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Abstract

In this paper, we present four algorithms to evaluate the
product of sparse and dense Boolean matrices. The proposed al-
gorithms determine the Boolean product of two nxn matrices in
O(n**2) operations whenever one of the matrices is either
sparse or dense. Finally, the multiplication methods for

sparse Boolean matrices are extended to work with general

sparse matrices with the same time complexity.

Key words and phrases: Boolean matrix multiplication, sparse

matrices, dense matrices, bipartite graphs.



1. INTRODUCTION

With the notable exception of the "four Russians' algo-
rithm" [2], Boolean multiplication methods have been usually
extensions of general matrix multiplication techniques. Namely,
asymptotically fast Boolean algorithms [1,3] have been modeled
on the well known asymptotically fast algorithms for general
matrix multiplication [6,8]. Because of the versatility of
Boolean matrices and of their capability to model different
problems, to find efficient and practical algorithms (i.e. al-
gorithms that are simpler to implement than, and/or outperform
the asymptotically fast methods for special classes of ma-
trices) becames a relevant problem.

In this paper, we present four efficient and practical
multiplication methods particularly suited for sparse and dense
Boolean matrices. 1In fact, with the proposed methods we can
evaluate the product of two nxn Boolean matrices in O(n**2)
operations whenever one of the two matrices is sparse or dense.
In the following sections, we describe the framework and
present the algorithms for the multiplication of sparse and
dense Boolean matrices. Finally, we show how to modify the
multiplication algorithms for sparse Boolean matrices to work
with general sparse matrices with the same time complexity.
All the proposed algorithms use a data structure similar to the
classical structures emploied by the indexing techniques for

sparse and dense matrices.



2. THE FRAMEWORK

There is a natural correspondence between Boolean matrices
and binary relations on finite sets or, equivalently, finite
directed graphs. Thus, we can represent a nxn Boolean matrix B
by the sets R(B,i), i=1l,...,n, where R(B,i)={]jIB(i,j)=1}. The

sets R(B,i) are called adjacency lists of B. Analogously we

can define the predecessor lists P(B,i), i=1,...,n, where

P(B,i)={kiIB(k,i)=1}. Let m(B) be the number of non-zero ele-
ments 1in B; then, matrix B is said to be sparse if m(B)=0(n)
[71.

Let us remark that many indexing techniques for sparse ma-
trices use storage schemas very similar to the adjacency or the
predecessor lists, e.g. the indexing with row and column desig-
nators, with row vector indicators and column designation, with
row vector and column index vector, etc. [7]. We will not
further specify the implementation characteristics of the in-
formation structure used by the proposed algorithms; in fact,
whatever of the above data representations is effectively used,
this alters the complexity of the matrix multiplication only by
a constant factor [4]. Finally, let us remark that the adja-
cency and the predecessor lists, if not available, can be easi-
ly constructed from B in time O(n**2),

Before presenting the algorithms, let us introduce some
additional terminology that will be used in the following sec-

tions. As mentioned before, we can uniquely associate to each



Boolean matrix B a directed graph G(B)=(V(B) ,E(B)), where there
is a vertex in V(B) for each row and one for each column in B,
and there 1is an edge from the vertex associated with row i to
the vertex associated with column j if and only if B(i,j)=1.
Let h denote the isomorphic mapping between the set of rows and
columns and the set of vertices. It is easy to see that G(B)
is a bipartite graph and that {VR(B),VC(B)} is the bipartition
[10], where VR(B) and VC(B) are the set of the images of the
rows and columns of B, respectively. If B(i,j)=1, then h(3j)
is said to be reachable from h(i) in G(B). 1Intuitively, R(B,1i)
represents the set of the vertices reachable from vertex h(i),
and P(B,i) represents the set of vertices from which vertex
h(i) is reachable.

In this paper we are interested in the evaluation of the
product of two nxn Boolean matrices B=B1*B2. Without loss of
generality, let us assume VC(Bl1l)=VR(B2). Obviously,

VR (B)=VR (Bl1) and VC(B)=VC(B2).

3. ALGORITHMS FOR SPARSE BOOLEAN MATRICES

When evaluating the Boolean product B=B1*B2, if Bl or B2
is sparse, then we can take advantage of this fact in the com-
putation of the product matrix B. In this section, we consider
two cases, depending on whether Bl or B2 is sparse, and present

a simple and efficient algorithm for each case. Obviously, |if



both Bl and B2 are sparse, then any of the proposed algorithms

can be used.
Case 1 (B2 is sparse)

The algorithm AS to evaluate the product B=Bl1*B2 when B2 1is
sparse is described in the appendix.
In order to discuss the correctness and the complexity of

procedure AS, let us observe the following relation:

(1) B(i,j)=1 <==> j€ER(B,i) <==> § k€R(B1l,i) jER(B2,k) <K== h(3j)
is reachable 1in G(B2) from at least one vertex h(k) with

k€R(B1,1)

where <==> means "if and only if". It is easy to see that, for
each 1i€[1l,n], procedure AS performs the equivalent of a depth
first search [9] in G(B2) from all vertices h(k) reachable from
h(i); thus, procedure AS satisfies relation (l1l). Let us now
analyze the complexity of the algorithm. For a given i€[l,n],

the algorithm requires max{n,e(i)} operations,

where e(i)= Z IR(B,k) |.
k€ER (B1l,1)

Since e(i)g¢m(B2) and since this search is done for all i€[l,n],

in the worst case we need nvm(B2) operations. That is,



Property 1 Procedure AS determines the Boolean product of a
n=n matrix by a n«n sparse matrix in O(n**2) opera-

tions.

Let us remark that a procedure similar to AS has been used
to produce a fast expected time algorithm for Boolean matrix

multiplication [5].

Case 2 (Bl is sparse) :

Using the predecessor lists P(Bl,i) and P(B2,i), we can write a
procedure SA, similar to AS, to evaluate B when Bl is sparse;

the algorithm is described in the appendix.

Property 2 Procedure SA determines the Boolean product of a

n+n sparse matrix by a nxn matrix in O(n**2),

To prove the above property, let us observe that, if ver-

tex hi(j) is reachable from vertex h(i) in G(B), then h(i) is
T T
reachable from h(j) in G(B ), where B 1is the transpose of B.

Therefore, relation (1) can be re—-expressed as follows:
T
(2) B(i,j)=1 <==> i€P(B,j) <==> node h(i) is reachable in G(B )
T
from h(j) <==> node h{i) is reachable in G(B ) from at

least a node h(k) with keP(B2,j) <==> Jke€P(B2,j) i€P(B1,Kk)



For each j€[l,n], procedure SA performs the equivalent of a
T
depth first search in G(Bl ) starting from all vertices reach-

T
able in G(B2 ) from h(j); thus, it obviously satisfies relation
(2). The analysis of the complexity of procedure SA follows

the same lines as the analysis of procedure AS.

4. ALGORITHMS FOR DENSE BOOLEAN MATRICES

Given a nxn Boolean matrix B, its complement B is the nwn

Boolean matrix defined by

B(i,j)=1 <==> B(i,j)=0
We shall say that B is (very) dense if its complement is
sparse. Since B has m(§)=n**2-m(B) non-zero entries, where m(B)
is the number of non-zero elements in B, then we can say that B
is dense if m(§)=0(n).

Let us consider the product B=Bl*B2 when Bl or B2 is
dense. In order to reduce the complexity of the multiplica-
tion, we must take advantage of both the density of one of the
matrices, and the fact that we are dealing with Boolean ma-
trices. Namely we determine the zero entries of the product ma-
trix 1instead of the non-zero entries, and use the sets R(E,i)
and P(E,i) instead of R(B,i) and P(B,i). Again, we present two
algorithms, depending on Bl or B2 being a dense matrix. Obvi-
ously, if both Bl and B2 are dense, then any of the proposed

algorithms can be used. The algorithms (procedures AD and DA)



are described in the appendix.

Property 3 Procedure AD determines the Boolean product of a
n=xn matrix by a dense n=xn matrix in O(n**2) opera-

tions.

Let us first prove that procedure AD computes exactly the pro-

duct B. To do this, it is sufficient to observe that relation

(1) is equivalent to

(3) B(i,J))=0 <==> jgR(B,1) {==> v (J kerR(B1,1i) jER (B2,k))

<==> ¥k€R(Bl,i) jg(B2,k) ==> ¥kE€R(Bl,i) 3JER(B2,k)

That is, we must set B(i,j) to zero if and only if h(j) is not
reachable in G(B2) from any of the vertices reachable from h(i)
in G(Bl). It is easy to see that h(j) is not reachable from
any h(k)ev(Bl) if and only if mark(j)=IR(Bl,i)]l. To prove the
order complexity, let us observe that given i€{l,n], we search
the graph G(§§) starting from all the vertices reachable from
h(i) in G(Bl). Since the whole search will not take more than
m(B2) steps and since we repeat this process for i=1,...,n,
then the entire procedure will require at most n~m(§§) steps.
Since B2 is dense, then the above property holds.

Let us now consider the case of Bl being dense.



Property 4 Procedure DA determines the Boolean product of a

dense Boolean matrix by a Boolean matrix in O(n**2)

The proof follows the lines of the proof of Property 3, and by

observing that relation (2) can be re-written as

(4) B(i,j)=0 <==> 1i¢P(B,]) <==> 1 (3 kep(B2,]) iep (B1l,k))

==> V¥keP(B2,j) i@P(Bl,k) <==> VkeP(B2,j) i€P(B1,k)

5. EXTENSION TO NON-BOOLEAN MATRICES

The algorithms for the multiplication of sparse Boolean
matrices, AS and SA, can be easily modified to work with gen-
eral sparse matrices with the same time complexity. Unfor-
tunately, this property does not hold for the dense Boolean ma-
trix multiplication methods AD and DA. We will now describe
how to extend algorithms AS and SA to work with general ma-
trices.

Let us consider the product M=M1*M2, where Ml and M2 are
n=n matrices and at least one of them is sparse; i.e. it has
O0(n) non-zero elements. We can easily extend to non-Boolean
matrices the terminology introduced in the previous sections.
The adjacency list R(M,i) is the set of couples (index,value)
defined as follows: R(M,i)={(index,value) |M(i,index)=value#0}.

That is, p=(j,x)eR(M,i) iff M(i,j)=x#0; in this case we will



use the notation value [pl=x and index [pl=j. Analogously,
P(M,j)={ (index,value) |M(index,j)=value/0}.

We can still represent M in graph form:
GM)=(Vv(M) ,L(M) ,E(M)) is the directed edge-labelled bipartite
graph where V(M)=VR VC is the set of the isomorphic images of
the rows and columns of M, L(M) is the set of labels, and
E(M) VR VC L(M) is such that there is an edge e=(h(i), h(j) ,x)
from vertex hi(i) to wvertex h(j) labelled x if and only if
M(i,j)=x. The generalization of AS and SA to non Boolean ma-
trices 1is now straightforward. As usual, we present two algo-
rithms depending on whether M1l or M2 is sparse; the algorithms
(procedures GAS and GSA) are described in the appendix.

Let us analyze procedure GAS. When evaluating the entry

(5) M(i,9) = 2 M1(i, k) * M2(k,3).
ke[l,n]

we do not need to consider in the summation the contribution
for those k such that M1(i,k)=0 or M2(k,j)=0. Let Nij={ke€
[1,n] IM1(i,k)#0 and M2(k,j)#0}; then, relation (5) is
equivalent to |

(6) M(i,5) = 22 MI1(i,k) * M2(k,j).
kENi j

The set Nij represents exactly those vertices in VC(M1l) that
are reachable from h(i) in G(Ml) and from which h(j) is reach-
able in G(M2) (recall VC(M1l)=VR(M2)). It is easy to see that

2. INij| € m(M2).
je[lrn]



That is, for a given i€[l,n], we compute at most m(M2) multi-
plications and m(M2) additions. Since this is repeated for
i=1,...,n, and since M2 is sparse (i.e. m(M2)=0(n)), then
O(n**2) operations are needed. The analysis of procedure GSA

follows in a similar way. This leads to the following

Property 5 The product of two n»n matrices can be evaluated in

O(n**2) whenever one of the two matrices is sparse.

6. CONCLUSIONS

In this paper we have presented four efficient multiplica-
tion algorithms for sparse and dense Boolean matrices. The al-
gorithms work in time O(n**2) and use a data structure similar
to many classical structures for sparse and dense matrices (in

case of dense matrices, we obviously store the zero entries).

Extending some of the above algorithms, two O(n**2) multiplica-
tion methods for non-Boolean sparse matrices have been present-
ed. Finally, all the proposed algorithms will yield O(n £(n))
time bounds if sparse is defined to mean O(f(n)) non-zero en-

tries.
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APPENDIX

procedure AS /* B2 is sparse *x/
begin
integer mark(n);
for i=1 until n do
begin
for j=1 until n do mark(j):=B(i,]j):=0;
for all k€rR(B1l,i) do
for all jeR(B2,k) do
~  if mark(j)=0 then

begin
mark(j) :=1;
B(i,])):=1;
end;

procedure SA /* Bl is sparse */
begin
integer mark(n);
for j=1 until n do
begin
for i=1 until n do mark(i):=B(i,]):=0;
for all keP(B2,j) do
for all i€e(pP(Bl,k) do
~ if mark(i)=0 then
begin
mark(i):=1; B(i,j):=1;
end;

[
3
Q,

end;



procedure AD /* B2 is dense */
begin
integer mark(n);
for i=1 until n do
begin T

for j=1 until n do

end;
for all kerR(Bl1l,i) do
for all jeR(B2,k) do mark(j):=+ 1;
for j=1 until n do T

if mark(j)=TR(B1,i)| then B(i,j):=0;

end

procedure DA /* Bl is dense */
begin
integer mark(n);

for j=1 until n do

begin

for i=1 until n do

" begin T
mark(i):=0; B(i,j):=1;
end;

for all ke€P(B2,j) do
for all ieP(BI,k) do mark(i):=+1;
for i=1 until n do T
if mark(i)=[P(B2,3j)| then B(i,])=0;
end;
end; =



procedure GAS /* M2 is sparse */

begin
for i=1 until n do
begin
for j=1 until n do M(i,j):=0;
for all peR(M1,i) do
for all gq€R (M2, index [p]l) do
~ M(i, index T[ql):=M(i, index [q]) + value
value {ql;
end;
end; =

procedure GSA /* M1l is sparse */
begin
for j=1 until n do
begin
for i=1 until n do M(i,]j):=0;
or all p€P(M2,3j) do
for all ge€p (M1, index [p]) do
T M( index [ql,j):=M( index [ql,j)+ wvalue
value [q];

end;

(Pl

[p]



	

