ON INFINITE WORDS OBTAINED BY
ITERATING MORPHISMS

Karel Culik II
Department of Computer Science
University of Waterloo

Arto Salomaa
Mathematics Department
University of Turku
Turku, Finland

Research Report CS-29-80

Revised: February 1981
(To appear in Theor. Comp. Science)

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gt



ON INFINITE WORDS OBTAINED BY
ITERATING MORPHISMS
Karel Culik 1I
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
Arto Salomaa
Mathematics Department

University of Turku
Turku, Finland

Abstract
- The paper investigates infinite words, and sets of them,
associated with DOL and DTOL systems. Main emphasis is on characteri-

- zation and decidability results.

1. Introduction

Since the old work of Thue, [12], infinite words have been
investigated in language theory. Apart from beihg of interest in its
own right, the theéry of infinite words has oftéﬁ}been able to Shed
light on some problems concerning ordinary finite:words and languages
of-them. As regards infinite words associated to finite automata, the
reader is referred to [4], and as'regards those éssociated to context-
free grammars, the reader is reférred-to [6]. |

Iterated.morphisms (in other words: DOL systems) provide a
very suitable framework for studyfng certain problems dealing with
infinite words, see [10] and t11]. This problem area is closely -
comected with problems concerning morphisms in general, [2]. For

instance, the ordinary DOL sequence equivalence problem and the corres-



ponding problem for infinite words are related, as seen in Section 3
below.

The purpose of this paper 15 to begin a systematic study con-
cerning infinite words associated to DOL and DTOL systems. It is
believed that, apart from being a contribution to the theory of infinite
words, such a study will also shéd new 1ight on DOL and DTOL systems.

A brief outline of the contents of this paper follows. After
the preliminary definitions, we discuss in Section 3 infinite words
obtained by iterating a single morphism, i.e. w-words and w-languages
associated to DOL systems. _The basic open problem is the decidabi]ity
of the w-word equivalence problem; several reductions of this problem
are presented. Section 4 deals with 1imit languages of DTOL systems.
We present first a sufficient condition for a system to generate a
unique w-word. "It is shown that the limit language equivalence problem
is undecidable for DTOL systems. Finally, adhérences of DTOL systems
are discussed in Section 5. It is shown that every DTOL adherence

language js also a DTOL 1imit language.



2. Preliminaries

For all unexplained notions in language theory, the reader is
referred to [8]. As regards further details and background material
concerning DOL and DTOL systems, [7] should be consulted.

We shall consider both words and infinite words, also referred
to as w-words, over a finite alphabet £. (Formally the latter can be defined
as a mapping of the set of positive integers into I.) We consider
also finite prefixes and subwords of w-words, defined similarly as for
ordinary words. For a nonempty word x, the notation x* means the
m#word XXX... . An w-word {s periodic if it is of the form yx“, for
some words y and x (such that x # A where XA denotes the empty
- word). .
| An w-]anguage is a set of w-words. Given a fanguage L, we

associafe to it two w-languages as follows. The limit of L, in
| symbols 1lim(L), consists of all w-words «a éuch that, for any integer
k, o possesses a prefix longer than k be]ongihg to L. The adherence
of L, in symbols adh(L), consists of all w-words o such that, for
every prefix w of.a, there is a word x suchwéhat wx s in L.

Denote by pref(L) the prefix closure of L, i.e., the set
of all prefixes of the words in L. Then clearly adh(L) consists of
all w-words o such that the set of prefixes ofﬁia is contained in
pref(L). We also have Tim(L) ¢ &dh(L) and adh(L) = Tim(pref(L)).
Observe also that adh(L) 1is nonempty if and only if L is infinite.
The same does not hold true for 1lim(L): if L 1is finite then clearly
Tim(L) 1is empty, but Tim(L) can be empty also for infinite languages
L. ’*

The above definitions are valid for arbifrary languages L.

We now introduce the specific ]anguages considered in this paper. For



- further details, the reader is referred to [7].
A DTOL system is a construct
G= (E.h]....,hn,w),
where I {is a finite alphabet, n 2z 1 and each h, : ™+ 1" isa
morphism, and w (the "axiom") is in I*. The language L(G) generated
by G consists of all words of the form

h

h <. hy (w),
11 -1k

12 ’
where k 2 0 and each ij satisfies 1 s ij s n. (By definition, k =0
yields the word w.) DTOL systems where n =1 are also referred to

as DOL systems. Languages generated by DOL and DTOL systems are referred

to as DOL and DTOL languages, respectively. _
A DOL or DTOL system G is termed convergent if 1im(L(G))

is not empty. It is termed uniformly convergenf if 1im(L(G)) consists

of exactly one w-word.
' The morphisms in a DOL or DTOL system are often defined in

the form of productions. For instance, the DOL system with the axiom
a and productions a -+ bab, b b is not convérgent. The DQL system
with the axiom a -and productions a + ab, b ~ba 1is uniformly con-
vergent. In fact, the w-word defined by this system is the-Well known
“Tﬁue cubefree sequence". The DOL system with the axiom a and pro-
ductions a -+ b, b+ ab is convergént but not uniformly.

We mention, finally, that fhe notions defined above give rise

to some natural decision problems. Thus, the limit language equivalence

problem for DTOL systems consists of deciding of two given DTOL systems
G, and G, whether or not 1im(L(G])) = Iim(L(Gz)). Similarly, we speak
of the limit language emptiness problem for DTOL systems, and so forth.

The terminology should be self-explanatory.



3. w-languages associated to DOL systems

Let G be a DOL system. In this section we consider both of
the w-languages 1im(L(G)) and adh(L(G)).

In particular, consider G = (Z,h,w). A letter a of £ fis
termed mortal if hi(a) = A holds for some integer 1. The DOL system

G {s prefix-preserving if h"+1(w) = h"(w)x holds for some n 20

and. some nonempty worq X not consisting entirely of mortal letters.

Theorem 1. A DOL system G 1is uniformly convergenf if and
on]y if it is prefix-préserving. |

Proof. Assume first that G 1is prefix-preéerving. Then
hn+i+](w) = h"+i(w)h1(x) holds for every nonnegative integer 1.
Consequently, apart from an “initial meés“, every word 1in the sequence
generated by G 1is a prefix of the next word. Furthermore, it is a
proper prefix because hi(x) # X. Hence, the word sequence of G
converges to a unique w-word. |

Conversely, assume that G is uniform]y convergent and defines
the w-word a. This implies that L(G) -iskinfinite. Moréover, there
are intégers iand j, 1> J, such that hi(w)'= hj(w)x, for some «x.
This x -cannot consist of mortal 1et£ers because, otherwise, L(G) is
finite. If i=3+ 1, G is prefix-preserving. This must occur for
some i and j because if no word in the sequence is a prefix of the .

next one, then 1im(L(G)) contains at least two w-words. - N O

A DOL system G 1is termed weakly prefix-preserving if there
are integers 1 and j, 1> j, shch that hi(w) = hj(w)x, for some
nonempty Xx not consisting entife]y of mortallletters. Clearly, G
is convergent if and only if G 1is weakly prefix;preserving. It is
shown in [5] that the latter property is decidable. Since the property

of being prefix-preserving clearly is decidable, we obtain the following



result. »
Theorem 2. It is decidable whether or not a given DOL
system is convergent or uniférmly convergent.
CIf L(G) ds infinite but G fs not convergent, then T1im(L(G))
s empty.but adh(L(G)) 1is nonempty. However, this is the only case
where 1im(L) # adh(L) for DOL languages L. The proof of the following
| theorem is straightforward from the definitions and, therefore, omitted.
The theorem is of interest because no other nontrivial examples of-
language families with limits and adherences coinciding are known.
Theorem 3. If G 1is a convergent DOL system, then
1im(L(G)) = adh(L(G)). Mareover, 1im(g(G)) is finite.
‘It is a consequence of Theorem 3 that the limit language of a
DOL system is always finite. This does not ho1dbtrue for DTOL systems,
as seen by considering the system with the aXiomi a and two morphisms

h] ca-ba, b+b and h2 :a-+ab, b+b.

Also adh(L(G)) is finite, for all DOL systems G. This

result is easily established, using Exercise 1.3.17 in the reference [7].

» The main open problem concerni ng w-languages of DOL systems
is the decidability of the limit language equivalence. We shall discuss
this problem in the rémainder of this section. The following special

case of the notion of prefix-preserving will be needed.
| A DOL system G = (I,h,w) is initially prefix-preserving 1f

h(w) = wx holds for some nonempty word x not consisting entirely of
mortal letters. By Theorem 1, every initially prefix-preserving DOL
system defines a unique w-word. We now present the following:
Conjecture A. There.is an algorithm for deciding whether
or‘not two intially prefix-preserving DOL systems define the same w-word.
There is an obvious semialgorithm for showing that the w-words

are different. That this semialgorithm cannot be immediately converted



7

to an algorithm is shown by the following lemma. The reader is referred
to [7] as regards details concerning the DOL sequence equivalence pro-
blem, which was for a long time the best known open problem‘in the area
of L systems. '

~ Lemma 4. Any algorithm for Conjecture A yields an algorithm
for the DOL sequence equivalénce problem.

Proof. For an arbitrary DOL system G = (2,h,w), we con-
struct its "end-marked version" by adding two new letters $-and ¢ with
the productions $ >~ $w¢ and ¢ + ¢. The new axiom is $. Observe
that the end-markéd version is always initially pref1x~presérv1ng and
defines the w-word $ w ¢ h(w) ¢ hz(w) ¢ ... . Clearly, two given DOL
systems are sequence equivéient if and enly if their end-marked versions
define the same w-word. | | ’ O

Lemma 5. Conjecture A implies thatvthe limit language
equivalence problem is decidable for DOL systems.

Proof. Let 6, and G, be two given DOL systems. Denote
L(Gi) = Ls» i =1,2. We have to decide yhether or not Iim(Li) =
lim(Lz). We first use Theorem 2 for G, and G,. If neither one is con-
vergent or if they are in different convergence classes, we are through.
If both are uniformly convergent, we can apply the algorithm of Con-
Jecture A after modifying the systems by removing the initial mess.
Finally, if Gj and 62 are éonvergent but not uniformly, then they both
are weakly prefix-preserving. Considér, in one system, the corresponding
integers 1 and j. Clearly, i - j is an upperlbound for the cardinal-
ity of the limit Ianguage’of the system. We canlnow check the equivalence
of the two 1imit languages by fiﬁite]y many tesfslaccording to the
algorithm of Conjecture A. - Before the tests, an eventual initial mess

has to be removed. . ' 0



From the decidability results presented in [9] it eaéi]y
follows that one can also decide whether or not the DOL systems in
Conjecture A define a periodic w-word. Clearly, we can decide the
identity of two periodic w-words. Thus, Conjecture A can be settled
in the special case where at least one of the w-words involved is
periodic.

However, Conjecture A remains open in the general case. It
seems probable that a suitable modification of the methods in [3] will
give the result. We conclude this section with the following rather
interesting example of two DOL systems defining the same w-word. The
axiom of both systems is c. The productions in the first system are

h] :a=+a,b—+aba, c+chb, |
and in the second,
h2 Pa-a, b-+ baa, ¢ + cba. _
Observe that hT and h2 generate the same w-word quite differently.

However, h]h2 = hzh].

Note (Feb. 81): Conjecture A has been shown to hold true by K. Culik II
and T. Harju (University of Waterloo, Department of Computer Science,

Research Report CS-81-02 (1981), also submitted for publication).



4. Limit languages of DTOL systems

We shall proVe in this section that, in the transition to
DTOL systems, problems concerning w-languages become in general un-
decidable. Before that we shall establish a characterization result.
The result is useful in considerations where in the generation of w-
words compositions of two morphisms are discussed. It is very likely
“that such compositions will be useful in settling Conjecture A. Ih the
solutions of the DOL sequence equivalence problem [3]1, [7], compoéftions
of fhe two morphisms play a crucial role.

‘We say that a DTOL system G = (Z,h],...,hn,w) is strongly

uniformly convergent (SUC) if it is uniformly convergent, defining an

w-word a, and hi ces hi (w) 1is a prefix of a, for any sequénce
1 k: -

of morphisms h, .
i »
Assume that in our DTOL system G each of the morphisms hi

is nonerasing. Let H be an arbitfary but fixed composition of the
morphisms. If G 1{s SUC then clearly the following condition is
satisfied. _

Condition H. For each 1 and j, (hiH)j(w) is a_prefix
of d. Arbitrarily long prefixes of o are obtained in this fashion.
Moreover, w is a prefix of each ;hi(w). ".

- The following theorem shows that Condition H is almost
equivalent to 6 being SUC. "

Theorem 6. Assume thqt Condition H is satisfied for some H
and, furthermore, for every i, (HiH)j(w) gives;arbitrarily long pre-
~fixes of o (with j increasing). Then & is SUC. '

Proof. We consider first the case thét n (the number of
morphisms) equals 3. Thus, there is an w-word o such that (hiH)j(w)

is a prefix of «, for all j and i = 1,2. Consider the languages
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i
/

Ly = (hHI ) | = 0b, = 1,2,

It follows from the hypothesis of Theorem 6 that L] and L2 are

infinite.

We now define a sequence of words WysWos... S follows.

(i) Wy =W (ii) If the words h](wi) and hz(wi) are comparable
(meaning that one of them is a prefix of the other), then Wi equals
the shorter'of them. ‘Otherwise, Ws is undefined for all j > 1.

If our sequence of words is infinite, we are through. Thus,
assume that W is the last word in the sequence. Let K be the com-
position of the morphisms h.I and h2 (possibly the émpty composition)
such that Wy - K(w). We know that h](wi) and hz(wi) are incom-
parable. |

Clearly w; = K(w) is a prefix of o. We now choose m

i
large enough such that w, 1is a prefix of both (h]H)m(w) and (th)m(w).

i
This ié possible because both of the languages L] and L2 are infinite.

Consequently, hiHK(w) (resp. h,HK(w)) s a prefix of

(hIH)m+1(w) (resp. (th)m+](w)). Because the latter two words are
~ comparable (both being prefixes of a), we conclude that also h]HK(w)
; and hZHK(w) are comparable.

Observe now that K(w) 1is a prefix of both h]K(w) " and
h2K(w). (This follows because K(w) is a prefix of a.) Consequently,
K(w) .is a prefix of HK(w). This implies that h]K(w) (resp. th(w))
is a prefix of h]HK(w) (resp. hZHK(w)). Because the latter two words
were seen above to be comparable, we conclude that also h]K(w) = h](wi)
and th(w) = hz(wi) are éomparab]e. This contradiction shows that

our sequence of words cannot be finite, which concludes the proof in

the case n = 2,
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The general case now follows immediately by an inductive
argument. In the inductive step, we split the system into two parts,
both containing n - 1 2 2 morphisms. Because they must have also
common morphisms, the result follows immediately from the inductive
hypothesis. O

We now proceed to the undecidability results.

Theorem 7. The 1imit language equivalence pfob]em for
DTOL ;ystems is undecidable. “

Proof. We argue indirectly by showing that an a]dorithm
for the 1imif language equivalence problem yie]d; an algorithm for
deciding whether or not two given linear grammars generate the same set
of sentential forms. The latter problem is undecidable (for 1instance,
cf. [7]). |

To each linear grammar G we associate a DTOL system G] in
the following fashion. The alphabet of G1 consists of the total
alphabet of G (both terminals and nonterminals) and of two additional
‘symbols $ and ¢. The axiom of G] is S$, where S 1s the start
symbol of G. For each production A+ x 1in G, there is a morphism
in _G] mapping A-to X and preserving all the other symbols. There
are two further morphisms in G]. Both preserve all symbols different
from $. The first morphism mapé $ into ¢$, ‘and the second haps
§ into ¢. v

It is éleaf that 1im(L(G1)) consist$ of w-words w¢”, where
w is a sentential form of G. Thus, two given linear grammars generate
the same sentential forms if and only if their assocfated DTOL systems
define the same limit language. - | ' 0

By an easy modifiéation;of the constrdciion above, we can make
use of the undécidabi]ity of the equivalence of linear grammars. We

associate to terminating productions A+ x of G a morphism of G]
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'which maps A to x and $ to $1 (and preserves other symbols). Now
$] behaves as $ 1in the above construction, i.e. $] generates
arbitrarily long sequences of ¢'s.

Since clearly in the above construction two given linear
grammars generate the same sentential forms if and onTy if their
associated DTOL systems define the same adherence, we obtain also

the following corollary.

Theorem 8. The adherence equivalence problem for DTOL
systems is undecidable. '

We conclude this section by showing that the décidabi]ity
result of [5] (which is of crucial importance in limit considerations
for DOL systems) does not hold for DTOL sxstems. |

Theorem 9. There is no algorithm for deciding whether or
not in a given DTOL language some word js a prefix of another one.

- Proof. We apply reduction to the Post correspondence

problem (PCP). Let

o Cxgseenaxg), (y],...,yn)
be an arbitrary instance of PCP. We associate to this instance the DTOL
system G, defined as follows. In the definition, we use the customary
notation from the theory of L systems: each morphism is specified by
enclosing the proddctions within brackets. We do not 1ist préductions
preserving the left side, i.e., productions of the form a - a.

The axiom of G is S. The alphabet of G fis seen from the

morphisms listed below:

[S>1 5y x; AL, [S~>1 S5y, Bl

[SA + 1S xi], [SB + i SB yi],

[Sy > ¢, A >8], [Sg ¢, B~ 8], |
where i ranges from 1 ‘fo n. Clearly, one word of L(G) 1is a pre-
fix of another one if and only if our instance of PCP possesses a

solution. ' 0
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It has been proved by Tero Harju (oral communication) that
the argument above can be sharpened to show that the emptiness problem

is undecidable for 1imit languages of DTOL systems.
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5. Adherences of DTOL systems

We shall now prove that the family of adherences of DTOL
systems is included in the family of 1imit languages 6f DTOL systems.
Theorem 10. Assume that L = adh(L(G)), for some DTOL
system G. Then there is a DTOL system G1 such that L = 11m(L(G])).
| Proof. We apply the relation
: adh(L]) = 1im(pref(L])),
valid for all languages L]. Our construction is analogous to‘the one
- given in the proof of Lemma 2 in [1]. __' '
| Given G = (Z,h],...,hn,w) we construct 6, as follows.
Define
m = max({lhi(a)l:aez;lsign}u{lwl}).
Denote I = {a : aeZ}. The alphabet of G, equals £ uTu (S}, where
S is a new symbol and also the axiom of G]. Fori=1,...,m, We
consider a mapping My in ¥ into (2 v f)*, defined as fo11owé.
First, u;(2) = A. Consider a word x = a; ... &, where kz1 and
each 3y is a letter of . If iz k, then “i(x) =a ... ak_zik.
If 1<k, then u(x)=a; ...a;43;. (For i=1, uy(x) = a;.)
For each of the morphisms hi’ i=1,...,n, we associate m
morphisms 9550 J=1,...,m, defined as fo]lows;
| gij(a) = hi(a) for ae gz, |
93 @ = u;(hy(a) for aez,
gij(S) = uj(W)-
An additional morphism G is defined by
6(2) = 6(a) = a for aer, e(s)" =s.
The set of morphisms of 61 ‘consists of the morphisms Gij
and G. (Observe that some of the morphisms G{j may be identjcal.
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of course,vthe "duplicates" can be removed).
It is how easy to verify that
adh(L(G)) = 11m(L(G1)).
~ This is a consequence of the following two facts. (i) Every w-word in
1im(L(G])) is over the alphabet £. (ii) L(G]) n ¥ = pref(L(G)). [

Theorem 10 can also be regarded as a consequence of the fact
that EDTOL systéms and DTOL systems define the same family of 1imit
languages.

Theorem 10 shows that the family of adherences of DTOL systems
is contaiﬁed in the family of 1imit languages of DTOL systems. That the
containment is strict is seen by‘considering the w-language a*bw; It
clearly is the Timit Tanguage of‘a DTOL systems,_whereas it-was,shown

in [6] that this w-language is not at all an adherence.
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zation and decidability results.

1. Introduction
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ponding problem for infinite words are related, as seen in Section 3
below.

The purpose of this paper is to begin a systematic study con-
cerning infinite wérds associated to DOL and DTOL systems. It is
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words, such a study will also shed new 1ight on DOL and DTOL systems.
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obtained by iterating a single morphism, i.e. w-words and w-languages
associated to DOL systems. The basic open problem is the decidability
of the w-word equivalence problem; several reductions of this problem
afe presented. Section 4 deals with 1imit languages of DTOL systems.
We present first a sufficient condition for a system to generate a
unique w-word. It is shown that the limit language equivalence problem
is undecidable for DTOL systems. Finally, adherences of DTOL systems
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language is also a DTOL 1imit language.



2. Preliminaries

For all unexplained notions in language theory, the reader is
referred to [8]. As regards'further details and background material
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ordinary words. For a nonempty word x, the notation x® means the
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An w-language is a set of w-words. Given a language L, we
associate to it two w-languages as follows. The limit of L, in
symbols 1im(L), consists of all w-words o such that, for any integer
k, a possesses a prefix longer than k belonging to L. The adherence
of L, in symbols adh(L), consists of all w-words o such that, for
every prefix w of.a, there is a word x such that wx 1is in L.

Denote by pref(L) the prefix closure of L, 1i.e., the set
of all prefixes of the words in L. Then clearly adh(L) consists of
all w-words o such that the set of prefixes of o 1is contained in
pref(L). We also have 1im(L) < adh(L) and adh(L) = Tim(pref(L)).
Observe also that adh(L) 1is nonempty if and only if L is infinite.
The same does not hold true for 1lim(L): 1if L is finite then clearly
1im(L) s empty, but 1im(L) can be empty also for infinite languages
L.

fhe above definitions are valid for arbitrary languages L.

We now introduce the specific languages considered in this paper. For



further details, the reader is referred to [7].
A DTOL system is a construct
G = (Zah ..sh ,W),

17 n
where I 1is a finite alphabet, n 2z 1 and each hi : 2> ¥ is a
morphism, and w (the "axiom") is in £*. The language L(G) generated

by G consists of all words of the form

h. h. ... h, (w),
iy, i

where k 2 0 and each i, satisfies 1 g1 n. (By definition, E =0

J
yields the word w.) DTOL systems where n =1 are also referred to

HA

.

as DOL systems. Languages generated by DOL and DTOL systems are referred
to as DOL and DTOL languages, respectively.

A DOL or DTOL system G is termed convergent if ]1m(L(G))

js not empty. It is termed uniformly convergent if ]1m(L(G))~';onsis£s.'
of exactly one w-word. | ‘iﬁu o

The morphisms in a DOL or DTOL system are‘often definéd!}p::
the form of productions. For instance, the DOL system with the axiom 1.:f
a and productions a = bab, b -+ b 1is not convergent. The DOL system
with the axiom a vand productions a - ab, b + ba 1is uniformly con—-
vergent. In fact, the w-word defined by this system is theiwell known
"Thue cubefree sequence". The DOL system with the axiom a and pro-
ductions a - b, b+~ ab 1is convergent but not uniformly.

We mention, finally, that the notions defined above give rise

to some natural decision problems. Thus, the 1imit language equivalence

problem for DTOL systems consists of deciding of two given DTOL systems

G] and G2

of the 1imit language emptiness problem for DTOL systems, and so forth.

whether or not 1im(L(G])) = 1im(L(Gz)). Similarly, we speak

The termino1ogy should be self-explanatory.



3. w-languages associated to DOL systems

Let G be a DOL system. In this section we consider both of
the w-languages 1im(L(G)) and adh(L(G)).

In particular, consider G = (Z,h,w). A letter a of £ is
termed mortal if hi(a) = A holds for some integer i; The DOL system

G is prefix-preserving if hn+](w) = h"(w)x holds for some n 2 0

and some nonempty word X not consisting entirely of mortal letters.

Theorem 1. A DOL system G 1is uniformly convergent if and
only if it is prefix-préserving.

Proof. Assume first that G is prefix-preserving. Then
hn+i+](w) = hn+i(w)h1(x) holds for every nonnegative integer 1.
Cénsequently, apart from_an "initial mess", every word in the sequence
generated by G is a prefix of the next word. Furthermore, it is a
proper prefix because hi(x) # A. Hence, the word sequence of G
converges to a unique w-word. -

Conversely, assume that G 1is uniformly convergent and defines
the w-word a«. This implies that L(G) isvinfinite. Moreover, there
are integers i and j, i > j, such that hi(w) = hj(w)x, ‘for some X.
Tnis x cannot consist of mortal 1et£ers because, otherwise, L(G) is
finite. If i=3j+ 1, G is prefix-preserving. This must occur for
some i and J beééuse if no word in the sequence is a prefix of the
next one, then 1im(L(G)) contains at least two w-words. a

A DOL system G 1is termed weakly prefix-preserving if there

are integers i and j, 1 > Jj, such that hi(w) = hj(w)x, for some
nonempty' X ﬁot consisting entirely of mortal letters. Clearly, G
is convergent if and only if G 1is weakly prefix-preserving. It is
shown in [5] that the latter property is decidable. Since the property

of being prefix-preserving clearly is decidable, we obtain the following



result.

Theorem 2. It is decidable whether or not a given DOL
system is convergent or uniférmly convergent.

If L(G) is infinite but G is not convergent, then iim(L(G))
is empty but adh{(L(G)) 1is nonempty. However, this is the only case
where T1im(L) # adh(L) for DOL languages L. The proof of the following
theorem is straightforward from the definitions and, therefore, omitted.
The theorem is of interest because no other nontrivial examples of
language families with limits and adherences coinciding are known.

Theorem 3. | If G is a convergent DOL system, then
1im(L(G)) = adh(L(G)). Moreover, 1im(L(G)) is finite.

It is a consequence of Theorem 3 that the limit language of a
DOL system is always finite. This does not hold true for DTOL systems,
~ as seen by cohsidering the system with the axiom a and two morphisms
h] :a—-ba, b>b and h2 :a~>ab, b~+b.

The main open problem concerning w-languages of DOL systems
is the decidability of the limit language equivalence. We shall discuss
this problem in the remainder of this section. The following special

case of the notion of prefix-preserving will be needed.
A DOL system G = (Z,h,w) 1is initially prefix-preserving if

h(w) = wx holds for some nonempty word X not consisting entirely of
mortal letters. By Theorem 1, every initially prefix-preserving DOL
system defines a unique w-word. We now present the following:

Conjecture A. There is an algorithm for deciding whether

or not two intially prefix-preserving DOL systems define the same w-word.
There is an obvious semialgorithm for showing that the w-words

are different. That this semialgorithm cannot be immediately converted
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to an algorithm is éhown by the following lemma. The reader is referred
to [7] as regards details concerhing the DOL sequence equivalence pro-
blem, which was for a long time the best known open problem in the area
of L systems. ’

Lemma 4. Any algorithm for Conjecture A yields an algorithm
for the DOL sequence equivalence problem.

Proof. For an arbitrary DOL system G = (Z,h,w), we con-
struct its "end-marked version" by adding two new letters $ and ¢ with
the productions § > $w ¢ and ¢ - ¢. The new axiom is $. Observe
that the end-marked version is always initially prefix-preserving and
defines the w-word $ w ¢ h(w) ¢ hz(w) ¢ ... . Clearly, two given DOL
systems are sequénce equivalent if and only if their end-marked versions
define the same w-word. O

Lemma 5. Conjecture A implies that the 1limit language
equivalence problem is decidable for DOL systems.

Proof. Let G] and G2 be two given DOL systems. Denote
L(G,) = L., 1 =1,2. We have to decide whether or not lim(L]) =
lim(LZ). We first_Use Theorem 2 for G] and GZ‘ If neither one is con-
vergent or if they are in different convergence classes, we are through.
If both are uniformly convérgent, we can apply the algorithm of Con-
Jecture A after modifying the systems by removing the initiai mess.
Finally, if G] and G2 are convergent but not uniformly, then they both
are weakly prefix-preserving. Consider, in one system, the corresponding
integers 1 and j. Clearly, i - j 1is an upper bound for the cardinal-
ity of the limit language of the system. We can now check the equivalence
of the two limit languages by finitely many tests according to the
algorithm of Conjecture A. Before the tests, an eventual initial mess

has to be removed. O



Because the regularity of a given DOL language is decidable,
[9], one can also decide whether or not the DOL systems in Conjecture A
define a periodic w-word. Clearly, we can decide the identity of two
periodic w-words. Thus, Conﬁecture A can be settled in the special
case where at least one of the w-words involved is periodic. |

However, Conjecture A remains open in the general case. It
seems probable that a suitable modification of the methods in [3] will
give the result. We conclude this section with the following rather
interesting example of two DOL systems defining the same w-word. The

axiom of both systems is c¢. The productions in the first system are

h] :a-—>a, b»aba, c>chb,
and in the second,
h2 :a->a, b baa, ¢ » cha.

Observe that h] and h2 generate the same w-word quite differently.

However, h]h2 = hzh].



4. Limit langquages of DTOL systems

We shall prove in this section that, in the transition to
DTOL systems, problems concerning w-languages become in general un-
decidable. Before that we shall establish a characterization result.
The result is useful in considerations where in the generation of w-
words compositions of two morphisms are discussed. It is very likely
that such compositions will be useful in settling Conjecture A. In the
solutions of the DOL sequence equivalence problem [3], [7], compositions
of the two morphisms play a crucial role.

We say that a DTOL system G = (Z,h],...,hn,w) is strongly

uniformly convergent (SUC) if it is uniformly convergent, defining an

w=word o, and hi ces hi (w) 1is a prefix of «, for any sequence
1 k

of morphisms hij'
Assume that in our DTOL system G each of the morphisms hi
is nonerasing. Let H be an arbitrary but fixed composition of the
morphisms. If G 1is SUC then clearly the following condition is
satisfied.

Condition H. For each 1 and j, (hiH)j(w) is a prefix
of «. Arbitrarily long prefixes of o are obtained in this fashion.
Moreover, w 1is a prefix of each hi(w).

The following theorem shows that Condition H is, in fact,
equivalent to G being SUC.

Theorem 6. For any H, Condition H implies that G s
SUc.

Proof. We consider first the case that n (the number of

morphisms) equals 2. Thus, there is an w-word o such that (hiH)J(w)

is a prefix of o, for all j and i = 1,2. If one of the languages



Ly = (W) 13 2 00, 1 = 1.2,
is finite, then we are through. (In this case, iterations of one of
the morphisms hi produce only a prefix of o from w.) Thus, assume
that L] and L2 are infinite. “

We now define a sequence of words w],wz,;.: -as follows.
(i) Wy = W (ii) If the words h1(wi) and hz(wi) are comparable
(meaning that one of them is a prefix of the other), then Wi equals

i
the shorter of them. Otherwise, wj is undefined for all j > i.

If our sequence of words is infinite, we are through. Thus,
assume that W is the last word in the sequence. Let K be the com-
position of the morphisms h] and h2 (possibly the empty composition)
such that w; = K(w). We know that h](wi) and hz(wi) are incom-
parable.

Clearly w; = K(w) 1is a prefix of a. We now choose m
large enough such that Wi is a prefix of both (h]H)m(w) and (hZH)m(w).
This is possible because both of the languages L] and L2 are infinite.

Consequently, h]HK(w) (resp. thK(w)) is a prefix of
(h]H)m+](w) (resp. (h2H)m+](w)). Because the latter two words are
comparable (both being prefixes of a), we conclude that also thK(w)
and hZHK(w) are comparable.

Observe now that K{w) 1is a prefix of both hiK(w) and
hZK(w). (This follows because K(w) 1is a prefix of «.) Consequently,
K{w) 1is a prefix of HK(w). This implies that h1K(w) (resp. h2K(w))
is a prefix of h]HK(w) (resp. hZHK(w)). Because the latter two words
)

were seen above to be comparable, we conclude that also h]K(w) = h](wi
and hZK(w) = h2(wi) are comparable. This contradiction shows that
our sequence of words cannot be finite, which concludes the proof in

the case n = 2.



The general case now follows immediately by an inductive
argument. In-the inductive step, we split the system into two parts,
both containing n - 1 2 2 morphisms. Because they must have also
common morphisms, "the result follows immediately from the inductive
hypothesis. O

We now proceed to the undecidability results.

Theorem 7. The 1imit language equivalence problem for
DTOL systems is undecidable.

Proof. We argue indirectly by showing that an algorithm
for the 1imit language equivalence problem yields an algorithm for
deciding whether or not two given linear grammars generate the same set
of sentential forms. The latter problem is undecidable (for instance,
cf. [71). |

To each linear grammar G we associate a DTOL system G1 in
the following fashion. The alphabet of G] consists of the total
alphabet of G (both terminals and nonterminals) and of two additional
symbols $ and ¢. The axiom of G] is S$, where S is the start
symbol of G. For each production A - i in G, there is a morphism
in G] mapping A\to x and preserving all the other symbols. There
are two further morphisms in G1. Both preserve all symbols different
frbm $. The first morphism maps $ into ¢$, and the second maps
$ into ¢.

It is clear that lim(L(G])) consists of w-words w¢”, where
w is a sentential form of G. Thus, two given linear grammars generate
the same sentential forms if and only if their associated DTOL systems
define the same limit language. O

By an easy modification of the construction above, we can make
use of the undecidability of the equivalence of linear grammars. We

associate to terminating productions A » x of G a morphism of G,I



which maps A to x and $ to $] (and preserves other symbols). Now
$] behaves as $ in the above construction, i.e. $] generates
arbitrarily long sequences of ¢'s.

Since in the above construction adh(L(G])) = 11m(L(G])), we
obtain the following corollary.

Theorem 8. The adherence equivalence problem for DTOL
systems is undecidable.

We conclude this section by showing that the decidability
result of [5] (which is of crucial importance in 1imit considerations
for DOL systems) does not hold for DTOL systems.

Theorem 9. There is no algorithm for deciding whether or
net in a given DTOL Tanguage some word is a prefix of another one.

Proof. We apply reduction to the Post correspondence
problem (PCP). Let

(x],...,x )s (y],...,y

0
be an arbitrary instance of PCP. We associate to this instance the DTOL

n

system G, defined as follows. In the definition, we use the customary
notation from the theory of L systems: each morphism is specified by
enclosing the prodﬁctions within brackets. We do not list productions
preserving the Teft side, i.e., productions of the form a - a.
| The axiom of G 1is S. The alphabet of G 1is seen from the

mofphisms listed below:

[s~i sy x; AL, [S 1 S5y, B,

[SA > 15, Xi]’ [SB -+ i Sg yi],

[SA > ¢, A + $1, [SB ~ ¢, B > $%],
where i ranges from 1 to n. Clear]y; one word of L(G) 1is a pre-
fix of another one if and only if our instance of PCP possesses a

solution. ’ gd



It is an open problem whether the argument above can be
sharpened to show that the emptiness problem is undecidable for limit

languages of DTOL systems.
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5. Adherences of DTOL systems

We shall now prove that the family of adherences of DTOL
systems is included in the family of {1mit languages of DTOL systems.
Theorem 10. Assume'that L = adh(L(G)), for some DTOL
system G. Then there is a DTOL system G1 such that L = 1im(L(G1)).
Proof. We apply the relation
adh(L]) = 1im(pref(L])),
valid for all languages L]. Our construction is analogous to the one
given in the proof of Lemma 2 in [1].
Given G = (Z,h],...,hn,w) we construct G] as follows.
Define
m = max({lhi(a)l:asZ;1§i§n}u{|w!}).
Denote I = {a : aecz}. The alphabet of G; equals I v T u {S}, where
S is a new symbol and also the axiom of G]. For i = 1,...,m, we
consider a mapping My in £¥ into (z u f)*, defined as follows.
First, u,(X) = X. Consider a word x = 3y e s where k 21 and

1

each a; isa letter of z. If iz k,‘ then ui(x) = a; ... 2 _43,.

If 1<k, then ﬁi(x) =a; ... ai_]E}.

For each of the morphisms hi’ i =1,...,n, we associate m

(For i=1, u](x) = 5}.)

morphisms 9550 j=1,....m, defined as follows:

gij(a) = hi(a) for a e I,
gij(E) = “j(hi(a)) for ace I,
9,-J-(S) = uj(W)-

An additional morphism G is defined by
G{(a) = G(a) =a for acZ, G(S)=S5.

The set of morphisms of G] consists of the morphisms Gij

and G. (Observe that some of the morphisms G.. may be identical.

ij
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Of course, the "duplicates" can be removed.)
It is now easy to verify that
adh(L(G)) = 1jm(L(G])).
This is a consequence of the following two facts. (i) Every w-word in

1im(L(G,)) is over the alphabet . (if) L(6;) n $* = pref(L(G)). O
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