PrintingRequisition/Gra

phicServices

11511

1. Please complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and

Yellow to Graphic Services. Retain Pink
Copies for your records.

3. On completion of order the Yellow copy

will be returned

material.

with the printed

4. Please direct enquiries, quoting requisi-
tion number and account number. to
extension 3451.

TITLE OR DESCRIPTION

CS-80-23 A Handbook of Algorithms and Data Structures

DATE REQUISITIONED

DATE REQUIRED

ACCOUNT NO,

October 24, 1984 12 6144 3 1,0 2|
~eqQutsiTionER- PRINT PHONE S/IGAN'INﬁaA;;.IingITY
MAILING NAME DEPT. . BLDG. & ROOM NO. [_I DELIVER
INFO — D. McCracken Computer Science 6081E] Piekeue

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER NUMBER NEGATIVES QUANTITY SS.ER' TIME LABOU?ODE
OF PAGES 68 OF COPIES 2 LF L M' H H]] 'l
TYPE OF PAPER STOCK - - - [I T !'l ! l [-
EXAZOENRD Si:cw PT. LrCOVER DBRISTOL . SUPPLIED L] IFILIM[I , ’ ‘] I [[! ! I [{ [j L 1 l i l i I ‘ J
(Retxn Dlerere Ll L PeM e e e
PAPER COLOUR INK B '
[X ware [L) eence 1] — T I N I L
PRINTING NUMBERING
LX1S|DE_PG5. {]231055_}-55. FROM TO lFlL(MI l] ! l l }LL l l | J! ! li | l;LJl '
BINDING/FINISHING PMT
X coLiaTing rx STAPLING (~J—:8:5HED 17‘ PLASTIC RING ,
L& = = ISR I LIRS R N AN
FOLDING/ CUTTING ‘
— StE Pl e e Ty
pecial Instructions
EL IR | N BN NN § AR S NI N
PLATES
I N N N
Py e e e e e |
[A(ﬂm//’(PLT v v e ety
7 =V STOCK
I I | AR A | R
COPY CENTRE OPER, MACH.
| '@Bmwa',”°|'11|111111111L1I¢1H|H|[|H_4_1__1
DESIGN & PASTE-UP py— Camoun Lol b e e b
NO. TIME CODE
NI N I e NN R
BINDERY

Lol

|

JII!J

|IHII

HLIAl

TYPESETTING

S QUANTITY

o

NN

|

|

|

!

|

|

L
Lo
Lo |

- |
|
!

Il

Lo b o

Do b oo e e |
Lo b b e b Ly || OUTSIDE SERVICES
PROOF
PRFEL e e e]
PRFL v e I b
!

A2 2

BEPARTMENT
DEPARTMENT
DEPARTMENT

]

E
E
CE

OHPHTER SEIENG
OMPUTER SCIEN

ATERLSS ¢

WA
W

V&

UNIVERSITY OF WATERLOO C

A

A Handbook
of

Algorithms and Data Structures

© Gaston H. Gonnet
University of Waterloo

Gaston H. Gonnet

CS-80-23

May, 1980

Waterloo. Ontario. Canada

Table of Contents

Lo INETOUCHION e e e et e e et e et e 1
2. Basic Concepts and NOLARUIONcccoooiiiiiii e e et e et 2
2.1, The Objects Definilion i i et e e e e e e e e et e e e e 2

2.2, Basic oF Atomic ATZOTIRMIS oottt e s et e e 6

2.3 BUilding Operalions oo e e e ettt e e e e 7

2.4, Interchangeabilily L e e e 9

R T =5 1T 1 o] LT PUPPR 10

2 6. INOLALIOM Lottt e et et e et e e et oo oot e e et et et e et e e e e e e e s 11

3. Search AIZOFItRIS. ... e e e e e e ne e 13
31 Sequential SearCh . e 13

311 Sequential Search L 13

3.1.2. Self-Organizing Sequential Seach: Move to Front Method............................. 14

3.1.3. Self-Organizing Sequential Search: Transpose Method.................. 16

3.1.4. Optimal Sequential Search........cooviiiiii e 18

3.2, Sorted ATTay Search o e 19

3201 BINary SUrCh oo e e e e 19

322 Interpolation Search . 20

3.2.3. Interpolation-Sequential Searchococoiiiiiiiii 0022

KT = FITN 1o - R PURPURPUTR 24

3.3.1. Uniform Probing Hashing.........oooooooiiiiiiiiii e 258

3.3.2. Random Probing Hashing...........oo e e e, 27

3.3 3 LIMEar PrObim . e e e e 28

3.3.4. Double Hashingoociiiiiiieri e e ssreeein e e 30

3.3.6. Ordered Hashing........oooiiiii i e e 32

3.3.10 Direct Chaining Hashing...............ccoi .33

3.4 Recursive Structures Search ..o e 36

3.4.1. Binary Tree Search ... e 30

R R S B I L TP PPR 41

3 3, BH T TS oo
IR 3 S T SO PP
K B T 1§ Aol P ST OPPPPI
3 6. OUNET T I ES oot e
3.5 Multidimensional Sedrch Lo
T I O T F e B I TSP OO PSPPI

3 2 Kl Tr O ottt it e e e e

4. Sorting AIZOTItRNS ... it e e et e e e e e 44
4.1 SOTUNE ATTAYS 1ottt ettt ceet et e et e e oottt et eae e eareseecn s aaan taesae st e e tas seabtsaeae s bneeetan e taeeeerenes 44

411, BubBble SOTt oo e e e e e 44

4.1.2, Linear INnSErtion SOTU ..o et e e 43

4 3 QUICK SOt e e e 46

4.1.6. Interpolation SOTL ..o e e e 47

4. 1.7, Linear Probing Sort. .. e e 48

4.2, Sorting various Data SUFUCTUTES oottt et e et e e eeeeeea e e

T T <] 4721 o7 VOOV UT OO RO UPRUPPPR

8. Distributions Derived from Empirical Observation ... 51
8.3, Lotka's Law e 54
8.4, BOT-20 RUIE ..ot e e 54
9. Asymptotic EXPanSions ...
BO. References. ... e 57

1. Introduction

This is a preliminary version of the 0" edition of the Handbook of
Algorithms and Data Structures.

This handbook is intended to contain most of the tabular information avail-
able on algorithms and their data structures; thus it is designed to a wide spectrum
of users, from the programmer who wants to code efficiently, to the student, or
researcher who needs quick information.

In one way or another, computer science is not so much a science as an art.
Although tremendous effort is being made in the theory and in the practice of the
profession to improve this condition, we still cannot compare our software technol-
ogy with other technologies. For example the construction of the CN tower in
Toronto is a task similar in magnitude to the construction of a major operating
system; however, it is unthinkable letting the tower fall a few times until its design
is “*‘debugged’. We hope that this handbook will contribute to an improvement in
the quality and reliability of computer science technology.

This early version is about 35% of its target size. It is intended for internal
use in the University of Waterloo. The table of contents gives the flavour of the
algorithms missing at present. Moreover algorithms will be presented in more
than one language. Depending on the practicallity of the algorithm they will be
coded in Pascal and/or Cobol and/or Fortran.

Gaston H. Gonnet

2. Basic Concepts and Notation

An algorithm is a function which operates on data structures. More
formally. an algorithm is a map from § X Q — R, where S.0, and R are all
structures; S is called the Data Structure, Q is called the Query, and R is the
Result.

The two following examples will make this formal definition more
understandable.

(1) B-tree insertion: This is an algorithm which inserts a new record Q into a B-
tree S, giving a new B-tree as a result. In function notation.
B-tree insertion: B-tree X new record = new B-tree.

(2) Quicksort: This algorithm takes an array and sorts it. Since there is no data
structure acting as a Query in this case. we write
Quicksort: Array X nil = Sorted Array.

Algorithms can be described in several ways: verbally, by flowcharts. or with
the aid of an algorithmic language. We will use this last approach. since such
languages tend to make algorithms easy 1o describe. easy to understand. and easy
to transmit. Furthermore. it is usually a straightforward matter to translate an
algorithmic language into genuine computer code: indeed. most algorithmic
languages are themselves programming languages.

To understand the process of designing an algorithm. we must consider three
factors:
(a) The objects (data structures) on which the algorithm operates;
(b) The basic operations an algorithm may perform:
(c) The building operations, i.e. the way basic operations may be
combined.

We will find that describing algorithms in terms of these three components
not only makes the algorithms easier to understand, but sometimes leads to useful
variations and occasionally to new algorithms altogether.

2.1. The Objects Definition

When we study analytic functions, we must first be familiar with the
complex number system. In the same way, when we study algorithms. we must
first look at data structures, since they are the objects which an algorithm takes as
input and yields as output.

Data structures generally have rules of creation. syntactic rules. which allow
us to build complicated structures from simpler ones. and semantic rules, which
indicate which structures will be considered valid and which will not.

Handbook of Algorithms and Data Structures

2.1.1. The Data Structures

To describe the data structures dealt with in this handbook and their rules of
creation. we will use what is known as a W-grammar (also called a two level
grammar or a van Wijngaarden grammar). Actually, we will not need the full
capabilities of a W-grammar; all we require here are the standard BNF
productions and the uniform replacement rule which we shall describe shortly.

A W.grammar generates a language in two steps (levels). In the first step, a
collection of generalized rules are used to create more specific production rules.
In the second step. the production rules generated in the first step are used to
define the actual data structures.

This two-step process can be understood more easily using the following
illustration. A sequence of real numbers can be defined by the BNF production
S [{real. S|} nil.

Thus a sequence of reals can have the form nil. {{ real. nil }]. [{real, [{real, nil}]]
. and so on. Now in a similar way we could define sequences of integers.
charucters. strings. boolean constants, etc. However, this would make for a bulky
collection of production rules which are all very much alike. One might first try
to get around this repetitiveness by defining

S = [{D.S]| nil
where D is given as the hist of data-types.

D :: real] int| bool| string| char.

However, this pair of productions generates unwanted sequences such as
[{real, [{int. nil}] }]

as well as the kind of sequences we are looking for. Thus we need a different
approach.

In a W-grammar, we solve the problem of listing repetitive production rules
by starting out with generalized rule-forms rather than the rules themselves. We
let D now be given as

D :: real; int; bool; string; char; ...
To distinguish this from a simple production, we will call it a metaproduction.
The generalized form of a sequence S is given by the hyperrule

s-D :: [{D,s-D}] | nil .

Under this new system, we define a sequence of real numbers in two steps.
The first step consists of choosing a value to substitute for D from the list of
possibilities given by the metaproduction above. In this instance we select

D — real.

Next we make use of a W-grammar’s uniform replacement rule which allows us to
substitute the string real for D everywhere it appears in the hyperrule which
defines s=D. This substitution gives us

s-real :: [{real, s-real}] | nil .

Thus we have used the metaproduction and the hyperrule to generate an ordinary
BNF production defining real sequences. The same two statements can generate a

Gaston H. Gonnet

production rule for sequences of any other valid data-type (integer. character,
etc.).

We are ready to define the W-grammar which will generate the data
structures we wish to work with. Our metaproductions are

D :: real:int:bool: :string:char;.. # atomic data types #
{D}R: # array #
{DS}: # record #
[D]: # reference #
s—D: # sequence #
bt—D~LEAF; # binary tree #
mt—D-LEAF: # multiway tree #
gt—-D-LEAF; # general tree #
tr—~D~-LEAF: # data structure for Tries #

Thus all of the above are valid data-type substitutions for D. Other
metaproductions are

DS : D: D, DS.

LEAF :: nil: D.

N :: DIGIT: DIGIT, N.

DIGIT :: 0:1:2:3:4:5:6:7:8:9.

Our hyperrule definitions are
HR[!] data structure : D
HR[2] s-D: [{Ds=D}]:nil
HR[3] bt-D-LEAF : [| D,bt- D =LEAF,bt-D~-LEAF }] : LEAF.
HR[4] mt-D-LEAF:[{N LD} Smt—D- LEAF}(H]: LEAF.
HR[5] gt-D-LEAF:[{D S—gt—D-LEAF |] : LEAF.

As an example. consider what happens when we let
D—real and LEAF—nil.
With these substitutions. HR[3] generates the production rule
bt—real—nil : [{ real,bt—real—nil,bt—real —nil } 11 nil
This production rule defines a binary tree which has a real entry in each node.
Since bt—real=nil is one of the legitimate values for D according to the
metaproduction for D we let
D->bt—real - nil
and learn from HR[1] that such a binary tree is a legitimate data structure.
As another example we can generate a production rule for B-trees of strings
using HR[4] and the proper substitutions to yield
mt~string—nil : [{ 10,{string} /°,{mt— ~string—nil}d%] | il
This is a multi-way tree in which each node contains ten keys and has eleven
descendants.

Handbook of Algorithms and Data Structures

A data structure that is derived from a hyperrule that contains its lefthand
side svmbol in the righthand side is called a recursive data structure. Hyperrules 2
to § all generate recursive data structures. The object defined by the lefthand side
symbol is called the parenr of the objects defined by the righthand symbols
(descendants).

2.1.2. Semantic Rules or Constraints

A semantic rule or constraint may be regarded as a boolean function on datu
structures (S—bool) that tells us which structures are valid and which are not.
The objects defined are those in the intersection of the objects produced by the
W-grammars and those that satisfy the constraints. Whenever we perform an
operation which modifies a data structure (additions. deletions, etc.) we muy
violate some of these semantic rules. The restructuring activity done by an
algorithm to restore validity is called organization. Below we list some examples
of semantic rules which may be imposed on data structures. Note that these
constraints are additional ones placed on data structures which have been
legitimately produced by the rules given in the previous section. Thus when we
refer here 10 an invalid data structure we are not speaking of one that has been
illegally produced. but rather a legal data structure which merely does not satisfy
all the additional requirements we name in a given application.

Order
Many data structures are kept in some fixed order (e.g. the records in a file are
often arranged alphabetically or numerically according to some kev). Whatever
work is done on such a file should not disrupt this order.

Height Balance

Let s be anyv node of a tree (binary or multiway). Define A (s) as the height of the
subtree rooted in s. i.e. the maximum number of nodes one must pass through to
reach the end of brunch starting at s. One structural quality that is sometimes
required is that the height of a tree along any pair of adjacent branches should be
approximately the same. More formally. we require that

[A(sN=h(s2)] < &

where 5, and s> are any two subtrees of the same node. and § is a constant giving
the maximum aliowable height difference. In B-trees. for example. we have §=0.
while in AVL-trees, é=1.

Weight Balance

For any tree. we define the weight function w (s) as the number of nodes in the
subtree rooted at 5. A weight balance condition requires that for all nodes s in
the subtree rooted at s

W(S 1)

w(s)

where r is a positive constant less than 1.

h

Gaston H. Gonnet

Lexicographical Trees

A lexicographical tree is a tree which satisfies the following condition for every
node s: If s has n keys (key .keys...key,) stored in it, s must have n+1
descendant subtrees rqg.r). ..., 1,. Furthermore, if d¢is any key in any node of
19.d) any key in any node of 7. and so on, we have the inequality

do<key 1&d 1€...€keyp€d,y

Priority Queues
A priority queue can be any kind of recursive structure in which an order relation
has been established between each node and its descendants (most priority queues
are implemented using recursive data structures). One example of such an order
relation would be to require that key,<keyy. where key, is any key in a parent
node, and keyy is any key in any descendant of that node.

Brent’s Reorganization and Binary Tree Hashing

Brent's reorganization applies to the insertion of keys in a hashing table. A key is
inserted in the location which minimizes the total cost of accessing every element
in the table when we are allowed to move only one other table element ahead in
its hashing path.

The binary tree hashing scheme is similar to Brent’s, but here we are allowed
to move ahead more than one element already in the table if it decreases the total
access cost. The optimal reorganization algorithm would require us to move any
number of keys either forward or backwards in their hashing paths.

Optimality
Any condition on a data structure which minimizes a complexity measure (such as
the expected number of accesses; maximum number of comparisons) is an
optimality condition. If this minimized measure of complexity is a worst case
value, we call the value the minimax; when the minimized complexity measure is
an average value, it is the minave.

2.2. Basic or Atomic Algorithms

One cannot define a set of basic operations for algorithms without paying
some attention to the building operations as well. After all, the richer the set of
building operations we have, the simpler (and possible fewer) atomic operations we
need to construct usable algorithms. On the other hand, with a large collection of
basic operations, we may not need many building operations to be able to
construct the algorithms we want. It is possible that there are an infinite number
of ways to define basic operations and building operations which will produce
equivalent algorithms. Thus we do not claim that the division of operations we
will make is in any way unique or optimal; our motivation for choosing the
following system is simply that it seems natural. Moreover, we do not intend to
present a formal proof that our atomic operations are indivisible, since we will not
be treating these operations formally enough to justify such a proof. We prefer to

Handbook of Algorithms and Data Structures

list a few of our basic operations below and describe them in a way that conveys
their flavour rather than taking a completely rigorous approach.

Direct Addressing

Many data structures consist of a collection of records which are each
distinguished by an identification key. Direct addressing uses the actual record
key (or its binary configuration) as an integer. This integer will normally be used
as an index into an array.

Multiway {Binary} Decision

This operation is defined as ranking a scalar X in a set of different scalars
X 1.X5....X,. By ranking, we mean finding out how many of the X; values are
less than or equal to X, thus determining what rank X would have if all the values
were ordered. More precisely, ranking is finding an integer / and a subset
AC{X1.X2....X,} such that

fA| =i

X;€A => X >X;

X,E4 =>X<X,.
A binary decision is the simplest case of a multiway decision. In a binary decision
n=1, and i is zero if X <X |, one otherwise.

Hashing

Like direct addressing. hashing is an operation which normally makes use of a
record kev. Rather than using the actual key value however. hashing transforms
the key into an integer in a prescribed range by means of a hashing function and
then uses the generated integer value. We would like this hashing transformation
h:K —h(K) to display some randomness; thus we require that the distribution of
the values k(K) be discrete rectangular for a random key K.

Interpolation

This operation computes a tentative location for a record in a file, basing its guess
on the value of the record’s key, the number of records in the file, the values of
the smallest and largest keys, and the distribution of the values of the keys
throughout the file. Interpolation normally gives the statistical mode of the
location of the desired record in an ordered file, i.e. the most probable location of
the record.

Collision Resolution

This operation assumes that a file has been partitioned into a number of sets of
records. The algorithm then stores these sets in a linear array according to some
prescribed rule. Collision Resolution is closely linked to hashing algorithms.

2.3. Building Operations

Building operations allow us to combine basic algorithms to produce more
complicated ones. The definition of these building procedures thus provides a
criterion for deciding whether or not an algorithm is basic: the algorithm is basic

Gaston H. Gonnet

(or atomic) if it has not been built from simpler operations. In this section. we
will define four building operations.

2.3.1. Composition

Composition is our main operation for producing algorithms from atomic
operations. Typically, but not exclusively, the composition of F and F1can be
expressed in a functional notation as FAF(S.01).02). A more general and
hierarchical description of composition is that F uses F, instead of a basic
operation,

Although the formal definition is enough to include all types of composition.
we may indentify several common structures of composition.

Divide and Conquer

is a composition of two algorithms. The first is used to split a problem into
(usually two) smaller problems. The composed algorithm is then recursively
" applied to each non-empty component. Finally the second algorithm is used to
assemble the components’ results into one result.

lierative Application
takes an algorithm and a sequence of data structures as parameters. The
algorithm is iteratively applied using successive elements of the sequence in the
place of the single element for which it was written (e.g. insertion sort. relational
join).

Tail Recursion
takes one algorithm as its parameter. This algorithm specifies the criterion for
splitting a problem into (sometimes two) components and selecting one of them to
be solved recursively (e.g. binary search, priority queue merge).

Inversion

is @ composition of two search algorithms used to search for secondary keys (i.e.
we expect repetitions of the key values). The first algorithm is used to search for
the set of keys that have the searched value and the second search algorithm is
used to search within the set. The data structures required by the two composed
algorithms are usually called inverted files.

Digital Decomposition

is applied to a problem of size n by attacking preferred-size pieces. An algorithm
is applied to all these pieces to produce the desired result. It is assumed that we
have an algorithm that works very well for these preferred-size problems (e.g.
binary (Bentley & Saxe) decomposition).

Merge

applies an algorithm, and a discarding rule to two sequences of data structures.
The algorithm is iteratively applied using successive elements of the sequences in
place of the single elements for which it was written. The discarding rule controls
the iteration process (e.g. set union, intersection, merge sort, polynomial addition).

Handbook of Algorithms and Data Structures

2.3.2. Superimposition

This building operation combines two or more algorithms, allowing them to
operate on the same data structure more or less simultaneously. Two algorithms
F| and F, may be superimposed over a structure S if F(S.Q |) and FXS5.0Q > can
both operate together. A typical example of this situation is a file that can be
searched by one attribute using F; and by another attribute using F
Interleaving is a special case of superimposition. This happens when one
algorithm does not need to wait for other algorithms to terminate before starting
its execution. For example one algorithm might add records to a file while a
second algorithm makes deletions; interleaving the two would give an algorithm
which performs additions and deletions in a single pass through the file.

2.3.3. Organization

If an algorithm creates or changes a data structures, it is sometimes
necessary to perform more work to ensure that semantic rules and constraints on
the data structure are not violated. For example, when we insert or delete nodes
in a tree, its height balance may be altered. Then we will have to perform some
action to restore the balance in the new tree. When we perform changes to the
records in an ordered file. we may find ourselves forced to re-sort the file because
our record modifications have disrupted the prescribed ordering. In effect we have
combined two algorithms: the original modification algorithm and the sorting
algorithm. This process of combining an algorithm with a “clean-up™ operation
on the data structure involved is calied organization (sometimes reorganization).

2.3.4. Self-Organization

This is a supplementary heuristic activity which an algorithm may often
perform in the course of querying a structure. Not only does the algorithm do its
primary work. it also reaccomodates the data structure involved in a way designed
to improve the performance of future queries. For example, a search algorithm
may promote the searched element once it is found so that future searches through
the file will locate this record more quickly.

2.4. Interchangeability

It is easy to see that there is some interchangeability among data structures.
basic algorithms and semantic rules. For example, in place of a list of real
numbers, we could use an array of real numbers and simply treat it in sequential
fashion. We may use either height or weight balance criteria to eliminate sizable
irregularities in tree structures.

Without going into detail, we can establish what amounts to equivalence
classes of objects in each of these areas. By this we mean that whenever we have
an algorithm which uses one element in an equivalence class, we can create a new
algorithm by replacing that element with one of its equivalents. Some of these
equivalence classes are listed below.

10 Gaston H. Gonnet

Data Structures {array (used linearly). sequence}
{binary trees; multiway trees}

Basic Algorithms {hashing: interpolation; direct addressing|
|collision resolution methods)
{binary partition; Fibonaccian partition: median partition, mode partition}

Semantic Rules {height balance; weight balance]
{lexicographical order; priority queues}
{Ordered hashing: Brent’s hashing: Binary tree hashing]
{minimax; miniave}

2.5. Examples

In this section we give examples of the classification of algorithms according
to the above criteria. We also supgest some possible variations of known
algorithms,

2.5.1. Direct chaining hashing is the sequential composition of a hashing step with
a sequential search through a linked list. We could improve its performance by
incorporating a step which self-organizes the lists, thus obtaining a new algorithm.

2.5.2. The Interpolation Search is a tail recursion composition where we
interpolate. compare the probe position and select part of the file to continue the
search recursively. Sequentially composing the interpolation operation with a
Sequential Search in the proper direction gives the Interpolation Sequential search
algorithm.

2.5.3. If we sequentially compose one interpolation step with sequential lists
search we obtain an algorithm that behaves exactly as direct chaining hashing.
This algorithm has the advantage that range searches are possible and efficient and
that the file is very close to total order compared to hashing.

2.5.4. If we compose hashing with interpolation. in other words we interpolate on
the result of a hashing function applied on a key. instead on the keys themselves,
we obtain a new algorithm. This algorithm is as efficient as interpolation search
and does not suffer the same difficulties as pure interpolation search does when the
keys are not uniformly distributed.

2.55. Composing interpolation with the linear collision resolution scheme
produces an interesting algorithm which is similar to linear probing but which
constructs an almost ordered table. From this we can derive a fairly efficient
sorting method which we might call the Linear Probing Sort.

Handbook of Algorithms and Data Structures

2.6. Notation

Muny of the complexity measures in this handbook are for situations where
the size of the problem increases asymptotically. The asymptotic notation we will
use is given below.

f(n)y = O(g(n)) => there exists k and ngsuch that | f(n)| < kg(n) for
n>ng.

) = ogmny => lim L2 =g

n—wg(n)

f(n) = O(g(n)) => there exists k .k (kXA 2>0) and ng such that
kign)y < f(n) < kagn)forn>nyg.

f(n) = Qgmn) => gn) = O).

fin) = wlgr) => gn) = o(f(n).

fin)y = gn)y => f(n)—gn) = o(gn).
Whenever we write f(n) = O(g(n)) it is with the understanding that we know of
no better bound. i.e. we know of no A(n) = o(g(n)) such that f(n) = O(h(n)).

The probability of a given event is denoted by Prievenr|. Random variables
will alwavs be capitalized. The expected value of a random variable X is written
E [V] and its variance is 02(.\').

At the end of each major section in the following chapters. we will list some
references related to the material in the section.

Our algorithm descriptions will all have roughly the same format. though we
may make slight deviations or omissions when information is unavailable or
trivial. The general format is as follows,

(1} Definition of the algorithm in words and classification according to the busic
operations described in this section.

(2) Theoretical results on the algorithm’s complexity. We are mainly interested
in measurements which indicate an algorithm’s running time and its spuce
requirements. Useful quantities to measure for this information include the
number of comparisons. data accesses. assignments. or exchanges an
algorithm might make. When looking at space requirements we might
consider the number of words. records. or pointers involved in an operation.
Time complexity covers a much broader range of measurements. For
example. in our examination of Search algorithms. we might be able to
attach meaningful interpretations to most of the combinations of

/)
‘ query }
| average \, (comparisonsl add a record into
| variance | J accesses ! delete a record of |

the + minimum } of |assignations ? when we {modify a resord oflg the structure.
| WOTSt case ; | exchanges reorganize ‘
Laverage w.c. | | create |

read sequentially

j

4)

(6)

Gaston H. Gonnet

Other theoretical results may also be presented. such as enumerations,
generating functions, or behaviour of the algorithm when the data elements
are distributed according to special distributions.

The Algorithm. We present each algorithm in a real programming
language. We have selected Algol 68 for this purpose because it allows us to
express algorithms in a vervy compact and precise way. Furthermore. it is
relativelv simple to translate this language into other languages such as
Pascal. Fortran. Cobol. Assembler, or PL/I. Actually. the selection of a
language is not an easy decision. and we are not completely happy with any
current language. For this reason we have enriched the language we use
here with a small number of simple constructs as in Algol 68C. For
algorithms which are only of theoretical interest. we do not provide this
formal description.

Hints and Tips. Following the algorithm description we give several tips and
recommendations on how to use the algorithm. We may point out pitfalls to
avoid in coding. suggest when to use the algorithm and when not to. tell
when to expect best and worst performances. and provide a variety of other
comments.

Tahles. Whenever possible. we present tables which show exact values of
complexity measures in selected cases. These are intended to give a feeling
for how the algorithm behaves. When precise theoretical results are not
available we give simulation results, generally in the form xxx £y where the
value vy is chosen so that the resulting interval has a confidence level of
95%. In other words. the actual value of the complexity measure falls out of
the given interval in at most one out of every twenty simulations.

Differences between internal and external storage. Some algorithms may
perform better for internal storage than external. or vice versa. When this is
true, we will give recommendations for applications in the two different
cases. Since most of our analysis up to this point implicitly assumes the
internal case, in this section we will look more closely at the external case (if
appropriate). We analyze the algorithm’s behaviour when working with
external storage. and discuss any significant practical considerations in using
the algorithm externally.

Handbook of Algorithms and Daia Structures 13

3. Search Algorithms
3.1. Sequential Search

3.1.1. Sequential Search

This very basic algorithm is also known as the Linear search or search by Brute
Force. It searches for a given element in an array or list by looking through the records
sequentially until it finds the element or it reaches the end of the structure. Let A4, be
random variable representing the number of comparisons made between keys during a
successful search and let 4', be a random variable for the number of comparisons in an
unsuccessful search. We have

PriA,=i} = -l—
n
n+1
E[A,) = 3
3 ni-1
o(A4,) = n
A,,’ = n

Below we give pseudo-code descriptions of the sequential search algorithm in several
different situations. The first algorithm searches an array r[i] for the first occurrence of a
record with the required key: this is known as primary key search. The second algorithm
also searches through an array. but does not stop until it has found every occurrence of the
desired key: this is known as secondary key search. The last two algorithms deal with the
search for primary and secondary keys in linked lists.

Algorithm for arrays (primary keys)
k of rin+1] := key:
1= 1
while kev#k of rlijdo i +:= 1 od;
if i<n then # found # else # not found # fi:
Algorithm for arrays (secondary keys)
for i to n do if key = k of r[i] then # found # fi od:
Algorithm for lists (primary keys)
p = list;
while p#nil do if key = k of p then # found #: p := nil
else p := next of p fi od;

Algorithm for lists (secondary keys)

14 Gaston H. Gonnet

p := list;
while p#nil do if key = k of p then # found # f:
P = next of p od;

The Sequential search is the simplest search algorithm. Although it is not very
efficient in terms of the average number of comparisons needed to find a record. we cun
Justify its use in the following cases:

a) when our files only contain a few records (say. n < 20);
b) when the search will be performed only infrequently:

¢) when we are looking for secondary keys and a large number of hits (O(n)) is
expected.

The Sequential search can also look for a given range of keys instead of one unique
key. at no significant extra cost. Another advantage of this search algorithm is that it
imposes no restrictions on the order in which records are stored in the list or array.

The efficiency of the Sequential search improves somewhat when we use i to
examine external storage. Suppose each physical 1/0 operation retrieves 4 records: we su\
that b is the blocking factor of the file, and we refer 1o each block of b records as a
bucket. Assume that there are a total of n records in the external file we wish to search
and let & = {n/b]. If we use E, as a random variable representing the number of
external accesses needed to find a given record, we have

_kb1) o k#l

EIEx] = k+1-2202 >
= bk(k+1) 12k +1 kb(k+1) k2
oAE) n 6 4n 12

3.1.2. Self-Organizing Sequential Search: Move to Front Method

This algorithm is basically the Sequential search, enhanced with a simple heuristic
method of improving the order of the list or array. Whenever a record is found. that
record is moved to the front of the table and the other records are slid back to make room
for it (note that we only need to move the elements which were ahead of the given record
in the table; those elements further on in the table need not be touched). The rationale
behind this procedure is that if some records are accessed more often than others. moving
those records to the front of the table will decrease the time for future searches. It is. in
fact, very common for records in a table to have unequal probabilities of being accessed:
thus, the Move to Front technique may often reduce the average access time needed for a
successful search.

We will assume that there exists a probability distribution in which
Priaccessing key K;} = p;. Further we will assume that the keys appear in the table in
order of decreasing access probability, i.e. P12p22 - 2pp,>0. With this model we
have

1 Pip;
El4 =G, = —+Yy 2L
(4,] n 5 Z/ pitp,

Handbook of Algorithms and Data Structures 15

5 PiP Pk 1 1 1
0XA,) = (2=C)Cy=1) + 4 + +
! e ,-§<kpi+p,-+pk pitpj pPitPk Pjtpk

Ay, = n

2n ; 2n '
C. < COpumal arrangemen! .. ip; < 2u,.
n S Tyt n+1 2 Pi Hi

Ld .
Ifwelet T(z) = Ezp’ then

=]

C, = [zIT())d-.

oY —

It is conjectured that

r

C, < 2p,' ~ 1.5708p).

Let C,(r) be the average number of additional accesses required to find a record.
given that 1 accesses have already been made. Working with a randomly ordered table
(i.e. not necessarily in decreasing access probability order as was required above) we have

| Ca(t)=Cn| = On*/1).

Below we give a pseudo-code description of the Move to Front algorithm as it can be
implemented to search linked lists. The algorithm is less well suited to working with
arrays -- it is really only efficient when we can guarantee a search will be successful.

Search and Move algorithm

p = hst

while p#nil do if key = k of p then # found #; p := nil
else p := next of p fi od:

list := p:=:= next of p :=:= list;

There are more sophisticated heuristic methods of improving the order of a list than
the Move to Front technique; however, this algorithm can be recommended as particularly
appropriate when we have reason to suspect that the accessing probabilities for individual
records will change with time.

Moreover, the Move to Front approach will quickly improve the organization of a
list when the accessing probability distribution is very skewed.

Below we give some efficiency measures for this algorithm when accessing
probabilities follow a variety of distributions.

Zipfs law (harmonic): p; = (iH,)™!

1, QnADH =2+ DHy _ 2n(2)n _ 1
2 H, H, 2

C, = +o(D).

16 Gaston H. Gonnet

Lotka's law: p; = (i°H,")~!
¢, = inm —0.00206339...+0(M)-,
i n

Exponential distribution: p, = (1—a)a'~!

2ln2___l__lna_'ln3a+0(ln5a)

Cr = ~Tna 2728 T 280

2n+1-1)

Wedge distribution: p; =
edge distribution: p, PYPRT

3] 4n+4 13

. ,
| 4n+2] | | 4n +5n =3
C, = H, - | — Ha, | Slmt

" " 3 8ni(n+1) <

Generalized Zipf's: p, « i ™A

L+ .

§') g_ 9 H
Al }ln ")n-—H,,+5 l 3ln °)+—-’-11+0(n").

|+
dn(n+1) ! 3 12(n+1)

H -
/

The table below gives the expected number of accesses required to find an element in
lists of various lengths. when the list elements have accessing probabilities which follow

several different distributions.

CN
n Zipf's law 80%-20% Bradford’s law Lotka's law
rule (b=3)

S 2.6104 1.6471 2.8264 1.8916
10 42949 24513 5.1391 24124
50 14.9484 8.9700 23.6736 3.7949
100 26.2614 17.1580 46.8458 4.4301
500 101.569 82.7880 232227 5.9412
1000 184.724 164 865 463953 6.5991
10000 1415.90 8.7932

3.1.3. Self-Organizing Sequential Search: Transpose Method

This is another algorithm based on the basic Sequential search and enhanced by a

simple heuristic method of improving the order of the list or array.

In this model.

whenever a search succeeds in finding a record, that record is transposed with the record
that immediatelv precedes it in the table (provided of course that the record being sought

Handbook of Algorithms and Data Structures 17

was not already in the first position). As with the Move to Front technique. the object of
this rearrangement process is 1o improve the average access time for future searches b
moving the most frequenthy accessed records closer to the beginning of the table. We have

(e)]
Ef4,] = ¢, = P’Oh(ln)z i {HP:"-'(')lzl’/T(l‘)i
T (L= Jr=1 J
where 7 denotes any permutation of the integers 1.2...n. w(j) is the location of the

number j in the permutation x, and Prob(l,) is given by

n -1
Proh(l,) = [2 Hp/‘"""}
=

5\ Ti=
This expected value of the number of the accesses to find an element can be written In

terms of permanents by

n

; perm (P;)
=1

C
" perm (P)
where P is @ matrix with elements p,; = p:~/ and P; is a matrix which is the derivative of
P with respect to py~'. We can put a bound on this expected value by

2n
n+1

¢, < Opr < 21“;

In general the Transpose method gives better resuits than the Move to Front technigue. In
fact. for all record accessing probability distributions. we have

C”Trumpmr < C,,’\ITF.

When we look at the case of the unsuccessful search. however. both methods huave the

identical result

Below we give a pseudo-code description of the Transpose algorithm as it can be
applied to linked lists. The Transpose method can also be implemented efficiently for
arrays. using an obvious adaptation of the list algorithm.

Algorithm

g:= p:= hst

while p#nil do if kev = k of p then # found #: break
else g := p :=:= next of p fi od:

if p#q then p := next of p:=:= q:=:= pfi

It is possible to develop a better self-organizing scheme by allocating extra storage
for counters which record how often individual elements are accessed: however. it is
conjectured that the Transpose algorithm is the optimal heuristic organization scheme
when allocating such extra storage is undesirable.

18 Gaston H. Gonnet

It should be noted that the Transpose algorithm may take quite some time to
rearrange a randomly ordered table into close to optimal order. In fact, it may take Q(n 9
accesses to come within a factor of 1+e¢ of the final steady state.

Because of this slow adaptation ability, the Transpose algorithm is not recommended
for applications where accessing probabilities may change with time.

3.1.4. Optimal Sequential Search

When we know the accessing probabilities for a set of records in advance, and we
also know that these probabilities will not change with time. we can minimize the average
number of accesses in a Sequential search by arranging the records in order of decreasing
accessing probability (so that the most often required record is first in the table, and so
on). With this preferred ordering of the records, the efficiency measures for the Sequential
search are

n
El4,] = py = Elpiv
=1
2) 2
a(A,) = El‘p,-(ﬂl)‘.
i=1
A,,' = n

Naturally, these improved efficiencies can only be achieved when the accessing
probabilities are known in advance and do not change with time. In practice, this is often
not the case. '

Further, this ordering requires the overhead of sorting all the keys initially according
to access probability.

Once the sorting is done, however, the records do not need reorganization during the
actual search procedure.

References

[Allen.1978], [Bitner,1979], [Gonnet.1979]. [Hendricks, 1976}, [Knuth.1973], [Knuth.1974].
[McCabe.1965). [McKellar,1978]. [Rivest,1976]. [Shneiderman,1978], [Tanenbaum,1978].

Handbook of Algorithms and Data Structures 19

3.2. Sorted Array Search

The following algorithms are designed to search for a record in an array whose kevs
are arranged in increasing (or decreasing) order.

3.2.1. Binary Search

This algorithm is also known as the Bipartition search, the Bisection search. or the
Dichotomic search. It searches a sorted array by the “divide and conquer” technique. At
each step of the search, a comparison is made with the middle element of the array. If
there is no match, the algorithm decides which half of the array will contain the required
key, and discards the other half. The process is repeated recursively, halving the number
of records to be searched at each step until the key is found. If the array contains n
elements and k = |log; n) then we have

1 € Ap € k+1

k+1_p _
Eld,] = k+1-2—"K=2 o jooun)-14+ K52
n n
2
k41 2 k+1_g _
o4, = X2 i"”) 2_|2 n" 2] & 2125 £.125+0 (1),
1 € A, < k+1
, , 7k+1
A = = k+2-= = 5
Ej4,)] C, k+2 o loga n

24" 1
A < —.
U(n) 12
C, = (1+9¢C,—1.
n

(The random variables 4, and A, are as defined in section 3.1; C, and C, are the
expected values of 4, and 4, respectively.)

Binary Search Algorithm.

low := 0; high := n+1:

while high—low > 1 do
j := (high+low) / 2;
if key > k of r[j] then low := |
elif key < k of r[j] then high := j
else high := low fi od;

if key = k of r[j] then # found #
else # not found # fi;

There are more efficient search algorithms than the Binary search but such methods
must perform a number of special calculations: for example, the Interpolation search
(Section 3.2.2) calculates a special interpolation function while hashing algorithms (Section

20 Gaston H. Gonnet

3.3) must compute one or more hashing functions. The Binary search is an optimal search
algorithm when we restrict our operations to only comparisons between keys.

Binary search is a very stable algorithm: the range of search times stays very close to
the average search time, and the variance of the search times is O(1).

Another advantage of the Binary search is that it is well suited to searching for keyvs
in a given range as well as searching for one unique key.

One drawback of the Binary search is that it requires a sorted array. Thus additions.
deletions, and modifications to the the records in the table can be expensive, requiring
work on the scale of O (n).

Below we give figures showing the performance of the Binary search for various
array sizes.

n Cn UZ(A n) C'y
5 2.2000 0.5600 2.6667
10 2.9000 0.8900 3.5455
50 4.8600 1.5204 5.7451
100 5.8000 1.7400 6.7327
500 7.9960 1.8600 8.9780
1000 8.9870 1.9228 9.9770
5000 11.3644 2.2004 12.3619
10000 12.3631 2.2131 13.3618

3.2.2. Interpolation Search

This is also known as the Estimated Entry search. It is one of the most natural ways
to search an ordered table which contains numerical keys. Like the Binary search, it uses
the “divide and conquer” approach, but in a more sophisticated way. At each step of the
search, the algorithm makes a guess (or interpolation) of where the desired record is apt to
be in the array, basing its guess on the value of the key being sought and the values of the
first and last keys in the table. As with the Binary search, we compare the desired key
with the key in the calculated probe position; if there is no match, we discard the part of
the file we know does not contain the desired key and probe the rest of the file using the
same procedure recursively.

Let us suppose we have normalized the keys in our table to be real numbers in the
closed interval [0,1] and let «€[0. 1] be the key we are looking for. For any integer k <.
the probability of needing more than k probes to find « is given by

k .
Prid,>k} = H(l—%Ez—l).

=1

Handbook of Algorithms and Data Structures 21

where £ = ———2———-— For this model we have normalized ([0,1]) searched key.
rnal(l—a)

E[4,]
az(A,,) = O (logylogrn).
El4,] = log> loga n +0(1) = logslog>r n+0.58

log> loga n+0 (1) = logs loga(n +3),

When implementing the Interpolation search, we must make use of an interpolating
formula. This is a function ¢(a.n) which takes as input the desired key a(a€[0.1]) and
the array of length n, and which yields an array index between | and n, essentially a guess
at where the desired array element is. Two of the simplest linear interpolation formulae
are ¢la.n) = [na) and ¢{a.n) = |na+1). Below we give a pseudo-code description of
the Interpolation search, showing how the function ¢ is used.

Search Algorithm.

low = 0: high 1= n+1;
while high—low > 1 do
j = o((key = k of r{low]) / (k of r{high] — k of r{flow]), high—low—1) + low:
if kev > k of r[j] then low := j
elif key < k of r[j] then high := j
else high = low fi od:
if kev = k of r{j] then # found #
else # not found # fi;

The Interpolation search is asymptotically optimal among all algorithms which
search arrays of numerical keys. However, it is very sensitive to a non-uniform [0.1]
distribution of the keys. Simulations show that the Interpolation search can lose its
O (loglogn) behavior under some non-uniform key distributions.

While it is relatively simple in theory to adjust the algorithm to work suitably even
when keys are not distributed uniformly [6] difficulties can arise in practice. First of all. it
is necessary to know how the kevs are distributed and this information may not be
available. Furthermore, unless the keys follow a very simple probability distribution, the
calculations required to adjust the algorithm for non-uniformities can become quite
complex and hence impractical.

The table below gives figures for the efficiency measures of the Interpolation search
for various array sizes. The results represented by an interval are simulation results with a
95% confidence interval.

n E[A,) oX(A,) E{A,]

5 1.5935 1.9611
10 1.8765 0.680 2.3470

22 Gaston H. Gonnet

50 2.4878 1.056 3.0848

100 2.688+0.021 1.127 3.3314£0.051
500 3.161£0.031 1.237 3.800+0.063
1000 3.3274£0.030 1.282 4.03720.058
5000 3.626+0.036 1.295 4.33540.125
10000 3.76930.043 1.327 4.489+0.060

3.2.3. Interpolation Sequential Search

This algorithm is a combination of the Interpolation and Sequential search methods.
An initial interpolation probe is made into the table. just as in the Interpolation algorithm:
if the given element is not found in the probed position, the algorithm them proceeds to
search through the table sequentially, forwards or backwards depending on which direction
is appropriate. Let 4, and A,; be random variables representing the number of arruy
accesses for successful and unsuccessful searches respectively. We have
2°QN T(m)

El4,] = 1+—

. kev 1 n—k
n ,=1I'(k)r(n_k)(l‘/") (1=k /n)

{
|

\ I,:»
|
|

rnw 7 -1
= I+ — -—)+
32 (I=g3,))+0()
{ -1)
: 2 Stk A i
= +y m(k+1n=k)=(k + I, +2.n—k
E[A4,] n+]{1 2 Tk +1n =k)=(k + DIy jp(k +2.n)J
!n \‘1
= |35 tom
<]

As with the standard Interpolation search (Section 3.2.2), this method requires an
interpolation formula ¢ such as ¢(a.n) = [na) or ¢la.n) = {na + 1. Below we give a
pseudo-code description of the algorithm,

Search Algorithm.

j 1= o((kev-lowestkey)/(highestkey-lowestkey)): # initial probe position #
if key < k of r[j] then
for i from j—1 by —1 to 1 while key < k of r[ijdoj:= iod
elif key > k of r{j] then
for i from j+1 to n while key > k of r[i]do j := i od fi:
if key = k of r[j] then # found #
else # not found # fi:

Asymptotically. this algorithm behaves significantly worse than the pure
Interpolation search; its performance is generally not acceptable.

Handbook of Algorithms and Data Structures

When we use this search technique with external storage. we have a significant
improvement over the internal case. Suppose we have storage buckets of size & (that is.
each physical 1/0 operation reads in a block of b records): then the number of external

accesses the algorithm must make to find a record is given by

_ 1 j(n] ’
E{E,)] = ‘+_;’-i32 |
In addition to this reduction the accessed buckets are contiguous and hence the seek time

may be reduced.
Below we list the expected number of accesses required for both successful and

unsuccessful searches for various table sizes.

n E[A,] E[4,]
5 1.5939 1.9613
10 1.9207 2.3776
50 3.1873 3.7084
100 4.1138

500 7.9978

1000 10.9024

5000 23.1531

10000 32.3310

References
[Gonnet.1977]. [Gonnet.1977]. [Gonnet.1980). [Knuth.1973]}. [Kruijer.1974]. [Nat.1979].

[Perl1977]. [Perl.1978]. [Peterson.1957]. [Price.1971]. [Y10.1976]

24 Gaston H. Gonnet

3.3. Hashing

Hashing or scatter storage algorithms are distinguished by the use of a
hashing function. This is a function which takes a key as input and yields an integer in a
prescribed range [I.m] as a result. The function is designed so that the integer values it
produces are uniformly distributed throughout the range. These integer values are then
used as indices for an array of size m called the hashing table. Records are both inserted
into the table and retrieved from the table by using the hashing function to calculate the
required indices from the record keys.

When the hashing function yields the same index value for two different kevs. we
have a collision. A complete hashing algorithm consists of a hashing function and
method for handling the problem of collisions. Such a method is called a collision resolu-
tion schene.

There are two distinct classes of collision resolution schemes. The first class is called
open addressing. Schemes in this class resolve collisions by computing new indices based
on the value of the key: in other words. they *“rehash™ into the table. In the second class
of resolution schemes. all elements which “hash™ to the same table location are linked
together in a chain.

To insert a key using open-addressing we follow a sequence of probes in the table.
This sequence of probe positions is called a parh. In open addressing a key will be
inserted in the first empty location of its path. There are at most m ! different paths
through a hashing table and most open-addressing methods use far less paths than n:!
Several keys may share a common path or portions of a path. The poruon of a path

which is fully occupied with keys will be called a chain.

The undesirable effect of having chains longer than expected is called
clustering. More precisely there are two possible definitions for clustering.

a) Let p = ©(m*) be the maximum number of different paths. We say that a collision
resolution scheme has k +1 clustering if it allows p different circular paths. A
circular path is the set of all paths that are obtained from circular permutations of
a given path. l.e. all the paths in a circular path share the same order of table prob-
ing except for their starting position.

b) If the path depends exclusively on the first k initial probes we say that we have k-
clustering. It is generally agreed that linear probing suffers from primary clustering:
quadratic and double hashing from secondary clustering and uniform and random
probing from no clustering.

Assume our hashing table of size m has n records stored in it. The quantity
a = n/m is called the load factior of the table. We will let 4, be a random variable
which represents the number of times a given algorithm must access the hashing table to
locate any of the n elements stored there. It is expected that some records will be found
on the first try, while for others we may have to rehash several times or follow a chain of
other records before we locate the record we want. We will use L, to denote the length of
the longest probe sequence needed to find any of the n records stored in the table. Thus
our random variable 4, will have the range

[l

Handbook of Algorithms and Data Structures 25

1 € A, € L,
its actual value will depend on which of the n records we are looking for.

In the same way. we will let A, be a random variable which represents the number
of accesses required to insert an n +1% element into a table already containing n records.
We have

1 € A, € n+l.

The search for a record in the hashing table starts at an initial probe location
calculated by the hashing function and from there follows some prescribed sequence of
accesses determined by the algorithm. If we find an empty location in the table while
following this path, we may conclude that the desired record is not in the file. Thus it is
important that an open addressing scheme be able to tell the difference between an empty
table position (one that has not yet been allocated) and a table position which has had its
record deleted. The probe sequence may very well continue past a deleted position. but an
empty position marks the end of any search. When we are inserting a record into the
hashing table rather than searching for one. we use the first empty location we find. unless
we encounter a deletion position earlier in the probe sequence.

Let

C, = E[4,].
and

Cn = E[A,].

C, denotes the expected number of accesses needed to locate any individual record in the
hashing table while C,; denotes the expected number of accesses needed to insert a record.
Thus
1 n] n=—1 ,
Chn = =X El4] = —XCi.
ni= n =0

3.3.1. Uniform Probing Hashing

Uniform Probing Hashing is an open addressing scheme which resolves collisions by
probing the table according to a permutation of the integers [1,m]. The permutation used
depends only on the key of the record in question. Thus for each key. the order in which
the table is probed is a random permutation of all table locations. This method will
equally likely use any of the m ! possible paths.

Uniform Probing is a theoretical hashing model which has the advantage of being
relatively simple to analyze. The following list summarizes some of the pertinent facts
about this scheme:

n_L

Prid,>k} = —.
m

+ -
Elan] = Co o= P, o Hypii] & —a”In(1-0)

26 Gaston H. Gonnet

o4, = 203D _ccohy & +a~lIn(l—a)—a~An¥1~a).
m=—n+2 -«
+

Co = "’m'[H,,,+,—1] = Inm+y=1+o(l),

C"(wom filey 1 ;']

' : m+1 1
A4 = ~1

El4n) Cr m=—n+1 l—-a

oXA,) = (m+l)n7(m--n) ~ @
(m—n+1)(m-n+2) (1—a)-

C,,', = m,

Cn'(worsl filey — Cn'

L,, = O‘Zfl{xn/’i

l €« L, € n

E[L;] = —loggm —logy—logem)+0(1)

E[L,] = 0.631587..Xm.

The following table gives figures for some of the quantities we have been discussing

in the cases m =100 and m =,

m =100 m=ew
a Ch, oci(A,) C, Ch oXA,) C,
50% 1.3705 0.6358 1.9804 1.3863 0.6919 2.0
805 1.9593 3.3837 4.8095 20118 3.9409 5.0
90% 2.4435 8.4190 9.1818 2.5584 10.8960 10.0
959 2.9208 17.4053 16.8333 3.1534 26.9027 20.0
99% 3.7720 44.7151 50.0 4.6517 173.7101 100.0

It does not seem practical to implement a clustering-free hashing function.

Double hashing behaves very similarly to Uniform Probing. For all practical

purposes they are indistinguishable.

Handbook of Algorithms and Data Structures 27

3.3.2. Random Probing Hashing

This is an open addressing hashing scheme in which collisions are resolved by
additional probes into the table. The sequence of these probes is considered to be random
and dependent only on the value of the key. The difference between this scheme and
Uniform Probing is that here some positions may be repeated in the probe sequence.
whereas in Uniform Probing no position is examined more than once. Random probing is
another theoretical model which is relatively simple to analyze.

The pertinent formulae for this scheme are given by:

Prid,>k} = ok

E[dn) = Co = " {Hp=Hm-n] = —a In(1=a)t 0 (——)
n m=-n

2
An) = R H 21 Ca(Cat 1)

= 2 ta'n(l—a)—a~dni—a)+0 (——)
- m-—n
C"(worsl Jile) = o

1<An'<m

ElAn] = Cu = T2
—a
Rl ' a
-A -
LT
Cw = Hp = Inm+y+0(m™h.

In some hashing schemes the order in which elements are inserted has no effect on the
total number of accesses required to insert a set of keys into the table. In Random
Probing. however, order does make a difference. If we have some kind of reorganization
scheme which optimizes the order in which keys are inserted. we have the bounds

ln(m)+'y+—;—+o(l) < E(L,)

[—a~'In(l-a)] < E[L,)

The following table gives figures for some of the basic complexity measures in the
case of m =100 and m =,

m =100 m=o
« Cn o%(A,) Cn Cn oXAn) Cn
50% 1.3763 0.6698 2.0 1.3863 0.6919 2.0

80% 1.9870 3.7698 5.0 20118 3.9409 5.0

28 Gaston H. Gonnet

90% 2.5093 10.1308 10.0 2.5584 10.8960 10.0
95% 3.0569 23.6770 20.0 3.1534 26.9027 20.0
99% 4.2297 106.1598 100.0 4.6517 173.7101 100.0

Notice that the asymptotic results (m—»®; a fixed) coincide with Uniform Probing.
while for finite values of m, Uniform Probing gives better results.

Random Probing could be implemented using pseudo-random probe locations,
however, it does not seem to be a good alternative to the Double Hashing algorithm
described in Section 3.3.4.

3.3.3. Linear Probing

Linear Probing is an open addressing hashing algorithm that resolves collisions by
probing to the next table location modulo m. In other words, it probes sequentially
through the table starting at the initial hash index, possibly running until it reaches the end
of the table. rolling to the beginning of the table if necessary, and continuing the probe
sequence from there. This method resolves collisions using using only one circular path.
For this model:

{
]! (n=D%]_1 |
E{4,] = C, = - 14 N |+ —
[n] n 2 L ;}0 mk J 2 1 l—a
5 1, m [« k24k+3 nk 1) s o (1ma)™? (-2 1
Ap) = —+— | — == | =(Cp)? = - -—
ol An) = T, {\EO 6 mF 2| 3 4 12
(worst file) n+l
C! >
E[A,{]=C,,=i1+; k| 1, J
2 L >0 ml‘ 2 (l_a)‘J
) ! (k +)2k 2+6k +7) n* "2 (1-—a)™* 20-a)”' 1
Ap) = —+ - Y - -
(A) 6 EO 12 k (Cn) 4 3 12

C"’(worn fitey _ 1+m’
Coi = Vam /8 + % + 0(m™h.

Because this algorithm is of practical value, we include a pseudo-code description of
the scheme’s search and insertion algorithms. We denote the hashing table as an array r,
with each element r [i] having a key k.

Search Algorithm.

i := hash function(key);
to n while (k of r[i] # key) and not empty(r[i]) do

Handbook of Algorithms and Data Structures 29

i:=(imod m)+ | od;
if X of r[i] # key then # not found #
else # found # fi:

Insertion Algorithm

i := hash function(key).

to m while not empty(r[i]) and not deleted(r[i]) do
i:= (imod m) + | od:

if empty(r[i]) or deleted(r[i]) then # insert here #: n:= n + 1
else # table full # fi;

Linear Probing hashing uses one of the simplest collision resolution technigues
available. requiring a single evaluation of the hashing function. It suffers, however. from a
piling-up phenomenon called primary clustering. The longer a contiguous sequence of kevs
grows, the more likelv it is that collisions with this sequence will occur when new kevs are
added to the table. Thus the longer sequences grow faster than the shorter ones.
Furthermore. there is a greater probability that longer chains will coalesce with other
chains. causing even more clustering. This problem makes the Linear Probing scheme
undesirable in certain instances; for example. the scheme is not recommended for probing
tables with a high load factor a.

It should be noted that the number of accesses in a successful or unsuccessful search
has a very large variance. Thus it is possible that there will be a sizable difference in the
number of accesses needed to find different elements.

It should also be noted that given any set of keys. the order in which the kevs are
inserted has no effect on the total number of accesses needed to install the set. Thus the
average number of accesses to insert a single element is not affected by the insertion order
either.

An obvious variation on the Linear Probing scheme would be to move backwurd
through the table instead of forward. when resolving collisions. More generally. we could
move through a unique permutation of the table entries, which would be the same for
every kev: onlv the starting point of the permutation would depend on the key in question.
Clearly, both these variations would exhibit exactly the same behaviour as the standard
Linear Probing model.

As noted previously, deletions from the table must be marked as such in order for
the algorithm to work correctly. The presence of deleted records in the table is called
contamination. a condition which clearly interferes with the efficiency of an unsuccessful
search. When new keys are inserted after deletions. the successful search s also
deteriorated.

Up until now, we have been considering the shortcomings of Linear Probing when it
is used to access internal storage. With external storage. the performance of the scheme
improves significantiy, even for fairly small storage buckets. Let b be the blocking factor.
i.e. the number of records per storage bucket. We find that the number of externul
accesses (E,) 1s

30 Gaston H. Gonnet

while the number of accesses required to insert an n + 1% record is
An—1
y

E, = 1+

Furthermore. for external storage, we may change the form of the algorithm so that
we scan each bucket completely before examining the next bucket This improves the
efficiency somewhat over the simplest form of the Linear Probing algorithm.

The following table gives figures for the efTiciency of the Linear Probing scheme with
m =100, and m =,

m =100 m=m
a Cn 0X(Ay) Cn Cn oA) C,
50% 1.4635 1.2638 2.3952 1.5 1.5833 2.5
80% 2.5984 14.5877 9.1046 30 35.3333 13.C6
90% 3.7471 450215 19.6987 5.5 308.25 50.5
95% 4 8140 87.1993 32.1068 10.5 2566.58 200.5
995 6.1616 156.583 50.5 50.5 330833, 5000.5

3.3.4. Double Hashing

Double hashing is an open addressing hashing algorithm which resolves collisions by
means of a second hashing function. This second function is used to calculate an
increment less than m which is added on to the index to make successive probes into the
table. Each different increment gives a different path, hence this method uses m —!
circular paths. We have

El4,] = C, = —a 'In(l-a)+o(1) («<0.319..)

1 € A, € n+l

E[4,] = C,
If m =13 then

C Poub. Hash. ¢ fif- Prob- = 0.0009763...

E[L P}oub. Hash] _ E[L f,/snif. ProbA] = 0.001371...

(1—a) '+o(l) (@<0.319..))

Below we give pseudo-code descriptions of search and insertion algorithms which
implement the Double Hashing scheme. Both algorithms require the table size m to be a
prime number; otherwise there is the possibility that the probe sequence for some keys will
not cover the entire table.

Handbook of Algorithms and Data Structures 31

Search Algorithm.

i := hash function(key):
to n while (k of r[i] # key) and not empty(r[i]) do

i ;= (i + hash increment(key) - 1) mod m + 1 od.
if k of r[i] = key then # found #

else # not found # fi

Insertion Algorithm

1 := hash function(key):
to m while not empty(r[i]) and not deleted(r[i}]) do
i := (i + hash increment(key)- I)mod m + | od:
if empty(r[i]) or deleted(r[i]) then # insert here #. n:=n + |
else # table full # fi;

Double Hashing is a practical and efficient hashing algorithm. Since the increment
we use to step through the table depends on the key we are searching for. Double Huashing
does not suffer from primary clustering. This also implies that changing the order of
insertion of a set of keys may change the average number of accesses required 1o do the
inserting. Thus several reorganization schemes have been developed to reorder insertion of
keys in ways which make Double Hashing more efficient.

As with Linear Probing, deletion of records leads to contamination and decreases the
efficiency of the unsuccessful search. When new keys are inserted after deletions. the
successful search is also deteriorated. The unsuccessful search can be drastically improved
by keeping in a counter the length of the longest probe sequence in the file. Thus the
search algorithm becomes

to lips while (- -+).

Whenever we insert a new key we may need to update this counter.

Extensive simulations show that it is practically impossible to establish statistically
whether Double Hashing behaves differently from Uniform Probing. For example we
would need a sample of 3.4X107 files of size 13 to statistically show with 955 confidence
that double hashing is different from uniform probing. The following tables list some
sample results.

32 Gaston H. Gonnet
m=101
n Cp L, oA, Cr
51 1.375940.002} 4.56410.027 0.6385+0.0069 2.002040.003%
81 1.9686+0.0035 10.996+0.071 3.436+£0.033 4.87634+0.0091
91 2.4560+£0.0051 18.22+0.13 8.623+0.088 9.306+£0.017
96 2.93531+0.0066 27.26£0.20 17.74£0.19 17.004+0.02%
100 3.7920£0.0097 48.81+0.34 49.99+0.52 51.0
m =4999
n Cy L, UZ(An) Cnl
2500 1.3872+0.0023 9.424£0.23 0.6956+0.0078 1.99914£0.0040
3999 2.008940.0038 25.76+0.59 3.906+0.041 4.9960+£0.0100
4499 2.555540.0060 48914+1.43 10.914£0.15 9.989+0.021
4749 3.1544+0.0086 90.3+2.6 27.05+£0.42 19.914£0.040
4949 4.629£0.020 314.24+12.4 167.0+4.5 97.99+0.19

3.3.5. Quadratic Hashing

3.3.6. Ordered Hashing

This method is a composition of a hashing step, followed by double hashing collision
resolution. The chains for collision resolution are kep* ordered. This is equivalent to
inserting all keys in increasing order. By doing this there is no gain in the successful
search, but we have a significant gain in the unsuccessful search.

For the analysis we will assume that we have no clustering. i.e. similar to uniform
probing. Let x be the probability that a randomly selected key in the file is less than the
searched key. Then

ya
Prida,(x)> k} = Zoxk
m
s
EWn)] = 2 gl = 22 40]]
>om m —nx m=-—n

1
C'p=El4"] = fo E A’ 5(x)}dx

- S (m—k)y=r
zomm‘:"(kﬂ)

Handbook of Algorithms and Data Structures

m_ 4ol }[~ —a~In(1-a).
n n-n L'" -n J

m
= —In

Ch = E[4'] = Hp 4
The values for 4, and C,, are the same as those for Double Hashing.

Search Algorithm.

i ;= hash function(kev):
to n while (k of r{i] # keyv) and not empty(r[i]) do

i := (i + hash increment(key) - 1) mod m + | od:
if k of r[i] = kev then # found #

else # not found # fi

Insertion Algorithm

i .= hash function (kev):

to m while not empty (k[i]) and not deleted(k[i]) do
if kev = K[i] # error 4
elif kev > k{i] then key := k[i] :=:= key fi:
i = (i + hash increment (keyv) - 1) mod (m + 1)
od;

if empty(k[i]) or deleted(k[i]) then # insert here #: n:= n + 1
else # table full # fi;

This variation of Double Hashing makes equivalent the unsuccessful search to the

successful search at a small cost during insertion.

3.3.10. Direct Chaining Hashing (or Separate Chaining. or Separate Overflon Chaining).

This method is also known as Separate Chaining or Separate Overflow Chaining. It
makes use of both hushing functions and sequential lists in the following wav. The hashing
function first computes an index into the hashing table using the record kev. This table
location does not hold an actual record. but a pointer to the head of a linked list of all
records which hash to that location. This is a composition of hashing with linked lists.
Let P, and P,,' be random variables which represent the number of pointers (chain links)

inspected for the successful and unsuccessful searches respectively. Thus

P, = A,. P, = A, +1.

The pertinent facts about this algorithm are listed below:

n —i\n—i
Prilist with length i} = {1’ %-
m

nol o4l

El4n] = Cy = 1475 ;

34 Gaston H. Gonnet

2 = n=)n=5 n-1 _ o &
o (An) 12m: 2 2m 2t
E[Ar;] = Cn' = l
m
oX4,) = 2D o
m-
| f Ina §(1 }\
ElL)=T7'my 14+ —22 __ Lol 1
= " e T) ,J
E(L,] = T lm)~ 2 4 1 +0'f]+P(lnlnm)
" 2 InT~!(m) !\ln mJ '

A pseudo-code description of the search algorithm is given below. The insertion
algorithm is similar in some respect. but has the added complexity of allocating storage for
the new record and either adding the new record to the proper linked list, or else setling a
pointer 1o the record in the table if no other keys have previously hashed to that location.

Search Algorithm,

p := hash table[hash function(key) J:
while p=nil do if k of p = key then break:
else p := next of p
od:
if p=nil then # not found #
else # found # fi:

The Direct Chaining method has several advantages over open addressing schemes.
It is very efficient in terms of the average number of accesses for both successful and
unsuccessful searches. and in both cases the variance of the number of accesses is small.
L, grows very slowly with respect to n.

Unlike in open addressing schemes, contamination of the table due to deletions does
not occur: to delete a record all that js required is an adjustment in the pointers of the
linked list involved.

Another important advantage of Direct Chaining is that the load factor a can be
greater than 1: that is. we can have n>m. This makes the algorithm a good choice for
dealing with files which may grow beyond expectations.

There are two slight drawbacks to the Direct Chaining method. The first is that it
requires additional storage for the (m +n) pointers used in linking the lists of records. The
second is that the method requires some kind of memory management capabilities to
handle allocation and deallocation of list elements.

References

[Amble.1974), {Anderson.1979). [Bell,1970]. [Bell, 1970], [Blake,1977]. [Bolour,1979].
[Brent,1973). [Cichelli.1979]. [Cichelli.1980], [Clapson,1977), [Deutscher.1975].
[Gonnet.1979], [Gonnet,1977], [Guibas,1978], [Guibas,1978], [Halatsis,1978), [Knott,1975].

(¥}
(9,

Handbook of Algorithms and Data Structures

[Knuth.1973]. [Konheim.1966]. [Lipton.1980), [Lum,1971], [Lum,1973], {Lyon.1978].
[Lyon.1978]. [Maliach.1977]. [Maurer,1975), [Maurer,1968], [Mendelson.1979].
[Morris, 1968]. [Peterson,1957], [Pippenger.1979], [Rivest,1978]. [Trabb.1978].

[Ulman.1972].

36 Gaston H. Gonnet

3.4. Recursive Structures Search

3.4.1. Binary Tree Search

The Binary tree search is an algorithm for searching a lexicographically ordered
binary tree. Without loss of generality we may assume that the left descendants nodes of
any node contain keys whose values are less than or equal to the root, and that the right
descendants nodes contain keys whose values are greater than the root.

Let A, be the number of accesses (or key comparisons) made in the course of a
successful search for a given key in a binary tree of size n, and let 4, be the number of
accesses made in the course of an unsuccessful search of size n.

The symbol A(n) denotes the height of a tree of size n, i.e. the number of nodes in
the longest path through the tree. With this definition, a null tree has height 0. a single
node tree has height 1. The depth of a node in a tree is that node to the distance from the
root; thus the depth of the root is 0.

Several variations on the basic binary tree structure arise with the introduction of

semantic rules or constraints such as height balance, weight balance. or heuristic organiza-
tion schemes. The search algorithm for all binary trees is given below.

Search Algorithm:
mode tree = struct (typekey k. ref tree left, right):

proc search = (ref tree t, typekey key) void:
if t = nil then #not found#
#can insert new element here#
elif k of t = key then #foundy#
elif k of t < key then search(right of t, key)
else search (left of t, key) fi:

The number of different trees with n nodes is

2

and the associated generating function is:

Te) = 3 tyz" = 142T%z) = 12174
n 20 2z

The internal path length, J,, of a tree with n nodes is defined as the sum of the
depths of all its nodes. The external path length E,. of a tree is the sum of the depths of
all its leaves. For any binary tree

E, = I,+2n

Let a; be the expected number of nodes at depth k and let b; be the expected
number of leaves at depth k. We have the associated generating function

Handbook of Algorithms and Data Structures 37

A(z) = zakzk,

B() =);bkz" = (2z-1DA(z)+]1.

For a successful search we have

Ell, ' ,
C, = E[4,] = [n Tip = A D 4y me,-,

n

oHan = 30—+ W2

1 < 4, € h(n),
and for an unsuccessful search

E[E,] B'(1)

Co = El4a] = n+l a4+l
. B (1 . .
oicn = e, a-c)).

1 € A, < h(n).

The ordered binary tree is a structure which allows us to perform many operations
efficiently: inserting in a time of O (h(n)); deleting a record also takes O (h(n)). finding the
maximum or minimum key requires O (h(n)) comparisons; and retrieving all the elements
in ascending or descending order can be done in a time of O (n). With small changes. it
allows to retrieve the k " ordered record in the tree in O(h(n)).

References

[Choy.1978], [Driscoll,1978], [Flajolet,1978], [Kemp,1979], [Lee,1980], [Nievergelt.1973].
{Nievergelt,1974], [Proskurowski,1980], [Rotem,1978], [Solomon,1980].

3.4.1.1. Randomly Generated Binary Trees

These structures are also known as Random Search trees. Such trees are generated
by taking elements in a random order and inserting them into an empty tree using the
same algorithm as the one in the previous section. Ordered binary search trees are

normally considered to be created in this way. The efficiency measures for searching such
trees are

C, = 1+ n_lz C,".
==

E[4,] = C, = 2(14+1/n)H,—3 = 1.3863 logm —1.8456.

0XA,) = Q+10/n)H,—4(1+1/n)H2/n+H +4 = 13863logwm —1.4253,
E[A,] = C, = 2H,4+1=2 = 1.3863 logan —0.8456,

0X(Ay) = 2H,41—4H, 3, +2 ~ 1.3863 logn —3.4253,

38 Gaston H. Gonnet

3.634..In(n)+o(inn) € Efh(n)] < 4.3110..In(n)+0(In"n).
Elh(n)] = 4011..ln n—=6.568 (exper.)

At the cost of two extra pointers per element, randomly generated binary trees
display an excellent behaviour in searches. Unfortunately, the worst case can be generated
when the elements are sorted before they are put into the tree. In particular. if any
portion of the input records is sorted, it will cause the tree to degenerate badly. Compared
to the random binary trees of the next section though, ordered binary trees generated from
random input are exceptionally well behaved.

Below we give numerical values for several efliciency measures in trees of various

sizes.

n C, oA, Cn oA) Efh(n)]
5 2.4800 1.1029 2.900 0.9344 3.8000
10 3.4437 2.1932 4.0398 1.8076 5.6411
50 6.1784 5.6159 7.0376 4.5356 10.8103
100 7.4785 7.2010 8.3946 5.8542 13.2858
500 10.6128 10.7667 11.5896 9.0179

1000 11.9859 12.2391 12.9729 10.3972

5000 15.1927 15.5608 16.1894 13.6105

10000 16.5772 16.9667 17.5754 14.9961

References

[Knuth,1973]. [Knuth.1974]. [Robson.1979].

3.4.1.2. Random Binary Trees

When speaking of Random Binary Trees, we consider the situation where all possible
trees with the same number of nodes are equally likely to occur. In this case,

3n+ig2
47— =7
n+l nn) 9 17 - 1
= \/rn(1+8—-+l 5+0 (n 3))—3——”—.

(%) "1
-2

N = = L
E[A,)] = (n) = x/ﬁ(wgn 128 .
n

Eh(n)] = Nwn +0n"*% (for any 6>0).
3 n~vVr

I

E[A,)

+0(n 3))——:—:—:.

RN L 9(1—x/4)n 2 25"‘/m+0().

2 = (10 _
a(ln)—(3 ™n T

Handbook of Algorithms and Data Structures 39

If 1, » is the number of trees of height and size n. then the associated generating function

is
Byz) = X tanz" = zBi-i(z)+1.
n=0
When all trees of height h are considered equally likely to occur. then

Enodes] = (0.62896..)2" =140~ (8> 1).

This situation is primarily a theoretical model. In practice, very few situations give
rise to random trees.

References

[Flajolet.Unp].

3.4.1.3. Height Balanced Trees

These are also known as AVL trees. Height balanced trees have the property that
any two subtrees at a common node differ in height by at most 1. This balance property
can be efficiently maintained by means of a counter in each node. indicating the difference
in height between the left and right subtrees. Because of the height balancing

logan+1 < h(n) < 1.4404 logs(n +2) — 0.3277,

C, =~ logm + 0.25 (exper.).

Let 1,5 be the number of height balanced trees of height h and size n. The
associated generating function is

Th(z) = 2 tphz" = 2Th—(2)2Th-Az)+Tp 1))

n 20

If we assume that all trees of height h are equally likely to occur. the average number of
nodes in a balanced tree of height h is

Elnodes] = (0.70118..)2"

References

[Adel'son-Vel'skii.1962]. [Foster.1965]. [Karlton.1976]. [Kosaraju.1978]. [Luccio.1978].
[Ottmann.1978]. [Raiha.1979). [Zaki.1979]. [Zweben.1978].

40 Gaston H. Gonnet

3.4.1.5. Heuristic Organization Schemes on Binary Trees

When the keys in a binary tree have different accessing probabilities. a randomlv
generated tree may not be fully satisfactory. The following heuristic organization schemes
offer ways to create better trees when the accessing probabilities are known.

(a) Insert in decreasing probability order. In this way, the keys most likely to be
sought are closer to the root and have shorter search paths. This method requires a
reordering of the keys before they are put into the tree.

(b) Median Split. In this scheme we are closer to the root so that the accessing
probabilities of both the left and right subtrees are close to '. This is repeated recursively
on both sides of the root; thus if a key is a descendant of any node, it should be equally
likely to be in the left subtree as the right. This arrangement is the information theoretic
optimum.

(c) It is possible to mix approaches (a) and (b). We allow a tolerance 8, and examine
the elements for which the accessing probabilities of the left and right subtrees fall into the
range ':x6. From these elements. we choose the one with the highest accessing
probabilitiy to be the root. This selection procedure is repeated recursively for the nodes
of each subtree.

When we do not know the accessing probabilities we may try heuristic organization
schemes similar to the Transpose and Move to Front techniques in linear searching.

(d) The Transpose method can be adapted for trees by exchanging a node with its
parent each time the node is accessed. If the probability of accessing any keyv i is
pi = 1/n. then this Exchange with Parent technique has the result

CEP ~ Vrn.

(e) Corresponding to the Move to Front scheme in linear searching. we have the
technique of moving an accessed element to the root. With this Move to Root approach
we have

PiPj
1< jgnPit - Fp;

az(C,fWR) < V2inn.

where H(}'}’)=E —pilogp;.
-

E[CYR) = 1+ < 2n(QH@P)+1.

References
[Allen.1978]. [Horibe.1979]. [Sheil,1978].

Handbook of Algorithms and Data Structures 41

3.4.2. B-Trees

A B-tree is a balanced multiway tree with the following properties: (a) Every node
has at most 2m +1 sons. (b) Every node except the root and the leaves has at least 1 +1
sons: the root either is a leaf or has at least two sons. (c) The leaves are null nodes which
all appear at the same depth. B-trees are used mainly as a primary kev access method for
large databases where secondary storage is mandatory.

Let 4, and A4, represent the number of key comparisons in successful and
unsuccessful searches respectively. Let E, and E, be the number of nodes of the B-tree
accessed in the two cases. Finally, let a be the occupation factor of the tree. i.e. the ratio
between the number of keys currently in the tree and the maximum number of keys that a
B-tree of the same shape can hold. Then

nuniber of kevs
2ni (number of nodes)’

We also have
1 < E, € hin).
b mh+1)—1

E, = h——

mo omQm+ =1

(logam +1(n+ 1] < b < 1+{logy +1((n+1)/2)].

Let 1, be the number of different B-trees with n nodes. We have

@© 2.m+l(:m+1_l)
B(z) = X 12" = B)+z.
n=0 z—1
-n
= ¢ u(log n).
n

where 0<¢<1 and ¢ is a root of z —=1=z"(z"*1=1). In general. for randomly generated
B-trees. we have

1/2 € a € 1,

lima = In(?Q) =& 69%.
ny—>o
In our following description of the algorithm for searching B-trees, in-search(z.x) is a
function that searches for the value x in the node pointed to by t in-search returns the
largest i such that & [i]<x.

42 Gaston H. Gonnet

Search Algorithm

proc search = (btree t; key x, int i) btree :
if t = nil then nil
else i := in-search (t.x);
if x = k[i] then t
else search (p[i].x.i)
fi

B-trees are well suited to searches which look for a range of keys rather than one
unique key. Furthermore, since the B-tree structure is kept balanced during insertions and
deletions, there is no need for periodic reorganizations.

References

[Bayer.1971]. [Bayer,1977), [Bayer,1977], [Comer,1979]. [Held.1978]. [Kwong.1978].
[Lomet,7461], {Maly,1978]. [Miller,1978]. [Odlyzko,1980], [Ottmann,1979].
[Rosenberg,1979]. [Samadi.1976]. {Snyder,1978].

3.4.2.1. 2-3 Trees

2-3 trees are the special case of B-trees when m =1. Each node has two or three
sons. and all the leaves are at the same depth.

Let 1, be the number of different 2-3 trees with n nodes. Then
B(iz) = 2 (2" = B(z%4z3)+:
n=0

¢n

t, ® —u(lnn)
n

where ¢=(l+\/§)/2 is the *“‘golden ratio”, and u(x) is a periodic function with period
In (4—¢) and mean value (¢In (4—¢))']. Randomly created 2-3 trees have occupation
factors in the range

0.70+0(n"") < a < 0.79+0(n 7).
If we assume all trees of height 4 are equally likely, then
E[nodes] = (0.48061...)3"
Elkeys] = (0.72161...)3"
a = 0.75073...

R eferences

[ENis, 1978], [Miller,1977], [Reingold,1979]. [Rosenberg.1978]. [Vaishnavi.1979].
[Yao,1978), [Zaki,1979].

Handbook of Algorithms and Data Structures 43

3.4.2.2. Symmetric Binary B-Trees

Symmetric Binary B-Trees (or SBB trees) are an implementation of 2-3 trees. They
have been suggested as an alternative for AVL trees. Symmetric Binary B-Trees are
binary search trees in which the right and left pointers may be either vertical (normal)
pointers or horizontal pointers. In an SBB tree all paths have the same number of vertical
pointers (as in a true B-tree). All nodes except the leaves have two sons and in no path has
two consecutive horizontal pointers.

Random retrievals, insertions, and deletions of keys in an SBB tree can be done in a
time of O (In n). If we let k be the maximum number of keys in any path and A (n) be the
height of the SBB tree (counting vertical pointers only), we have

hin) < k < 2h(n),
logs(n+1) € k < 2logs(n+2)—-2.
While every AVL tree can be transformed into an SBB tree. the converse is not true.
Thus the class of AVL trees is a proper subclass of the SBB trees.
SBB trees are well suited for primary memory.

References
[Bayer,1972].

44 Gaston H. Gonnet

4. Sorting Algorithms.
4.1. Techniques for Sorting Arrays.

4.1.1. Bubble Sort

The Bubble Sort algorithm sorts an array by interchanging adjacent records that are
in the wrong order. The algorithm makes repeated passes through the array probing all
adjacent pairs until the file is completely in order.

Let C,, be the number of comparisons needed to sort a file of size n using the Bubble
Sort. and let /, be the number of interchanges performed in the process. Then

nin—1)

n—1 g Ch < 3

:— - 2— 12
EIC,] = n—nlnn 2(~y+ln- n +0(n"),

nin—1)
__2*'

0 <1/, <

Ell,] = n(n4—l)_

Elpasses] = n—=~wn/241/3+0(1).

The simplest form of the Bubble Sort always makes its passes from the top of the arrav to
the bottom. A slightly more complicated form passes from the top to the bottom. then
makes a return pass from bottom to top. Descriptions of both these algorithms are given
below.

Bubble Sort Algorithm

up := n;
while | <up do
1>up
for i to up-1 do
ji=1
if k[i]>k[i+1] then
k[i] := k[i+1] :=:= k[i]:
ji=
fi
od
up 1= j

Hundbook of Algorithms and Data Structures 45

Bubble Sort Algorithm (Double direction)
a:=1. b:=n-liincr:= 1;
while (b-a)*incr > 0 do

=l
for i from a by incr to b do
if k[i]>k[i+1] then
k{i] ;= k[i+1]):=:= k[i]:
Jyi=i
fi
od
4 = J-INCT; b := a: incr:= -incr:
od:

The Bubble Sort is a simple sorting algorithm. but inefficient. Its running time is
O (n-). unacceptable even for medium-sized files. Perhaps for very small files its simplicity
mayv justify its use. but the Linear Insertion Sort is just as simple to code and more
efficient to run.

For files with very few elements out of place. the double direction Bubble Sort (or
cocktail shaker sort) can be very efficient. If & of the »n elements are out of order. the
running time of the double direction sort is O(kn). One advantage of the Bubble Sort is
that it is stable: records with equal keys remain in the same order after the sort as before.

4.1.2. Linear Insertion Sort

The Linear Insertion Sort is one of the simplest sorting algorithms. With a portion
of the arrav already sorted. the remaining records are moved into their proper places onc
by one. Let C, be the number of comparisons needed to sort an array of size n using the
Insertion Sort. Then

(n+4)y(n—1)

E[Cn] = 4
> 2n+5 -1
oAC,) = (2n ;rzz(n)
Algorithm:

for i from n-1 by -1 to | do
for j from i to n-1 while k[i]>k[j+1] do
k{j]:= k[j+1]:=:= k[j] od
od:

Algorithm (more efficient)

46 Gaston H. Gonnet

kin+!1]:= +o;
for i from n-1 by -1 to | do
temp := k[i]:
1=+l
while temp>k[j] do k{j-1] := k[j]:
j+:= 1 od:
k[j-1] := temp
od:

The running time for sorting a file of size n with the Linear Insertion Sort is O (n -).
For this reason. the use of the algorithm is only justifiable for sorting very small files. For
files of this size however (say n <10). the Linear Insertion Sort may be more efficient than
algorithms which perform better asymptotically. The main advantage of the algorithm
though is the simplicity of its code.

Like the Bubble Sort. the Linear Insertion Sort is stable: records with equal keys
remain in the same order after the sort as before.

4.1.3. Quicksort

Quicksort is a sorting algorithm which uses the divide and conquer technique. To
begin each iteration an element is selected from the file. The file is then split into two
subfiles. those elements smaller thun the selected one and those elements whose keyvs are
larger. In this way. the selected element is placed in its proper final location between the
two subfiles. This procedure is repeated recursively on the two subfiles and so on.

Let €, be the number of comparisons needed to sort an array of size n. let I, be the
number of interchanges performed in the process, and let k = [log» |. Then

+hk-2%*142 < €, < "—(—”2‘J
E[C,] = n+1D(2H,;41=2) = 2n(ln n+y~1)+2In n+0(1).

oz(C,,) =nV71=-27-/3 + o(n)

{ N Ie 3

| Hpvr 5] Inn+y S
I” = +1 ;_"——- | —_— = ! —— + l
Ell,] (n)L 3 6j+2 nL 3 6 O(In n)

In the description of Quicksort below, note that files and subfiles under a certain size
m are sorted by a routine called simplesort, not by Quicksort itself. The choice of » and
the algorithm for simplesort are up to the programmer. For example, if m =0 simplesort
would be null. while if =1 simplesort is just a conditional interchange. One could also
choose m =9 and use the Linear Insertion Sort. In any case, Quicksort usually behaves
more efficiently when m #0 and very small files are sorted by a separate algorithm.

Handbook of Algorithms and Data Structures 47

Quicksort Algorithm

proc quicksort = ([] typekey k: int lo,up) void :
if up-lo<m then simplesort
else
j = up:
temp := k[lo]:
for i from lo+1 while igj do
if k[i]>temp then
while k[j]>temp do j := j-1 od
if j>i then k{i] := k[j] :=:= kfi] fi
fi
od;
k[lo] := k[j} :=:= k[lo]:
if j-lo<up-j then quicksort(k,loj-1);
quicksort(k,j+ 1.up)
else quicksort(k,j+1,up);
quicksort(k.lo,j-1)
fi
fi

Quicksort is a very popular sorting algorithm, though its worst case is O (n 2., its
average behaviour is excellent.

Unfortunately, this worst case occurs when the given file is nearly in order already, a
situation which may well happen in practice. To compensate for this, small tricks in the
code of the algorithm can be used to ensure that these worst cases only occur with
exponentially small probability.

4.1.4. Shell Sort
4.1.5. Heapsort

4.1.6. Interpolation Sort.

This sorting algorithm is similar in concept to the Bucket Sort. An interpolation
function is used to estimate where records should appear in the file. Records with the
same interpolation address are grouped together and later bubble-sorted. The main
difference between this algorithm and the Bucket Sort is that the Interpolation Sort is
implemented in an array, using only one auxiliary index array and with no pointers.

Let C, be the number of comparisons needed to sort an array of size n using the
Interpolation Sort, and let F, be the total number of interpolation function evaluations
made in the process. Then

F = 2n,

n_l<cn<ﬂn_2—_ll

48 Gaston H. Gonnet

5(n —1
ElC,) = A=l
2 = 20n—=13)n-1)
a"(C,,) - 20n 7123nn 1

The algorithm below uses the interpolation function ¢ to sort the records [1:n] of the
array ‘‘in” into ascending order in the array “out”. The array “iwk™ is an auxiliary arra\
of length n.

Algorithm

for i to n do iwk[i] := 0 od;
for i to n do iwk[¢(in[i].n)] +:= 1 od;
for i from 2 to n do iwk[i] +:= iwk]i-1] od:
for i to n do
j = ¢(in[i].n);
out[iwk[j]} := in[i)
iwk[j] -:= 1 od:
for i from 2 to n do
if out[i-1] > out[i] then
for k from i by -1 to 2 while out[k-1] > out[k] do
out[k-1] := out[k] :=:= out[k-1] od
fi
od:

Because the standard deviation of C, is =0.53n %, the total number of comparisons
used by the Interpolation Sort is very stable around its average.

One of the restrictions of the Interpolation Sort is that it can only be used where
records have numerical keys which can be handled by the interpolation function. Even in
this case, if the distribution of the record key values departs significantly from the uniform
distribution, it may mean a dramatic difference in running time. If, however. the keyv
distribution is suitable and we can afford the extra storage required. the Interpolation Sort
is remarkably fast, with a running time of O (n).

4.1.7. Linear Probing Seort.

This is an interpolation sort based on a collision resolution technique similar to that
of Linear Probing Hashing. It produces ordered chains using an algorithm which is the
composition of interpolation and linear collision resolution. The algorithm can be
implemented for full tables, but its performance improves dramatically in tables with load
factors of less than 100%.

Let the size of our table be m +w; we will use the first m locations to interpolate the
keys and the last w locations as an overflow area. We will let n be the total number of
keys to be sorted and a=n/m be the load factor. Let C, be the number of comparisons
needed to sort the n keys using the Linear Probing Sort, and let F, be the total number of
interpolation function evaluations performed in the process. Then

Handbook of Algorithms and Data Structures 49

F, = n

EIC,] < n(2m —n)
"N 2Am=n)

Let W, be the number of keys in the overflow section bevond the location m in the table.
We have

W o’
E[W,] < (=2
) 6a’~20’—a*
L Wr = = e G«
o (Wn) 12(1—a)?

Below we describe the Linear Probing Sort using the interpolation function ¢.

Algorithm

for j to upb k do k[j] := 0 od:
to n do key := get a key:
i:= ¢(key.m);
to n while k[i]#0 do
if key<k[i] then key := k[i] :=:= key fi
i+:= 1.
if i>upb k then # overflow: k not large enough #
od,
k{i} := key
od;
i:=0;
for j to upb k do if k{j]#0 then
k[(i+:=1)]:= k[j] fi od
while i<upb k do k[(i+:=1)] := 0 od;

With a good interpolation formula, this algorithm can rank among the most efTicient
interpolation sort algorithms.

The application of this algorithm to external storage appears to be promising:
however, its performance cannot be improved by using larger buckets. Letting £, be the
number of external accesses required to sort n records, we have

E[E)] = n|1+4—% |47
[En] = n] Wi-a) | Tb

Below we give efficiency measures for the two table sizes with various load factors.

50 Gaston H. Gonnet

m =100 m = 5000
a C w 1 C W !

50% 72.94+£0.18 0.233+0.011 13.83+0.13 3749.74£8.0 0.305+0.073 766.4+59
80% 201.40£0.91 1.269+0.033 85.57+0.74 11960.£76. 1.524£0.22 5941.+£67.
90% 3093x1.6 247610048 164.1+1.4 24095.£293. 4.14+0.48 16130.£273,
95% 398.242.2 3.610+0.058 2338+19 45890.+£884. 8.73x0.85 36121.4£846.
99% 499.242.7 5.069+0.063 3158424 119703.£3564. 25.7x19 106957.4£3475.

References

[Dobosiewicz,1978], [Floyd,1964], {Hirschberg.1978], [Hoare,1961]), [Hoare.1962].
[Johnson,1978]. [Knuth,1974], [Knuth,1973], [MacLaren,1966], [Manacher,1979].
{Manacher,1979]. [Munro,1976], [Peltola,1978], [Power.1980], [Sedgewick.1978].
[Sedgewick.1977]. [Todd.1978]. [Williams,1964], [Woodall,1971]

Handbook of Algorithms and Data Structures 51

8. Distributions Derived from Empirical Observation

In this chapter we will describe some probability distributions arising from empirical
situations. The distributions described here will later be used with other well known
distributions to test algorithms under various conditions. Some of these distributions urc
related directly or indirectly to data processing.

8.1. Zipf's Law

Zipf [1] observed that the frequency of word usage (in written English) follows o sim-
ple pattern. When word frequencies are listed in decreasing order. we have the relation

Jio = if;
where f denotes the frequency of the i ™ most frequent word. Zipf observed that the
population of cities in the U.S. also follows this relation closely. From this observation
we can easily define a Zipfian probability distribution as
]

;= I<ign
Pi I.H,, X%

The first moments and variance of this distribution are

g = n
| = ——
H,

D= nin+1)

- 2H,

> _ o n o n+l n

ol = (T --I

HH 2 HH

This distribution can be generalized in the two following wavs.

(a) First generalization of a Zipfian distribution
In this case the probabilities are defined by

I
U S I<ign b>—1
P = i h) (<i<n b>=1)

where a = Y(n+h+1)=y(h+1). The first moments and variance are

uy = S—b
a
. n(n+1)=2nb+2ab"
B2 =
2a
o’ = ’—1(n+l+2h—2n/a)
2a

Choosing b to be an integer allows us to represent truncated Zipfian distributions,
Giving b a small non-integer value may provide a better fit for the first few frequencies.

52 Gaston H. Gonnet

(b) Second generalization of a Zipfian distribution
This generalization introduces a parameter 6 so that we may define

1

p; = W (TS T4N

Zipf found that some word frequencies matched this distribution closely for values of
¢ other than 1. In this case the first moments and variance are

Hi' ™" n(-6)

Hi

H® 2-6
C_ HSTD -
2 = o F
H, 36
HPHO-HEN g

g =

(H,%)? (3-6)(2-6)°

8.2, Bradford’s Law

Bradford's law was first observed in experiments dealing with the number of
references made to a selection of books in search of information. This principle can be
described in the following way. Assume that we have a collection of n books which treat a
given topic. and that these books are placed on a shelf in decreasing order according to the
number of times each book is referenced. Thus the most referenced book is first and so
on. Lastly we divide these books into k contiguous groups such that each group receives
the sume number of references. Bradfords Law now states that the number of books in
each successive division follows the ratio I'm:m % - - - m K1

To translate this description into mathematical terms, we let r; be the expected value
of the number of references to the i’ most referenced book on our shelf. Thus we have

rizraz - - 2r,. Let the partial sum of the expected values of these references be
/
2ri = R()
i=1
and so
R(n)y =T
where T is the total expected number of references. To divide the n books into k divisions
C n(m—1
satisfving the given ratio, the number of books in each division must be —(1%
m h—
k=1
n —1 - . . .
nm (m —1) L (1 I). Since each division receives the same number of

mk=1 7 mh—1

references, this number must be T/k. Consequently the total expected number of
references to the first division will be

n{m-—1)

mk—1

= R{ﬂ:l_)] - I

mki—1

Handbook of Algorithms and Data Structures 53

For the first und second divisions together we have

Rj(gl+m)n(m—-l))‘» - _21
J

L mhb—1 ¢

In general. for the first j divisions we have the equation

R“m"—l)n\i - iT (1)
[mk—1 J k-

Now the quantities & and m are related to one another. since for any valid k.
Bradford's Law predicts the existence of a unique m. Examination of R (x) for different
values of A and m shows that in order for the law to be consistent. the quantity m *—=1 = 4
must be constant. This constant b defines the shape of the distribution. From equation (1)
we can solve for R (x) and obtain

T hx
R{x) = —log,,(—+1).
k n
Let p, be the probability that a random reference refers to the i book. From the

ahove discussion we have

_ RG=RG=D _ 1, [_bi+n_ |
P T N TR

Since m*=1=b. we have kinm = In(b +1). this allows us to simplify the given
probability to

_ [bi+n |
pi = |08h+|[__“‘_

bi—=1)+n

The first moment of the above distribution is

(3
: "o Cn(b+1) [T(nb+1)/b) |
= L= ol nbl) Tnb+1)/b) 1 2
Hi ,E=]1'n n 011/»+|]L b J 0gh+l[Tn/b) | (2)
L 1o b2 _
= n|—————+—+ :
"+ b }“‘2 TG+ HOC)
The second moment is given by'
: n® n 1 1 nb—2) b b2 -
V2= Ty s e | T s TG |t T @
The variance is
2
5 n b+2 1
2 - 4
me+n) | 26 e+ | TOW)

This distribution behaves very much like the generalized harmonic (or the first
generalization of the Zipf). When the parameter b—0 Bradford’s distribution coincides

54 Gaston H. Gonnet

with the discrete rectangular distribution.

Although the process of accessing information from books is rarely automated. there
is a significant number of automatic processes in which the accessing of information is
similar to the situation of referencing books. In these cases Bradford's Law may provide a
good model of the access probabilities.

8.3. Lotka’s Law

Lotka [3] observed that the number of papers in a given journal written by the same
author closely followed an inverse square distribution. In other words. if we were 1o
choose an author at random from the list of contributors to the journal. the probability
that he or she had contributed exactly i papers would be proportional to i 72 Later it was
observed that for some journals an inverse cube law fit the data more precisely. We will
generalize these two laws in the following way. Let n be the total number of authors who
published at least one paper in a given journal. The probability that a randomlv chosen
author contributed exactly i papers will be given by

1
()
The first moment of this distribution corresponds to the average number of papers
published by each author: it is given by

QI S { ot 1]
[N 2]’/’: 6

Pi =

We immediately conclude that this law will only be consistent for §>2. as has been noted
by several other authors; otherwise this first moment will be unbounded. a situation which
does not correspond with realitv. Note that ny'; denotes the expected number of papers
published in a journal which has n contributors.

For 6 < 3. the variance of the distribution under discussion diverges. For § > 3. the
variance is given by

2 $0-2_[ge-n !
(I (I

The median number of papers by the most prolific author can be approximated by

1
n | o=7

~ H
~ —_—

In2)¢OX6-1) |

median

8.4. 80%-20% Rule

The 80%-20% rule was proposed as a probabilistic model to explain certain data
processing phenomena. In computing folklore it is usually given as: “80% of the
transactions are on the most active 20% of the records. and so on recursivelyv™.
Mathematically, let p 1>p>>p3> - - - >p, be the independent probabilities of performing
a transaction on each of the n records. Let R (j) be the cumulative distribution of the p,'s.

Handbook of Algorithms and Data Structures 55

i
Xpi = R(): R(n)=1.
i=1

The 80%-20% rule is expressed in terms of the function R () by

R(n X20%) = 80%.

This rule may be “‘applied recursively” by requiring that the relation hold for any
contiguous subset of p;’s that includes p ;. This requirement yields the necessary condition:
R(0.2j) = 08R(j).

More generally we may consider an a%—(1—a)% rule given by
R((1-a)j) = aR(j). “gagl, (1)

The above functional equation defines infinitely many probability distributions for euch
choice of a. One simple solution that is valid for all real jis

R() = L
iy = —

nﬂ
, In(a) . - .
where 8 = m——)- Thus 0 < 8 < 1. This formula for R (i) implies

-
B 1\8
Pi = . (10 b (2)
n

Note that this probability distribution also possesses the required monotone behavior. i.e.
PizPi+1.

The parameter 6 gives shape to the distribution. When 8 = | (a = 1:) the
distribution coincides with the discrete rectangular distribution. The moments and
variance of the distribution described by equation (2) are

b= iE:]ip,- = 5%"7+%-ﬁ;7m——1%n—+0(n‘3),
pr = IE:]izp,- = ::; + 0‘2’1 + 2;‘9 - 2“‘0‘"'2,”("0) + 00
im B = g a T on
e B - St g

For large n, the tail of the distribution coincides asymptotically with p,~i%=! For
the 80%-20% rule, § = 0.138646...: consequently the distribution which arises from this
rule behaves very similarly to the second generalization of Zipf's distribution.

56 Gaston H. Gonnet

References

[Johnson.1969]. [Knuth.1973]. [Lotka.1926)]. [McWrath.1978)]. [Murphy.1973)].
[Pope.1975)]. [Zipf.1949].

Handbook of Algorithms and Data Structures 57

10. References

"

(10

[
[
(13

[14]

(15]
f16]

(17}

[18]

119]
(20]

Adel'son-Vel'skii. G.M. and Landis. EEM: An Algorithm for the organization of information. Doklad\
Akademia Nauk USSR, 146, No. 2 (1962). pp. 263-266. (3.4.1.3)

Adleman. L.. Booth. K.S.. Preparata. F. and Ruzzo. W.L.: Improved Time and Space Bounds for Bovlean
Muatrix Muluiplication. Acta Iaf. Vol 11-1. (1978) pp. 61-70. (7.2)

Aho. A.V.. Hopcroft. J.E. and Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison
Wesley (1974) (3.4.5.1)

Allen. B. and Munro. J.1.: Self-Organizing Search Trees. J. ACM, Vol. 25-4, (Oct 1978). pp. 526-535
(341531

Ambie. O. and Knuth, D.E.: Ordered Hash Tables. The Computer J. Vol 17-2 (May 1974) pp. 135142
(3.3.6)

Anderson. M.R. and Anderson. M.G.: Comments on Perfect Hashing Functions: A Single Prohe
Retrieving Method for Static Sets. C.ACM. Vol. 22-2, (Feb 1979) pp. 104-105. (3.3)

Bucer. L. and Schwiub, B.: A Compurison of Tree-Bulancing Algorithms. C.ACM. Vol. 20-5. (Muy 1977
pp. 322-330.(34.1.3.34.1.434.1.5)

Bundvopudhvay, S.K.: Comment on Weighted Increment Linear Search for Scatter Tables. C.ACM. Vol
20-4. (Apr 1977) pp. 262-263. (3.3.3)

Baver. R. Symmetric Binary B-trees: Data Structure and Maintenance Algorithms. Acta Informatica. Vol
1-4 (1972). pp. 290-306 (34.2.2)

Biver. R. und McCreight. E.: Organization and Maintenance of Large Ordered Indexes. Acta Informatica.
Vol 1-3(1972). pp. 173-189.(3.4)

Buaver. R. and Schkolnick. M.: Concurrency of operations on B-trees. Acta Inf. 8.1 (1977). 1-21. (34.2)
Buver. R. and Unterauer. K - Prefix Birees. ACM Trans. Database Syst. 2.1 (Mar 1977). 11-26 (3.4.2)

Baver. R.: Binury B-trees for virtual memory. Proc. 1971 ACM SIGFIDET Workshop. San Diego. (1971
pp. 219-235 (R4

Bell. IR and Kaman. C.H.: The Linear Quotient Hash Code. C. ACM Vol 13-11 (Nov 1970) pp. 673677,
(334

Bell. J.R.- The Quadratic Quotient Method. C. ACM Vol 13-1 (Jan 1970) pp. 107-109. (3.3.5)

Bentley. J.L. and Friedman. J.H.: Data Structures for Range Searching. ACM C. Surveys. Vol. 11-4. (Dev
1979) pp. 397-409. (3.4.3.5) '

Bentlev. J.L. and Muaurer. H.A: A Note on Euclidean Near Neighbor Searching in the Plane. Inf. Proc.
Letters. Vol. 8-3. (Mur 1979) pp. 133-136. (3.5)

Bentley. J.L. and Maurer. H A Efficient Worst-Case Data Structures for Runge Searching. Acta Inf. Vol.
13-2. (1980) pp. 155-16§. (3.5)

Bentlev. J.L.: Decomposable Searching Problems. Inf. Proc. Letters. Vol. 8-5. (June 1979) pp. 244-251.(2)
Bentley. J 1.0 Multidimensiona!l Divide-und-Conquer. C.ACM. Vol. 23-4. (Apr 1980) pp. 214-229 (2.3.5)

58

23]

(241

25

[26]

=7

{2%]

1291

[30]

[34]

[33]

[36]

137]

[3K]

[39)
[40]

Gaston H. Gonnet

Bitner. J.R.: Heuristics thar dvaamicallv organize data structures, SIAM J on Computing. 8, (1979). pp
82-110. (3. H)

Bluke. 1.LF. and Konheim, A.G.: Big Buckets Are (Are Not) Better! J. ACM. Vol 24-4 (Oct 1977) pp.
591-606. (3.3.3)

Bolour. A.: Optimalits Properties of Multiple-Key Hashing Functions, JJACM. Vol. 26-2, (Apr 1979). pp
196-210. (3.3.DB)

Brent. R.P.: Reducing the Retrieval Time of Scatter Storage Techniques. C. ACM Vol 16-2 (Feb 1973) pp.
105-109. (3.3.7)

Brown. M .R. und Turjan. R.E.: A Fast Merging Algorithm. J. ACM, Vol. 26-2, (Apr 1979). pp. 211-226
(3451

Brown. M.R. and Turjun. R.E.: A Representation for Linear Lists with Movable Fingers. Proceedings of
10th SIGACT S. (Mav 1978) pp. 19-29. (DR.3.4)

Brown., M.R.: Implementation and analysis of binomial queue algorithms. SIAM J. Computing. Vol. 7.
No. 3. August 1978 (5.

Burge. W.H. An Analvsis of Binary Search Trees Formed from Sequences of Nondistinct Keys. JJACM.
Vol 233, (July 1976) pp. 451-454 (3.4.1)

Burton. W Generalized Recursive Data Structures, Acta Inf. Vol. 12-2, (1979) pp. 95-10%. (2)

Chov. DM, und Wonp. C K. Optimal @=—f trees with Capacity Constraint. Acta Inf. Vol 10-3. (137K)
pp 273-296.(341)

Cichelli. R A Perfect Hushing Function, Pascal News. 15 (Sep 1979) pp. 56-59. (3.3)

Cichelli R Mimimal Perfect Hash Functions Made Simple. C. ACM. Vol 23-1, (Jan 1980). pp. 17-19.
(3.3)

Clapson. P Improving the Access Time for Rundom Access Files. C. ACM. Vol 20-3 (Mar 1977) pp.

Cohen. 1. and Roth. Mo On the Implementation of Strassen’s Fast Muluplication Algorithm. Acta Inf..
Vol 6 (1974) pp. 341-335 (6.3)

Comer. D, and Scthi. R The Complexity of Trie Index Construction. JJACM, Vol 24-3, (July 1977} pp.
428-440 (3 4.4

Comer. D0 The ubiguitous Btree. ACM C. Survevs Vol 11-2 (June 1979) 121-137. (3.4.2)

Crane. C A Linear lists and Priority Queues as Balanced Binary Trees. STAN-CS-72-259. February 1972
(3.1)

Cremers. A.B.and Hibbard, TN Orthogonality of Information Structures. Acta Inf. Vol. 9-3. (1978) pp
242261 ()

Darlington. 1.0 A Svnthesis of Several Sorting Algorithms, Acta Inf. Vol. 11-1. (1978) pp. 1-30. (2)

Deutscher. R.F.. Sorenson. P.G. and Tremblay. J.P.: Distribution dependent hashing functions and their
charactenistics. Proc. of the Int. Conf. of Munagement of Data. ACM/SIGMOD. 1975, 224-236. (3.3)

{41
{42

{43]

[44]

[45]

[46]
147}

[48]

[49]

{50}

{51

{s2]

(53]

{54]

[55]

[56]

1571

{58]

Handbook of Algorithms and Data Structures 59

Dobosiewicz, D.: Sorting by Distributive Partitioning, Inf. Proc. Letters, Vol. 7-1, (Jan 1978) pp. 1-6. (4.1}
Driscoll. J.R. and Lien. Y.E.: A Selective Traversal Algorithmm for Binary Secarch Trees. C.ACM, Vol.
21-6 (June 1978) pp. 445-447. (34.1)

Ellis. S.C.: Concurrent search and insertion in 2-3 trees. Tech. Rep. 78-05-01, Dept. of Comp. Science.
Univ. of Washington, Seattle, Wash., 1978. (3.4.2.1)

Flajolet. P. and Odlyzko. A.: The Average Height of Binary Trees and Other Simple Trees, submitied.
(34.1.2)

Flajolet. P., Raoult. R.C. and Vuillemin, J.: The number of Registers Required for Evaluating Arithmetic
Expressions. Rap. Recherche 2, U. Paris-Sud, Orsay (Mar 1978). (3.4.1)

Flovd. R.W.: Algorithm 245, C. ACM, Vol. 7 (1964), p. 701. (4.1.5,5.1)

Foster. C.C.: Information Storage and Retrieval Using AVL Trees, In Proc. ACM 20th Nat. Conf., 1965,
pp. 192-205. (3.4.1.3)

Francon, J.. Viennot G. and Vuillemin J.: Description and Analysis of an Efficient Priority Queue
Representation. Proceedings of the 19th Annual Symposium on Foundations of Computer Science (1978).
ppl-7. (3.1

Franta. W.R. and Mal. K.: A Comparison of Heaps and the TL Structure for the Simulation Event Set.
C. ACM. Vol. 21-10. (Oct 1978). pp. 873-875. (5.1)

Franta. W.R. and Maly, K.: An Efficient Data Structure for the Simulation Event Set, C.ACM, Vol. 20-8.
(Aug 1977) pp. 596-602. (5.1)

Fussenegger, F. and Gabow. H.N.: A Counting Approach to Lower Bounds for Selection Problems. J.
ACM., Vol. 26-2, (Apr 1979), pp. 227-238. (5)

Galil. Z. and Megiddo. N.: A Fast Selection Algorithm and the Problem of Optimum Distribution of
Effort, J. ACM. Vol. 26-1. (Jan 1979). pp. 58-64. (5)

Ghosh. S.. and Senko. M.: File organization On the selection of random access index points for sequential
files. 3. ACM Vol. 16-4, (Oct 1969) pp. 569-579. (3.4)

Gonnet. G.H. and Munro. J.1.: Efficient Ordering of Hash Tables. SIAM J. on Computing. Vol 8-3 (Aug
1979) pp. 463-478. (3.3.7.3.3.8)

Gonnet. G.H. and Rogers, L.D.: An Algorithmic and complexity analysis of the heap as a data structure.
Res. Rep. CS 75-20. U. of Waterloo, Waterloo, Canada, 1975. (5.1)

Gonnet. G H. and Rogers. L.D.: The Interpolation-Sequential Search Algorithm. Information Processing
Letters. Vol 6-4, (Aug 1977), pp. 136-139. (3.2.3)

Gonnet. G.H., Munro. J.1. and Suwanda, H.: Toward Self-Organizing Linear Search, Proc. 20th 1EEE
F.O.C.S. (Oct 1979) pp. 169-174. (3.1.2,3.1.3)

Gonnet. G.H.. Rogers, L.D. and George, A.: An Algorithmic and Complexity Analysis of Interpolation
Search. Acta Informatica. Vol. 13-1 (Jan 1980) pp. 39-46. (3.2.2)

Gonnet, G.H.: Average Lower Bounds for Open Addressing Hash Coding. Proc. Theoretical Comp.
Science, Waterloo, (Aug 1977) pp. 159-162. (3.3)

60

160]

61]

[62]

[63]

[64]

[65]

{66]
{671

[68]
(691

(70}
m
{721
(73]

(74]
175]

[76]

{771

(78]

(791
(80]

f81]

Gaston H. Gonnet

Gonnet. G.H.: Open Addressing Hashing with Unequal Probability Keys. To appear in the J. of Computer

and Svstem Sciences. (3.3.1)

Gonnet. G.H.: Interpolation and Inierpolation-Hash Searching. PhD Thesis. University of Wuterloo.
Waterloo. {(1977). (3.2.2)

Guibas. L.. McCreight. E.. Plass. M., and Roberts, J.: A new representation for linear hsts. Proc 9th
ACM Symp. Theory of Computing. ACM, New York. 1977, 49-60. (3.4)

Guibas. L.J. and Sedgewick. R.: A Dichromatic Framework for Balanced Trees. 19th Annual Symposium
on Foundations of Computer Science. 1978 pp. 8-21 (3.4)

Guibas. L.J. and Szemeredi. E.: The Analysis of Double Hashing. J.C.S.S. Vol 16-2 (Apr 1978 pp 226-
274.(3.3.4)

Guibas, L.J.: The Analvsis of Hashing Techniques that Exhibit k-ary Clustering. J. ACM Vol 23-4 (Out
1978) pp. 544-555.(3.3)

Gupta. U.: Bounds on Storage for Consecutive Retrieval, J. ACM, Vol. 26-1, (Jan 1979). pp. 28-36 (DB)

Halatsis. C. and Philokvpru. G.: Pseudo Chaining in Hash Tables. C. ACM Vol 21-7 (Julv 197&) pp 354-
55733

Held. G. and Stonebraker. M.: B-trees re-examined. C.ACM 21.2 (Feb.1978). 139-143. (3.4.2)

Hendricks. W.J.0 An account of self-organizing systems. SIAM J on Computing 5(1976). pp.715.723
(312313

Hirschberg. D.S.: Fast Parallet Sorting Algorithms, C.ACM, Vol. 21-8 (Aug 1978) pp. 657-661. (4)
Houre. C.A.R.: Algorithm 63 and 64. CCACM. Vol. 4-7, (Juls 1961) pp. 321-322. (4 1.3)
Houare. C.A.R.: Quicksort. Computer Journal, Vol. 5-4. (Apr 1962) pp. 10-15. (4.2.3)

Horibe, Y. and Nemetz. T.O.H.: On the Max-Entropy Rule for a Binary Search Tree. Acta Inf. Vol 12-1.
(1979) pp. 63-72.(3.4.1.5)

Horowitz. E.. and Sahni. S.: Fundamentals of Data Structures . Computer Science Press. Inc.. 1976. (3.4)

Horvath. E.C.: Stable Sorting in Asvmptotically Optimal Time and Extra Space. JJACM. Vol 25.2. (Apr
1978) pp. 177-199. (4.1.4.3)

Hwang. K. and Yao. S B Optimal Batched Searching of Tree Structured Files in Multiprocessor
Computer Systems, JJACM. Vol. 24-3, (Julv 1977) pp. 441-454. (3.4)

Johnson. D.B. and Gonzalez. T.F.: Sorting Numbers in Linear Expected Time and Constant Extru Space.
Proceedings of the 16th Allerton Conference. University of Illinois. (1978). (4)

Johnson. D.B. and Kashdan. S.D.: Lower Bounds for Selection in X+Y and Other Multisets. J. ACM.
Vol. 25-4, (Oct 1978). pp. 556-570. (5)

Johnson. N.L. and Kotz. S.: Discrete Distributions. Houghton Mifflin. Boston. 1969. (&)

Jonassen. A. und Dahl. O.: Analysis of an algorithm for Priority Queue Administration. BIT 15 (1975,
409-422. (5.1)

Kartton. P.L.. Fuller. S H.. Scroggs. R.E. and Kaehler, E.B.: Performance of Height-Bulanced Trees.
CACM. Vol. 19-1. 1976, pp. 23-28. (3.4.1.3)

(82]

[83]
{84]
{85]

{86]

(87]

(8]

(89]

[90]
oy

(93]

{93]

[94]

{95]
[96]

1
{98}

(99]

(100]

(o1
1102]
[103]

Handbook of Algorithms and Data Structures 61

Kemp. R.: The Average Number of Registers Needed to Evaluate a Binary Tree Optimally. Acta Inf. Vol
11-4, (1979) pp. 363-372.(34.1)

Knott, G.D.: A Numbering System for Binary Trees, C.ACM, Vol. 20-2, (Feb 1977) pp 113-115. (3.4.1)
Knott, G.D.: Hashing Functions. The Computer J. Vol 18-3. (Aug 1975) pp. 265-278. (3.3)

Knuth, D.E.: Structured Programming with Go To Statements, ACM C. Surveys. Vol. 6-4. (Dec 1974) pp
261-301.(3.1.1.3.4.1.1.4.14.1.3)

Knuth. D.E: The Art of Computer Programming, Vol. 1. Fundamental Algorithms. Addison-Wesles.
Reading. Mass. (1973). (5.1)

Knuth. D.E.. The Art of Computer Programming: Sorting and Searching. Vol. 111, Addison-Wesley. Don
Mills. Ont. 1973. (3.1,3.3,34.4,5.1.8)

Konheim. A.G. and Weiss. B.: An Occupancy Discipline and Applications. SIAM J. Applied Math. Vol 14
(1966). pp 1266-1274. (3.3.3)

Kosaraju. S.R.: Insertions and Deletions in One-Sided Height-Balanced Trees. C. ACM. Vol. 21-3. (Mur
1978) pp.226-227. (3.4.1.3)

Kruijer. H.S.M.: The Interpolated File Search Method. Informatie. 16-11 (Nov 1974), pp. 612-615. (3.2)

Kwong. Y.S. and Wood. D.: T-trees A variant of B-trees. Tech. Rep. 78-CS-18, Computer Science Dept..
McMaster Univ., Hamilton, Ont.. 1978. (34.2)

Lee. D.T. and Wong. CK.. Worst-Case Analysis for Region and Partial Region Searches in
Muitidimensional Binary Search Trees and Balanced Quad Trees. Acta Inf. Vol. 9-1, (1977) pp. 23-29. (2. 5y

Lee. K.P.: A Linear Algorithm for Copying Binary Trees Using Bounded Workspace, C.ACM. Vol. 23-3,
(Mar 1980) pp. 159-162. (3.4.1)

Lipton. R.J.. Rosenberg. A.L. and Yao, A.C.. External Hashing Schemes for Collection of Datu
Structures, J. ACM. Vol. 27-1. (Jan 1980). pp. 81-95. (3.3)

Lomet. D.B.: Multi-Table Search for B-Tree Files, RC-7461. IBM T.J. Watson Research Center. (3.4.2)

Lotka. A.J.: The Frequency Distribution of Scientific Production. J of the Washingion Academy of
Sciences. Vol 16-12. (1926). pp. 317-323. (8)

Luccio, F. and Pagli. L.: Power Trees, C.ACM, Vol. 21-11, (Nov 1978) pp. 941-947. (3.4.1.3)

Lum. V.Y.. Yuen. P.S.T. and Dodd. M.: Key-to-address transform techniques: a fundamental performance
study on large existing formatted files. C.ACM, Vol.14.4 (1971).228-239. (3.3)

Lum. V.Y.: General performance analysis of key-to-address transformation methods using an abstract file
concept. C.ACM, Vol.16.10 (1973), 603-612. (3.3)

Lyon, G.: Hashing with Linear Probing and Frequency Ordering. J. Res. Nat. B. S. Vol 83-5 (Sep 1978%)
pp. 445-447,(3.3.3)

Lyon, G.: Packed Scatter Tabies, C. ACM, Vol. 21-10, (Oct 1978), pp. 857-865. (3.3.7)
MacLlaren, M.D.: Internal Sorting by Radix Plus Sifting. JJACM, Vol. 13-3. (July 1966) pp 404-411. (4)

MacVeigh. D.T.: Effect of Data Representation on Cost of Sparse Matrix Operations, Acta Inf. Vol. 7
(1977) pp. 361-394. (DR)

[104]
[105)
{106]

[107]

[108]

[109]
(110

[111]
[112]

1M13)

(114]

[115]

[116]

[117]

[118]

119]
[120)

{121]

[123]
[124]

{125]

Gaston H. Gonnet

Mallach. E.G.: Scatter Storage Techniques. The Computer J. Vol 20-2 (May 1977) pp. 137-140. (3.3.7)
Malv. K.: A Note on Virtual Memory Indexes. C.ACM, Vol. 21-9 (Sep 1978) pp. 786-787. (34.2)

Manacher. G.K.: Significant Improvements to the Hwang-Lin Merging Algorithm, J. ACM. Vol. 263,
(Julv 1979). pp. 434-440. (4.3)

Munacher. G.K.: The Ford-Johnson Sorting Algorithmm is Not Opuimal. J. ACM. Vol 26-3. (Juh 1979).
pp. 441-456.(4.1)

Muruvama. K. and Smith. S.E.: Analvsis of Design Alternatives for Virtual Memory Indexes. C. ACM.
Vol. 20-4 (Apr 1977) pp. 245-254 (3.4 6)

Muurer. W.D. and Lewis. T.E.: Hash 1able methods. ACM C. Surveys Vol. 7-1, (Mar 1975) 5-19. (3.3)
Muaurer. W.D.: An Improved Hush Code for Scatter Storage. C. ACM Vol 11-1 (Jan 1968) pp. 35-3k. (3.3)
McCube. V.. On serial files with relocatable records. Operations Res. 12 (1965). pp. 609-618. (3.1.2)

McCreight. E: Pagination of B*trees with variable-length records. CCACM 209 (Sep 1977). 670-674.
(343

McKellar. A.C. and Wong. C.K.: Dvnamic Placement of Records in Linear Storage. JJACM. Vol 25.3,
(July 1978). pp. 421434 (3.1

McWrath. W.E.: Relutionships beiween hard/soft. pure/applied. and life/non life disciplines and subject

book use in a universis library. Information Processing and Management. Vol. 14-1. (1978). pp. 17-2§. (8)

Mendelson. H. and Yechiali. U.: Performance Measures for Ordered Lists in Random-Access Files. J.

ACM. Vol. 26-4. (Oct 1979). pp. 654-667. (3.3)

Mendelson. H.. Pliskin. J.S. and Yechiali. U.: Optimal Storage Allocation for Serial Files. CACM. Vol.
22-2, (Feb 1979) pp. 124-130. (DB)

Miller. R. and Snvder, L.: Multiple access to Btrees. Proc. Conf. Inform. Sci. and Svyst.. March 1978,
342

Miller. R.. Pippenger. N.. Rosenberg. A. and Snyder, L.: Optimal 2-3 trees. IBM Res. Rep. RC 6505,
1977.(3.4.2.1)

Morris. R.: Scatter Storage Techniques. C. ACM Vol 11-1 (Jan 1968) pp 38-44. (3.3)

Motzkin. D.: The Use of Normal Multiplication Tables for Information Storage and Retrieval, C. ACM.
Vol. 22-3. (Mar 1979) pp. 193-207. (DB)

Munro. J.1. and Spira, P.M.: Sorting and Searching in Multisets, SIAM J on Computing. Vol. §-1 (Mar
1976) pp. 1-8. (4)

Murphy. L.J.: Lotka's Law in the Humanities. J. of the American Society of Information Science. Vol
24-6. (1973). pp. 461-462. (8)

Nat. M. van der.: On Interpolation Search. C. ACM, Vol. 22-12, (Dec 1979). p. 681. (3.2.2)

Nievergelt, J. and Reingold. E.M.: Binary Search Trees of Bounded Balance. SIAM J. Computing. Vol. 2-
1. (1973). 33-43. (3.4.1)

Nievergelt. J.: Binary Search Trees and File Organization, ACM C. Survevs. Vol. 6-3, (Sep 1974}, pp
195-207. (34.1)

[126)

[t27]

[12]

1129]

[130]

[131]

[132]

[133]

[134]

[138]

[136]

[137]

[138]

[139]
[140]
141

[142]
[143]
1144]

[145]

{146]

Hundbook of Algorithms and Data Structures 62

Odivzho. AM.: Periodic Oscillations of Coefficients of Power Series that Satisfy Functional Equations. to
appear in Advances in Mathematies, (3.4.2)

Oumann, Th. and Stucky, W.: Higher Order Analysis of Random 1-2 Brother Trees. Institut fur
Angewandte Informatih. UL Karlsruhe. 84 (Aug 1979). (3.4.2)

Ottmann. Th.. Six. HW.and Wood. D.: Right Brother Trees. C.ACM. Vol. 21-9 (Sep 1978) pp. 769-776
(3413

Pan. V.Y .: Opumal Methods for the Evaluation of Polynomials over the Fields C and R. IBM Reo Report
RC7754. (M 1979) (6.4)

Pclioku. E. and Erkio. H.: Insertion Merge Sorting. Inf. Proc. Letters. Vol. 7-2. (Feb 1978) pp. 92-99. ¢4.2)

Perl. Y. und Reingold. E.M.: Understanding the Complexity of Interpolation Search. Informution
Processing Letters (Dec 1977). Vol. 6-6. pp. 219-221. (3.2)

Perl. Y. ltai. A, and Asvni. Ho: Interpolation Search - A Log Log N Search. CCACM. Vol 21.7. (Juh
1978). pp. S50-533.(3.2)

Peterson. W W Addressing for Random-Access Storage. IBM Journal of Research and Development.
Vol 1-4 (Apr 19537), pp. 130146 (3.2.3.3)

Pippenzer. N On the Appheation of Coding Theory to Huashing. 1BM J. Res. Development. Val 23.2
(Mar 1979) pp. 225.226. (37)

Pooch. UW . and Nieder. A A Survey of Indexing Technigues for Sparse Matrices. ACM € Survevs,
Vol 522 (Junc 1973y pp. 109-133. (DR)

Pope. A Bradford's Law and the Periodical Literature of Information Sciences. J. of the Association of
Information Sciences. Vol 26-4.(1975) pp. 207-213. (8)

Porter. T. und Simon. .- Random Insertion into a Priority Queue structure. IEEE Transactions SE-1 (Sep

1975). 292-29%. (5.1

Power. L.R: Internal Sorting Using a Mimimal Tree Merge Strategy. ACM-TOMS, Vol 6-1 (Mur 1980
pp. 68-79.(4.2)

Price. C.b. Table Lookup Techniques. Computing Surveys, Vol. 3-2 (June 1971) pp. 56-58. (3.2)
Proskurowski. A On the Generation of Binary Trees. J. ACM. Vol. 27-1. (Jan 1980). pp. 1-2. (3.4.1)

Raiha. K.J. and Zuwchen. S H.: An Optimal Insertion Algorithm for One-Sided Height-Balunced Binur
Scarch Trees, CACM. Vol 22-9. (Sep 1979) pp. S08-512.(34.1.3)

Reingold. .M. A note on 3-2 trees. Fibonaoei Quarterly Vol 17-20 pp. 151-157 (Apr 1979). (3.4.2.1)
Rivest. R.: On sell-organizing sequential search heuristics, C.ACM. 19, (1976). pp. 63-67. (3. 1)

Rivest. R.L.: Opumal Arrangement of Kevs in a Hash Table. J. ACM Vol 25-2 (Apr 197%) pp. 200-209
(3.3.8)

Robson. 1.M.: The Height of Binary Search Trees. Australian Computer J. Vol 11-4 (Nov 1979) pp. I51-
153. (3401

Rosenberg. A.l. and Snvder. L.: Minimal comparison 2-3 trees. SIAM J. Comput. Vol. 7-4. (Nov 197%)
pp. 465-480, (3.4.2.1)

[147]

[148)

[149]

[150]

[154]
[152]

[153]

{154]

{155]

[156]

[157)

[158]

[159]
{160]
161

[162)

[163]

[164]

[165)
[t66]

[167]

Gaston H. Gonnet

Rosenbera. AL. and Snyder. L.: Time- and Space-Optimality in B-Trees, Res. Rep. #167, (Aug 1979),
Dept. of Compuier Science. Yale University. (3.4.2)

Rosenberg. A.L. and Stockmeyer. L.J.: Hashing Schemes for Extendible Arrays, JACM. Vol. 24-2_ (Apr
1977) pp. 199-221.(3.3)

Rosenberg. A.L. and Stockmeyer. L.J.: Storage Schemes for Boundedly Extendible Arrays, Acta Inf. Vol.
7 (1977) pp. 289-303. (DR)

Rosenberg. A.L.. Wood. D. and Galil. Z.: Encoding Tree-Like Data Structures in Trees, IBM Res. Report
RC7353(Oct 1978) (DR)

Rosenberg. A.L.: Data Encodings and their Costs, Acta Inf. Vol. 9-3, (1978) pp. 273-292. (DR)
Rosenberg. A L.: Encoding Data Structures in Trees, JJ ACM, Vol 26-4, (Oct 1979), pp. 668-689. (3.4)

Rotem. D. and Vurol. Y.L.: Generation of Binary Trees from Ballot Sequences. J. ACM, Vol 25-3. (Juls
1978). pp. 396-404. (3.4.1)

Sumadi. B.: B-trees in a svstem with multiple views. Inf Process. Lett. Vol. 54, (Oct 1976) pp. 107-112.
(342)

Suntoro. N0 Extending the Four Russians” Bound to General Matrix Multiplication. Inf. Proc. Letters.
Vol. 10-2. (Mar 1980} pp. 87-88. (6.3)

Suaxe. J.B. und Bentley. J.L.: Transforming Data Structures to Dynamic Structures, Dept of Computer
Science. C.M.U. (Sep 1979). (2)

Sune. J.B.: On the Number of Range Queries in k-Space, Disct App Math. Vol. 1-3. (1979) pp. 217-225.
(3.5)

Schonhage. A.: Fast Multiplication of Polynomials Over Fields of Characteristic 2. Acta Inf. Vol. 7 (1977)
pp. 395-398. (6)

Sedgewick. R.: Implementing Quicksort Programs, C. ACM, Vol. 21-10, (Oct 1978), pp. 847-856. (4.1.3)
Sedgewick. R.: The Analysis of Quicksort Programs, Acta Inf., Vol. 7 (1977) pp. 327-355. (4.1.3)

Severance. D.G. and Carlis. J.V.. A Practical Approach to Selecting Record Access Paths. ACM C.
Surveys. {Dec 1977) pp. 259-272. (DB)

Severance. D.G.: 1dentifier Search Mechanisms: A Survey and Generalized Model, ACM C. Surveys. Vol
6-3. (Sep 1974) pp. 174-194. (3)

Sheil. B.A.: Median Spiit Trees: A Fast Lookup Technique for Frequently Ocurring Kevs, CACM. Vol
21-11 (Nov 1978) pp. 947-958. (3.4.1.5)

Shneiderman. B.: Jump Searching: A Fast Sequential Search Technique, C. ACM, Vol. 21-10. (Oct 1978).
pp. 831-835. (3.1.5)

Snyder. L.: On B-Trees Re-Examined. C_ACM. Vol. 21-7 (July 1978) p 594. (3.4.2)

Solomon. M. and Finkel. R.A.: A Note on Enumerating Binary Trees. J. ACM. Vol 27-1. (Jan 1980). pp.
3-5.(3.4.1)

Sprugnoli. R.: Perfect Hashing Functions: A Single Probe Retrieving Method for Static Sets. C.ACM. Vol
20-11. (Nov 1977) pp. 841-850. (3.3)

[168]

[169]

170
171

172
1173]

{174]

{175}
[176]

[177]

[178]

(179]
[180]
[181]
(182

[183]

[184]
{185)

[186]

[187]

[188]

Handbook of Algorithms and Data Structures 65

Strong. H.R.. Markowsky. G: and Chandra, A K.: Search Within a Page, J. ACM, Vol. 26-3, (July 1979),
pp. 457-482. (DB.34.%)

Tunenbaum. A.: Simulations of dvnamic sequential search algorithms, C.ACM Vol. 21-9. (Sep 1978), pp.
790-791. (3.1)

Tarjan. R.E. and Yao. A.C-C.: Storing a Sparse Table, C.ACM, Vol. 22-11, (Nov 1979) pp. 606-611. (DR)

Todd. S.: Algorithm and Hardware for a Merge Sort Using Multiple Processors. 1BM J Res.
Development. Vol. 22-5 (Sep 1978) pp. 509-517. (4.2.1)

Trabb. L.: Set Representation and Set Intersection, Stanford Rep. 78-861, (Dec 1978). (3.4.4,3.3)

Ullman. J.D.: A Note on the Efficiency of Hashing Functions. J. ACM Vol 19-3 (July 1972) pp. 569-575.
3

Ulrich, E.G.: Event Manipulation for Discrete Simulations Requiring Large Number of Events. C.ACM.
Vol. 21-9 (Sep 1978) pp. 777-785. (5.1)

Unterauer. K.: Dynamic Weighted Binary Search Trees, Acta Inf. Vol. 11-4, (1979) pp. 341-362. (3.4.1.4)

Vaishnavi. VK., Kriegel. H.P. and Wood. D.: Height Balanced 2-3 Trees. Computing. Vol 21, (1979) pp.
195-211. (34.2 1)

Vuillemin. J.: A Data Structure for Manipulating Priority Queues, C. ACM, Vol. 21-4 (Apr 1978) pp.
309-314. (5. 1)

Vuillemin. J.: A Unifving Look at Data Structures, C.ACM, Vol. 234, (Apr 1980) pp. 229-239.
(2.3.534.13.1.1)

Williams. J.W J: Algorithm 232, C. ACM, Vol. 7 (1964), pp. 347-348. (4.1.5.5.1)
Wirth, N. Algorithms + Data Structures = Programs (New Jersey: Prentice-Hall, 1976). (3.4)
Woodall. A.D.: A Recursive Tree Sort, Computer Journal, Vol. 14-1, (1971) pp. 104-104. (4.1)

Yuao. A.C-C. and Yao. F.F.: Lower Bounds on Merging Networks, J.ACM, Vol 23-3, (July 1976) pp. 566-
571.4.3)

Yao. A.C. and Yao. F.F.: The Complexity of Searching an Ordered Random Table. Proceedings of the
Symposium on Foundations of Computer Science, Houston, (Oct 1976), 173-176. (3.2)

Yao. A.C.: On Random 2-3 Trees, Acta Informatica, Vol. 9-2, (1978). pp. 159-170. (3.4.2.1)

Zaki. A. and Baer. J.L.: A Comparison of Query Costs in AVL and 2-3 Trees. Tech. Rep. 78-02-01 (Aug
1979) Dept. Computer Science. U. of Washington. (3.4.1.3,34.2.1)

Zipf. G.K.: Human Behaviour and the Principle of Least Effor1. Cambridge MA. Addison-Wesley. 1949,
(8))

Zobrist. A.L. and Carlson. F.R.: Detection of Combined Occurences. C.ACM, Vol. 20-1, (Jan 1977) pp.
31.35, also Vol. 20-9 (Sep 1977) pp. 678-680. (3.6)

Zweben. S.H. and McDonald, M.A.: An Optimal Method for Deletions in One-Sided Height-Balanced
Trees, CACM. Vol. 21-6 (June 1978) pp. 441-445. (3.4.1.3)

	

