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DEVELOPMENTS IN THE THEORY OF REGULAR LANGUAGES™

Janusz A. Brzozowski
Department of Computer Science, University of Waterloo
Waterloo, Ontario, Canada

Although the number of researchers working on problems related to regular languages is
presently quite small, significant developments have taken place during the past five years.
Powerful new tools for studying families of reqular languages and the corresponding finite
monoids have been provided by tilenberg in his theory of varieties. The variety approach
has been used by Straubing and Thérien to characterize families of languages whose syntactic
monoids contain only solvable groups. Other examples of recently studied monoid varieties
include R-trivial and related monoids. Some recent results on closure properties of
varieties and on the connection between codes and monoid varieties will be discussed.
Several relatively old problems that were solved recently will also be treated.

1. INTRODUCTION

In the preface of their monograph published in
1971 McNaughton and Papert [28] state:

"Until recently the significant classi-
fication of automata divided finite from
infinite machines ... There were, of
course, definitions of subclasses; for
example, definite-event machines, But
the significant theorems took no account
of these definitions.

This situation has changed. In this
monograph we shall study a particular
class of finite automata."

The class they studied was that of counter-
free automata and the corresponding star-free
languages. Now the situation has changed
again, quite significantly. Many new classes
of finite automata and regular languages have
been characterized. Moreover, the study of
these classes has been systematized through

the use of the theory of varieties of languages
and semigroups.

The connection between finite automata and
regular languages was established by Kleene in
1951 [20]. In 1957 Myhill [29] characterized
recognizable languages by congruences of

finite index. A systematic treatment of these
topics may be found in Rabin and Scott's paper
[40] written in 1957. Finite monoids and semi-
groups have been associated with finite
automata and regular languages by many authors;
a clear exposition of the concept of syntactic
monoids was written in 1966 by McNaughton and
Papert [27].

The first subclass of reguiar languages to be
introduced was that of definite languages
defined by Kleene [20]. This subclass was
later studied by several authors: Perles,
Rabin and Shamir [33] in 1961, Brzozowski [1]
in 1962, Ginzburg [15] in 1966, and Steinby
[48] in 1969.  Two classes closely related to
the class of definite languages were also
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considered: reverse definite languages [1,15],
and generalized definite languages [15].

A much larger and more significant subclass,
that of star-free languages, was characterized
by Schiitzenberger in 1964 [42]. In 1968 a
systematic framework for the study of sub-
classes of the class of star-free languages
was provided by the dot-depth hierarchy of
Cohen and Brzozowski [9,10]. In that frame-
work the class of finite/cofinite languages
emerged as a basic building block.

In the early 1970's characterizations of
several more classes were found. It became
clearer that natural characterizations of
classes of regular languages and classes of
finite semigroups or monoids correspond. Thus
we have the semigroup characterization of
locally testable languages by Brzozowski and
Simon [8], McNaughton [26] and Zalcstein [56,
57,58], and of piecewise testable languages by
Simon [45,46]. The study of depth-one lang-
uages [8,45] showed that finite/cofinite,
definite, reverse definite, generalized defi-
nite, and locally testable languages are the
simplest languages at the very "bottom" of an
infinite hierarchy approaching the depth-one
languages, i.e. languages requiring at most
one Tevel of concatenation. Also, the piece-
wise testable languages were shown to be very
special cases of depth-one languages. The
class of depth-one languages is, in turn, at
the bottom of the infinite dot-depth hierarchy
leading to the star-free languages. Thus the
results mentioned must be viewed as a very
modest beginning, since they were confined to
subclasses of depth-one languages.

A rather major breakthrough in the study of
classes of regular languages came with the
publication of Eilenberg's work on varieties
[12]. The concepts of varieties have been
used previously in the theory of automata and
languages, notably by Schiitzenberger (e.g. in
F417]), but the first systematic treatment
appears in [12]. During the last five years
numerous varieties of languages and semigroups
have been characterized, and the theory of
subciasses of regular languages is now very



rich indeed. Moreover, many concepts of class-
ical mathematics have been successfully applied
to the study of these languages.

Sections 3 through 7 of this paper survey
recent contributions to the theory of varieties
in general, and also to characterizations of
particular varieties. The last section
summarizes some recent contributions to the
theory of regular languages that do not fit
this general pattern.

2. SEMIGROUPS, CONGRUENCES, LANGUAGES AND
AUTOMATA

We begin with a brief review of some basic con-
Eepﬁs; for more detail see [11], [12], and
25].

A semigroup (S,+) is a set S with a binary
operation -+ (called multiplication or pro-
duct) that satisfies the associative law:
re(s-t) = (res)+t for all r,s,t ¢ S. An
idempotent of S 1is any element e of § sat-
isfying e-e = e. A zero of S 1is an element
of S, wusually denoted by 0, such that

O:s = s+0=0 for all s ¢ S. Note that S
can have at most one zero, and that 0 1is an
idempotent of S. A unit or identity of S

is an element of S, wusually denoted by 1,
such that 1-s = s+1 =5 for all s ¢ S. Note
that S can have at most one unit, and that 1
is an idempotent of S. A monoid is a semi-
group with a unit element. A group is a
monoid in which every element _s has an
inverse s-! satisfying: ss-1 = s-1s = 1,

A subsemigroup of a semigroup (S,+) fis a
subset T of S such that t,t' ¢ T implies
tet' ¢ T; i.e. (T,+) 1ds itself a semigroup.
A submonoid of a monoid (M,+,1) is a subset
T of M such that (T,-,1) 1s a monoid. Let
(S,*) be a semigroup and T < S a subsemi-
group of S. If T has a unit element e,
then (T,-,e) ds a monoid in S. If a monoid
in S dis a group then it is called a group in
S.

Given subsets of a semigroup S one defines
the usual boolean operations: if T,R < §
then TuR, TnR and T=S ~T denote
union, intersection and complement, respec-
tively. We also extend the multipiication in
S to subsets, i.e. TR = {s|s =tr, t e T,

r e R. (The dot for the product is frequent-
1¥ omitted for convenience.) If T < S then
TT denotes the subsemigroup of S generated
by T: T¥ = U,qTM, where M1 ="TAT 7> 1,
If S 1is a monoid we define T*, the sub-
monoid generated by T, as T* = Uyyg TN,

where T0 = {1} for all T.

Let S be a semigroup, T < S, and s e S.
We define the left anF right quotients of T
by s as_follows: s™'T= {s" ¢ S[ss' ¢ T},
and Ts-1 = {s' e sls's ¢ T}.

The direct product of two semigroups (S,-)
and (T,o) 1is the semigroup (SxT,o) where
(s,t) o (s',t') = (s<s5',t>t'} for all

s,s' ¢S, t,t' T.

A morphism ¢ from a semigroup (S,-) to a

semigroup (T,°) s a mapping ¢ : S~ T such
that (s+s')p = (s¢) o {s'ep). ¢ 1is surjective
if T = Sw; then T 1is said to be a morphic
image of S. If ¢ 1is surjective and injective
{7-1) then it is a semigroup isomorphism from S
to T and we write S~ T. If (5,+,1) and
(T,o,1) are monoids, then ¢ : S > T 1is a mon-
oid morphism if it is a semigroup morphism and
T¢ = I. Usually the unit elements of both S
and T are denoted by 1. A semigroup T
divides a semigroup S, written T <SS, {iff T
is a morphic image of a subsemigroup of S.

Let S be a semigroup and o an equivalence
relation on S; o 1is a congruence on S iff
sas' and tat' implies stas't'. If
a and B are congruences on S and Bca
then o s a superset of 8. Let S and T
be semigroups and let ¢ : S+ T be a semi-
group morphism. If B s a congruence on T
we define a congruence o = g~ " on S by
s(Be~V)s' iff {s¢)B(s'p). We say that

o = Be-! is obtained from B by an inverse
morphism.

Let A be a finite non-empty alphabet and A*
the free monoid generated by A with unit 1.
An element w e A* is called a word and 1 is
called the empty word. The product in A* is
frequently called concatenation. For w e A*,
lwi denotes the Tength of .w. Any subset of
A* is called a language over A.

If LcA” and o is an equivalence relation
on A*, then L is an o-language iff L is a
union of equivalence classes of «, i.e.

Xoy impliesA*x € Ldiif y e L. 62ven at o
language c we define ‘=, the syntactic
congrugncg_of L, as fol]ows.L For x,y € A™,
X = Y iff (uxv e L iff uyv e L), for all
u,v e A*. The quotient monoid M, = A*/z s
called the syntactic monoid of L. The natural
morphism o : A" oM, mapping a word w e A*
into the equivalence class [w] of = con-
taining L, 1is called the syntactic morphism
of L.

In some cases we must restrict the definition
of a language to be a subset of A%, the free
semigroup generated by A. The concept of
a-language is then defined with respect to an
equivalence relation on A*. The syntactic
congruence is defined as follows. For

X,y € Aty x =z y iff (uxv e L iff uyv e L)
for all u,v e A¥ and not for all u,v e A*.
The quotient semigroup S = At/ s called
the syntactic semigroup of L, and

oL ¢ AY > S is the syntactic morphism. 1f
it is necessary to distinguish between subsets
of At and A* we will call them +-languages
and *-languages, respectively.

We assume that the reader is familiar with the
basic concepts of the theory of finite autom-
ata. A semiautomaton (Q,A,t) consists of a
finite, non-empty set Q of states, an
alphabet A and a transition function =
which gives, for each state q ¢ Q and input
a ¢ A, the next state, usually denoted by

ga, qa ¢ Q. A finite automaton (Q,A,r,qO,F)
is a semiautomaton in which qg ¢ 0 is a
designated initial state and F < Q 1is the
set of final states. The language accepted by



an automaton is L = {w | qopw « F}. Every
semiautomaton defines a finite monoid, its
transformation monoid, whose elements are
transformations of Q dinto itself associated
with input words w e A*; q ¢ Q is transformed
to qw by w. If a finite automaton is reduced,
its transformation monoid is isomorphic to the
syntactic monoid of its language. Thus one can
view a finite automaton as a generator of the
syntactic monoid.

Most results about language families discussed
in this paper have elegant statements in terms
of monoids. For brevity we will avoid giving
similar statements about automata. Note that
each semigroup (S,*) can be viewed as a semi-
automaton (S,S,+).

3. VARIETIES

3.1 S-varieties and +-varieties

Qur objective is to study families of semi-
groups (or monoids), congruences, and lang-
uages; we begin with semigroups. It is known
from universal algebra that the concept of a
family of semigroups closed under division and
direct products leads to important useful
results. Since the semigroups corresponding
to regular languages are always finite, only
finite direct products are used, and a re-
stricted notion of variety.

An S-variety V 1is a family of finite, non-

empty semigroups satisfying the conditions:

SeV and T<S dmply TelV, (3.1)
S,5' € V implies S x S' e V. (3.2)

Further motivation for requiring closure under
division and direct product is provided from
the finite automata point of view. We can
think of any semiautomaton as having a certain
computational power. It is natural to include
in any family containing a semiautomaton S
any semijautomaton T . that can be realized by
S. Thus, if T 1is a subsemiautomaton of S,
then S can do anything that T can do, or

S has more power than T. This also holds if
T 1is a morphic image of 'S, and we are led to
(3.1). . Similarly, if we have semiautomata S
and S' we can operate them in parallel and
?bta;n the power of S x S'. This justifies
3.2).

To avoid the degenerate case of the empty S-
variety we usually assume that each S-variety
V contains at Teast one non-empty semigroup
S. In that case V also contains the one-
element semigroup 1 {which is also a monoid),
since 1 < S for any non-empty S. In terms
of semiautomata this means that the one-state
semiautomaton is always included. Note that
{1} 1is an S-variety - the trivial one.

For any family X of semigroups we denote by
(X)s the least S-variety containing X.

We next turn to languages. Observe that two
Tanguages over two distinct alphabets can have
isomorphic syntactic semigroups; therefore, we
consider all finite alphabets. A +-class

V = {AtV} of languages consists of families
AtV of reaular subsets of At defined for

each finite non-empty alphabet” A. A +-variety
V of languages is a +-class V¥ = {A*VT of
Tanguages satisfying:

L,L' ¢ A*V implies L e A*v

and L u L' e AtV (3.3)
L e A*V, x ¢ At implies

x1L, x! e IR (3.4)
if ¢ : Bt = At is a semigroup morphism then
L ¢ A*v implies Lo~ ¢ BYv. (3.5)

Thus a +-variety is closed under boolean
operations, quotients and inverse morphisms.
To avoid the empty +-variety, we add 9 ¢ Atu,
for all A. This implies that At = § 4s also
in V. Note that the family A*V = {p,A*}
defines a +-variety; this is the trivial
+-variety.

S-varieties and +-varieties are closely related.
If V is a +-class let V= (SL | L ¢ A* . for
some A)S be the S-variety generated by the
syntactic semigroups S, of languages L from
V. We write V>V if V is obtained from

V 1in this way. Conversely, given any S-
variety V, we define the +-class V by V=
{AtV} and A*V = {L | L < At and S| e V},

and we write V > V. Here V is the class of
all languages whose syntactic monoids are in

V. It can be shown that for every S-variety

V, V>V implies V¥V >V and that V is a
+-variety. Conversely, if V 1is a +-variety
then V -V dimplies V -» V. This is summar-
ized by Eilenberg's variety theorem [12]:

Theorem S S-varieties and +-varieties are in

1-1 correspondence.

A third point of view has been added to the
variety theory by Thérien [54]. It involves
varieties of congruences, which one can view
as a concept falling between S-varieties and
+-varieties of languages.

A +-class A = {A"A} of congruences consists of
families A*A of congruences of finite index
on AT defined for each finite alphabet A.

A +-variety A of congruences is a +-class

A = {ATAY of congruences satisfying

o e A*A and 8 > o imply 8 € AtA; (3.6)
a,0' ¢ ATA implies a n o' e ATA; (3.7)

if o : 8" > At isa semigroup morphism then

a ¢ AtA implies ap”! ¢ BYA, (3.8)

where u aw-] v holds in BY iff (up)a(ve)
holds in A*. Thus a +-variety of congruences
is closed under superset-taking, intersection,
and inverse morphisms in the sense of (3.8). To
avoid the empty +-variety we add wp « A*ta for
each A, where wy is the universal congru-
ence: u wp v, for all u,v e A*. Note that
the family A*A = {wp} defines a +-variety --
the trivial +-variety of congruences.



To establish the correspondence between con-
gruences and semigroups define

AV ifV=1{S|S ~AYqa, o ¢ ATA for some A}
and
V+aifa={a | AY/a ~S for some S ¢ V).

One verifies that
A~V dimplies V » A,
VA implies AV,

and that +-varieties of congruences define S-
varieties and vice versa. From Theorem S it -
follows that +-varieties of congruences and
+-varieties of languages correspond.

Example 3.1 Consider the trivial S-variety
{1}, the trivial +-variety V = {ATV} of
languages where A*V = {p,A*}, and the tri-

vial +-variety A = {wa} of congruences.
These three concepts correspond.

Example 3.2 Let A*V = {L < A* | either L
or L is finite}. Then V ={A*V} is a +-
variety of finite/cofinite languages. A semi-
group S s nilpotent iff S has a zero O
and there exists an integer n > 1 such that
SN = 0. One verifies that the family V of
nilpotent semigroups is an S-variety. Let

Yk, k 2 1 be the congruence on A' defined by
uvg v iff (Jul <k and u=v) or (Jul,ivl
> kg. Thus all words of length = k are in
the same congruence class. Now let AT =

{yk | k 21} and let A be the least +-
variety of congruences containing {A*rj}.

Then one can show that V, V and A correspond;
i.e. the following are equivalent:

(a) L e AY is finite/cofinite,
(b) SL is nilpotent,
(¢) L is a yg-language for some k = 1.

3.2 M-varieties and *-varieties

It would appear that the distinction between
semigroups and monoids is very minor and per-
haps unnecessary. In fact it is essential.
Consider the language L= a over the alphabet
{a,b}; L 1is finite and its syntactic semi-
group S; is nilpotent. _Its syntactic monoid
is M. = {1,m,0} with mé = 0. The syntactic
monoid of the language L' = b*ab* 1is isomor-
phic to M_. This shows that L and L' are
not distinguishable by their syntactic monoids,
though they are distinguishable by their semi-
groups since S_ i o~ M_* 1is not nilpotent.
Since many concepts appear more naturally in
monoids, we consider also varieties of monoids.

A M-variety V 1is a family of finite monoids
closed under division and finite direct pro-
ducts. The corresponding language and con-
gruence concepts use A*" instead of A*.

Thus a *-class V of languages is V = {A*V},
where A"V s a fagi]y of reqular *-languages,
i.e. subsets of A". A *-variety of lang-
uages is a *-class closed under boolean
operations (where L = A* - L), quotients
(where x~1L = {w ¢ A* | xw ¢ L}), and in-
verse monoid morphisms. A *-variety of con-

gruences is a *-class closed under superset-
taking, intersection and inverse monoid
morphisms. We obtain:

Theorem M M-varieties and *-varieties are in
1-1 correspondence.

Example 3.3  The trivial M-variety V = {1},
the *-variety V = {A*V}, “where AV = {@,A"},

and the *-variety A = {wp} correspond.

Example 3.4 The M-variety of all finite
monoids, the *-variety of all regular languages,
and the *-variety of all congruences of finite
index correspond.

Example 3.5 Let V be the class of idempo-
tent and commutative monoids, i.e. monoids M
satisfying

m2 =m and mm' = m'm
for all m,m' ¢ M. One verifies that V is an
M-variety. Let A*V  be the boolean closure of
Tanguages (A-a)* for all a ¢ A. For in-
stance, for A = {a,b}, A*V is the set of all
unions of the languages {1,a*,b*,A*aA™ o
A*bA*}, as one can easily verify. Finally,
let the congruence o be defined by x a y iff
x and y contain exactly the same letters, and
let A be the *-variety generated by o. Then
one can show that V, V and A correspond.

When the meaning is clear from the context we
will say variety instead of +-variety, S-
variety, etc.

3.3 Closure properties

Some recent contributions to the theory of vari-
eties deal with closure properties. A *-
variety V is closed under star 1f for every
alphabet A, L e A*V implies L™ ¢ A*V. Simi-
Jarly V 4s closed under concatenation if A*V
is closed under concatenation for each alphabet
A. Perrot [34] has shown that the only *-
variety closed under the star operation is the
*-variety of all regular languages. The proof
utilizes a theorem of Pin [37]. Perrot also
observed that the smallest nontrivial *-variety
closed under concatenation is the *-variety of
star-free languages. This follows from
Schiitzenberger's theorem [42]. For results con-
cerning closure under the shuffle operation,
under literal morphisms and inverse substitu-
tion see the survey by Perrot and Pin [36].
Straubing found a characterization of all
varieties closed under concatenation [51]. He
showed that, if V 1is the closure of nontrivial
variety V under boolean operations and con-
catenation, then V (the M-variety correspond-
ing to V) 1is the smallest M-variety which
contains. V {corresponding to V) and is
closed under inverse images of aperiodic mor-
phisms.

Straubing has studied language varieties
corresponding to closure under the operation of
taking power sets [53]. If M is a finite
monoid, then so is P(M), the power set of M,
If V is an M-variety, let P(V) be the M-
variety generated by {P(M)IM ¢ V}. V 1is said
to be closed under power sets if V = P(V).

For example, if V = {1} 1is the trivial M-
variety, then P(V) 1is the M-variety J1 of



idempotent and commutative monoids. Next
P(J1)} turns out to be the M-variety of commu-
tative apericdic monoids. This last variety is
closed under power sets. The closure of the S-
variety of aperiodic semigroups is the S-
variety of all finite semigroups. Straubing
asked whether the sequence V < P(V) c P2(V) <
can ever be infinite. The question was
answered negatively by Pin who showed that
pa(v) = P5SV) [38; However, the question
whether P3(V) = P3(V) s stil? open. The
operation on language varieties corresponding
to the operation V » P{V) on M-varieties is
the operation of literal morphism [53] (calied
very fine morphism by Eilenberg).

4. SUBWORD-COUNTING LANGUAGES

4.1 Counting congruences

The largest proper subfamily of the family of
finite monoids that has been studied is the M-
variety MggL of monoids whose groups are
solvable. This family was first characterized
by Straubing [49,50] in 1978. It was also
studied in a somewhat more general setting by
Thérien in 1979 [54,55]. We begin with
Thérien's apprecach which uses congruences.

Let N ={0,1,...} be the set of all non-
negative integers. For t =0, m=1 we de-
fine the congruence 6¢,;m on N as follows:

a 6g.m b iff (a <tandb=2a) or (aczxt,
b>t,anda=b (mod m)). We say that 6t ,m
counts modulo m with threshold t.

let A be a finite, non-empty alphabet and
x,u e A*¥ with u = aj...a,, where aj ¢ A
for i=1,...,n, and n > 1. The binomial
coefficient Ixly is defined as the number of
factorizations: x = vpaiviaz ... vp-1apVn
with vg,...,vn € A", In other words Ixly
gives the number of ways that u appears as a
subword of x. Also we adopt the convention
that x| =1 for all x ¢ A*. We say that
u appears in x 1in context (vo,...,vn) in
such a factorization.

We now define an equivalence relation o I3
on A" that counts the number of times Eﬁaf
each subword of length =< & appears in a given
word X, where the counting is done modulo m
with threshold t 1n the following sense,

For t>0,m=21, %20 and for X,y ¢ A%,

X O .m,L y 1ff X]u t.m ]ylu _

for all u e A® with Jul < &, One veriffes
that at,m,q 1s a congruence of finite index
on A*.

Counting in context with respect to a congruence

is defined next. Suppose B is a congruence
of finite index on A*. Llet u = aj...ap, and
Tet W = (wg,...,wy) be an (n+1)- tup]e of
words that we will interpret as a context for
u. If n=20, lxl]st =1 if x Bwy and

IX]]’WB = 0 otherwise. ]X|u,W5

is the number of factorizations x = vpay...apvy
with Vs B Ws for j=1,...,n.

We will use the notation Bat p o for the con-
gruence that counts subwords of length =< ¢

For n > 0,

modulo m with threshold t in context with
respect to B. (Note that this is not the

usual compos1t1on of relations.) More precisely
for X,y ¢ A*

X Bat,m’z y 1ff |Xlu,w8 et,m ‘ylu’wB »

for all u e A* with Jjul < and for all
W= (wgs....wq) with Wy € A*
Note that, although the number of distinct con-
texts is infinite for each n, the number of
equivalence classes of contexts with respect to
the congruence B s finite since B s
assumed to be of finite index. Thus But

is also of finite index, and one verifies tﬁat
it is a congruence on A*.

Starting with the universal congruence w on A*
we construct a sequence of congruences of finite
index, where each successive congruence counts
in context with respect to increasingly more
complex congruences. This is done by induction
on i, the number of jterations, as follows:

0 -
Stomee T Y
it _ i .
and ut,m,z = at,m,l at,m,l’ for i =2 0.
Note that a‘ = ao o = wo =
t,m,2 t,m,& "t,m,L t,m,2
% g since counting in any context W with

respect to _w_is equivalent to ignoring the

context. a%*% 2 is the congruence that counts

subwords of length < 2 modulo m with thres-
hold t 1in context with respect to the con-

!
gruence ag o .

4.2 Thérien's hierarchies

It turns out that a family of congruences de-
rived from a% _— is sufficient to charac-

terize all finite monoids whose groups are
solvable. Furthermore, by varying the four
parameters (threshold, modulus, length, and
iteration depth) one obtains hierarchies of
monoids and languages that correspond to some
well-known mathematical concepts. Each con-
gruence ut m,4 generates a *-variety of con-

gruences that we denote by At m,2 as follows:
A* At m,% =latas 0‘t m, ﬂ} :

The notation * in place of a parameter
p ¢ {t,m,%,i} denotes_the union taken over all

values of p. Thus Al me = Y At me etc.
e t=20

We now discuss Thérien's results about hier-
archies defined by subword counting.

{i) Solvable groups

For concepts from group theory see Hall [16].

The left part of fig. 1 corresponds to varieties
of congruences where the parameter t (the
threshold) is set to 0, i.e. we concentrate
exclusively on modulo counting. With this re-
striction, counting letters without context

yields the variety Ag *,1 7 Bg* 1 which
corresponds to the varietv GARFI of abelian

for j=1,...,n.



Counting words without context yields
which corresponds to the variety GNIL

of nilpotent groups. Starting with abelian
groups, as we increase the parameter i (rep-
resenting the compiexity of contexts), we ob-

tain a hierarchy defined by Aa 1 which

groups.
AO.,* ’*

corresponds precisely to the varijety GDERsi

of solvable groups of derived length i.
Similarly, starting with nilpotent groups and
increasing i, we obtain a hierarchy Aé * %

of solv-

<

corresponding to the variety GFIT<1

able groups of fitting length =< 1.
AS’*,* corresponds to the variety G

all solvable groups.

Finally,
so. °f

In summary, the congruence approach provides a
new point of view for solvable groups and per-
mits us to capture many classical concepts from
group theory in one framework. .

(ii) Aperiodic monoids

The right part of fig. 1 shows hierarchies of
aperiodic monoids, i.e. monoids whose groups
are trivial, one-element groups. To obtain
this we set the parameter m (the modulus) to
1. Thus modulo counting is impossible, and we
concentrate on threshold counting only. The
variety analogous to abelian groups is the
variety MAP,COM of aperiodic commutative

monoids defined by Al 117 D qq- This

corresponds to counting letters to a threshold
without context. Counting words to a threshold

without context leads to Al 1.% which corres-

ponds to the variety of J-trivial monoids dis-
cussed in the next two sections. Note that
MJ—TRIV is analogous to GNIL; both count

subwords without context, in one case to a
threshold t, 1in the other modulo m.

Note that varieties analogous to those defined
by derived length and fitting length for groups
exist also in the case of aperiodic monoids but,
to the best of our knowledge, these varieties
have not been studied. Fig. 1 suggests that
their study may be very fruitful [54].

(iii) Monoids with solvable groups

Combining thresQo]d counting with modulo count-
ing leads to Ay , . which corresponds to MSOL'
Some of the parameters of Aé _—
inated in certain cases [54]. For example, one
can reach solvable groups by counting letters
only, instead of arbitrary subwords since

AS % % = AB x 1+ However, a higher iteration

b ’ 3 ?

can be elim-

index is required to define the same families.
Similarly, counting letters with threshold 1
is sufficient since Ay , 4 = A? % - Also,

] 3 ] ]

the concept of context can be made one-sided as
described below.

4.3 Straubing's counting

Given a language L < A* and a word w e A*

let w_ be the number of non-empty prefixes of

w that belong to L. For example let L =

(auba*b)*. Then (abb), =2 and (baa), = 0.
* . .

Also, for any w e A", Was s precisely the

*
ZS*H*’*
MsoL
%* - \§*
Ao,x,* ®,1,%
GsoL M aper
1/” ~~ /// \\\

i i i i
Bo,w,» Bo,x,i AR Bu,1, %
GriT<i GpERSi

T ! 1
| SOLVABLE 1 ; APERIODIC
} GROUPS ! ! MONOIDS |

1 10 1 m=t
Bowx |L__ | Do, Dy L__] But,n
GniL GaBEL Map, com My ~TRIV

TN "

Fig
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Thérien's hierarchies.




length of w. Now let L < A*, m=>1 and
0 < r <m. Define the language

<L,r,m > = {we A% | wosr (mod m)}.
In particular, the language < La,r,m > with
a ¢ A plays a key role in Straubing's work.
It is the set of all words w such that the
number of factorizations w = xay with x ¢ L
is congruent to r modulo m. One can view
this as a sort of counting of letters in left
context defined by L.

Denote by GSOL the variety of languages
corresponding to GSOL; i.e. L A*GSOL iff .

ML € GSOL' Similarly, we define MSOL'

Straubing's characterization of G
by the following theorem [50]:

soL S given

Theorem G (Straubing)

SOL
The family A*GSOL

syntactic monoids are solvable groups, is the
smallest family F of languages such that

(a)ﬂeFa
(b) L,L' ¢ F implies Le FandL ul'eF,

(¢} LeF implies < La,r,m> ¢ F, for all
aeA,m21 and O <r <m.

of Tanguages over A whose

Thus A*GSOL is characterized as the smallest

family containing the empty language and closed
under boolean operations and Straubing counting.

Recall that Kleene's theorem characterizes A*M,
the variety of languages over A whose syn-
tactic monoids are finite, as the smallest
family containing letters and closed under
boolean operations, concatenation and star.

Thus we have:

Theorem M (Kleene)

The family A*M of languages over A whose
syntactic monoids are finite is the smallest
class F of languages such that

(a) {a} ¢ F forall achA,

(b) L,L' e F implies Le FandL v L' ¢ F,
(¢) L,L' ¢ F implies LLY e F ,’

(d) L eF 1implies L* e F ,

Straubing's theorem for MSOL is analogous to

Kleene's theorem, with the star operator re-
placed by counting. Thus we have [50]:

Theorem Mo (Straubing)

The family A*MSOL of languages over A whose

syntactic monoids have solvable groups is the

smallest family F of languages satisfying

(a), (b) and (c) of Theorem M and

(d) L eF dimplies < La,r,m> ¢ F for all
acA,m=1 and 0 <y <m.

A particular case of Straubing's theorem with

the parameter m = 1 yields Schiitzenberger's

theorem characterizing A*MAPER as the smallest

family of languages containing letters and
closed under boolean operations and concatena-
tion.

Straubing has also found two hierarchies related
to his counting operation. For any family F
of languages over an alphabet A let FB de-
note the boolean closure of F. Define A, =

0
{B}, and for i 20,ac¢A,m>21,0<r <m,
Bi = AiB
and Ai+1 = Bi u{<Lla,rsm> | L ¢ Bi} .

Then Straubing shows that L ¢ Bi iff ML is a

solvable group of derived length i; i.e. de-
rived length is directly related to the number
of nested counting operations. Similarly let
Co = {{a} | a ¢ A} and for i =20, a ¢ A,

mz21,0<r <m, let Di be the closure of
C. under boolean operations and concatenation

i
and C, ., = Di v {< La,r,m> | L € Di}'

i+]
Then L e Di iff the abelian group complexity
of M is < i. For details see [50].
5. STAR-FREE LANGUAGES

In this section we describe recent results con-
cerning star-free languages, i.e. the variety
of languages whose semigroups are aperiodic. As
we have seen, this is the case where only
threshold counting is permitted.

5.1 Dot-depth hierarchy

For any family F of +-languages (subsets of
At) let FS be the semigroup closure of F,
i.e. the smallest family containing F and
closed under concatenation. Define the follow-
ing hierarchy:

BO = {{a} | a « AlB
and for i =20
_ i i+1
Bi+] = BisB = BO(SB) .
One can interpret B_i as the set of all lang-

uages that can be constructed from the letters

of the alphabet by using no more than i Tlevels
of concatenation (i.e. "dot" operation). Hence
the sequence BO c B] c 82 c ... 1is called the

dot-depth hierarchy [9,10]. Each family Bj
defines a +-variety of languages and UizO Bi

defines the +-variety of +-languages whose
syntactic semigroups are aperiodic. The ques-
tion whether the dot-depth hierarchg was finite
was posed in 1968; it was shown to be infinite by
Brzozowski and Knast in 1977 [6]. The proof of
this result is not easy and uses congruences of
finite index related to decompositions of words.
A somewhat different proof was found by Straub-
ing [52]. The problem of characterizing B,

for i1 =2 remains open, and it is not known if
one can decide whether a given star-free lang-
uage is in Bi'



5.2 Depth-one languages

Languages in B, were characterized by Simon
in terms of cer%ain congruences [45]. Let W =
{Wy,...,w ) be an n-tuple of words of length
2. We say that W occurs in a given word x
iff there exist words UpseeeslpsVyseesVy

such that lu1| < qul < L. < Iunl and x =
uiwivi, for i=1,...,n.
x = ababb. Then the following pairs (2-tuples)
of words of length 2 appear in x:
(ab,ba),(ab,ab),(ab,bb),(ba,ab),(ba,bb). Note
that the pair (ba,ab) occurs only with "over-
lap", as x = a(ba)bb = ab(ab)b.

For example, let

For X e A*, define the front fl and the

tail ty of length & of x for 2 = 0:

xf2 = th =x, if x| <23

xf2 is the prefix of length & of x,
if x| 22 ;

xtg is the suffix of length & of x,

if x| 2 &,
Also for each n =20, 2 21, x ¢ A* define

xUp o = {W=(w1,...,w.) | lwy 1 =

n, i eee = Wil =3,

0<i<n,l1<j=<4a and W occurs in x} ,

where xU0 5= {1} for all x e A* and j =1,

by convention. We now define the congruence
s which turns out to characterize depth-

one languages. For X,y e Af,n=20,221,
S iff Xfl-] = yfl_], xtz_1 = ytl_]

and xU U

n,% Yy n,L’
Simon has shown that a +-language L is of
depth-one iff it is a o language for some

2
n=0, £ =1. However, this characterization
is not constructive for it is not known how to

find n and 2&.

The various families defined by sz are

shown in fig. 2. We briefly discuss some
special cases. For the time being consider
only the central rectangle of languages defined
by various values . of n and &.

(i) n=0, £ =1: Trivial

This corresponds to the trivial +-variety
{9,A™} and the trivial S-variety {1}. Note
that {1} is also an M-variety.

(ii) n=10, & = *: Generalized-definite

Here we are testing only the front and tail of
length £ - 1 for each word. This defines
the +-variety corresponding to the S-variety
satisfying

' eSe = e

for all idempotents e ¢ S. [8,31,56]

(iii) n=1, 2 = 1: Letter-testable

Here the test for front and tail is trivial,
and two words are congruent iff they contain
the same letters. This corresponds to the M-
variety of idempotent and commutative monoids
discussed in Example 3.5.

(iv) n=1, 2 = *: Locally testable

For a given £, the congruence tests the front
and tail of length £ - 1 arnd the set of seg-
ments of length & that appear in a given word.
The corresponding S-variety satisfies the con-
dition:

eSe 1is jdempotent and commutative
for all idempotents e ¢ S. [8,12,26,56,57,58]

APERIODIC
H- TRIVIAL
I
i
|
]
DEPTH-TWO
-
=T I
]
G - TRIVIAL !
< |
R-TRIVIAL} [L-TRIVIAL :
<~ —> I
> ]
J-TRIVIAL | _ DEPTH-ONE
n=x,4= 1 n=x, b=
! )
| '
] 1
| 1
| BI-LOC-TEST]
n=2,0=1 T T n=2 ,P= %
| !
! 1
LETTER-TEST} __ _ _ __ | LOC-TEST
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Fig. 2. Simon's hierarchies.



(v) n=2,0 =% Bi-locally-testable

The test consists of front, tail, and pairs of
segnents appearing in a given word. A semi-
group characterization of this family of lang-
uages was found by Knast in 1979 [21]. The
characterization is rather involved.

No characterizations are as yet known for the
families defined by 1 for n > 2.

(vi} n=* 48 =1: Piecewise-testable

For a given n, the congruence tests -the set
of all n-tuples of letters appearing in a given
word. The front and tail tests are degenerate.
This family defines the M-variety of J-trivial
monoids, i.e. monoids M satisfying

MM = Mm'M  implies m=m

for all m, m' ¢ M. This remarkable corres-
pondence was found by Simon in 1972 [45,46,12].

(vii) n=*, & = *: Depth-one

Consider, on the one hand, the M-varieties
defined by ! in the left-most column of the

rectangle in fig. 2, and, on the other hand,
the corresponding S-varieties defined by n

in the right-most column of the rectangle. For
= 0 and 1 we have the following pattern:

£ =1. L s in the family iff its syntactic
monoid ML has property P .

2 =* L 1is in the family iff, for each
1dempotent e in SL, the mon01d eSLe has
property P

We also have for n=*, £ = 1: L is in the
family iff ML is J-trivial. It is natural

to ask whether this pattern extends to case
n=%* 8=% 1j,e. whether the condition

eSLe is J-trivial for each idempotent e ¢ SL

characterizes the family B1 of depth-one
languages. Simon showed that the condition is
necessary [45], but the question of sufficiency
remained open for many years. In 1978 Knast
[22] showed that the condition is not suffic~
ient. A counter-example is provided by the
language L over {a,b,c,d}:

L = (ab* v ac*)*ab*d(c*d u b*d)*.

Although eSLe is J-trivial for each e ¢ S,
the language is not of depth-one.

Knast also proposed a characterization of B
in 1978 [22] as follows: A language L is
in B, 1iff there exists an integer n > 0

such that for all idempotents e, € SL and
and for all a,b,c,d ¢ SL

(e]aezb)ne]aezde] (ceyde, A

A key point in the proof is a difficult
theorem on certain congruences on graphs [23].
The details of the proof of this result on
graphs still need to be supplied.

n n
(e]aezb) e](cezde]) .

The families of languages in the "diamonds" out-
side the central square of fig. 2 will be dis-
cussed shortly.

The notion of local testability can be extended
as follows. Define the congruence £/m on AT
as follows. For all x,y ¢ At

X L/my iff xfz_] = yfl_], th-l = ytg-]

i)

and |x|u Iylu mod m

for all u with Jul = 2. A language is
strictly periodically locally testable iff it
is an 2/m-language for some 2 > 1, m=>1.
Knast has shown that L is strictly periodi-
cally locally testable iff S, 1is finite and
for each idempotent e ¢ S, , the monoid eSLe

is an abelian group [24]. Of course these
languages are no longer star-free, in general.

6. R-TRIVIAL AND RELATED LANGUAGES

Before discussing R-trivial languages, Tet us
consider the "diamond" in the lower right-hand
corner of fig. 2. It consists of the general-
ized definite languages (where the front and
tail are tested), the definite languages (tail
only), the reverse definite languages (front
only) and the finite/cofinite languages (length
only). The conditions for membership in these
families can be restated as follows:

(i) eS = e = Se - Every idempotent is a zero.
e

(ii) €S = - Every idempotent is a left

zero.
(iii)Se = e - Every idempotent is a right
zero.
(iv) eSe = e - Every idempotent is what one

might call a "half-zero"
(two e's are needed around
s eS toyield e).

The concepts of the four types of zeros can be
generalized as follows. In any monoid M,
define the subset Pm of M for each me M by:

Pm ={m'" eM | me Mn'M}.

One can view Py as the alphabet of m in M,
i.e. as the set of all elements in M with
which m can be written. Let M = P; be the

submonoid of M generated by Pp. The concepts
of local zero, Tocal left zero, etc. are defined
with respect to sets of the type M . Thus we
have:

(i)' eM, = e = M e - Every idempotent is a

local zero. This turns out to be a characteri-
zation of the M-variety of J-trivial monoids
[2]. The corresponding languages are the
piecewise-testable languages, where membership
of a word in a language is determined by the
n-tuples of letters occurring in the word.

(ii)! eM,_= e - Every idempotent is a local left

zero. This characterizes the M-variety of R-
trivial monoids, i.e. those satisfying
mM = m'M implies m=m', for all m, m' ¢ M.



The corresponding languages have been studied
by Eilenberg [12] and Brzozowski and Fich [5].
Membership in such a lanquage is determined not
only by the set of n-tuples of letters appear-
ing in a given word, but also by their order of
appearance, from left to right. The corres-
ponding automata are precisely the partially
ordered automata, where the partial order on
the states is defined by reachability.

(iii)' M e = e - Every idempotent is a local

right zero. This defines L-trivial monoids
where Mm = Mm' dimplies m =m'. The lang-
uages are those where membership is determined
by n-tuples of letters and their order of
appearance from the right.

(iv)' eMge = e - Every idempotent is a local
half-zero. These monoids are called G-triv-
ial. The languages are analogous to genera-
lized-definite languages, and the order of
appearance of n-tuples of letters is consid-
ered both from the left and from the right
[13,14]. We will return to this family
shortly.

As seen from fig. 2 the generalized definite
diamond constitutes the beginning of the depth-
one finite/cofinite hierarchy. The analogy
above suggests that the G-trivial diamond is at
the bottom of a similar hierarchy. Thus the
next family of monoids to be studied would be
the family of monoids M satisfying: eMee is

idempotent and commutative for each idempotent

e in M. The language family is a generalization
of the locally-testable family, but it has not
been studied.

In general, R, L and G-trivial languages are
not of depth-one, but they are all of depth 2.
Also, G-trivial languages do not contain B].

We have introduced the G-trivial family of
monoids through the language hierarchies.
However, they had been previously studied in
1976 by Schiitzenberger [43] from a different
point of view. He has shown some remarkable
properties of this family. The concatenation
LL' of two languages L and L' is called
unambiguous iff each w e A* admits at most
one factorization w = uu' with uel,

u' ¢ L'. Define the family G of languages
over A as the smallest family satisfying

{a} e G for all aeA,

B* ¢ G forall BeA,

G is closed under disjoint union and
unambiguous concatenation.

Theorem G (Schiitzenberger)

A language L is in the family G iff its
syntactic monoid ML is G-trivial.

In & similar fashion Schiitzenberger found
characterization of the languages corresponding
to R-trivial, L-trivial and J-trivial monoids
by restricting unambiguous concatenation to
deterministic, reverse deterministic and bi-
deterministic (unambiguous) concatenation,
respectively. (A product LL' is determinis-
tic iff either L s prefix-free or LL' is
prefix-free and L' « A. L is prefix-free if

no word of L 1is a prefix of any other word of
L.)

7. CODES

A code C over alphabet A is a subset of A%
such that for all UjsVy € C

U, ... =
u V-I v

1 n m

implies n =m and up = v, for i=1,...,n.
If € is a code and w ¢ C° then w is called
a message. The definition above implies that
every message in uniquely decipherable. A pre-
fix code is a code in which no word is the pre-
fix of any other word. A prefix code C is

full iff for each w ¢ A®

wA* nCA*#p;

i.e. each w 1is either a prefix of some word
in C or has a prefix which is in C.

For a general survey of fundamentals of the
theory of codes, the reader is referred to [35].
We are interested here in the role that codes
play in variety theory as discussed in [36].

At firs; glance, the study of languages of the
form C° where C 1is a full finite prefix code
appears to be very restrictive, since one would
expect such languages to have very simple
properties. In fact the opposite is true. In
discussing the closure properties of varieties
in Section 3 we mentioned a theorem of Pin. The
complete statement of that theorem is [37]:

Theorem C (Pin)

For every finite monoid M there exists a full
finite prefix code C such that M divides the
syntactic monoid MC* of C.

This arbitrary complexity that can be represented
by prefix codes provides sufficient motivation
for their study. Also the star operation is
rather poorly understood [4]. The study of par-
ticular Tanguages 1ike codes should shed some
light on this. Note that the star operation on
codes is unambiguous.

Further evidence that codes are important in
variety theory is provided by the following re-
sults of Pin [39,36]. UWe say that a +-variety

V is generated by a class C  of prefix codes
if V is the Teast variety V such that for
any alphabet A*, AV  contains all semigroups
C* with C c At and C ¢ C. We have the
following results [39]. A language L < A* is
pure iff for any ue A* and n >0, ulelL*
implies. u e L. L 1is very pure iff for all

u,v e A¥ u,v e A¥ uv € L™ and vu ¢ L* imply
uehA* and v e A%

1. The +-variety of regular languages is gener-
ated by the class of all finite prefix codes.

2. The +-variety of star-free languages is
generated by the class of all pure finite
prefix codes.

3. The +-variety of locally testable languages

is generated by all very pure finite prefix
codes.




For further recent results regarding finite
codes see also [19,30,32,44].

8. OTHER RESULTS

We conclude the paper by mentioning two recent
results about regular languages that are not
related to variety theory.

8.1 Limited languages

A language L c A* is limited iff there exists
an integer n such that (L u 1)n . The
star operation on a limited 1anguage 1s weak in
the sense that it can be replaced by a finite
power. The question of deciding whether a
given regular language is limited was posed by
the author in 1966. The question was answered
positively in 1977 by Hashiguchi [17] and,
independently, by Simon [47]. The first proof
is combinatorial in nature, whereas the second
is more algebraic and uses semigroup theory.

8.2 Regular equations

Let A be a finite alphabet. Systems of
equations of the form shown below are well-
known. Let

X. =U aX.,  ué., i1=1,...,n, (8.1)

i i,a i’
aehA ?

where 1 a € {X1, ..,Xn}, for all

ie {1,. ..,n} and for all a ¢ A and
8, e {@,{1}}. Then the system (8.1) is in 1-1

correspondence with a deterministic finite
automaton. It is also well-known that non-
deterministic finite automata correspond to
systems of the form

X. =U aF, ubd., i=1,...,n, (8.2)
T 2eA i,a i

where each F a is a finite (possibly empty)
union of elements from the set {X],...,Xn}.

It is natural to consider a more general system
than (8.2), where the Fi . are replaced by

arbitrary boolean functions in the variables

X]""’Xn‘ For example, we might have
X, = a{Xy uX,) ubX

1 1 2 2 (8.3)
X2 = aX] U b((X] n X2) U (X] n Xz)).

Such systems of equations were studied by
Brzozowski and Leiss [7]. It was shown that
they correspond to boolean automata, and have
unique regular solutions. In some cases these
systems provide very concise descriptions of
regular languages. For example, the two
equations (8.3) define a language whose reduced
deterministic automaton has 16 states.

9. CONCLUDING REMARKS

Due to time and space restrictions we have
been unable to include all the recent results
about regular languages. However, we have
attempted to present the highlights of the
work done during the last five years. We

firmly believe that many of the results dis-
cussed are very fundamental and quite signifi-
cant.

We refer the interested reader to [4] where
several old open problems (including the star
height problems) are discussed in some detail.
For a characterization of star height preserv-
ing morphisms see [18].
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