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ABSTRACT

With the enormous growth in the application and use of distributed
computing, it is of paramount importance that useful strategies and
techniques be developed for the design and implementation of programs
suitable for such environments. We present in this paper a methodology
for the development (and analysis) of programs designed specifically
for distributed environments where synchronization is achieved through
message passing. The methodology is based on techniques and concepts
which have been found to be useful for the development of sequential
programs -- namely, stepwise refinement and abstract data types. The
methodology is based on the concept of resource, generalizing the concepts
of monitors, managers, proprietors, etc. We put forward the proposition
that a resource is an abstract data type together with mechanisms for
synchronization: firstly, for the operations of the type with each other
(to gain parallelism) and, secondly, to enable the user environment to
perform operation invocation. A methodology is then presented for the

design of resources and their implementation.

Keywords: Methodology, stepwise refinement, distributed
computing, message oriented programming, abstract
data types, synchronization, resource,

verification.



1. Introduction

In the last few years the various approaches to parallel programming,
from Dijkstra's semaphores [10] to Hoare's monitors [17], responded to
the need for good engineering techniques for parallel programs. (In fact
they encompassed ideas from structured programming, program verification
and programming with abstract data types.) Nevertheless, since all these
techniques relied upon shared variables they failed to match up with the

present needs for fully distributed systems.

The current trend in parallel programming is programming through
messages and processes. The general idea of message passing for inter-
process communication was preliminarily discussed by Brinch Hansen in [2].
More recently the concept has been discussed in a more general setting,
by presenting processes and messages as both a structuring tool and as a
synchronization mechanism. Instances of this recent effort can be found
in Zave [22, 23], Jammel [19], Hoare [18] and in the description of multi-

processing systems such as Demos [ 1], Mininet [21] and Thoth [4 ].

Zave [22] has argued for the naturalness, usefulness and generality
of programming with messages and processes. We think that a further
characterization of this programming technique is necessary. It needs
to be at least as well understood as the techniques for parallel program-
ming with shared variables. In other words, design principles, specifica-
tion and proof methods need to be developed for the complete characteriza-

tion of this novel programming style.

In this paper we attempt the development of a methodology for message

oriented programming (i.e. programming with messages and processes) based



on the concept of resource. Resources may be viewed as generalizations
to distributed environments of such concepts as monitors [ 3, 17] and
classes [9]. They may also be viewed as formalizations of concepts such
as managers [19] and proprietors [ 4]. We believe that the concept of
abstract data type is central in programming methodology and base our
proposed methodology on them. However, just as for monitors and as
opposed to the situation for sequential programs, we must also specify

in some manner two important aspects of the use of an abstract data type.
Firstly, we must specify how the operations of the data type may be
invoked by users of the type. Secondly, we must specify the degree of
parallelism which we wish to allow in the use of the operations of the
type. Note, however, that the parallelism specified must not violate
the properties of the type. We group these two aspects together under
the name "synchronization". A resource is then an abstract data type

together with these synchronization mechanisms.

We present in the next section an outline of and justification for
our resource based methodology. The methodology is based on the concept
of abstract data types plus synchronization together with the method of
stepwise refinement. We may divide the methodology into two parts: the
development of an abstract program and the refinement of this abstract
program (by the use of more primitive constructs to implement the abstract
constructs of the abstract program). The first part of the methodology
has been more fully outlined and justified in [5, 6 , 8 ] and we concentrate
here on the second part. Section 3 presents the development of an example
using the methodology. Section 4 discusses the principles of analysis

which may be associated with the methodology to prove properties of the



programs. Proofs are also outlined for the example of section 3. Section
5 presents some concluding remarks and outlines possible directions for

research in this area.



2. A Resource Based Methodology

We intend in this section to outline and motivate a methodology for
the development of programs for distributed environments where the synchroniza-
tion mechanism is based on the use of message passing primitives. The
starting point for the development of our methodology can be encapsulated
by the now famous aphorism which is the title of Wirth's book: "Programs =
Algorithms + Data Structures". We modify this slightly (but significantly)
by substituting "Abstract Data Types" for "Data Structures". The reasons
for this have been stated and elaborated elsewhere [12, 13, 15, 20] and we

will not repeat them here.

We note firstly, that the "Programs" of the aphorism were intended to
identify sequential programs - i.e. programs which were run in a single
processor environment. Similarly, the "Algorithms" were intended to be

sequential algorithms.

By using the principle espoused, programs could be developed to solve
particular problems by using a method called stepwise refinement. The first
step in this method is to identify the data types which are appropriate for
the solution of the problem. The appropriate control structures are then
identified and an algorithm is developed which makes use of these abstract
control structures and data types assuming that the control structures and
data types are correctly implemented. The stepwise refinement principle
now comes into effect and these control structures and data types are
implemented (hopefully correctly) in terms of more primitive control

structures and data types, respectively.



We would 1ike to apply similar principles in a distributed environment.
Thus a (non-sequential) program is defined in terms of a (non-sequential
or distributed) algorithm and some distributed version of the concept of
abstract data type. We want to retain the concept of abstract data type
because of its demonstrated power in the development of programs. However,
the concept was developed for sequential environments in which the operations
of the type could be invoked by a sequential program - i.e. the operations
could be invoked only one after the other. Thus the synchronization mechanism
for the use of the operations of the data type is not explicitly specified

as it is assumed to be a simple sequential one.

The methodology we develop will be based on the concept of resource.
This concept has its roots in such notions as monitors [3 , 17] (essentially
the development of a synchronization mechanism for the operations of a data
type in a situation where a shared address space is assumed), managers [19],
proprietors [ 4] and secretaries [11]. The underlying idea in all of these
is the explicit expression of synchronization mechanisms. Resources are
essentially an abstract data type together with a synchronization mechanism
expressed in terms of message passing primitives. These mechanisms are
used to allow as much parallelism as possible in the use of the operations
of the data type. This is, of course, at the heart of the development of
distributed computing - to gain efficiency by the use of parallelism. Thus

for us Wirth's aphorism becomes:

(Distributed) Program =

(Distributed) Algorithms + Resources
where

Resource =

Abstract Data Type + Synchronization.



However, an aphorism is not worth anything unless its aptness can be
demonstrated in a simple and convincing manner. We now outline our
methodology and, hopefully, demonstrate the aptness of the above aphorisms
with the example in the next section. For a fuller treatment of the first
part of the methodology outlined below, see [5, 6, 8]. As for sequential
programs, the first step in the development of a program is the identification
of the abstract data types (i.e. the bases of the resources) to be used by
the program. (As for sequential programs the choice will have a great
influence on the final solution which is obtained.) Once an abstract data
type has been identified (and presumably specified but not yet implemented)
we are left with the task of adding the synchronization mechanism. This
can be done as follows: Assume for the moment that the operations of the
type can be directly invoked as primitive operations by the programs performing
synchronization for the resource. Thus the resource is assumed to be
implemented on a single address space. (This assumption will later be removed
in the stepwise refinement process.) A formula, called the asynchronous
condition formula (acf), is now developed which expresses the conditions
under which operations of the data type may be invoked. Thus, it is at
this point that one determines the degree of parallelism which is desired
for the resource (within the 1imits set by the nature of the underlying
data type). Using the acf, one can now define the process structure (i.e.
the set of programs used for synchronization) associated with the resource
based on one of two possible criteria. Firstly, the functional strength
solution uses one process to control the invocation of the operations and
thus results in a centralized and sequentialized form of synchronization.
Secondly, the informational strength solution uses one synchronization

process for each operation of the underlying type. Thus, this corresponds



to a distributed and (possibly) highly parallel solution. See also
[5,6 ,81].

Once the process structure for a resource has been defined, for each
process in turn we establish a synchronization formula (sf) (in the form
of a regular expression) which establishes the sequence of message passing
primitives which the process will use to synchronize its activities with
other processes in the resource (if there be such) and the environment of
the resource. Then the process is defined by "filling in" the sequential
parts of the process which "fit" between the synchronization primitives

of the sf.

By following the above methodology, one obtains an abstract implementa-
tion of the resource and, based on the properties of the data type and
the synchronization primitives, one can prove properties of the abstract
program. At this point we use the idea of stepwise refinement and remove
the assumption that the synchronization processes of a resource can invoke
the operations of the underlying data type as primitive operations on a
shared address space. Two situations are now possible. Firstly, we may
keep the assumption of a shared address space for the processes and implement
the resource's underlying data type in the usual way. This corresponds to
the conventional situation and techniques for such implementations have been
well developed and studied [12, 14, 15, 16]. Secondly, we may develop a
distributed implementation for the data type. This involves the use of more
primitive resources (as opposed to the data types of the conventional
implementations) for the implementation of the resource in question. Thus,
the direct invocation of a data type operation is replaced by a procedure

call which implements the operation via a sequence of communications with



the resources being used for the implementation. Since all the synchronization
of the operations of the data type is done now by message passing the common
address space is no longer required and we may implement our distributed

data type with a pool of processors with disjoint address spaces.

Thus in the next section we will present a solution to the well known
bounded buffer problem. Our methodology will develop the resource called
"n-bounded buffer" and then implement this resource in terms of the more
primitive resources "Cell[i]" (a simple one place buffer) and "Pointer".

Other solutions (both distributed and non-distributed) are also discussed.

The advantages to be gained from such an approach are similar to the
benefits espoused for the analogous technique applied to sequential programs.
That is, we gain modularity in the solution and we also modularise the proofs
of properties of the system. The advantages of program modularity based on
the use of abstract data types has been detailed elsewhere and we will not
repeat these here. The modularity to be gained in proofs of properties will
be more fully outlined in section 4, but we may point out here that since
these programs use a control structure quite different from sequential
programs , new techniques are needed for modularizing the traditional aspects
of proofs (such as the correctness of implementation of a data type) as well
as the new or novel aspects of proofs (such as deadlock freeness, lack of
starvation, etc.). We hope our methodology lends itself to both these types

of modularization.

Our examples will be written in an Algol or Pascal like language aug-

mented by the following communications primitives:



sendz(m,msg): process £ sends message msg to process m;
sendz(m) : a signal from process £ to process m.
(i.e. the content of the message is
unimportant);
receivez(m) : process £ receives a message from message m;
rec-any, : returns a pair consisting of process name

and message.

These primitives are part of a data type defined elsewhere [7 ]. We do
not wish to say that the language illustrated is a "good" language, but we
do not want to cloud the presentation of the methodology with a discussion

of language issues.

3. An Example

To illustrate the resource based methodology described in the last
section we will develop a distributed message-oriented programming solution
to the bounded buffer problem. This problem can be informally stated in
the following way: a bounded buffer is constructed in order to smooth
variations in the speed of output by a producer process and input by a
consumer process [18]. The producer and the consumer processes repeat
their actions continuously and it is known that the buffer area is large

enough to hold n items.
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In this example, the buffer area can be thought of as a data type
where the items are the objects, and the operations are "place an item"
and "get an item". We consider the producer and consumer processes as
external resources which interact with the buffer-area resource. As
mentioned briefly in the last section, the first part of the methodology
(fully described in [ 6, 8 ]) consists of (i) identification of the resources
needed to solve the problem, (ii) establishment for each resource of the
asynchronous condition formula (acf) to specify the conditions under which
the operations may be invoked, (iii) establishment for each resource of
the process structure by using the criteria of functional strength or
informational strength together with synchfonization formulas (sf's) which
give the sequence of message passing primitives for each process that forms
the resource, and (iv) "filling in" of the sequential part. The second
part of the methodology, which is presented in this report, consists of the

introduction of the stepwise refinement concept as explained above.

The resource identified for this problem is the buffer area. We assume
that the data type (and consequently the operations "place an item" and
"get an item") associated with the resource has been implemented. The
conditions under which the operations "place an item" and "get an item"
may be invoked are NF (buffer area not full) and NE (buffer area not empty),
respectively. The corresponding asynchronous condition formula (acf) for

the bounded buffer problem is expressed as follows:
NF or NE = acf-producer or acf-consumer

(Note that if we had more than one producer or consumer process in the
bounded buffer problem then the acf would be NFANW (no other writers) or

NEANR (no other readers).)
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We are going to use the informational strength solution of the bounded
buffer problem as the starting point in the development of the ideas of our
resource based methodology. In this solution, we associate with the
resource one process for each of the preconditions "acf-producer" and
"acf-consumer". (Each process will manage a particutar aspect of the
resource.) It is possible to base the solution of the problem on the
process p-avpl(that manages the number of available places (avpl)) and
the process p-avit (that manages the number of available items (avit)).

The former process will treat the operation "place an item" from the
producer if "avpl = 0" (assuring NF) and thelatter one will treat the
operation "get an item" to the consumer if "avit = 0" (assuring NE).

The solution for the bounded buffer problem using the informational strength
approach is given below. (Note that we omit a discussion of the sf's for
these processes and the process of "filling in" as these are fully discussed

elsewhere [ 6, 817.)

process p-avpl ;
{ t: pair of strings ;

c-avpl: countern ;
area: buffer ;
while true do
if cval(c-avpl) = 0
then { t := rec-any ;
case t.name of
{ 'prod': {decr(c-avpl) ;
place(area,t.msg) ;
send(p-avit)}
'p-avit': incr(c-avpl) }
else { receive(p-avit) ;
incr(c-avpl) }
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process p-avit ;
{ v: pair of strings ;
c-avit: counter 0 ;
area: buffer ;
while true do
if cval(c-avit) = 0
then { v:= rec-any ;
case v.name of
{ 'cons': { decr(c-avit) ;
v.msg := get(area).value ;
send(cons, v.msg) ;
send(p-avpl) }
'p-avpl': incr(c-avit) }
e { receive(p-avpl) ;

—__.

incr(c-avit) }

(Note that the operations "place an item" and "get an item" can be executed

concurrently in this informational strength sé1ution.)

As mentioned in the Tast section, we assume that the process p-avpl
and p-avit use a shared address space and thus are able to invoke the
operations "place" and "get" of the data type called buffer directly. We
have also used in the solution the data type called counter with the
operations "cval" (gives the value of the counter), "incr" (increments
the counter by 1) and "decr" (decrements the counter by 1); The definition

of these data types is given as follows:
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a) Type Counter-0

Operations:

init: - Counter
cval: Counter - Natmod n
incr: Counter - Counter

decr: Counter - Counter

Axioms:

cval(init) = 0

cval{incr(c)) = if cval(c) = n then error
else cval(c) + 1
cval(decr(c)) = if cval(c) = 0 then error

else cval(c) - 1

(Counter-n is essentially the same data type as above, but with the axiom

cval(init) = n replacing the first akiom.)

b) Type Buffer
Operations:

new: -~ Buffer
place: Buffer x Value + Buffer
get: Buffer -+ Value x Buffer

X: - Value

Axioms:
We are assuming the fcllowing canonical form for a value of the sort

Buffer:



14.

place(place(...(place(new, x]), x2), cee)s xk).
get(new) = error
place(place(...(place(new, x]), cees xn), Xn+1) = error
where n denotes the size of the buffer area
get(place(b, x)) = if b = new then <x, new>
else <first(get(b)), place(second(get(b)), x)>
where the operations "first" and "second" give back the first or the second
element of the tuple respectively. Tuples are constructed by the operation
<..

A

(Example of using the last axiom:

get(place(place(new, a), b)) =

<first(get(place(new, a))),
place(second(get(ptace(new, a))), b)>

<first(<a, new>), place(second(<a, new>), b)>

<a, place(new,b)> )

In the above solution, we assumed a centralized representation of the
data (buffer area). At the next stage in the stepwise refinement process,
this assumption can be changed to reflect a distributed representation of
the data type. This is done by replacing operation invocations by appropriate
message passing activities and the centralized version of the buffer by a

distributed version. The resource buffer considered previously can be
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replaced by (or defined in terms of) two resources: a resource called

Cell [i] (belonging to a set of n identical cells) and a resource called
Pointer (two versions of which are used as pointers to get items from the
cells and to place items into the cells). The definition of the data types

Cell [i] and Pointer is given as follows:

a) Type Cell[i]

Operations:
A » Cell

read: Cell - Value
write: Value ~ Cell

X: -+ Yalue
Axioms:
read(A) = error

read(write(x)) = x

b) Type Pointer

Operations:

init: - Pointer
val: Pointer - natmodn

imodn: Pointer - Pointer

Axioms:
val(init) = O
yal(imoedn(c)) = val(c) (:E) 1

where (:) denotes addition modulo n.
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We are going to use the first part of our methodology as described previously
(and further detailed in [6 , 8] to design the programs that manage these
two resources. We will also define the resource Counter assuming that

we do not have direct access to it{that is, it belongs to another address
space).

(i) Identification of the resources:

In this case, the resources are the Cell1[i] and Pointer which form
the distributed version of the buffer-area resource. The corresponding
operations are "read" and "write" for the resource Cell[i], and "val"
(value of the pointer) and "imodn" (increments the pointer by 1 modulo n).
The resource Counter was defined above and, as we know, it includes the

operations "val", "incr" and "decr".

(ii) Establishment of the acf:

The asynchronous condition formula (acf) for each resource, which
expresses the conditions under which the operations of the data type may
be invoked, is now developed. Al1 the operations involved in the three
resources Counter, Cell1[i] and Pointer have similar characteristics, namely,
the reading of the value of an object or the writing of a new value for
the object. As we know, operations of reading and writing should be mutually
exclusive. For example, where reading the value of a counter we should not
increment or decrement its value and vice-versa. In view of this, the
asynchronous condition formulas for the resources above are expressed as

follows:

a) Counter : NIAND (condition for cval) or NRAND (condition for incr)
or NRANI (condition for decr) where NR, NI, ND are the conditions

"no reading"”, "no incrementing"”, and "no decrementing", respectively.
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b) Cel1[i]: NW (condition for read) or NR (condition for write) where

NR, NW are the conditions "no reading", "no writing" respectively.

c) Pointer: NI (condition for val) or NR (condition for inmodn) where

NI, NR are the obvious conditions.

(i11) Establishment of the process structure and sf:

In the functional strength approach, we associate with the resource
one process which treats the conditions of the acf (separated by the
delimiter or) by cases. In the informational strength approach, we
associate with the resource one process for each of the conditions of the
acf and therefore, each process will manage a particular aspect of the
resource. When establishing the process structure of the resource, we
can use the functional strength approach, the informational strength
approach or a compromise between the two. A functional strength solution
will be designed for the resources Counter and Cell[i] since it is not
possible to achieve a higher parallelism by using more than one process to
manage the resource. An informational strength solution will be chosen
for the resource Pointer because the reading and writing operations are

executed in different cells (slots of the buffer area).

Now for each process we write a synchronization formula (sf) which
establishes the sequence of message passing primitives that the process will
use to synchronize its activities with the other processes. A sf is a kind
of regular expression with the usual delimiters ";", "or" and "*" (the

symbols denote sequentiality, alternation and iteration). The synchroniza-

tion formulas (which are trivial in this case) are defined below. Let us
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denote receive by r and send by s.

a) Process c-avit: [r(p-avit); (s(p-avit, avit) or nil)]*

Process c-avpl: [r(p-avpl); (s(p-avpl, avpl) or nil)]*

b) Process cell-i: [(r(p-avpl) or (r(p-avit); s(p-avit, msg)]*

c) Process r-pointer: [r(p-avit); s(p-avit, first)]*

Process w-pointer: [r(p-avpl); s(p-avpl, last)]*

(When writing a sf, we use the other related and already designed expressions
(sf's) in order to help the design of this sf or to validate the whole
message passing activity (a complete match of the sending and receiving
commands must exist). The expressions above will be used when designing
the sequence of message passing primitives that will replace the direct

invocation of operations in the centralized representation of the data type.)

(iv) Filling in of the sequential part:
This part is independent of the communication mechanism and it may
depend on implementation details. We use the synchronization formulas as

a skeleton to write the final form of the processes defined previously.
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process c-avpl ;
{ avpl: integer;
msg: string ;
avpl:=n ;
while true do
if (avpl < 0) v (avpl > n) then abort
else { msg: := receive(p-avpl) ;
case msg of
{ 'r': send(p-avpl, avpl) ;
'1': avpl := avpl + 1 ;
'd': avpl :=avpl - 11}

process c-avit ;
{ avit: integer ;
msg: string ;
avit := 0 ;
while true do
if (avit < 0) v (avit > n) then abort
else { msg := receive(p-avit) ;
case msg of
{ 'r': send(p-avit, avit) ;
i': avit = avit + 1
'd': avit :=avit-111



process cell[i: 0..n-1] ;
{ x: pair of strings ;
item: cell-i ;
while true do
{

bad

1= rec-any ;

if x.msg = nil

then send (x.name, read(item))
else write(x.msg) }

process r-pointer ;
{ first: pointer ;
while true do
{ receive(p-avit) ;
send(p-avit, val(first)) ;
imodn(first) }
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process w-pointer ;
{ Tast: pointer ;
while true do
{ receive(p-avpl) ;
send(p-avpl, val(last));
imodn(last) }

Now we are going to present the new code for the processes p-avpl
and p-avit for the distributed solution. Here>the direct invocation of
a data type operation is replaced by a procedure call which implements
the appropriate sequence of messages passing primitives for the new

distributed implementation of the buffer-area resource.



process p-avpl ;
{ t: pair of strings ;
function c¢val: integer ;
{ send(c-avpl, 'r') ;
avpl := receive(c-avpl) }

procedure incr ;
{ send(c-avpl, 'i') }
procedure decr ;
{ send(c-avpl, 'd') }
procedure place(item: string) ;
{ send(w-pointer) ;
send(cel1[receive(w-pointer)],item) }
while true do
if cval # 0
then { t := rec-any ;
case t.name of
{ 'prod': { decr ;
place(t.msg)
send(p-avit)

[ T

'p-avit': incr
else { receive(p-avit) ;
incr }

22.



process p-avit ;
{ v: pair of strings ;
function. cval: integer ;
{ send(c-avit, 'r') ;
avit := receive(c-avit) }
procedure incr ;
{ send(c-avit, 'i') }
procedure decr ;
{ send(c-avit, 'd') }
procedure get(item: string) ;
{ x: string ;
send(r-pointer) ;
x:= receive(r-pointer) ;
send(cell[x], nil) ;
jtem:= receive(cell[x]) }
while true do
if cval = 0
then { v := rec-any ;
case v.nsme of
{ 'cons': { decr ;
v.msg := get ;
send(cons,v.msg) ;
send(p-avp1) }
'p-avpl': incr }
else { receive(p-avpl) ;
incr }
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Other implementations of the buffer are of course possible. Firstly,
assuming a non-distributed implementation, there are available the
standard implementations of the resource's underlying data type. An
obvious such implementation is in terms of an n-vector of objects and two
integer pointers. Secondly, if we again assume a distributed implementa-
tion, a number of interesting solutions present themselves (including the
one given above). For example, suppose we have available the resources
cel1[i] and counter, as above, and a new resource implementing the para-
meterized data type "queue of X". Then the buffer could be implemented
by a queue of cells (of Tlength less than or equal to n). The operation
place could be implemented by checking to see if the buffer is full
(using counter) and if it is not, then creating a new cell, placing the
object in the cell and then inserting this cell in the queue (and of
course, incrementing the counter). The operation get could be implemented
by removing a cell from.the front of the queue, if such exists, reading
the object from the cell, destroying the cell and decrementing the counter.
This implementation would be much more "dynamic" than the one presented

above.
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4. Verification of Resource Based Programs

It was indicated earlier that our methodology is such that it lends
itself to the modularization of proofs of properties of the programs based
on resources. That this is advantageous is clear from mathematics as well as

experience with proving properties of sequential programs.

Before we can outline these proofs, however, we must define our
correctness criteria. This is known to be a hard problem for distributed
systems, but we hope that our methodology provides the framework for settling
this issue for resource based programs. Proofs will be considered in two
parts corresponding to the two parts of the methodology (abstract program

and refinement).

Firstly, concerning the proofs for the abstract program, we have
assumed in the first part of our methodology that the abstract data type
on which the resource is based has been correctly implemented. Thus we may
use the properties of the type in proofs concerning the "abstract" resource.
We also have another criterion by which to judge the correctness of our
implementation -- the asynchronous condition formula (acf). We thus propose

to prove the correctness of our design by proving three properties:

(i) We must show that the acf guarantees the integrity of the underlying
data type. That is, assuming operations are invoked only when the
corresponding part of the acf is true, then the properties of the
underlying data type are not "violated" by parallel invocations of

operations.
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(ii) We must show that the acf holds for the synchronization programs
of the resource. More precisely, we must show that the part of
the acf corresponding to a given operation is an invariant at the

point in the synchronization program where the operation is invoked.

(i11) Finally, we must show some properties related to termination.
For example, we must show that the resource is deadlock free

with respect to its synchronization (communication) activities.

Secondly, we must show that the implementation of our abstract resources
are correct. This amounts to showing that the resource's underlying data
type has been correctly implemented in terms of other resources (which have
already been proved correct). Techniques for this are fairly well developed
as this amounts to showing that one data type is correctly implemented in

terms of others.

The outline of the correctness proofs for the abstract programs are

described as follows:

a) Resource Buffer:

Firstly, we are going to show that the asynchronous condition formula
(acf) guarantees the integrity of the data type. As defined previously the
acf for the resource Buffer is (NF or NE). This acf assures that we cannot
get an item from an empty (new) buffer (first axiom of the data type) or
put an item into a full buffer (second axiom of the data type). Therefore,
it follows that the operations place and get can be invoked concurrently

only if they refer to different slots of the buffer. (Otherwise, we have
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an empty buffer or full buffer situation.) If the operations place and get
work in different slots then the final configuration of the buffer will be
equivalent to one of the sequences get(place(place(...(place(new, x]),...),
xk), Xk+1)) or place(second(get(place(...(place(new, X1)"")’Xk)))’xk+1)
which correspond by the third axiom of the data type. Secondly, we have

to show that the processes p-avpl and p-avit satisfy the conditions imposed
by the acf. The process p-avpl assures that the operation place is only
invoked when "avpl > 0" (NF). If "avpl = 0" then the process p-avpl blocks
itself until the other process p-avit signals that a place is available.
The same kind of reasoning can be used for the other case involving the

operation get and the prdcess p-avit which assures NE.

We have outlined proofs of the correctness of the abstract programs
related to the conditions imposed by the acf. Now it is necessary to prove
that the message passing activity does not lead to a deadlock situation.
(Other properties such as starvation are not going to be treated here
although our solution is starvation-free.) By analyzing the sequence of
message passing primitives of the processes involved (producer, consumer,
p-avpl and p-avit), we can see easily that there is a complete match of
the sending and receiving operations in these processes. That is, every
time a process x sends a message the corresponding process y is prepared
to receive it. Therefore, the abstract program is deadlock-free. (For
more details about the calculus for deadlock-freeness the reader should

refer to [7 ].)



28.

b) Resource Counter:

As we know, the acf for the resource Counter is ((NIANC) or (NRAND)
or (NRANI)). This expression guarantees the integrity of the data type
because the three conditions (separated by or) are handled by the same
prccess and therefore the operations are executed sequentially (no
possibility of reading and writing at the same time). For the same reason,
it is easy to see that any of the processes p-avpl or p-avit satisfy the
acf above. The simplicity of the communication mechanism (just one "send"
and one "receive") makes the proof of deadlock-freeness trivial when

relating this resource with the external environment.

c) Resource Cell[i]:

The acf for the resource Cel1[i] s (NW or NR) as defined in the last
section. The operations read and write of the data type Cell[i] are similar
to the operations cval and incr (or decr) of the data type Counter. Here
these two operations are also handled by the same process as in the previous
case ard thus, the operations read and write do not overlap. Deadlock-freeness

also follows easily from the code of the program.

d) Resource Pointer:

In this case the acf for the resource Pointer is (NI or NR). The
operations val and imodn of the data type Pointer have also a reading and
writing behaviour, respectively. The whole reasoning about the correctness
of the abstract program is similar to our last two cases. We are not going

to repeat them here in order to save our readers from boredom.

The outline of the proof of correctness of the implementation of the

buffer in terms of cells and pointers is as follows:
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The initial buffer's properties are guaranteed by the initial values
of Counter-0, w-pointer, and r-pointer (namely, 0) and that of counter-n
(namely, n). For the axiom get(new)= error, we note that our synchronization
program p-avit prevents the use of get on an empty buffer. Thus we have Teft
out of the procedure get a check for this error. (To be strictly correct,

we should rewrite this procedure as follows:

procedure get(item: string) ;
{ X,y: string ;
send(r-pointer) ;
X := receive (r-pointer) ;
y := receive (w-pointer) ;
if x =y then abort
else { send(cell[x], nil) ;
item := receive(cell[x]) 31 ).

The correctness of place with respect to the second axiom re placing in a
full buffer should be qualified by analogous comments to the above. That
the last axiom can be verified is straightforward. The only other resource
which has been (directly) implemented is counter and we leave it to the

reader to verify its correctness.
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5. Conclusions

This report presents a resource based methodology for the development
of message oriented programming. As stated before, a resource is viewed
as an abstract data type plus synchronization and may also be considered
as generalizations to distributed environments of concepts such as
monitors [17] and classes [ 9]. The principles of our resource based
methodclogy are based on the concept of abstract data types. We may divide
the methodology into two parts: the development of an abstract program and
the ccorresponding refinement of this abstract program. The first part of
the methodology invclves the identification of the resources and the design
of an abstract program assuming that the operations of the data types
implemented by the resources can be invoked directly (fully justified 1in
[6, 8]). The second part, which corresponds to the idea of stepwise

refinement, was the main concern of this paper.

In section 2 our resource based methodology for distributed environments
was motivated by referring to Wirth's famous aphorism "Programs = Algorithms +
Data Structures". After that, it was outlined and justified by using the
theory of abstract data types. In section 3 the methodology was illustrated
by the design of several solutions (both distributed and non-distributed)
for the bounded buffer problem. The solutions were fully described and
exhaustively examined. In the last section we outlined a framework for
proofs of the abstract programs where we made heavy use of the idea of
modularization of proofs. We hope that the usefulness of the methodology
has been demonstrated and we also think it may be used in other areas such
as design of distributed data bases. Other directions for further research

include: (i) a correction of the synchronization calculus ([7]) with some
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appropriate calculus for the verification of program properties, (ii) use

of the methodology in a dynamic environment with creation and destruction

of resources, and (iii) specification of a language suitable for development
of programs in our methodology. These questions will be the subject of

future work.
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