A CASE STUDY
IN FAULT TOLERANT SOFTWARE

J. P. Black, D. J. Taylor,
and D, E. Morgan

Department of Computer Science
and
Computer Communication Networks Group
University of Waterloo
May, 1989

Research Report CS-88-24

(c) COPYRIGHT: Computer Science Department
University of Waterloo
Waterloo, Ontario, Canada



Abstract

The addition of redundancy to data structures can be used to
improve a software system's ability to detect and correct
errors, and to continue to operate according to its
specifications. A case study is presented which indicates
how such redundancy can be deployed and exploited at
reasonable cost to improve software fault tolerance.
Experimental results are reported for the small data base

system considered.

Key Words and Phrases: software reliability, software fault

tolerance, robust data structures, redundancy, error

detection, error correction, audit programs.



1. INTRODUCTION

Reliability 1is becoming an increasingly important
aspect of 1large software systems, due to their constantly
increasing complexity, and the growing cost of system
failure. One way of increasing software reliability is to
give the system the ability to detect and correct errors,
thus enabling it to continue to operate according to its
specifications, Our purpose in this paper is to 1illustrate
ways of applying redundancy to storage structures to improve
fault tolerance, including the application of some fairly
general theoretical results to a specific example.

The remainder of this section presents our terminology,
and then provides an overview of our approach to the case
study. A sample data base system, which was our point of
departure, 1is described in Section 2. Section 3 describes
the redundancy which was added to make the system more
robust, and Section 4 relates how such redundancy can be
exploited. Finally, Section 5 describes the experiments
performed to verify the effectiveness of the modifications,
and Section 6 presents our conclusions, a summary, and
suggestions for further work.

Using Randell's definitions [2], reliability measures

the degree to which a system adheres to a presumably
authoritative specification of its behaviour. Deviation of

the system from its specifications is a failure, which is

Black, Taylor, Morgan -2 - Case Study (2/5/88)



due to the presence of a fault. An error is that part of
the overall system state which 1is incorrect: it results
from the fault. Thus, in a data base system, repair of a
fault may involve changing or replacing a program, while
correcting an error 1involves changing the contents of the
data base.

As defined by Avizienis (31, there are two
complementary approaches to improving software system

reliability: fault intolerance or fault avoidance, and

fault tolerance. Fault intolerance attempts to ensure the

system is reliable before it is put into production, by such
techniques as structured programming, design, and testing,
as well as more formal techniques such as proofs of
correctness. These techniques may be complemented by the
fault tolerance approach, whose objective 1is to prevent
faults (of whatever origin) from producing failures during
normal system operation. Examples of fault tolerance
techniques are recovery blocks [2], process checkpointing,
rollback and recovery, and the use of redundant information
to detect and correct errors.

The following definitions will be used in discussing

data structures. A data structure is defined to be a

logical organisation of data. A storage structure is a

representation of a data structure. The representation
specifies whether nodes are to be adjacent or connected by

pointers, what pointers are used, and so on. An encoding of

Black, Taylor, Morgan - 3 - Case Study (2/5/88)



a storage structure 1is its representation on a particular
storage medium. The encoding specifies how pointers are
represented (absolute, relative, etc.), what fields are
packed into a single word, and so on. Thus, "binary tree"
is a data structure; a representation in which there are
pointers from each node to the left and right sons of the
node 1is a storage structure for a binary tree; and if we
also specify that pointers are stored as absolute addresses,
that is an encoding of a binary tree. (This terminology is
adapted from Tompa ([8].)

Our research is concerned with the addition of
redundant structural information to storage structures. The
forms of structural redundancy we consider are: counts,
identifier fields, and extra pointers., (These are described
in Section 4.) We have previously developed some general
theoretical results [5, 7]. Our purpose here is to describe
an empirical investigation with a particular set of data
structures which are sufficiently complex that our current
theoretical results are not able to deal with them.

We began with a small data base system, the Example
System (EXSYS), which contained staff data for the
University of Waterloo, and was developed during a course in
data base management systems. We assumed that the data
base, when subjected to a source of errors, would require
some form of redundancy and supporting software to detect

and correct the errors. We made no assumptions about their

Black, Taylor, Morgan -4 - Case Study (2/5/8@)



source: the errors could be due to hardware faults,
software faults, user mistakes, intelligent adversaries, or
unrelated system crashes.

As mentioned above, our basic technique was to add
redundant pointer fields, count fields, and identifier
fields to EXSYS' data structures so that errors could be
detected and corrected. 1In doing this, we both influenced
and profited from the theoretical results, which were
developed more or less concurrently. 1In order to make use
of the redundant structural information, we made extensive

use of an inter-related set of error detection and

correction routines, which we called audits. (The term
"audit" in this sense was originally used by Bell

Laboratories [1, 4].)

Our experimental method involved the use of a "mangler"
to pseudo-randomly inject errors into the data structures as
they were written to external storage. This permitted us to
draw conclusions about the effectiveness of the audits and

the added structural redundancy.

2. THE EXAMPLE DATA BASE

As seen by the user, EXSYS provides the ability to
query and update a data base of university staff and faculty

information. Each staff record contains about one hundred
characters of information, and may individually be added,

deleted, and changed. The query facility is based on the

Black, Taylor, Morgan -5 - Case Study (2/5/88)



dynamic creation and use of attribute lists, which are lists
of staff keys for those records having a particular value in
a given field. Examples are the "science" list of all staff
members whose faculty code has the ©particular wvalue which
indicates "science", and the "dean" list constructed on the
academic title code field. There are commands to create and
name an attribute list, delete an attribute list, find all
staff members on each of a set of lists, and to print all
attribute 1list names for a staff record field. We were not
particularly interested in the set of commands available,
but rather in the data structures which supported them.
EXSYS uses two files: the staff file and the index
file. Access to the staff file by primary key (staff
number) is by an externally-chained hash table residing in
the index file. 1In addition to non-structural information,
each staff record in the staff file contains a field which
links successive records on a given hash chain. The index
file consists of special records (called the master table,
master 1list, and hash table), free index file records, and
linked chains of attribute list blocks. Each block contains
some number of staff file keys which point to some of the
staff records on the attribute 1list. The master 1list
contains the headers for the attribute lists, including
their user-defined names, and the value being indexed for
each 1list. There are two distinguished attribute lists,

called the "$staff" and "S$free" lists, which group all staff

Black, Taylor, Morgan - 6 - Case Study (2/5/80)



records in the staff file according to whether they are
allocated ("$staff") or logically empty ("$free").

Record @ in the index file always contains the master
table, which is EXSYS' most important record. It contains
pointers to the master list and hash table records, and to
the linked list of free index file records. It includes a
description of the staff record fields, and for each field,
pointers to the first and last attribute 1list headers for
the field. (As mentioned, these headers reside in the
master list.)

Figure 1 shows the original form of the EXSYS data
structures. This is their unimproved form, which we call
Version @. Version 1, which we will not discuss in detail,
represented our initial attempt to add redundancy and to use
it for error detection and correction. As a first attempt
to integrate an audit system with a data base management
system, Version 1 was moderately successful.
Experimentation with Version 1, and the development of some
theoretical results motivated us to further improve EXSYS.
This resulted in Version 2, which retained the overall
design of Version 1, and which we describe in the next

section.

3. ADDING REDUNDANCY

As we have stated, we are interested only in the

addition of redundant structural information to storage

Black, Taylor, Morgan -7 - Case Sstudy (2/5/80)



MASTER TABLE MASTER LIST HASH TABLE
LIST KEY ] . ‘ STAFF KEY
HASH KEY : l_ .
FREE KEY - .
’ VALUE LIST )
. i KEY DESCR STAFF KEY
. NAME ] -
FIRST CHAR . .
LENGTH . ’
FIELD NUMERIC FLAG

DESCR] FL'-ZSS: t:z: | ///////////////// IBIESSER STAF :A :AECORD

: NEXT STAFF KEY

STAFF RECORD

FREE RECORD ATTRIBUTE LIST BLOCK
DATA
KEY i KEY
UNUSED STAFF KEY NEXT STAFF KEY
‘ ) {
L FREE RECORD . i STAFF RECORD
! STAFF KEY - DATA
UNUSED -
] -1
| FREE LIST [y (UNUSED
' HASH CHAIN
-1
STAFF KEY | -
STAFF KEY —-
-1
UNUSED
y

ATTRIBUTE LIST
FIGURE 1: EXSYS Data Structures, Version 0

Black, Taylor, Morgan - 8 - Case Study (2/5/88)



structures, as our theoretical results are not yet able to
present any general, uniform approach encompassing both
"data content” and structure, In particular, we add
redundant pointer fields, identifier fields, and count
fields. An identifier field contains a value which is
unique to the type of node and the specific instance in
which it occurs. A redundant identifier field is one whose
value in a correct storage structure instance may be
uniquely determined from pointer data alone. A count field
contains a count of the number of nodes in an instance or in
a defined subset of the instance. While it is not required
by the theoretical results, it seems clear that these
redundant fields should not simply be duplicates of the non-
redundant fields, since in that case, some types of faults,
such as software bugs, would almost certainly cause the same
error to appear in all copies of a field. An example of a
redundant set of pointers is the set of back pointers added
to a single-linked 1linear 1list, forming a double-linked
list,

While we have defined the types of redundancy which we
use, we have yet to describe their usefulness. The error
detection and correction properties of a storage structure
are stated in terms of changes. A change is an elementary
modification to an instance of a storage structure, where
the definition of "elementary" may be adjusted to suit the

application. Here, we will consider it to be any change to

Black, Taylor, Morgan - 9 - Case Study (2/5/82)



a machine word, but in other examples, a change could range
from the modification of a single bit to that of a sector or
track on a disk device.

Formally, we define an instance of a storage structure
to be correct when a "detection procedure" applied to the
instance returns "correct®”., If all sets of N or fewer
changes applied to a correct instance yield an incorrect
instance we say the storage structure 1is N-detectable.
Similarly, a storage structure is N-correctable if there is
a procedure which, for all sets of N or fewer changes, can
take a correct instance modified by that number of changes,
and recreate the correct instance.

As far as EXSYS is concerned, the best illustration of
the use of the theoretical results 1is seen in the hash
chains of Version 2. 1In Version 8, the hash table contained
an array of pointers to the start of the hash chains, and
each chain was terminated by a null pointer. Obviously,
such a structure is not very robust, as changing a single
chain pointer to null truncates the chain, causing some
number of staff records to become lost.

On the other hand, the theory shows that a double-
linked list with an identifier field in each node and a node
count is 2-detectable and l-correctable. 1In Version 2, we
thus added two words of structural information to each staff
record: an identifier field whose value indicates "staff

file" and contains the hash c¢hain number, and the back

Black, Taylor, Morgan - 10 - Case Study (2/5/80)



pointers required to make the hash chains into double-1linked
lists. We also added a fourth special record to the index
file: it contains the back pointers to the last staff
record on each hash chain. For space reasons, we did not
implement a count field for each chain, but rather a total
count of records on all chains. Thus the individual hash
chains are not 2-detectable, but the complete collection of
hash chains is.

One somewhat subtle point arose in designing the robust
hash chains. At first, we tried to wuse null pointers to
terminate both the forward and backward chains, treating
nulls as implicit pointers to the header (hash table)
records. This did not work properly, and the theoretical
results indicated that each chain should point to 1its own
header, not a general header for all chains. Thus, chains
are now terminated with special wvalues which include the
hash chain number, allowing the right entry to be located in
the appropriate hash table. Once this point was cleared up,
these modifications were easily exploited through the
inclusion of the simple algorithm from [5] to perform
l-correction on each hash chain.

Intuitively, the 1l-correctability results from the
identifier fields, and the redundant back pointers. The
identifier fields permit immediate identification of a
pointer which has been changed to point outside of the

instance. When this occurs, or when other pointer changes

Black, Taylor, Morgan - 11 - Case study (2/5/88)



are detected by comparing forward and back pointers,
correction can be achieved by traversing the 1list in the
reverse direction, and taking a "vote" among those pointers
involved. (For more details, see {5, 6].) As for the
(intuitive) Jjustification of the addition of count fields,
the simplest example concerns a single-linked 1list with a
count and identifier fields. The latter permit detection of
changes which make a pointer point outside the 1list, while
the count allows detection of changes which shorten or
lengthen the apparent list.

Applying this type of reasoning to EXSYS, we added a
variety of redundant information, mostly to the index file.
This included fields containing the file size of each file,
and a count of the number of allocated staff records, all in
the master table. All records have identifier fields, and
attribute list blocks have a secondary identifier field
unique for each list. Each attribute list has block and key
counts in its header, as well as the (redundant) number of
the field on which the list is constructed. For each field,
the master table entry for it contains a count of those
staff records appearing on no attribute list for the field
(the "none" count). Finally, free staff records have a
unique identifier value in their identifier and pointer
fields; this increases the number of changes required to
make a free record appear allocated, or vice versa. A

related design consideration was to make all the index file

Black, Taylor, Morgan -12 - Case Study (2/5/88)



lists as similar as possible. Thus, the same set of low
level routines may be used for the index file free list, the
$staff and $free lists, and all attribute lists.

The purpose of our study was to investigate structural
redundancy. In order to provide some redundancy for the
non-structural information in the staff records, we added a
checksum of those fields not "protected" by other
redundancy.

Figure 2 shows EXSYS' data structures as they finally
stabilised in Version 2. Redundant fields added to improve

reliability are indicated by an asterisk (*).

4. EXPLOITING THE REDUNDANCY

The key to achieving fault tolerant software |is
redundancy, but redundancy itself is useless unless it can
be exploited at reasonable cost, in terms of extra storage,
CPU time, and 1/0 operations. The purpose of this section
is to show one way of making use of redundant structural
information, while the next section shows that the cost is
not only reasonable, but that it may be easily adjusted.

Proper deployment of redundancy permits errors to be
detected in a system's data structures. This detection may
be "in-line", that is, achieved by code inserted in each
program, or by audit programs invoked periodically or when
trouble is suspected. The choice between the two detection

methods 1is delicate, and we doubt that any hard and fast

Black, Taylor, Morgan - 13 - Case Study (2/5/89)



7 UOTSI?d\ ¢saianioniig eied SASXHE

17 TINOLA

% WNSHI3HD)] [
viva a3snNn
3 A3% 44VLS SNOIA3Yd a3sman , =
m " onwd ummwm_ _.w%”‘_ ~] 234 JJWS % (0) Y3I4LLNIAL 1S
° Guooan 43vis ° ¥ 01314 Y3IIJLUNIQI
[ - AN 33VIS QH0J3Y 3344 5
¥* NASMITHD ONIMOTIO4 SAIM J4S # Q3SONN b4
_.l
o % EEITEIER ADA_IX3N f
5018 1SI1 31NaiLV % Q1314 HIIINIAI]
A3N 44V1S SNOIAIYd , QyOoJI3d 33ud
A3 44V1S 1X3N @3snNN
% 01313 ¥3IIIN3QI ] a Javis| ¢ °
T davis . g ° °
0 ° °
* WNSHO3HI A3 44v1S
ONIMOTIOL SAIN J4VLS # ﬁ oV14 JIMIANNN
A ‘ SAYOJ3H O3X3ONINN#:
viva * CEETUEITY ~—{ 1SM 31n8INLIV 1SV NOLL
* a7314  H3IHILN3AY - — 1SN 31N8I811V LSHId -didIS30
*AIN 44VLS SNOIA3Ed ¥2078 1SN 3UNELLY Hiongt a3l 91
A JHV1S tmpz_ — . _ NOILISOd Q1314
® mmwwu%uﬁﬁzmu - M (SNOILJIYOS3a
(% E TR EL] o;um.u
* 1S NO SAIM # .
NOIL| [%  1SiT NO S¥3018+
° ° &_IUMNDA * YI34IUNIA A1S1T ¥%* 44v1LS QN.—.(UOJJ<#
o o s IWVN_ 1S %_5Qu003¥ A3ViS 4
o 0 A % _SQHOJ3Y X3ANI 3
L Q3X3ANI 3MIVA % 1NNOJ 1SN 3344
¥ A3N d44vlS A 44VISH. A3 1S17 3344
° ° . — % A3¥ 2 319VL HSVH
. ° .||» ° A3¥ 378VL HSVH
bt A3 _33ViS A3X_43V1S ONIMOTI04 SIHING 3 A3X LSMT_YILSUW
¥ 1314 HIIINIQN (¥ 0731 HITIIINITI 3% e FREERINER ¥ Q1314 HIIHILN3IA
2T\Y HSVH  d 378V1 HSWYH | ISTT Y3LSVW A J18vL H3ISVA

14 Case Study (2/5/80)

Black,Taylor, Morgan



rules exist. The advantage of in-line checks is that they
may detect errors sooner, and before they propagate. In
some cases, as with double~linked 1lists, a detection
procedure can easily be integrated into a 1list traversal
routine, especially since this data structure 1is quite
simple. On the other hand, merging detection with normal
processing can easily introduce much undesirable complexity
into a program, obscuring the "normal"® logic flow.
Furthermore, in-line checks introduce a constant,
unavoidable overhead which may be unacceptable, since the
data structures are expected to be correct most of the time.
Especially for a complex set of inter-related data
Structures such as those of EXSYS, using audit programs has
the virtue of leaving the main system largely unobscured by
detection or correction logic. As a side effect, changing
or debugging the audits then has 1little effect on the
correctness of the main system. However, the frequency of
periodic audit invocation must be adjusted in view of the
expected error rate, and the cost of audit program
execution. For our experimentation with EXSYS, we chose a
compromise solution which included some basic in-line
checks, although most of the error detection and all of the
error correction logic was included in the audit system.
Besides the normal checks performed on wuser input to
EXSYS, other in-line <checks were added which would be

unnecessary in an error-free system. For example, the

Black, Taylor, Morgan - 15 - Case Study (2/5/88%)



routine which searches an attribute list for a given staff
file key also checks the keys on the 1list for ascending
sequence. Other "easy" checks are made: for example, when
a staff record is read because it is supposed to be on one
or more attribute 1lists, it is verified that its fields'
values are those specified by the attribute 1lists in
question. If any of these in-line checks fails, an
appropriate call is made to the audit system.

As we have mentioned, the audit system is invoked
either periodically, or on an emergency basis when called
from an in-line check. For periodic invocation, each user
command causes a subset of the "audit threshold counters" to
be 1incremented. If, at the end of a command, one or more
counters have exceeded their thresholds, the <counters are
reset, and the audit system is invoked. By varying the
thresholds, the relative frequency and hence the overhead
cost of the audits may be adjusted as required.

The audit system 1is quite large. It 1is coded 1in
approximately 40 pages of high level language code, compared
to about 30 for the main system. (Common routines are
counted twice.) The difference is somewhat exaggerated in
that the audit system is more or less "complete", while the
main system should be extended and improved to be used in a
production environment; on the other hand, we do not claim
that achieving high 1levels of reliability is easy or

inexpensive.

Black, Taylor, Morgan - 16 - Case Study (2/5/80)



Thus it might appear that the probability of a program
error occurring in the audit system may be greater than the
same probability for the main systenm. However, the
detection routines are easily tested on correct instances,
in which case no modifications are made by the audits. This
leaves the possibility of a correction routine propagating
or aggravating a previously detected error. This indeed
occurred during system development, in many cases causing us
to revise the audit system design rather than merely
debugging one audit. On the other hand, we have observed
during our experimentation that the audit system is fairly
robust in a certain sense: while it often failed to perform
the minimal amount of work required to produce a correct
instance, it always managed to correct detected errors, and
it never terminated itself because of apparent looping.

Entry to the audit system is made through the audit
scheduler routine, whose parameters indicate the audit
requested, a parameter to be passed to the audit, and a "re-
dispatch" flag (explained below). The scheduler creates an
audit queue entry from its parameters, and if no audit is
currently being executed, proceeds to a loop which empties
the queue by calling the audit at the head of the queue and
removing the queue entry when the audit terminates. Each
call <causes an entry to be made in the scheduler's
"scoreboard"”, which may be tested by an audit to determine

if audits on which it depends have already been invoked.

Black, Taylor, Morgan 17 - Case Study (2/5/880)



When an error is detected, an audit may recursively call the
audit scheduler to place another entry in the queue on a
priority basis. (These recursive calls do not proceed past
the point of adding an entry to the queue, since the queue
was not empty when they began execution.) This rather
complicated design reflects (in part) the complexity and
underlying interdependencies of EXSYS' data structures. We
suggest, however, that the mechanism is quite general, and
is easily adapted to other data structures and audits.
Ideally, one would like to be able to audit each part
of the data structure separately. If this were possible,
any one audit could be called and executed without regard
for the others. But clearly, it is not possible: how could
one pretend to verify a particular attribute 1list without
verifying that the master list containing the list's header
is at least "probably" correct? Another argument against
independent audits is that one audit may detect an error
which it could most easily correct by calling another audit.
Additionally, the first audit might wish to re-invoke itself
after having called the second. This is implemented by the
"re-dispatch" flag. Scheduling an audit with re-dispatch
causes the caller's queue entry to be reinserted 1in the
audit queue, according to its priority, when it terminates
execution. The use of an audit scheduler encourages modular
design of audits, and makes their addition or redesign

simpler, as the audit scheduler is table driven. Audits may

Black, Taylor, Morgan - 18 - Case Study (2/5/89)



be made logically distinct and smaller, while their
complicated 1interdependencies are realised through the
combination of audit priority, the re-dispatch facility, and
the scoreboard.

The audits themselves may be categorised in several
ways: according to cost in terms of disk I/0, in terms of
priority, or in terms of which part of the data structure
concerns them.

The cheapest audits are the "quick" audit, "field"
audit, and "none count" audit, which at one point were all
one audit, and which (more or less) confine themselves to
checking the core-resident tables, The quick audit is
always run before any other; even calls to audits from
within the audit system are preceded hy calls to the quick
audit. It 1is driven by a table with entries for the three
special records pointed to by the master table (master list,
forward hash chain pointers, back hash chain pointers).
Each entry contains the identifier field value, key location
in the master table, buffer address, and the address of the
corresponding audit program.

At one point, the quick audit contained code to check
the consistency of the field descriptions and list
descriptions of the master table and master list, including
the "none counts" of all fields. It became apparent to us
that this was undesirable for two reasons. A certain set of

interdependencies could cause a «circularity in the <call

Black, Taylor, Morgan - 19 - Case Study (2/5/889)



chain in some cases. Secondly, when any attribute lists are
audited for a field, the none count for the field 1is not
meaningful until all list audits have been completed. This
implies the none counts should only be checked after all
attribute 1list audits have completed. Thus the field audit
was created with an appropriate intermediate priority, and
the none count audit with the lowest priority. An external
entry to the audit system generally results in three queue
entries: the requested audit, the field audit, and the none
count audit, with the quick audit being called implicitly
before each.

The "high-level index"™ audit is slightly more costly,
and has a high priority. It verifies the overall structure
of the index file: the free list and all attribute 1lists
are checked as much as possible without reference to the
staff file. Errors detected may cause a "map" audit to be
run to attempt to recover lost index file records, a full
attribute list audit to be run, or a "$staff/S$free" audit to
be run to check these two pseudo-attribute lists., The
number of I/0 operations performed is essentially equal to
the number of records in the index file.

The remaining three audits are quite expensive in terms
of 1I/0 operations. The "$staff/$free" audit verifies those
two pseudo-attribute lists by reading the entire staff file,
and using identifier fields to decide whether or not each

record is free or allocated. The "attribute 1list" audit,

Black, Taylor, Morgan - 20 - Case study (2/5/80)



called only on an emergency basis, rebuilds an attribute
list by reading all allocated records in the staff file.
Inside the audit system, it 1is called by the high-level
index audit. When called externally from an in-line check,
the "emergency attribute list audit" performs some necessary
checks before invoking the attribute 1list audit itself.
Finally, the "staff" audit ensures that all allocated staff
records are on the correct hash chain, and that the chain
structure 1is <correct. If it finds a single error on one
chain, that is easily corrected; certain multiple errors on
one chain force rebuilding the entire hash table, which
involves reading (writing) each allocated record four times.

As may be deduced from the above, there are complicated
relationships between the various parts of the audit system.
Figure 3 shows a graph of the audit dependencies, that is,
which audits depend upon others having previously executed.
Figure 4 indicates which audits directly invoke which others
on an emergency basis, as well as those invoked externally
from the main system on a periodic or emergency basis. (The
implicit scheduling of the quick, field, and none count
audits is not shown on the figure.)

The above description might seem to imply that the
audit system 1is able to detect and correct all errors. Of
course this is not quite true, It also begs the question
"who will audit the audit system?" We do not claim the

audit system is perfect, nor even correct, but we wish to

Black, Taylor, Morgan - 21 - Case Study (2/5/80)



serouspuedsq ITPNY ¢ HYNOIA
Liany
MO 1NO
A1l ﬁw
Liany w_mwﬁm.wwﬁ 110NV X3aNI Liany
Q1314 8ldlly 1331 - HOIH dVI
AONIONINI
]
1
uany Liany Liany lianv
LNNOD 314 1S 1s17
3NON 44YLS ALNGINLLY 44v1s

Case Study (2/5/80)

22

Black, Taylor, Morgan



wea8eT UOTIBOOAUT ITPNY 4 TYNOHTI

UOTIBO0AUT JTPNE TRUI9IUT Aousdiswyg

UOTIBDOAUT ITPNE TRUIIIXD Aouodiawmy

UOTIBD0AUT 1TPNE TBUIDIXD OTPOTIDJ € — ——
11anv
oo 1100V LSI1 Liany
INON 31LN8INLLY dViN
A

1ignvy LsSiT Lianv lignvy 1ianv
%%u 31N8ILLY 1817 XION] || w%mu > 314

AONIONIW3 33V1S 93A37- HOIH 44V1S

-—— e

P

Case Study (2/5/88)

23

Taylor, Morgan

Black,



show in the following section that it is a valuable tool
which can be used to substantially increase our confidence
in the reliability of the Example System. While Section 6
deals with a controlled set of experiments, a more intuitive
appreciation of the audit system is given by the following
incident. In one experiment, the mangler changed the key
field for the master list from 1 to 0, causing the master
table to be overwritten by the master 1list. Although not
very efficiently, and with many complaints, the audit system
completely rebuilt the entire master table using the
available redundancy, as well as its own knowledge of the

data structure.

5. EXPERIMENTAL RESULTS

In order to be able to measure the effectiveness of our
modifications, and indeed even to debug them, we required a
source for errors which was both under our control, and was
able to introduce errors at a rate which made
experimentation feasible. A first attempt was to mangle the
program by altering randomly selected conditional branches
to branch on the logically opposite condition. This did not
provide useful results. Eventually, we developed a
"mangler", which pseudo-randomly changes records as they are
written by EXSYS to external storage. We were able to
specify the probability of a record's being mangled, and the

probability distribution of mangles over the words of a

Black, Taylor, Morgan - 24 -~ Case Study (2/5/80)



record. As large changes to pointers and counts are often
easy to detect, we designed the mangler to change selected
words by small integer values, thus making the changes more
subtle.

Using the mangler, a set of experiments was performed
to explore the error detection and correction capabilities
of Version 2 of EXSYS. Twenty experiments were performed
with different random seeds used to initialise the mangler,
resulting in a different set of mangles for each. A
standard script was prepared, and run twice for each
experiment without re-initialising the mangled files. The
script contained 37 commands, and was designed so that one
run of it 1left the files 1in their original state if no
uncorrected mangles occurred. The 1last several commands
tried to delete a non-existent staff record; their purpose
was to increment the counters controlling audit invocation
without performing write operations, thus causing some
audits to be invoked. This was intended to simulate a long
period of time in which all audits would be executed.

In order to facilitate the experimentation and reduce
CPU time, both the frequency of mangles, and the frequency
of audit invocation were set quite high. An average of 25
mangles occurred in each experiment, roughly one mangle for
every three commands. The field audit (and thus the quick
and none count audits) was invoked every three commands; the

other periodic audits ($staff/$free, high-level index, and

Black, Taylor, Morgan 25 - Case study (2/5/80)



staff) were invoked much less often: their thresholds were
set at six, but their counters were only incremented for
commands which <could cause a change to the related part of
the data base. Full attribute list audits are only invoked
on an emergency basis. Another simplification was that no
mangles were permitted during audit system execution. We
assumed that in any production system, the error rate would
be smaller than the frequency of audit invocation, making
mangles quite unlikely. The effects of a significant error
rate during audit system execution require more
investigation. In view of the high error rate used for the
experiments, and the 1large number of write operations
performed by the audits during correction, this was deemed
impractical for the present investigation.

Each experiment produces a significant amount of
information in raw form. 1In order to avoid obscuring EXSYS
with code to interpret this information, two post-processors
were written. The simpler postprocessor translates the
mangler's output messages into English giving the type of
record mangled, the field mangled, and the o0ld and new field
values. This was of significant help 1in analysing the
experiments, which involved «classifying the errors, and
determining which had been detected, corrected, or corrected
but not detected (for example, due to an attribute 1list
being re-built). Unfortunately, we were unable to automate

this part of the analysis.

Black, Taylor, Morgan 26 - Case Study (2/5/89)



The second post—-processor summarises the time and I/0
information produced by EXSYS. Each command or audit
invocation causes a line of statistical information to be
written: an identifying flag, timestamp, and accumulated
I/0 counts for the index file, staff file, and a work file
used when intersecting attribute 1lists. From this, the
post-processor provides a table showing CPU time and I/0
operations for each type of command and audit, including
minima, maxima, means, standard deviations, and overall
totals.

Figure 5, which summarises the results of the
experiments, requires some explanation. Serious errors are
those occurring in fields essential to correct system
operation as seen by the user. Redundancy errors are those
in fields used only for reliability purposes. Note that the
percentages of corrected and remaining errors do not sum to
108% because a small fraction of errors vanished before
detection due to the normal operation of the script
commands. Trivial errors (not shown) are such things as
changing the name of an attribute 1list. Note that the
mangler mangles any word in an index file record, but only
structural information in a staff file record (practically
all the data in 1index file records is structural). The
"realistic" figures are obtained by deflating the frequency
of audit invocation and the error rate by a factor of fifty,

which we estimate as the minimum acceptable for a production

Black, Taylor, Morgan - 27 - Case Study (2/5/80)



Audit Effectiveness
(Parenthesized figures are 95% confidence intervals.,)

Serious Redundancy All
Errors Errors Errors
(%) (%) (%)
Detected 86,4 93.4 84.2
(82.8, 89.8) (88.4, 96.3) (890.7, 87.2)
Corrected 92.4 94.0 87.9
(88.8, 94.9) (89.2, 956.7) (84.7, 98.5)
Remaining 5.3 3.0 9.7
(3.3, 8.5) (1.3, 7.8) (7.4, 12.7)

Average cost of correction: 1.83 CPU sec, 368 I/0 operations
Typical command cost: @.208 CPU sec, 58.2 I/0 operations

Audit Overhead
(when no injected errors)

Experiments Realistic

CPU 1/0 CPU 1/0

(sec) {opns) (sec) {opns)
Without audits 12.5 3620 628 181200
With audits 34.4 8700 712 194600
Audit overhead 175% 142% 13% 7%
Figure 5. Experimental Results

Black, Taylor, Morgan - 28 - Case Study (2/5/89)



system. The time and 1I/0 per correction figures are
calculated by subtracting the time and 1/0 for an
experimental run with no mangler from the average values
with the mangler, then dividing by the average number of
errors corrected.

We conclude from the experiments that we have achieved
our goal of improving the Example System's fault tolerance.
The experiments were also interesting for what we were able
to learn from them. We gained good experience with
designing a set of audits for a non-trivial system, which is
no easy task in general. We discovered that writing an
audit which 1is driven by a table which describes the
structure being checked 1is a useful way of constructing a
simpler and more easily modifiable audit. Finally, we were
surprised by some of the side-effects of adding redundancy.
For example, the "none counts" greatly increased our ability
to detect and correct attribute 1list errors, but at the
extreme cost of rebuilding one or more 1lists when the
"obvious" <correction was simply to adjust the count. At
another extreme, incorporating the 1l-correction algorithm
for the double-linked hash chains applied precisely the
required corrections at negligible cost compared to a
complete hash chain re-build.

An interesting property of the mangler was its
efficiency in pointing out coding and design problems; after

some experience, we almost believed it was a malicious

Black, Taylor, Morgan - 29 - Case study (2/5/80)



daemon attempting to thwart all our best efforts. Although
only applicable to fault-tolerant systems, a mangler can be
an extremely useful means of increasing one's confidence in

a program' S correctness.

6. SUMMARY, CONCLUSIONS, AND FURTHER WORK

After an introduction and some general remarks on our
approach (which is only one of many) to increasing software
reliability, Sections 2, 3, and 4 presented a case study
involving the addition of redundancy to a set of data
structures, and the use of this redundancy by a set of audit
routines, Section 5 presented the results of our
experimentation with EXSYS, Version 2,

We conclude that the incorporation of redundancy and
audit programs can be done at an acceptable overhead cost
for systems where fault tolerance 1is a significant
requirement. While the overhead cost can be made quite
small by adjusting the audit frequency, it must also be
recognised that a large development expenditure is required
to add redundancy and design an audit system to exploit it.
This is particularly true for "complicated" data structures,
where each design must presently be ad hoc. Additionally,
there 1is an obvious storage overhead incurred when
redundancy is added. Aside from redundant fields added to
the master table and master list, and the entire set of hash

table back pointers, the overhead per record was less than

Black, Taylor, Morgan - 30 - Case Study (2/5/80)



13 per cent. As may be expected, one of the goals of our
research is to develop increasingly general robust data
structures, which can be used conveniently, and whose fault
tolerance can be easily exploited through simple algorithms.

For more complicated data structures, the use of an
audit scheduler eases the decompsition of the audits,
especially with respect to audit priority, audit
interdependency, and audit re-invocation. Another method of
simplifying audit design uses tables which specify aspects
of a data structure to drive a "general purpose" audit.
This technique was applied to auditing the core resident
tables in the quick audit, as described in Section 4. It is
difficult in many cases to construct a "general purpose"
audit, but it seems desirable to use this approach whenever
possible.

As we have already indicated, the experimental approach
described here is complemented by a growing set of
theoretical results. An important class of these gives some
upper and lower bounds for the detectability of an arbitrary
storage structure 1in terms primarily of the number of
disjoint sets of ©pointers in the structure, each of which
may be used to reconstruct all structural information in an
instance of it. Once the detectability 1is known, the
General Correction Theorem [7] can be used to determine the
correctability of a storage structure: a structure which

has identifier fields, a stored count, is 2r-detectable, and

Black, Taylor, Morgan - 31 - Case Study (2/5/809)



has r + 1 edge-disjoint paths to each node of an instance is
r-correctable. The theorem exhibits an algorithm which
performs the <correction, although 1its execution time is
expressed 1in terms of a rather unfortunately large
polynomial. Individually-designed correction routines
usually perform more satisfactorily in practice; an example
is the l-correction routine for double-linked lists which is
linear in the size of its input. Also of practical interest
is a 2-detectable, l-correctable implementation of a binary
tree. All of these results are given in [5, 6, 71.

Our further work will attempt to bring the theoretical
results closer and closer to being able to deal with
complicated storage structures. We have defined a
restricted class of compound storage structures; more
general extensions 1in this area would be useful. Further
experimentation will investigate the effects of varying the
audit and mangle frequency, with the attendant increase in
error propagation. Different types of mangling will also be
investigated. Perhaps the most important direction for
further work, however, 1is the 1inclusion of semantic
information or data content in our formalism for robust data
structures. General results appear difficult to obtain, but
one should be able at least to include some constraint on
node contents in the formalism, such as the relationship of
key wvalues to structure in a binary search tree or B-tree.

Finally, it would be interesting to implement EXSYS using

Black, Taylor, Morgan - 32 - Case Study (2/5/889)



the recovery block techniques of Randell et al.

In this paper, we have been concerned with the addition
of redundancy to storage structures, and ways of exploiting
the redundancy. Our approach was illustrated by a case
study which demonstrated the costs and effectiveness of our
methods. For systems requiring a degree of fault tolerance,
the wise use of redundancy can bring significant benefit

with a reasonable amount of overhead.

Black, Taylor, Morgan - 33 - Case Study (2/5/80)



BIBLIOGRAPHY

1. R. P. Almquist, J. R. Hagerman, R. J. Hass, R. W.
Peterson, and S. L. Stevens, 'Software protection in
No. 1 ESS', Proc. International Switching Symposium,

Cambridge, Mass., 565-569 (1972).

2. T. Anderson and B. Randell (eds.), Computing
Systems Reliability, Cambridge University Press, 1979.

3. A. Avizienis. 'Fault-tolerance: The survival
attribute of digital systems', Proc. IEEE, 66,
1199-1125 (1978).

4, H. J. Beuscher, G. E. Gessler, D. W. Huffman, P.
J. Kennedy, and E. Nussbaum, 'Administration and
maintenance plan', Bell Syst. tech J., 48, 2765-2815

(1969).

5. D. J. Taylor, 'Robust data structure
implementations for software reliability', Ph.D.
Thesis, Department of Computer Science, University of
Waterloo, Ontario (1977).

6. D. J. Taylor, D. E. Morgan, and J. P. Black,
'Redundancy in data structures: Improving software
fault tolerance', accepted for publication in IEEE
Trans. Software Engineering. Also available as
Computer §Science Research Report CS-79-34, University
of Waterloo, Ontario, Canada (1979).

7. D. J. Taylor, D. E. Morgan, and J. P. Black,
'Redundancy in data structures: Some theoretical
results', accepted for publication in IEEE Trans.
Software Engineering. Also available as Computer
Science Research Report (S-79-35, University of
Waterloo, Ontario, Canada (1979).

8. F. W. Tompa, 'Data structure design', Data
Structures, Computer Graphics, and Pattern
Recognition, edited by A. Klinger, et al,” 3-30,
Academic Press, New York (1977).

Black, Taylor, Morgan - 34 - Case Study (2/5/88)



DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

TECHNICAL REPORTS 1979

Report No. Author
Cs-79-01 E.A. Ashcroft

W.W., Wadge
Cs~79~02 T.S.E. Maibaum
CS~-79-03 D.R. MciIntyre
CS-79-04 K. Culik II

A. Salomaa
CS-79~05%* T.S.E. Maibaum
Cs~79-06 C.J. Colbourn

K.S. Booth
CS-79~07 K. Culik, II

N.D. Diamond
CcS~-79-08 M.R. Levy

T.S.E. Maibaum
CS~79-09 K.0. Geddes
C8~79-10 D.J. Taylor

J.P. Black

- D.E. Morgan

Cs-79-11 G.H. Gonnet
CS-79-12 M.0O. Afolabi
CS~-79-~13 W.M. Chan

J.A. George
Cs-79-14 D.E. Morgan
Ccs-79-15 M.H. van Emden

G.J. de Lucena
CcS-79-16 J. Karhumaki

I. Simon
Ccs-79-17 K. Culik II

J. Karhumaki
Cs~79-18 F.E. Fich

Title

Generality Considered Harmful - A
Critique of Descriptive Semantics

Abstract Data Types and a Semantics
for the ANSI/SPARC Architecture

A Maximum Column Partition for

Sparse Positive Definite Linear
Systems Ordered by the Minimum Degree
Oxrdering Algorithm

Test Sets and Checking Words for
Homomorphism Equivalence

The Semantics of Sharing in Parallel
Processing

Linear Time Automorphism Algorithms
for Trees, Interval Graphs, and Planar
Graphs

A Homomorphic Characterization of
Time and Space Complexity Classes of
Languages

Continuous Data Types

Non-Truncated Power Series Solution
of Linear ODE's in ALTRAN

Robust Implementations of Compound
Data Structures

Open Addressing Hashing with Unequal~
Probability Keys

The Design and Implementation of a
Package for Symbolic Series Solution
of Ordinary Differential Equations

A Linear Time Implementation of the
Reverse Cuthill-McKee Algorithm

Analysis of Closed Queueing Networks
with Periodic Servers

Predicate Logic as a Language for
Parallel Programming

A Note on Elementary Homorphisms and
the Regularity of Equality Sets

On the Equality Sets for Homomorphisms
on Free Monoids with two Generators

Languages of R-Trivial and Related
Monoids

* Out of print - contact author



Technical Reports 1979

Cs-79-19

Cs-79~-20

cs-79-21

Cs-79-22

CS~79-23

CS-79-24

Cs-79-25

Cs-79-26

Cs-79~27

Cs~79-28

Cs-79-29

CS-79-30

€sS-79-31

Cs-79~-32

CS-79-33+#
CS-79-34

CS-79-35

CS-79-36

CS~-79-37

D.R. Cheriton

Ashcroft
Wadge

Ashcroft
Wadge

Bonkowski
Gentleman
Malcolm

Clark
van Emden

mEH pRD DB oS

U B2 R 2260 =M =W

. Dobkin
J.I. Munro

P.R,F. Cunha
C.J. Lucena
T.S.E. Maibaum

T.S.E. Maibaum

D. Dobkin
J.I. Munro

T.A. Cargill

R.J. Ramirez
F.W. Tompa
J.I. Munro

A. Pereda

R.L. Carvalho
C.J. Lucena
T.S.E. Maibaum

J.I. Munro
H. Suwanda

D. Rotem
J. Urrutia

M.S. Brader

D.J. Taylor
Morgan
Black

. Taylor
.. Morgan
. Black

. Beatty

4 GuUouu gy

.E
.P
oJ
B
P
.C

E.A. Ashcroft
W.W. Wadge

-2 -
Multi-Process Structuring and the
Thoth Operating System

A Logical Programming Language
Structured LUCID

Porting the Zed Compiler

Consequence Verification of Flow-
charts

Optimal Time Minimal Space Selection
Algorithms

On the Design and Specification of
Message Oriented Programs

Non-Termination, Implicit Definitions
and Abstract Data Types

Determining the Mode

A View of Source Text for Diversely
Configurable Software

Optimum Reorganization Points for

‘Arbitrary Database Costs

Data Specification Methods

Implicit Data Structures for Fast
Search and Update

Circular Permutation Graphs

PHOTON/532/Set - A Text Formatter

Redundancy in Data Structures:
Improving Software Fault Tolerance

Redundancy in Data Structures: Some
Theoretical Results

On the Relatiénship between the LL(1)
and LR(1l) Grammars

Rx for Semantics

* out of print - contact author



Technical Reports 1979

CsS-79-38

Cs-79-39

Cs-79-40

CS-79~41%

CS-79~42

E.A. Ashcroft
W.W. Wadge

J. Albert
K. Culik I1I

F.W. Tompa
R.J. Ramirez

P.T. Cox
T. Pietrzykowski

R.C. Read
D. Rotem
J. Urrutia

-3 -

Some Common Misconceptions about LUCID

Test Sets for Homomorphism Equivalence
on Context Free Languadges

Selection of Efficient Storage
Structures

Deduction Plans: A Basis for Intelli-
gent Backtracking

Orientations of Circle Graphs

* out of print - contact author



ReEort No.
CsS-80~01

Cs-80~02
CS-80-03
Cs-80-04
CS-80~-05
CS-80~-06

Cs-80-07
CsS-80-08
Cs-80-09

CS-80-10%

CS-80-~11

CS-80-12

C5-80~-13

Cs-80-14

~ €s-80-15

CsS-80~-16

CsS-80-17

DEPARTMENT. OF COMPUTER SCIENCE

UNIVERSITY. OF WATERLOO

" 'TECHNICAL REPORTS 1980

Author
P.T. Cox

T. Pietrzykowski

K. Culik II

J. Brzozowski
H, Suwanda
M.H. van Emden

Y. Kobuchi
K. Culik II

G.H. Gonnet
J.I. Munro
H. Suwanda

J.P. Black
D.J., Tayloxr
D.E. Morgan

J.Ll. Morris

N. Santoro
H. Suwanda

T.S.E. Maibaum
. dos Santos
. Furtado

. van Emden

. George

s
L
.R. Apt
H
A
T. Heath

T.8.E. Maibaum

J.P. Black
D.J. Taylor
D.E. Morgan

K.0. Geddes

P. Calamai
A.R. Conn

Title

On Reverse Skolemization

Homomorphisms: Decidability,
Equality and Test Sets

Open Problems About Regular
Languages

Implicit Data Structures for the
Dictionary Problem

Chess~FEndgame Advice: A Case Study
in Computer Utilization of Knowledge

Simulation Relation of Dynamical
Systems

Exegesis of Self-Organizing Linear
Search

An Introduction to Robust Data
Structures

The Extrapolation of First Order
Methods for Parabolic Partial
Differential Equations II

Entropy of the Self-Organizing
Linear Lists

A Uniform Logical Treatment of
Queries and Updates

Contributions to the Theory of
Logic Programming

Solution of Sparse Linear Least
Squares Problems Using Givens
Rotations

Data Base Instances, Abstract Data
Types and Data Base Specification

A Robust B-Tree Implementation

Block Structure in the Chebyshev-
Padé Table

A Stable Algorithm for Solving the
Multi-facility Location Problem
Involving Euclidean Distances

* In preparation



Technical Reports 1980

Cs-80-18

CsS-80-19

Cs~-80-20

Cs-80-21

CsS-80-22

C5-80-23

CsS-80-24

CS-80-25

CS-80-26

R.J. Ramirez
D. Therien

J. Buccino

N. Santoro

. de Carvalho

.E. Maibaum
C. Pequeno

. Pereda

J.P. Black
D.J. Taylor
D.E. Morgan

N. Santoro

J.A. Brzozowski

-2 -

Efficient Algorithms for Selecting
Efficient Data Storage Structures

Classification of Regular Languages
by Congruences

A Reliable Typesetting System for
Waterloo

Efficient Abstract Implementations
for Relational Data Structures

A Model Theoretic Approach to the
Theory of Abstract Data Types and
Data Structures

A Handbook on Algorithms and Data
Structures

A Case Study in Fault Tolerant
Software

Four 0(n**2) Multiplication Methods
for Sparse and Dense Boolean Matrices

Development in the Theory of Regular
Languages




	

