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ABSTRACT

In this paper we consider the final stage of a ‘global’ method
to solve the nonlinear programming problem [4]. We prove 2-step
superlincar convergence. In the process of analyzing this asymptotic
behavior, we compare our mecthod (theoretically) to the popular
recursive quadratic programming approach.
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1. Introduction

The nonlinear programming problem can be expressed as

minimize f(x) (1.1

subject to ¢, (x) >0, =1 .. .. m,

where m is a positive integer and f, ¢;. i =1, ....m are continuously
differentiable functions mapping R” to R,

Many algorithms have been proposed to solve (1.1), and recently, recursive
quadratic programming has been a popular approach. While this method often
exhibits fast local behaviour, it is not a robust global procedure. There have been,
and continue to be, attempts to ‘globalize’ this method (for example, [5], [6]. [9].
[12], [14]) however to date there does not exist an entirely satisfactory method.
We discuss the method of Han [12] in section 3.

In [4], Coleman and Conn introduce a method, based on an exact penalty
function. which possesses both global and fast local convergence properties. In
[4]. numerical results are given which support this claim, and global convergence is
proven. It is the intent of this paper to rigorously establish the superlinear
properties. In the process we will directly compare our method to the recursive
quadratic programming approach.

2. Local Considerations

a) The Algorithm

In this section we will carefully consider the search direction produced by
the recursive quadratic programming method when we are ‘near’ a solution to
(1.1). It will be seen that there may be unnecessary computation and storage. A

This work is supported in part by NSERC Grant No. A8639 and the U.S. Dept. of Energy.
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geometric interpretation of the search direction leads to a modification which
eliminates this excess. This new direction is exactly that produced by the
algorithm of Coleman and Conn (derived in [4]) when in a neighbourhood of the
solution.

Let x* be a local solution to (1.1) and suppose that at x* the active set is
{1.,. .. .1}, where r<n. As in Powell [15], we will assume that we are sufficientiy
close to x* so that the active set has been ‘identified’ and the recursive quadratic
programming procedure reduces to the problem

minimize VxhTd +%a’TBkd Q2.1
such that ¢;(x" + Ve¢/d =0, i=1....1
Using the formulation of Powell [15], the solution to (2.1) can be written as
d¥ = g% +rk
where g% = =B A (AIB'4;)7'®(x ",  and (2.2)
rt = BT AATBT AT A BT = BTV (R,
The n Xt matrix A, is defined as (Vd)](xk) ,,,,, Vo,(x k), and the t-vector
<I>(xk) is equal to ((b](xk) ,,,,, qb,(xk))T. The nXn matrix By is an

approximation to the Hessian of the Lagrangian function.

Provided we start sufficiently close to x*, a stepsize of unity is assumed in
[15], and thus we have

x Kl e x kg gk, (2.3)
where d* is given by (2.2).

It is instructive to introduce the nX{(m —t) matrix Z; (commonly used by
Gill and Murray - see [11], for example) which satisfies

AlzZy =0, Z{Z; = T,-0 (2.4)
Provided Z{ B Z} is positive definite, the solution to (2.1) can be rewritten as

d* = hk 4k (2.5)

where h* = =Z(ZABiZi) 7 'ZA(V (x5 + Bivp). (2.6)

and vE = =4 (AF4,)7 (). (2.7

We assume that the columns of 4 are linearly independent.

Let L (x,\) denote the Lagrangian function f(x) — Md(x), where A is a t-
vector. Suppose that at iteration k we have available v ¥ and A% | estimates to the
optimal primal and dual variables, x* and A* Let B, be an estimate to the
current Lagrangian Hessian,

Grixhy — j MG (b, (2.8)
=1

=

Equations (2.6) and (2.7) can be interpreted in an interesting geometric
fashion. Firstly, v/ 1s just the least-squares solution to the system
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dxF +48v =0 (2.92)
That is. v¥ is a ‘Newton-like’ attempt to solve the system
d(x) =0 (2.9b)

starting at the point x*, and using exact information computed at x* The step h K
can be viewed as an approximation to the constrained Newton step (w.r.t. x) for
the Lagrangian (in the manifold spanned by the columns of Z; and containing the
point x K+ v%). This ‘Newton’ step is based on approximate Lagrangian gradient
information at the point x* + vk To see this consider that

296N + Bt = ZT9F () = ZAATexh + By
i=1

But Bj approximates G_/(xk) —ZIA/"Gd,[(x/"), the Lagrangian Hessian at x %
which we denote by GL(xk,)\k). '[T;us,

hy = —Z1(Z8BiZi) ' ZI(VL (X NFy + Bivh), (2.10)
which approximates

—ZiZIG (<K NZ)T'ZHVL (K ARy + Gk ARk, (2.11)
But by Taylor’s Theorem,

ZIVL A MY + G A MWK & ZTTVE (F+v k2R (2.12)

Considering (2.10) and (2.12) it is clear that A% is an approximation to the
constrained Newton direction based on approximate gradient information at
xK4 vk,

In summary then, the direction d* can be viewed as a two-part process.
First, the step vK is taken. based on exact information at x* vk satisfies
P +v) =0, up to first-order terms. From the point xk+vka step A kis taken
in the space spanned by Z;:h* is a ‘Newton-like’ attempt to satisfy
Z[[VL((xk+vk)+h)] = 0, however only approximate gradient information is
used at x& + vk,

It is difficult to imagine improving on the step yk (up to first-order) since v
uses exact information. The question should be asked however — is A% a good
approximation to the true constrained Newton direction at x *+v*? This question
is naturally divided into the following questions:

1 Is Z/;erZk a good approximation (in some sense) to
ZIG (x* ANz

() Is Z/\T[VL(xk,)\k)+Bk1ﬂ/‘] a good approximation (in some
sense) to ZJ[ VL (xk+vk Ny 2

Interestingly. Powell [I5] proved that question (ii) can be ignored, to some
extent, (assuming convergence) and yet a 2-step superlinear convergence rate can
be maintained. In particular, the accuracy of ZZBivk is not important. This
suggests that one could ignore the computation of Z[Bk\’k altogether.
Specifically, let d% = & + vk where

nk = -Z/‘V(Z;\TB/(Z/()_IZ/\-TVf(Xk). (2.13)



4 T.F. COLEMAN & A.R. CONN

We note that since
{ .
ZIv %y = ZHVI N = DNV h), (2.14)
i=1

we can interpret B* as an approximation to the constrained Lagrangian Newton
direction, starting at xk (in the manifold containing x* and spanned by the
columns of Zj) based on exact gradient information. If we view vk as being
added after 7% , then v¥ is now an attempt to solve <I>(xk+}7k+ v) = 0, based on
old information (that is, 4 and ® are computed at x X not xk—HTk). Nevertheless,
it can be shown that the iterate )

K ek BE vk
will result in a 2-step superlinear convergence rate.
We note that
(1) ¥+ vk is not a solution to the quadratic programming problem

(2.1,
(i)  Only the projected Hessian, ZIG  (x k XKZ . need be computed.

[Murray & Wright [14], suggest algorithms which, at times, also ignore the term
ZIB vk

Since we are now viewing v as being taken after k¥ and since v is based
on information evaluated at xX it seems reasonable to suggest that vk be
‘improved’ by re-evaluating gradients and functions at x¥+ 7% Such computation
would probably be unjustifiably expensive; however, global convergence
considerations [4] demand that the active cogstraint functions, ¢;, =1, ... 1.
be evaluated at xK+ 7% (This does not destroy 2-step superlinearity.) Thus we
define

v = — A (AfA) T e K + BK), (2.15)

and set x*Tlexk 4+ Bk 4+ vk (2.16)

We emphasize that the only new information that is obtained at xk+hks the

vector function value <I>(xk+hk). The matrix A is not re-computed at x kymk

but contains gradient information accurate at xK. (Thus, matrix decompositions

are not modified.) We note that properties i) and ii) above continue to hold for
the step k4 vk

Based on the preceding observations, we present the following ‘local’

algorithm. This local method is exactly that to which the global procedure of
Coleman and Conn [4] automatically reduces to in a neighbourhood of a solution.

Algorithm 1 (Local)
(0)  Select an x0 sufficiently close to x* and set k < 1.
(1)  Determine the dual estimates {A%}.
(2) ‘Update’ ZJ By Z; maintaining positive definiteness.
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(3) Determine h*:
Solve (ZTBLZh = =Z]V f(xh,
and set }7/"<—-Zkh~.
(4) Determine vk,
TR e —apAafan T 0 kR b,
(5) Update:
xKH e x b+ ik 4+ vk

go to (1)

Note:

()  This algorithm statement is not meant to reflect the actual
implementation. This question is dealt with in [4].

(i)  Theoretically, it does not matter how step (1) is performed as long as
!
A= \* where Vf(x*) = 2 AV (x*. In practise we use the least-

i=1
squares solution to

ARk = Vf(xh,
computed using a QR decomposition of 4 (see [4]).

Next we establish that Algorithm 1 generates a sequence {x %, which (under
a convergence assumption) satisfies

k+1 _
UEMIEESE 5 H .

hx =1 =

(b) 2-step Superlinear Convergence

Before stating and proving the major resuit of this section, a number of
preliminary results are established. We make the following assumptions:

Ay f ¢, i=1,. .., mare twice continuously differentiable,

B) the second-order sufficiency conditions (as in Fiacco and
McCormick [10]) are satisfied at x*,

C)  {xM is generated by Algorithm 1, and {x M e W, a compact set,

D) the columns of A(x) = (Ve¢ix).... Ve, (x)) are linearly
independent for all x &€ W.

We first establish that the horizontal step, F* is bounded by the distance
between x* and x*.
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Lemma |

Under assumptions A) - D) and assuming that there exist scalars
b], b, (0< b] < bz) such that
b2 <y ZIBeZy < bl *. Vk.VyER" (2.17)

then there exists an Ll > 0 such that
IEY < LjlxF = x

Proof
By Algorithm |,
WY = =Z (ZIB )20V £ (xH)
= —ZW(ZIBrZ)) ' Z(V L (x K ).

But. by (2.17). {(Z{BxZ;)™ " is bounded above, thus there exists an L~l > 0 such
that

IRY < L VL ek Ay (2.18)
But VL (x* A" = 0. and thus using Lipschitz continuity the result follows. O

(Note: unless stated otherwise, | - || denotes the 2-norm.)
k

A similar bound exists for ¥

Lemma 2

Under assumptions A) - D), there exists an L, such that
—k :
179 < Ll x b =~
Proof
From Algorithm 1,
T = AT ek + 1R,
But  o;(xF + BKy = 6,5 + O BN .
Thus, | 7 < [ Al Al a0 I @GS + o B .
But ®(x*) = 0. Thus using Lipschitz continuity of ¢; and the boundedness of
Ay, (,4;\7/1;\.)4], the result follows. O

Lenmima 3

Under the assumptions of Lemmas | and 2. there exists an L, > 0 such that

N R R i

Proof

Follows directly from Lemmas I and 2. OJ
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Clearly, by definition, the columns of (4, .,Z;) span R™.  Therefore. we can
write

xRFD = g kT z g R (2.19)
and  xF—x*= A w4+ Zuk (2.20)
where wh  wk+l er! yk yktlgrr—t

Using these definitions, the following lemma is easy to establish.

Lemma 4

Under the stated assumptions,

k+1 k+1
_”.W—IL._)O, 'dnd __J.L“_»O‘

| x* = x| | xk=! = x
k+1 _
ey X —xl

fx* ==

Proof: Obvious. O
Lemma 4 suggests that 2-step superlinear convergence can be proved in a

k+1
separable  fashion: we show separately that Jz}—“— -0 , and
k41 I x" = x|
B VAR I
(BN
Theorem |

Under the assumptions of Lemmas | and 2, and assuming that {x*}—>x*

then
JIYV_HJL_ -0
[ x* = x1
Proof
From Algorithm 1,
KV = xk— g afap ek + BN + BK (2.21)
=xk—ApAafay ek + BE + K, (2.22)
where | v¥| = O(| B4 ?). But for each j € {1.. ... 1},
$;/(x") = Vo (H(x* ~x",  where
gh=xk+ofar-xh ogof<1
Thus if  we define matrices /‘;k = (ngj(g{‘) ..... qu,(g,k)), and
Ey = Ap(AF A AT = A, then (2.22) becomes
K = k- A (A8 A T AR = XM = Ep(xk = x%) (2.23)
+ Bk 4k

Using (2.23) and then multiplying by A/, we obtain
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AJKH = xny = —AJE k= xn + Ak (2.24)
Combining (2.19) with (2.24) gives
whtl = —AJ AT ALE K = X + (afaT ik (2.25)

But || v4 = 0O iTkH 2 and therefore using Lemma 1, assumption D) and
compactness, there exists an L, > 0 such that

| (alan™talvh < L4j|x1" - x*1| 2 and thus
PwkEH ) < HAZAD TN AT Elll < = < + L) xF = x1 2

But. by definition of || Ex]| and the convergence assumption, {| Eg|}—>0. and
therefore our result follows. O

Theorem 2
Under the assumptions of Theorem 1, and assuming that

ZIB,Z, = ZIG [ (x* \MZ,, then

uk +1 oo

Fxh = ’
(Note: Z, satisfies zz, =1,- Alz, =0, where
A, = (Vo (x®). ... .V (x™.
Proof

By Algorithm 1,

= k= 20ZIBZ) ' ZHVL (K Ay + 7 (2.26)

Define

Ey = ZW 2Bz = (20 Gk anzoThel
and combining this with (2.26), we obtain

A= k= 2 (2T K NZ) T 2V L (KN (2.27)

— Ex(VL (KA + 75

Using a Taylor’s expansion, there exists a matrix éL(.xk, A*) which satisfies

VLK N = G M Ak = x%,  and

Gp (5 M) = G\,
Let us define a matrix Ey:

Ey = ZiZ{G (P NZ0 720G 1 F N = G KT, (2.28)
In light of (2.28), equation (2.27) can be written as

K = b - 202G L 2 T ZEG LR R = (2.29)

LB K = x® = ERG xR Ak = xn + 7E

Let us define Cp = Zu(ZF G (¥ A2y Z G (x*, XA, Using this definition
and combining (2.20) and (2.29) we obtain
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K =k~ Zpuh — Cowk = Ep(x K = x%) (2.30)
— E G (xR Ak = xh) + 75
Again, if we apply (2.19) and (2.20) and multiply by Z /. then (2.30) reduces to

Wt = —ZTC Wk = Z(Er + ExG e Ak = x9), (231
k+1 K
=> el ey
Jxf T =] [N
- - k
_ X — X
+( Exll £ Ek”'”GL”)“xk~1 e

But {|| Cyll } is bounded, and using the convergence assumption { || Eil}—>0. In
addition, by assumption Z[BkZ{+Z*TGL(,x*,A*)Z*, and thus it follows that

k _
AxZ=xq is bounded, and by Theorem 1

{| Ex|l }=0. But. by Lemma 3,

[xF T
W/‘] uk+l
- - 0, and therefore g — — 0,
7 = X1 Ix*"" = x7
Theorem 3

Under the assumptions
D Ao xr
i)  There exist scalars bl’ b2 such that 0<b1<b2, and
bl < y(Z{BxZ)y <b)%: Yk VyeER

iy f, o, 1 =1,..., m are twice continuously differentiable
iv)  second-order sufficiency conditions hold at x*

v)  x k} is generated by Algorithm 1

viy  ZIBiZy > ZIG 1 (x*. \)Z,

vii) the columns of A4 (x*) are linearly independent

then
Xk+l _ Xj S0
Fxk =t = x|

Proof: Follows directly from Lemma 4, and Theorems 1 and 2. O

(¢) Local Convergence

Next we establish that Algorithm 1 is locally convergent. That is, provided
x* is sufficiently close to x*, then {x*} = x*.

Lemma 5

Let x© be some vector in R”, and suppose that x ! and x? are generated by
Algorithm 1, with starting vector x%  Under assumptions A) — D), if x0 s
sufficiently close to x*, it follows that

h4 w3 < x0T,
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where x2 — x* = A w4+ Zu?, and A, Z, are defined in (2.19).

Proof:
By (2.25),
LA <l Ad > cAalan™ e 4" = x1
AN lanpTh (2.32)
Using assumptions A) — D), it is straightforward to establish:
HEN <8x'=x1. (2.33)
and [yl <Bx' - x> (2.34)

Eor some Z? >0, 8> 0. Using (2.32), (2.33), (2.34), and Lemma 3, there exists
8 > 0 such that

AW <@l - X*1| W x® = xo.

Hence, for | x® — x| <

(54)
A <%{|x ~x1. O

Lemma 6

Under assumptions A) — D), and assuming that
ZIB 7y = ZJG (x* \)Z* as x* = x*,

then for x Y, Z()TB oZ o sufficiently close to x*, Z*TG L (x* ANZ, respectively,

bl < = 1.
Proof
By (2.31).
bl <ICl w41 E+ EGree' ) x = 1) (2.39)
Using Lemma 3 and the definitions of E |, E 1, the result follows analagously to

the proof of Lemma 5. O

Theorem 4

Under the asumptions of Lemmas 5 and 6, then for x 0 7B oZ o sufficiently
close to x* ZJ G (x* \"Z, respectively,

i) = x,
where {x*} is generated by Algorithm 1.

Proof

By Lemmas 5.6, and (2. 19) Jr - \*H <Xl - r”ﬂ It follows that
{x 2k} = x*. But, by Lemma 3, * and therefore {x & — x* O
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3. Global Considerations

Algorithm 1 is, of course, purely local: convergence is proven if the initial
estimate. x". is sufficiently close to x* A ‘global’ algorithm of Coleman and
Conn [4] has the significant property that the method automatically simplifies to
Algorithm | in a neighbourhood of the solution. Thus a 2-step superlinear rate is
~ also achieved. (We define global convergence precisely in [4]: here it is sufficient
to say that under ‘weak’ assumptions we converge to a local minimum of the

nonlinear programming problem.)

Global convergence is exhibited due to the fact that an exact penalty
function is required to decrease (sufficiently) at each step. Superlinearity is
achieved because a step of k4 vk (as given in Algorithm 1) is guaranteed to
decrease the penalty function (sufficiently) in a neighbourhood of x* a step of
BE + vk s always taken for large enough k.

We contrast this with the algorithm of Han [12], [13]: Han proves global
convergence for an algorithm based on a recursive programming approach with a
superimposed exact penalty used with the line search. Global and superlinear
convergence do nor mesh together however — superlinearity is achieved only in the
case where the stepsize is one; as we demonstrate in the Concluding Remarks
section, a stepsize of one will not guarantee a decrease in the penalty function (a
condition required for globality). Thus the full algorithm must switch from a slow
global method to a fast superlinear procedure with no assurance of convergence.

4. Concluding Remarks

a) Globality for R QP Directions?

A major consequence of Theorem 3 and the global results given in [4], is
that the method of [4] possesses both global and superlinear convergence
properties simultaneously. Possessing both properties is due essentially to the fact
that a stepsize of unity (which gives superlinearity) will result in a decrease in p,

m
provided we are sufficiently close to x* where p(x) = f(x) — plz min(0, ¢;(x)).
=1
[See, for example, references [1], [2], [3], [7], and [16].] Can recursive quadratic
programming also satisfy these two properties? That is, does there exist a
neighbourhood of x* in which a move x &= x +d will result in a decrease in p,
where d is the solution to the quadratic programming problem? As we
demonstrate below, the answer (even in the convex case) is, in general, no.

For any x let d(x) be the solution to problem (2.1). (We assume that x is
sufficiently close to x* so that the active set is ‘identified’.) Let us make the
simplifying assumptions that

i) exact Hessian information is used

i1)  the functions ¢;, i=1, ... ,t are concave.

N !
Define G(x) = Gpx) — Eki(x)G (%), where {A;(x)} are the dual variable
=1
estimates. Let x’ satisfy o;(x)=0,i=1,.. .t Thus,
dx) = -Z2(Z'G,;Z)"'Z™9 f(x), and
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1t

V1276, 2)'ZT9f + vd TG + of d| D.
= —d7Gd + vdTGd + o d ).
Also, ¢;(x’ +d)=%d"G o, d +o( 4 %). By assumption ii), ¢ (x' + d) <0, if

'

- x ' is sufficiently close to x * and therefore

—min(0, ¢;(x" + d)) + min(0, ;(x") = —%d TG gd + o(| d] *).

fx'+d)— f(x7)

!
Thus, p(x' +d) — p(x') = =»d '[G/ + 2(l — NG ¢ )d + o(ld] ?. But it
’ i=1 M
is certainly possible that )\’,E(O,zL), for i=1,...,t. In these cases it follows
u

!
that E(J— - 2)\’,)04,[. is negative definite and thus we can construct simple

i=1
!
convex examples in which the matrix G, + 2(1— = 2N'))G g, 18 negative definite.
’ i=1 H
It follows that p(x'+d)— p(x) is positive. Therefore, in these examples for all 6
sufficiently small, there exists an x' € N g(x*) such that p(x'+d) > p(x') and d is
the recursive quadratic programming direction.

b) Future Work

The convergence rate results presented in this paper are dependent on the
projected Hessian approximation asymptotically approaching the true projected
Hessian. The full #Xn Lagrangian Hessian is never approximated, and thus
computational expense is reduced. To ensure that the projected Hessian
approximation approach the true projected Hessian necessitates that an expensive
method be used (such as gradient differencing along the columns of Z), at least in
a neighbourhood of x* In fact, the numerical results given in [4]} are based on ,an
implementation which uses a rank-2 updating procedure when far from the
solution and then switches to a gradient difference method when nearing a
solution,

It is expected that a full Quasi-Newton implementation of Algorithm 2 will
be developed. This expectation is fueled by the result of Powell [15] which states
that, (using the recursive quadratic programming approach), the projected Hessian
approximations need only be asymptotically accurate along the directions of
search, and superlinearity will be maintained. (This result parallels a
superlinearity characterization given by Dennis and More [8].) We expect a similar
property holds for the method given here and this gives hope for a full Quasi-
Newton implementation. O
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