5) x?<x'+ Yy,
If (p(x 2) < p(xl) — ) return,
else

1

perform a cubic interpolation minimization between x° and

x! + 7h, T>0;

return.

(Since VpTh < 0 and p (excluding the ‘active’ constraints) is continuously
differentiable on some interval (x|, x! + rh), 7 > 0, the cubic routine can be
used successfully [9].)

It should be noted that the cost of attempting to choose a breakpoint is at
most one penalty function evaluation.

In general, line searches are dispensed with altogether when in a
neighbourhood of a solution, as we expect to take stepsizes of one.

(The reader is referred to Murray and Overton [12] for an alternative
piecewise line search.)

(b) Minimizing p (with fixed p)

We present below (page 11) a flowchart of our algorithm designed to
minimize the exact penalty function for a fixed g > 0. The user must supply an
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initial guess for x9. In addition, the positive parameters A and e are initially

arbitrary. The global convergence properties are unaffected by this initial
assignment however the efficiency of the program can be adversely affected by
inappropriate choices. What is, and is not, an appropriate choice is a difficult
question to answer a priori: we have not attempted to address this question or the
closely related scaling problem in this paper. In the numerical results section we
give the testing interval which was used for each parameter on the test problems
(most of which are well-scaled). The parameter § is assumed to be sufficiently
small and is not modified by Algorithm 2.

In the flow-chart below, as well as in the proofs, we use the following
notational rule: if a quantity is sub- or super-scripted then it may change from
iteration to iteration in Algorithm 2 — if a quantity is not sub- or super-scripted
the quantity remains constant.

The algorithm, as it stands, generates an infinite sequence of points (or, if
x%=x* it cycles). In practice, Algorithm 2 is terminated when all of the
following conditions hold:

) AFe(0,1/p] forall j E145(x"),
2 1 Zd¥p M) < TOL,
3 leh] < TOL

Note that after the ‘Newton step’ has been successful the e-active set is not re-
identified until a “Newton step’ is not taken.

There are a number of possible variants of Algorithm 2. They include:

1)  attempting vertical steps in conjunction with non-unit steps along
h k

2)  performing line-searches along vk or bk + vk

3)  including second-order information in the dropping step.

Algorithm 2 then, is a procedure to minimize p for a given and fixed y. If p
is less than a threshold value then the solution will usually also solve the nonlinear
programming problem (1.1). Since our objective is to solve (1.1) we may wish to
interrupt Algorithm 2 (and restart with a smaller y) if it appears p is too large.

(c) Algorithm 3 (reducing y)

In some cases there exists a threshold value for p, say wq such that if
u < po local minima of p(x,u) are also local solutions to (1.1). This value is
unknown a priori (it is a function of the Kuhn-Tucker multipliers [6]), therefore an
initial choice of y may be too large, in which case optima of p may be infeasible
or indeed p may be unbounded below. Nevertheless, experience suggests that
recognizing when p is too large (during the p-minimization) is usually not a
difficult task and a simple reduction of the form y < u/10 seems quite adequate.
In particular, when pg does exist, the number of reductions of p will be finite and
thus the asymptotic convergence rate is dependent only on the convergence rate of
Algorithm 2, which is independent of p.
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We must periodically check for 2 possibilities:
i) {x*} is converging to an infeasible point
i) {o;(x k)} = — o for some j.

Our response to possibility i) is to reduce p but continue decreasing p from the
current x X Possibility ii) is handled by reducing g and restarting the procedure
from the original starting point. (An alternate strategy to handle ii) is to first find
a feasible point by applying Algorithm 2 to problem (1.1) with f(x) replaced by a
constant function. If a feasible point is found then Algorithm 2 can be restarted
with this feasible starting value.) We note that the above strategies are not
guaranteed to work however they are reasonable and have been successfully used
by the authors.

4. Implementation Techniques

Many of the numerical techniques used by Gill and Murray [10] for the
linearly constrained problems are easily adapted to this method for the nonlinearly
constrained problem. We sketch the basic ideas here: the reader is referred to the
works of Gill and Murray (see also Murray and Wright [11]) for further details.

(a) The vertical step and estimating duals

Suppose that A4 is n Xt with linearly independent columns. Then, there
exists an nXn orthogonal matrix @ such that

A =0R

R —
where R = ol and R is ¢t X¢ and upper triangular. Clearly then, the dual
estimates can be computed by solving
RA=0Tp, 4.1)

where O represents the first ¢ columns of Q. Similarly, the vertical step can be
computed by solving

Ry = —o(x* + 1k 4.2)

and then setting v < QV.
k k+1

Consider a single iteration: x“—=x“7". In general, at x ¥ there will be a
number of active linear and nonlinear constraints at x*. At x**! the linear
constraints will remain active and thus the columns of 4 corresponding to these
constraints do not change. The columns of 4 corresponding to the nonlinear
constraints will change entirely (in general) whether the nonlinear constraint set
changes or not. Therefore we maintain a partition of 4 so that linear constraints
always precede nonlinear constraints. (It is easy to see that this is always
possible.)

The mechanisms for adding and deleting constraints (and thus modifying the
OR factors) are essentially those of Gill and Murray [10] — we omit the details
here. Linear dependence is detected in the following way: if a vector ‘a’ is to be
‘added’ to A4 but is dependent (numerically) on the current columns (detection of
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linear dependence follows automatically from the QR updating process) then ‘a’ is
not added. From Theorem 1, part 1 it follows that if we are far from a stationary
point then ‘a’ can be ignored with impunity. If we are in a region in which the
dual estimates must be computed, then the existence of .dependencies can be
troublesome. We follow the perturbution strategy of Bartels, Conn and Sinclair
[2]: all dependencies are perturbed by a small amount and we then solve this new
perturbed problem. (However, ultimately the problem solved is the original
problem.)

(b) The horizontal step
The horizontal step is obtained by solving a positive definite system of the
form
(z™BZw = -z TVp, (4.3)

and then setting # < Zw. Since ZTBZ is positive definite, the LDLT
decomposition exists, and if LDL T = ZTBZ, then we obtain the solution to (4.3)
by solving

Lw = -2z1¥p 4.4)

Note that the matrix Z can easily be obtained from the last » —¢ columns of Q
(Gill and Murray [10]).
As we move from x ¥ to x there are essentially 2 problems with regard to

the projected Hessian factors: modifying the factors to include new information
about the change in gradients, and adjusting the factors to reflect changes in Z.

k+1

Since the asymptotic convergence rate results obtained so far [7] necessitate
that the projected Hessian approximations approach the true projected Hessian,
our implementation uses_a gradient difference approximation technique in the
final stages. That is, when we are sufficiently close to x* so that unit stepsizes are
being attempted, then we approximate

ZEIV =L v - T MV |2
vier, i€ly
by the method of gradient differences along the columns of Z; (Gill and Murray
{1op.
When we are not in this neighbourhood of x* we feel that the above
procedure is probably unjustifiably expensive and furthermore appears

unnecessary. Therefore, in this region we apply the rank—2 updating procedures
(suggested by Gill and Murray for linear constraints) in a straightforward way.

5. Convergence Results
This section is organized as follows:

A) A number of definitions and assumptions are formally stated;
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B) The results are stated and proved.

A) Definitions and Assumptions

)

iii)

The pseudo-value function of p is defined to be

o= ) —— 3 $ix).

i€ Lf(x)
The pseudo-gradient of p is

Voo =5 = V) -~ 3 Véi).
i € If(x)

Let A denote an n Xty matrix whose columns are the gradients of the

e-active constraints. We will always assume A4 to be of full rank

(= tx). The matrix Zj satisfies Z{Z; = I(n—1) and Afz, = 0.

The matrix Zi\j satisfies ZkT\l-Zk\,- =In—1; +1, and

Voi(x9TZij = 0if i €15(x%) — {j}, for some j E I §(x 5.

Define G (x%) = ViE(xk) — 3 MV2;(x*) where AF is the least
i€l

squares solution to A\ = Vp(x ky,

At times we will consider an arbitrary (usually) but fixed point X. At

such a point, 4 will denote a matrix whose columns are the gradients

of the precisely active constraints. That is, the columns of A4 belong to

{Voi(x)| i €1)(x)}. The matrix Z satisfies A7 =0,7Z77 = I, 7

where 4 is n X7 and of full rank.

A vector X is termed a stationary point of p if there exists a vector A
satisfying

VS(E) - % go(- )V¢,-(f) - 2,9 XV ().
iel)x® iE€E1YF)

If X\ satisfies the above equatioll and 0 < X < 1/p then we call ¥ a
first-order point of p. If 0 <X < 1/p then X is a strict first-order
point. If0 < XA < 1/y and

yT[vzf(f)—i Y VHE - 3 NVBE) |y >0

ie1,0x) i€l

for all p satisfying ZTy =0, y # 0, then we term X a strict second-
order point of p. [The reader is referred to Coleman and Conn [6] for
justification of this terminology.]
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v)  We make the following line-search assumption:

If 1% is a descent direction for p at x k then ay is determined so that
pef) = px* 4 axh® > viBHTEH vi> 0,

where gk = Vp (x¥) - L Z V(x5 and

. i €T xk

Ik = i e 15(xh)| vohk < o).

[It is a direct extension of a result of Conn and Pietryzkowski

(Proposition 1, [9]) to show that the above condition can be satisfied.]

vi) Let S, S, S denote the set of stationary points of p in W, the set of
stationary but not first-order_points, and the set of first-order points
respectively. Note that S = SUS, SNS = &.

Lemma 1
We assume that

1) f. ¢i, i =1,...,m are twice continuously differentiable on a
compact set W, where {xjew,

ii) X is any strict second-order point of p in W,

iil) the gradients of the active constraints (at X) are linearly
independent on W,

iv) Ik = 19(), for all k,

v)  there exist positive constants b1 b, such that for all vectors
weR"

billwl < wiZfBizZiyw < bof w2

Then there exist positive constants Ay, A, and 6 such that

D Ix* =% <A

) N ZFBkzZi — Z{G(xMzi | < A
implies that

p Ot vk — p(x%) < =5(| ZTVp (x| 3 + | BB .
where .

hk

vk

—Zi(ZEBkZi) ' Z{FVp (x b,
A AFAY B (K + By,

Proof: (To simplify notation, we drop the ‘k’ superscripts and subscripts. In
addition, 14 and I, denote I9(¥), and 1,)%) respectively and we assume that
I4 = {1, ...t} Finally, if an argument is unspecified, it is assumed to be x).
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i) Changes in p.

Recall (x) = f(x) — — 3 @;(x). By Taylor’s theorem,
v iEr,

P+h+v) = 5(x) + Vp [h+v]+ B +v]"V B[k +v) (5.1)
+o(|h+v]d.

!
Recall Gr(x) = VH(x) — Zlkiv%i(x).

Thus

h=-22ZT6.z2) 'z'vp + ZEZTVp, (5.2)
where

E=2Z76,z)"'-zTBz)™ L.
In addition,

Vo = AN+ Zw, for some weER"™! (5.3)
Hence, by (5.1), (5.2), and (5.3),
POc+h+v) = p(x) = =-Vp'z@ZT6;z) 'zTWp + A\ T4 Ty
+uhTV%h + v Ty + h TV %5y

+o(|h+v| D + VETZEZ VP (5.4)
But
v=-A4A4T4) '®(x+h), (5.5)
where @ = (¢, ..., #:). Since Vo h =0, i €14, it follows that
$ix +h) = ¢i(x) + VR TV¢;h + o(] k| D). (5.6)

Therefore, by (5.5) and (5.6),
L
NATy = =3 N@d: + 2h T9%h) + o(| 1] D,
i=1
Hence (5.4) can be written

Px+h+v)—px) = -Vpl(ZzT6 2) 'z™Vp + %A T h

vy - ﬁlxivz¢i
“~
- EIIA@,- + 1w Tv%y + h TV 5y
“~
+o(|h+v||d +o(|h| >+ VvpTZzEZTVp. (5.7)
But, by the definition of G,

!
nT (V5 —EAiV2¢,~Jh =h'Gh

=1
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=Vplzz76,2)"'27vp - 2vp 1ZEZ V5
+VplzEZ TG, ZEZ TVp.
using (5.2). Substituting this expression into (5.7) results in
FPx+h+v) —px) = —»wVplzZ76,.2) 'z V5
11
> higi + v VB + 8 TV,

i=1

+e(x) (5.8)
where
ex)=o(|h+v|d+o(|n|> - vpTzEZTVp
+Vp'zEZ TG ZEZ TVp.
i) Changesing¢; i =1,...,1

Using Taylor’s theorem, it is straightforward to verify that

Et min(0, ¢;(x)) — 21 min(0, ¢;(x +h +v))
i=1 i=1

t t
<T@+ [vIViiw| + DRV +o(| h+v] I, (5.9)
i=1 i=1

where n; = 1 if ¢; < 0, otherwise 5; = 0.

iii)  Changes in p

We now combine parts i) and ii) to obtain
T

plx+h+v) = p(x) < —wVp1z(ZT61z) 'z + | L - | &
u

11
+0 vV + | AT Bv| + ﬁEIvTV%WI
i=1

+%2§1' RT9%v| + e(x) (5.10)
“
But
v=—4AT4) 1®x+h)
—AATAT® + vr] +o(| 1] D), .11)
where r = (B TV2p ik, . . ., hTV2¢,h )y,
Define

H =V544T4)"", Hy=4T4a)y 'uTH,
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Hi =V2%;4(474)"!

I-},-=(ATA)_1ATﬁ,~ i=1..., L
Thus

vy = a(x)Tw(x) + %rTHzr +o([ k]2, (5.12)
where w(x) = Ho[® + r(x)]. But rTHor = O (|| k|| ¥, and hence by (5.12),

VIV 5| < v21211| $i00)] | wito)] + o (| B ] . (5.13)
Similarly, we can define vectors

wix) = Hjl®x) +r(x)], j=1,....¢
If we let i = zt:l| ufx)|  for I=1,.. ., ¢t we obtain

i=

VziE;I VIV | < '/ziE;M,-(x)l 1 mE)| + o R 1. (5.14)
Consider now the terms A TVZﬁv, hlv Td)iv, i =1,...,t Following lines similar
to that used above, it is straightforward to show

H19% ] <3 1@ 6] + o1, (5.15)
and

12;1 vIV2ih| < ,2;1' 6| 5 + o 2], (5.16)

. ! ,
where T = h TH |, s{x) = h Tﬁj, and 5j(x) = E | s7(x)| .
i=1
Define
1, _ 1,
ci(x) = ¥ wilx)| + Zl_l 7i(x)| + '”—lsi(x)l + | yile)| -

By (5.10), (5.13) — (5.16),
px+h+v) —p(x)< —-%wVp1Z2@Z76,2) 'z Tvp

! ni
2N - — | H et 6] +e() (.17
=
By assumption, for A; sufficiently small

vplz@zT6z)y 'z > fz—n zTvp| 2 (5.18)
2

Moreover \; — Ji #0,i=1,...,tand c;(x) =0, as x = Xx. Therefore for A

sufficiently small, ‘and for some 5 >0,
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p+h+v) = p(x) < =8| ZTVF| 2+ | @] ) + e(x). (5.19)
Consider,
ex)=o(|h+v| D +o(l k|~ Vp'ZEZTVp
+ Vp1zEZTGL ZEZ TVp.
But
Ih+vlF=1h1Z+|vI3
<Ly ZT95|  + Lo @] 3.

Ly Ly>0. (Since A(x), (Z TBZ)'I, and Z are bounded on W.) Therefore by
2), for Ay, Aj sufficiently small,

e) < I ZT9F 1 3+ | 8] 1), (5:20)

Hence, if § = % by (5.19), (5.20),

plc+h+v) —px)< =8(| ZTVp| 2+ | &l p. D

Theorem 1
We assume that
1)  the functions f, ¢;, 1= 1,...,m are twice continuously differentiable,

2)  {x is generated by Algorithm 2 starting from an arbitrary initial point, and
xK} € w, W is compact,

3)  the number of stationary points of p, in W, is finite,

4)  all first-order points of p in W (recall these are denoted .§’) are strict second-
order points of p,

5)  the vectors Ve (x%), i Eljk(xlﬁ are linearly independent,
6) the line-search condition is satisfied by Algorithm 1,
7 ifix ki } is a subsequence and X is a first-order point such that

k; %k
sz and 196N = 196,

then second-order information is approximated so that
= _ 1 _ - =
ZEBiZi, > ZT V) - — T ViE) - NV | Z.
i€19x) €LY

Then, for all § sufficiently small,
1) e —+#0,
2) xkF>xes,
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3) for k sufficiently large, the ‘Newton step’ is executed.

Proof:

Part 1. [If Z{Vp(x* # 0, then —Z(Z{BrZi) ' ZAVp x% (=h% is a
descent direction for p, at x *.]

Since Vo h* =0 for all i €14(x"), (5.21)
it follows, by a Taylor expansion,

bi(x*+ah®) = ¢;(xF) + 0(a?), for all i&lik(xh. (5.22)
Therefore,

p(xk+ah®y = p(xky + aVp(xHTh* + 0 (0. (5.23)
Hence for all a sufficiently small,

pOck+an®y < pxh. (5.24)

Part 2. [If AFE[0,1/p] it follows that h* = %7, \;ZE Ve ,(xh is a

descent direction for p at x*, where ojk = —sign ()\}‘).]
First we note that

VoixThk =0 for all i €15(x% - {j}, (5.25)
and therefore

bilx¥+ah®) = ¢;(x¥) + O(a?), for i EI5(x% — {j}. (5.26)
Considering (5.25), and (5.26)

pF+ar®y < p(x*) + agxHThK + 0 (D). (5.27)
where g% = Vp(xk) + —:l—min(O, cHVe;xhy. (5.28)

Case 1: Suppose )\]1‘ < 0. Then g; = 1 and
gxBTh* =Vp®Thk  (using (5.28))
= (ANThE (since Vp = 44N+ u, uENAD,
whereN (A) denotes the nullspace of A.)
= MV xbThE  (by (5.29))
NI ZE 98691 2 <.

Case 2: Suppose )\]k>1/p. Then a}‘ = —1 and
gxMThk = Tpx® = 1/uVe(x9)Th*
T
= (\f = w)Vef Rt
= (1/u = APl 28¢5 2 <0.

Therefore, A ¥is a descent direction forp at x k
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Part 3. [There exists positive scalars A, & such that |[x* — %] < A, ¥ES, and
Ij(x k) = IA(x) implies that

i) AFe&(0, 1/p] for some j €1J(%), and
i) (HTgk < -5, where
Rk = a]kavZ[\jV¢j(xk),

= |
gk =Vpixh + 7mm(o, PV ei(xh.]
Since ¥ €5 it follows that for some j,

X, €10, 1/p] where A X =Vf(X)- — 2 vV :(%). (5.29)

el (x)

Recall from section SA, part iii) that quantities are “barred” to indicate that
they are evaluated at X.

Let Z be a matrix with 7 +1 orthonormal columns which satisfies Vd),TZ = 0, for
all i in I(¥) — {j}]. Define

F =%,ZZ"V¢;(X), and

= V/®) - % { > Vi) - min(o,ﬁj)w,-(se)}.

i €19
where 7 ; = —sgn(x -
Case 1: Suppose >\ < 0. Then T =1, and
= V@) —— 3 V¢iX). Since Vo, h =0 for i E19(®)-{},

iel 0()c)
and considering (5.29) and the definition of g,

~FTg = =X, 9,0k = -1 27V ¢;] 24T,
Considering the linear independence assumption, §; > 0.
Case 2: Suppose \; > l/p Then3; = —1 and
=Vfx) - — 2 Vo ix) - -“de(X)
i e1,9(x)

Since V¢ % =0 for i €I3(x)~{j}, and considering (5.25) and the
definition of g,
-E'g = (1/u=X)V¢;®)
= &=/l 2TV ¢;l| 2 AT,

Considering the linear independence assumption, 6, > 0.

Since | §| is finite, it is clear that there exists a positive scalar & such that if
X 1s any member of S then —h > 8. By continuity it follows that if

I xk-x | <A X€ES, and IAk(xk) = ] (%), then
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) AFe[0,1/p], and

i (hhTgk> 28

Part 4 [For all & sufficiently large, the ‘dropping step’ is not executed.]
Rather than consider a subsequence let us assume (without loss of generality)
that the ‘dropping step’ is executed for all k. Then, for some j Eljk(x ky,

NFE0, 1/p], and kK= o fZp 28V 6 (x .
But  Algorithm 2 requires that —g(x BB k> 5 where glx ’5=
Vp + l—min(O, ojk)Vqu, and therefore, by the line search condition,

u

P! = pF + ahh) > 162 | (5.30)
But (5.30) implies that p (x k) - —o, which is contradictory.

Part 5. [If xki — X then for k; sufficiently large, I,;ki(x ki)EIﬁ()?).] Suppose that
I/:ki(x "")31/?()7). We can assume (without loss of generality) that
L e R LN S

i) Suppose Z;(Tl.Vp (x ki) — 0. Then we can assume that A ki h#0. Let I,

k; ki k. ks
denote 14 ’(xk’) and I, denote I, ’(xk’), Clearly —gTh > 0, where
£=VfF - % > V¢ix). Let B=-%'h By continuity, gki»g'
€T,

where gk, = Vf(xki) - -5— EI V¢>,~(xki). Hence for k; sufficiently large
i'€r,

—(h ki)Tg ki > % By Part I, hki is a descent direction for p and therefore,
applying the line search condition,
paf) = p* + akh® > 6:(8/2)%
It follows that p (x¥) = —®, a contradiction.
ii)  Suppose Z;g_V—p (x ki) — 0. By Algorithm 2, A; = 0, which implies € = 0.

k,‘ —_— . eki ki O0/=
But ¢4 > Oand x ' — X implies I4 '(x ') € I4(X).

Part 6 [The ‘Newton-step’ is successful for all k sufficiently large, e = 0,
and xk —> xeS]

i) Suppose €4 = 0. Then A; = 0 and therefore Z;%Vp (x ki)—> 0 for some
subsequence {xki}. By Part 5 and linear independence xki —+ X €S, and for

. k.
ki sufficiently large, T4 (x"’) = I9(F). Considering Parts 3 and 4, it

k; k; - €k k;
follows that for at least one subsequence {x '}, x ' > X €S, and I 4 ‘(x )
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= 1}(x). By Lemma 1, for k; sufficiently large, iterations k;+1, k;+2, ...
will be ‘Newton-steps’. It follows that ex - 0.

ii)  Suppose e # 0. Thus ¢ = e > 0, for k sufficiently large. By Part 5 it
follows that there exists a subsequence {x '} such that x {>%, and
15 (xki) = I {(¥). Using an argument identical to that used in Part 5 i), we
can establish that ¥ €S. By Parts 3 and 4, x€S. By Lemma 1 and the
boundedness of p, for k; sufficiently large, iterations k;+1, k;+2, ... are
Newton steps and x k>x€ES.

6. Numerical Results

We present here a brief summary of numerical results obtained on a number
of test problems. We feel that these results indicate that the proposed algorithm
has a promising future.

Below is a chart of the best and worst results achieved by our method for
various initial parameter choices in the indicated parameter choices in the
indicated range. We list our starting point in every case. The ‘accuracy’ column
indicates the number of significant digits achieved, (x-values).

Parameter range:

e : 1 —5
g o 001 — 1.
TOL : 1078
5 : 1076
A .001-.1
Problem Initial Point Accuracy Penalty Function Evaluations
(Best) (Worst)
Rosen-Suzuki [14] (0,0,0,0) 8 19 37
Wong [1] (3,3,04,1,3,0) 5 69 75
(1,2,0,4,0,1,1) 5 50 64
Powell [13] (-2,2,2,-1,-1) 7 5 15
(-1.5,1.5,2,-1,-1) 7 5 15
Colville 1 [8] (0,0,0,0,1) 4 11 11
YChamberlain 1 [3] (0,0) 8 6 6
*Chamberlain 2 (1,5) 8 4 4
Colville 3 [8] (78.62,33.44,31.07, 5 14 19
44.18,35.32)
(78,33,27,27,27) 5 6 18
Colville 2 [8] x;=.001, i#7, x =60 6 87 179

+ These problems were designed by Chamberlain [3] to demonstrate cycling behaviour of a recursive quadratic
programming algorithm. We note that our method converges rapidly.
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7.0 Concluding Remarks

The numerical and theoretical results given here (see also [7]) suggest that
the proposed algorithm is an efficient and reliable way to solve the well-scaled
nonlinear programming problem. The method possesses both global and
superlinear convergence properties: it is not necessary that the full (n Xn)
Lagrangian Hessian be positive definite at the solution. The method is
computationally efficient: it is not required that the projected Hessian be
approximated by the expensive gradient difference method except in the final
stages of convergence.

Future developments are expected to include a full projected Quasi-Newton
implementation, and scaling considerations. [1
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