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Abstract

We prcpose in this report a theory of abstract data types based on
the first order predicate calculus.: That is, we are in some sense reverting
to first principles as espoused by Hoare. However, we do not want to
abandon the important contributions of the algebraic theory. Probably the
most important among these is the concept of 1nitia1ityl The main thrust
of this work is to present a theory of initiality for Togic suitable for

use in a theory of abstract data types.

The initiality result for logic is based on the concepts of minimum
model (predicates have the "least" possible meaning over a given domain)
and reachable model (all objects have a name). We motivate these
concepts and show how they can be used to model not only data types, but
also the internal structure of individual data values (objects). We
illustrate the theory with a number of examples of data structures and
types and indicate how a theory of implementations could be developed to

complete this approach.



1. Introduction

For the past few years, the main effort in the specification of programs
seems to have turned away from the study of the algorithmic nature of
computer programs and towards a systematic treatment of the specification
problem for the data manipulated by such programs. The Tesson that was
learned in the development of structured programming (essentially a tool
for the specification of the algorithmic or control structure of a program)
was that it was impossible to obtain structuredness in a meaningful way
without also structuring the data being manipulated by the program. That
is, it was hard to develop complex programs when these programs were
thought of as manipulating bits and bytes (or even integers, reals, arrays,

etc.).

An important concept in the discussion of data is that of "type". A
type in most programming languages is seen as a collection of values
(represented in a particular way). Even PASCAL views a type as a collec-
tion of values (although the representation is no Tonger explicit). This
view began to be questioned when some interest arose in so-called user
defined types, i.e. data types which are defined by a programmer for use
in his program. These types were specified not in terms of the primitive
data types available in some language, but in a higher Tevel language.
The programmer defined operations and tests were to be implemented later
in terms of a representation for the values of the type (in terms of
primitive types) and primitive operations available in the language. Thus
the view grew that a data type included not only a collection of values,
but also a set of operations and tests defined for the type. An early
example of this is the "class" construct in SIMULA. A class is a

collection of operations and tests (defined in terms of procedures)



defined for a particular representation of the data values. The fact that
the specification of the class is done purely in terms of a representation
is a severe drawback in trying to characterize a type since many of the
properties are representation dependent. The first place where a real
attempt is made to characterize data types independently of their represent-
ation is in Hoare 72-1, 72-2, 75. The concept of representation independence
is called abstractness in Liskov 74, Liskov 77, Goguen 75, Goguen 78, to
emphasize the fact that only the common important characteristics among
different possible representations are considered. The method by which
this abstractness is achieved in the specification of the type is by
referring only to the names of the operations, tests and constants of the
type when defining the properties of the type. Thus, no reference is made
to the internal structure (i.e. representation or implementation details)
of operations, tests and constants. In Hoare 72-1, 72-2, the properties
of the type were specified through the language of an applied first order
predicate calculus. Similar attempts were made in Baucilhon 76. The
shortcomings of this approach were that the axiomatisation of the type did
not define the type uniquely. Which model of the axioms was to be con-
sidered a valid representation of the type? (Clearly some models might
have properties that are not those intended in the specification.) No
guidance is offered in Hoare 72-1, 72-2 or Liskov.74, 77 to set some
criterion. (In the algebraic approach to be discussed next, this problem
again arises in the work of Guttag, et.al. (Guttag 77, 78), since they
abandon the criterion accepted in this approach).

It was realized soon after the appearance of Hoare 72-1, 72-2 that
algebras (a special case of models, or structures, as we will call them

from now on), were also adequate for describing data types. (This is



because the relations (of structures) could be thought of as boolean
valued operations). This realization was made in Liskov 74, and came
into full force in the work of Guttag 77 and the work of the group
referred to as ADJ (Goguen 75, 78). In the work of the latter group,

it was realized that algebra provided a tool for defining exactly which
class of algebras could be thought of as representations for the type.
The tool used is that of initiality. An algebra is initial in a class
of algebras if it belongs to the class and if for each algebra in the
class, there is a unique homomorphism from the initial algebra to the
given algebra. Moreover, if algebras A and B are initial in the same
class, they are isomorphic. If we can specify the class of algebras

in which we are interested, then the data type we are trying to define
is the initial algebra in the class. Any representation must be isomorphic
as an algebra to this initial algebra (and is thus itself initial in the

class).

The axioms defining classes (varieties) of algebras are sets of
equations (defining equalities between classes of expressions). The
initial algebra in an equationally defined class is the minimal algebra
satisfying the axioms (in the sense that it has exactly those properties
specified by the axioms). In fact the initial algebra satisfies only
the axioms and so we have an exact characterization of the data type:
the isomorphism class of the initial algebra. It cannot be emphasized
enough that it is this concept of initiality which gives rise to the
power of the method. Once the requirement of initiality is relaxed, many
of the results and proof methods associated with the concept disappear.
Hence, efforts such as that reported in Lockemann 79 to define data bases
are doomed to failure, since these powerful results are inapplicable and

no comparative tools are supplied.



The algebraic approach does have, however, its shortcomings. A
simple one is the unnaturalness (in many cases) of considering predicates
to be boclean functions. Secondly, equations are a very restrictive form
of axiomatisation and many properties are not stated easily or are not at
all statable in terms of equations. Thirdly, a serious technical flaw
is apparent in the definition of implementation (representation) as given
in Goguen 78. An implementation of a given data type consists of represent-
ations for the values (congruence classes of expressions) of the type in
terms of some péevious]y specified types and derived operations over these
types to implement the operations. A derived operation is defined by an
expression consisting of variables (representing arguments) and the opera-
tions of the types being used for the representation. Now consider the
data type "sequence of elements" with test iselinseq = sequence x element -+
boolean which tests whether a given element occurs in a sequence. A

natural implementation in terms of a type "linked list" is:

procedure iselinseq (seq: sequence, el: element): boolean;
begin iselinseq: = false;

current: = headof (seq);
while - endofseq (seq) and — iselinseq do
if current = el
then iselinseq: = true
else current: = next (seq)

end.

This natural implementation does not correspond, however, to any
derived operation of the type "linked Tist". Thus implementations of
operations cannot be done by recourse to iteration or recursion (or any

implicit method of definition).



In this report we intend to start a program of research to try to
develop a theory of data types which overcomes the above difficulties,
but retains the advantages. Specifically in this report we develop a
theory of initiality for first order logic. At least, we develop such
a theory for the classes of structures (models) which are appropriate
for describing data structures and data types. Thus we are going back
to first principles, so to speak, and propose to add to Hoare's proposals
a2 simple criterion for defining what exactly a given axiomatization is

defining.

Finally, we note that algebra does not provide a good vehicle for
studying data structures (i.e., values in a data type). In many cases,
a value in a type can be thought of as having some internal structure.
Being able to study this structure formally would be of great advantage.
(Algebra ignores this internal structure of values because it concentrates

on the properties of the operations).

Starting from the observation of some general properties of data, a
model-theoretic approach via Herbrand universes is used for an epistemd-
logical analysis of data types and data structures. The basic idea is
to rule out certain classically possible models, which turn out to be
undesirable (from a Computer Scientist's point of view). Essential
features of a data structure are a set of objects (nodes, storage positions,
etc.), an accessibility relation connecting them, and a set of distinguished
objects (entry points), besides possibly functions and other relations.

An abstract data type consists basically of a set of objects (its elements
or instances), functions transforming these objects and a set of distin=
guished objects (which corresponds to initialization), with possibly

other functions and relations.



Our approach will treat uniformly both data types and data structures,
as well as their implementations, the relevant distinctions being regarded

as due to different Tevels of abstraction, rather than conceptual differences.

This property requires the intersection of a set of models of some axioms
to be a model of the axioms. This property guarantees the existence of a
unique minimal model. The initiality result then states that the minimal
model (the intersection of all reachable models in the Herbrand universe)

is initial in the class of all reachable models.

In section 5 we develop some examples illustrating our method and
intimating the further development of the theory. This development will
state an appropriate theory of implementation that allows the use of implicit
definition. We then close with some remarks on the theory and discussion

of future research.

We begin in .the next section by outlining the definitions and results
from Togic on which the rest of the paper depends. In section 3, we
develop ideas which allow us to define exactly what structures are allowed
to be models of data type axioms. We develop two criteria: reachability
and minimality. The former requires values to be constructible using
the operations of the type. The Tatter defines the meaning of the predicates
to be the minimal relations (in the set-theoretic sense) allowed by the

axioms.

In section 4, we develop our theory of initiality for reachable struc-
tures. The initiality results are valid only for certain kinds of axioms.

The axioms are required to have the so called "intersection property".



2. Mathematical Preliminaries

We use the notation and definitions of Enderton 72 and just recall
some notation and basic definitions here. A(non-logical) language L
is a triple <C, F, P> such that C is a set of constant symbols, F is a
set of function symbols with associated arities, and P is a set of relation
symbols with associated arities. A structure D (over L) is quadruple
<D, C, F, P> where D is a non-empty set, C is a set of distinguished
elements of D such that to c ¢ C there corresponds CD e C, F is a set of
functions of D such that to f ¢ F of arity n there corresponds a
function fD of arity n over D, and P is a set of relations over D such
that to r ¢ P of arity n there corresponds a relation rD of arity n

over D.

Note that if equality is in the language, it is a non-logical symbol

and it is not constrained to be interpreted as identity.

A structure D is a model of a set I of sentences if D|— o for all
o e I (i.e., each sentence in Iz is valid in D). A formula o is a logical
consequence of a set of formulas T in a language L, denoted T |= a, iff
for all structures D and for all valuations s (assigning values in D to

variables), if 01:3 I' then D[=3 a.

Let D, = <D1, C], F1, P]> and DZ = <D2, CZ, FZ’ P2> be two structures

1
for L. Amap h: D1 > D2 is a weak homomorphism, denoted h: D] > 02,
iff:

1, _ %

(i) h(c ') =c¢ for a1l ¢ ¢ C;

D )

(ii) h(f (a], cees an)) = f (h(a]), cees h(an)) for each

feF;



D D
(iii) <a@qs ve.r @ >er 1 implies <h(a;), ..., h(a )>e r 2
1 n 1 n

for each r ¢ P.

Moreover, if the map h is such that

D DZ

<@y s > €N 1 iff <h(a]), cens h(an)> €er

for all r ¢ P, then H is called a strong homomorphism.

The Herbrand Universe of L is the set of variable free terms (expres-

sions) built from C and F.

3. Reachable Structures and Minimum Models

Logic has proved to be an adequate tool for reasoning formally about
classes of mathematical structures with some common properties. Its use
is particularly convenient when the class under consideration is defined
by a set of properties expressable within the system of logic we are using.
Such is the case, for instance, for groups and first order logic. A
group can be defined as a mathematical structure consisting of a distin-
guished element (0) and a binary function (+) such that 0 is a neutral
element for +, every element has an inverse with respect to +, and +
is associative. These properties can be expressed in the first order

language <0, +> by the following sentences:
i) vx (x + 0 = x);
ii) vx 3y (x +y = 0);
i11) wx vy vz (x + (y+z))=((x+y) + z)

A problem can appear, however, if we try to define a sub-class by

adding some restriction and this restriction is not expressable in the



language. This would happen in the example above if we try to define the

class of finite groups, since finiteness is not a first order property.

Sometimes we deal with the opposite situation. We are given a class
of structures and we are asked to write down some properties to characterize
it. Using first order predicate logic this is frequently impossible. What
happens in such cases is that the first order properties of the class are
not sufficient to define it. This is the case, for instance, with first
order axiomatizations of natural numbers with zero and successor,

N = <N, 0, S>. A possible axiomatization (borrowed from Enderton 72) is:

i) wx (S(x) # 0);

i1) W vy (S(x) = S(y) - x=y);
i) wy (y #0~> 3x (y = S(x)))s
iv.l) vx (S(x) # 0);
iv.2) vx (S(S(x)) # x);

iv.n) vx (S™(x) # x). where the
superscript n indicates that the symbol S occurs at n consecutive
places. N is a model for these axioms, but unfortunately any structure
consisting of a copy of N plus an arbitrary number of copies of the integers
is also a model for the axioms. One cannot argue that the inclusion of
additional axioms could "fix" the given axiomatization by excluding these
non-desirable models, because the given set of axioms can be proved to be
complete (again see Enderton 72). In fact, this deficiency in the power
of characterization is a Timitation of the system of first order predicate
Togic as demonstrated by the following well known theorems: (see Chang 73,

Enderton 72 for demonstrations.)
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Lowenheim-Skolem Theorem:

a) Let T be a satisfiable set of formulas in a countable language.
Then T is satisfiable in some countable structure.
b) Let T be a satisfiable set of formulas in a language of cardinality

x. Then T is satisfiable in some structure of cardinality < x.

Lowenheim-Skolem -Tarski Theorem:

Let T be a set of formulas in a language of cardinality x, and assume
that T is satisfiable in some infinite structure. Then for every cardinal
A > x, there is a structure of cardinality A in which T is satisfiable.

(Recall that the cardinality of L is |[C| + |[F| + [R] + w.)

In our approach, we are going to treat uniformly both data types and
data structures as mathematical structures (in the sense defined in
section 2). The situation here is the second one we mentioned above;
i.e., we have a class of structures described in some way (or we just
have in mind some intuitive description) and we would like to obtain some
axioms to define it. So we will find here the same difficulties mentioned
before. But now, since we are using first order predicate logic in a con-
text slightly different from the one for which it was designed, we have a
chance to succeed by using some general properties of data types and data

structures to define the class of models in which we are interested.

First of all, note that our models here are at most denumerable. (In
fact they are always finite if we take into account machine Timitations.)

So we can restrict our semantics to consider just denumerable models.

Another important issue about structures modelling data types and

data structures is that they are "reachable". By reachable we mean, in
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the case of data structures, that starting from the entry point of the
structure we are able to reach any component of the structure by using
the access functions. This connectivity is a well known and desirable
property of data structures. In the case of data types, reachability
means that a value can appear in the domain only if it can be obtained by
successive applications of the operations to the initial (constant) values.
This is quite reasonable too, because the only available way we have to
obtain new values is by applying the given operations to the initial
values. Another way to state the reachability property is by saying that
a structure is reachable if every element of its domain is a value of a
term without variables. We can view a term that denotes an element as

a name for this element which is the value of the term. So a reachable
structure is one in which every element of the domain is nameable by a

term without variables. Formally this property can be defined as follows:

Let D = <D, C, F, R> be a structure for a language L; Then we define

the (functionally) accessible part of D to be the smallest subset F(D) of

D such that C < F(D) and F(D) is closed under the operations in F. That
is, F(D) is the smallest set such that:

i) Cc F(D);

ii) if d

f(ds -..79 dn)EF(D)- L
Notice that F(D) is the domain of a substructure of D for it

.»d e F(D) , and f ¢ F is of rank n, then

1> n

consists of those elements of D that are denoted by variable-free terms
of the Tanguage L. Note also that this substructure is included in any
other substructure of D; i.e. it is the minimum substructure of D. A

structure D is reachable if D = F(D).
Herbrand interpretations are examples of reachable structures.

Reachable structures have some nice properties.
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Lemma 3.1

Let D be a reachable structure for a language L = <C; F;'P> and S
be a structure for the same language L. There exists at most one homo-
morphism of D into S, which will be onto iff S is reachable. If this is
the case, then D and S are elementary equivalent (i.e. D |=o iff
S |= o for any first order sentence o of L).
Proof

If ¢ is a homomorphism from D to S, we have that for c ¢ C

o(c?) = ¢

For all f e F of arity n
o(f7 (dys oovs d)) = Floldy)s oons 0ld)).

For all p ¢ P of arity n, if

D

<dy> ...5 d > e p’ then <@(d1), cees @(dn)> € ps .

Let us suppose that there exists another homomorphism ¢'from D to S:

then for c ¢ C

o' (cP) = ¢ = o(ch)

Let us suppose that @'(di) w(di) for die D, 1 <1 < n. Then for all
f ¢ F of arity n, we have that fv(d], cees dn) e D, because D is

reachable. Then

o (F2dgs voes d)) = F(o"(d))s .oty 0'(d))

n

Flo(d])s veus 0(d))

So, if ¢ is a homomorphism from D to S then ¢ is unique.
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¢ 1is onto iff S 1s reachable. This follows from the following

commutative diagram:

val val

where T 1is the set of variable-free terms of L and va]D, va]S

the valuation functions from terms to D and S , respectively.

Corollary

If D 1is a reachable structure and = is a congruence on D then
D/= 1is also reachable.

These properties of reachable structures will play an important role
in the next section. Note now, however, that if we restrict our semantics
so that we allow just reachable models, the natural numbers can be char-
acterized exactly,for the reachable models that the axioms have are all
isomorphic to N.

But the restriction to reachable structures is not yet enough. Con-

sider the structure below: | P(u
£
2(a)
(re(a))) N s (rD)7a)

in which o is the entry point and £ and r are the access functions

for this data structure. We want to define the accessibility relation
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Ac for this structure as the reflexive transitive closure of the relation
S determined by the union of the graphs of r and 4£. The sentence below

is a quite natural way to do this.

VxVy (Ac (x,y) = (x=ary=a) v S(x,¥)
v 3z (Ac (x,z) A S(z,y)))

The above intends to give a recursive definition for Ac. Now we have

again that the structure with

Ac, = {<a,05,<0,r(a)>, <a,£(a)>, <€(a), re(a)>
<o), £(a)>,..., <£{a), £(a)>, ... <re(a), re(a)>

N

is an interpretation for Ac - that is, the intended interpretation is a

model for the given axiom. But so is a structure with, say
Acy = Ac, U {<r(a), re(a)>, <r(a), £(a)>}.

In fact, we can prove that Ago is the minimum relation that satisfies the
axiom. In other words, a structure with Ago is a minimum model for the
axioms.

More precisely the minimum model (if it exists) of a set of sentences
I' in a domain D is the model of T 1in D whose relations are included one
by one in the corresponding relations of any model of T in D.

In the next section we will show how to combine the basic results of
the previous section with the observations of the present section to build
a model theory that will allow us to use first order predicate logic to

characterize data types and data structures.
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4. Limited Model Semantics

Assume we wrote down some axioms intended to define a certain abstract
structure. This means that we have characterized just those properties
we considered essential, dismissing those due to the particular character-
istics of representations. Now we reduce our characterization problem to
the following: how do we associate (uniquely) a special structure to these
axioms such that any structure that we recognize as a realization of the
abstract structure is isomorphic to that special one and vice-versa. In
other words we would Tlike to use the axioms to construct a structure such
that the class of intended models for the axioms will be the isomorphism
class of that structure. By the considerations of the last section, we
agree that such a structure must be a minimum model, but in what domain?
and with what definitions of the functions? Good candidates for answering
these questions are Herbrand interpretations, for they include all the
reachable structures for the language up to a quotient as indicated by the
following proposition:

Proposition 4.1

Let D be a reachable structure for L = <C, F, P>. There exists a
unique Herbrand interpretation H(D) such that D = H(D)/K(p) , where
K(o) is the Kernel of the unique homomorphism ¢ of H(D) onto D .
Proof:

Let ¢ be the following function:

i) For all ce C

o{c) = c’;
ii) For all fe F
o(f(hys ..oy b)) = Plo(h)), ...y olh ), for

n

, h_ e H(L).

h-l, R n
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Since the Herbrand interpretation and D are reachable, o is

unique and onto. We use ¢ to define the relations of H(D). For

¢ H(L), <h HO) ¢

all r ¢ P and for all h], ..., h . hn> er

-I, “ e
<@(h]), cees ¢(hn)> ¢ r?. Notice that this makes ¢® a strong homomorphism.

n

It now remains to prove that the following diagram commutes and that

¥ is a homomorphism which is one to one and onto (i.e. an isomorphism):

t{K
H(D) nat(ke)) 5 HD)/K(o)

//////’/

® 1%

i) the diagram commutes:
Y is defined by
p(Lh]) = o(h)

In order to show that ¢ 1is well defined we must have that:

if [h]] = [h2] then @(h]) = @(hz).
This is assured by the fact that K(¢) is the kernel of o

ii) ¢ 1is a homomorphism:

For all ¢ e C,

w(CH(D)/K(@)) - w([CH(U)])

For all f ¢ T,

2
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p (OVK ) ) -

OV n, L b))

n

= y([f

o (1PN n L k)

Plo(hy)s ..us olh )

Pu(Ih D). -.os w(Ih 1)

For all r ¢ P,

<Chyds eees T 1 e OVKO) e s 10O)

iFF <o(hy)s .os o(h )> e P

PFF <p(Lhy D), <eos w([h 1> e ¥

iii) ¢ 1is one to one:

Let h1, h2 be such that
W(Ihy1) = w(Thyd) -
Then o(h;) = o(hy)
and h]K(cp)h2 or [h1] = [hz] .

Finally, since D is reachable, ¢ is onto.

The structure H(D) is called the Herbrand interpretation induced by

In what follows, we will show that the minimum Herbrand interpretation
is (almost) that special one for which we are searching. We will do it by
using the concept of initiality. We say that a structure S is initijal
in a class of structures if it belongs to the class and if for every
structure D of the class there is a unique homomorphism from S to D.

A reason for using initiality is that it has the nice property of character-
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izing things up to isomorphism, as stated below:

Proposition 4.2:

If two (reachable) structures A and B are initial in the same
class then they are isomorphic.
Proof :

Let ®q be the unique homomorphism from A to B and Ps the
unique homomorphism from B to A . We will show that o is actually
an isomorphism from A to B.

Consider the following commutative diagrams

q)'l (PZ
A —3B B——y

A
.Ni ®2 ]B J/ ®7
A B

where 1A and ]B are the identity homomorphisms on A and B , respect-
ively. By initiality of A , we have that Py = ]A (since ]A: A~>A
must be unique). Similarly, P10, = ]B : But then 9 (and ¢2) must
be an isomorphism,

Let us get back to the central line of our development by giving a
definition for what we call the “"natural structure". Let T be a set of

sentences in a language L = <C, F, P>. The natural structure for T ,

H(T), s the Herbrand interpretation for L 1in which the relations are

defined as follows:

For all r ¢ R, for all h], ... h_ e H(L), we have

H(T)

n

<hys ovos h > er iff D|=r(hy, ..., h ) for all

reachable models D of T.
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Intuitively, this definition says that the relations in H(I') are
the minimuim allowed by the sentences of T . We will show that in fact
when H(P).|==F then H(r) 1is the minimum Herbrand model of T. In
order to do that we must give a formal definition for the minimum Herbrand
model. Let {Djlj e J} be a non-empty family of structures for L with

the same domain and the SameDfunct;ons. We say that Di is included jg_Dj,
D; E.Dj, iff for all r € P,r i’g_r J. We define the 1;;érsection 329 Dj——_
as the structure D with the same domain and functions as all Dj and

such that for all r ¢ P, rD = jQJ rvj. We denote by ModH(F) the set of

all Herbrard models of I. We call hModH(F) the minimum Herbrand structure

of T.

Proposition 4.3:

H(T) = hModH(r).
Proof:

i) H(T) < MMod,,(T):
Let rePand hy, ..., h e H(L) such that <his oons h > e rH(F).
By the definition of H(T) and for all D such that D |=T, we have that

Dl=r thys «oes h,)s

i.e. <hD

D D
1> <reo h .

>er
n

If D 1s an Herbrand interpretation, then h? = hi’ SO we can write

<h], cens hn> € rD

Then

H(T) _ Mod,,(T)
<h], e hn> er <h1, cees hn> er H

For what follows, the property of ﬂModH(F) being a model of T s

a fundamental requirement. We call this property the intersection property
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for Herbrand interpretations. Unfortunately, this property is not always
D

satisfied. Suppose T is p(a) v q(a) . A structure D, with p T {a}
D ' D

and q ' =¢ 1isamodel of I. Sois D, with p 2= ¢ and q° = {al.

The structure D = D] n 02 has pD = ¢ and qD = ¢ and obviously is not

a model of T . The basic question here is: what kinds of sets of sentences
have the intersection property for Herbrand interpretations? We do not
have a complete answer to this question. However, in Van Emden 76 it is
shown that if T 1is equivalent to a set of Horn sentences, then it has
this property. A Horn sentence is a clause containing at most one positive
literal. Is this condition necessary? The answer is no, as will be shown.
later in the examples. So to be a set of Horn sentences is just a sufficient
condition and the problem of the syntactic characterization of sentences that
have the intersection property for Herbrand interpretations is still open.
From now on, we assume that we are working with sentences that have the
intersection property for Herbrand interpretations.
Lemma 4.1
H(T) is initial in the class of all the reachable models of T .
Proof:
Let D be a reachable model of T and H(DP) the Herbrand interpreta-
tion induced by D. We know there is a unique (strong) homomorphism
from H(D) to D. Now let i be the identity function from H(L) to
H(L). There is no doubt that i is a homomorphism from H(I') to H(D)
with respect to the constants and functions. To see that i 1is a (weak)
homomorphism with respect to the relations, recall that H(T) c H(D) , so
every relation of H(T') is included in the corresponding one of H(D) .
So i° ¢ 1is a (weak) homomorphism from H(I') to D and, by Lemma 3.1,

it is unique and onto.
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Although H(T') 1is initial in the class of reachable models of T ,
it is not yet the structure we are looking for because in general it is not
isomorphic to the structure we are trying to specify. The reason is the
following: 1in H(T) the only equality is the purely syntactic one
(identity): 1i.e., two elements of H(L) are equal in H(T) iff they
are the same term. In fact, we would Tike to consider two elements as
equal if they have the same properties as far as the language we are using
can determine. This means that they must be considered equal if they can-
not be distinguished by the predicates we have in the language. A similar
thing occurs often with implementations of data types and data structures.
A given object can have different representations in the context of an
implementation. For instance, if we are using arrays to implement sets,
the same set can be represented by different arrays with the same elements,
but in different order. Here again we would like to consider two objects
as equal if they have the same properties, and that means that they appear
in the same places in the same relations. More precisely, this equality
can be defined as follows: Let D = <D, C, F, P> be a structure. For d,

d' e D, d ®d' iff for all r ¢ P we have (n being the arity of r)

D . . '
<dis ... dj_1, d, dj+], cees dp> e 7 AfF <dy, L, dj_1, d', dj+], cees d>er
for all j=1, ..., n and all dys ooy dj_1, dj+], oo d eD. Llet = (7]
be the Targest congruence on D included in * . The next lemma shows that

this congruence identifies two elements exactly when they are indistinguish-

abTle.
Lemma 4.2

d = [D] d' iff for every formula &(x) of L, D |=06 (x)[x/d],
iff D |=0(x)[x/d']. (Here al[y/e] denotes the substitution of e for

all occurrences of y in a.)
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Proof:

A straightforward proof by structural induction on formulas shows that

D |= e(x1, cees xn)[x1/d1, cees xn/dn] iff D |==e(x], cees xn)

[x]/d‘, e xn/d6]

whenever di = [7] d% for i=1, ..., n,
( the basis being immediate from the definition.)
Thus, this congruence is a relativization to the language L of Leibniz's
identity of indescernibles. = [D] being a congruence gives rise to a
strong natural projection onto the quotient structure 0/ = [P] . The
following Temma shows that such identifications are consistent.
Lemma 4.3

If 02 is a homomorphic image of the reachable structure D] under
¢ , then there exists a unique homomorphism ¢ such that the following

diagram commutes:

nat(5[91])

—
~
DS
—
~
1
[y |
D
—
—_

DS
N
y
D
™N)
~
i
—
]
~nNo
|

nat (=[0,])
Proof:
We proceed by showing that = [D]] is included in the kernel of
nat (E[Dz])o ¢ and the result then follows from the homomorphism theorem
(see [Gratzer]) since all structures are reachable.

Let <d, d'> ¢ = [D]] . Then for all r e P and all dy, ..., dj—]’ dj+1’

ces dn € D] and all j=1, ..., n, we have <d], e dj-]’ d, dj+]’

1. '
e dn> e r  iff <dT’ ... d d dj+], cees dn> evr

PREECE But then
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D

e o(d)s 9(dgg)s ooy o(d)> e 1 2

<@(d])s ) @(dj_ iff
Dy
<p(dq)s «vvs old;

J-])’ @(d')a @(dj+])a e @(dn)> er

since ¢ is a homomorphism. Thus we can conclude that <o(d), ¢(d')>e= [DZJ

since the above is equivalent to:

D
H ¥ ] 1 2 . ) 1 i ]
<d1, cees dj_],@(d), dj+], cees dn> er T iff <di, ..., dj_],w(d ), dj+],..., dn>

for all r e P, d7, ..., dj-]’ dj+]’ .o

(Recall that ¢ is onto.) But then <¢(d), o(d')> ¢ = [02]. Thus if

s dn € D2 and =1, ..., n.

<d , d'> ¢

[D]], then <«d, d'> ¢ Ker (nat (= [Dz])o(p) and we are done.

Note that ¢ will be strong iff ¢ is. We call = [P] the natural equality

on D.

We are able now to state our main theorem:
Theorem 4.1
H(T)/

models of TI' by the corresponding natural equality.

[H(T)] s initial in the class of quotients of reachable

Proof:

Let D be a reachable model of T . Applying lTemma 4.3 we have the

following diagram:

H(D) >H(D)/ = [H(D)]

11

[7]

D

\D/
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where ¢ is a strong homomorphism since ¢ is (by lemma 3.1).

Applying Temma 4.3 again, we have the diagram

H(T) > H(T)/ = [H(r)]
i 1

4 v
H(D) > H(D)/ = [H(p)]

i is a weak homomorphism so ¢ 1is. Combining the two diagrams we have
that ¢ ° ¢ 1is a (weak) homomorphism from H(T)/ = [H(T)] onto
D/ = [D]. Since H(T)/ = [H(r)] is reachable the homomorphism is
unique by Temma 3.1

The above results give us the necessary justification to state our
initial model semantics. Given a set of sentences I' with the inter-
section property for Herbrand interpretations, we say that a structure

D is an initial model of I' or that D satisfies I' initially iff D is

jsomorphic to H(T)/ = [H(T)].
Note also that if = 1s in L then by Lemma 4.2 =0 < = [p].

5. Examples

We proceed by illustrating the theory with some simple examples.
Firstly, in section 5.1 we define a simple list data structure, find the
natural structure induced by it and then find the quotient of this natural
structure isomorphic to the original data structure. Secondly, in
section 5.2 we specify two data types: binary trees and vectors (of
unbounded size). We then implement the former by means of the latter in

section 5.3 to illustrate the theory of implementations presently being
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implementations.

5.1 Data Structufes

Consider the following "data structure" defined over

L =<a, A, Ac, S

D’
I I .1

—
It

<D30L:)\:AC
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We also make some comments on proofs of correctness for such

SE>:

I I I .

, SD , SE > with

/N:} - - . I)

_I / V o 2\_\>!/ e

, ' |
AN s

{ e L

{ -7

‘SE -

{

\

3

kT

Acl = <1, 15, <1,2, 1,35, <2,1>, <2,3>, <2,2>, <1,)>, <2,)>, <3,)>,

<A,A>}
sy (1) = 2
sp1(2) = A
sp(3) =
55 (4) = A

Let the theory I be defined by:
1. ¥Yxvy(Ac(x,y) =

I
se'(1) =

I
SE (2) =

(x = any = a) v

3z(Ac(x,z) A SD(z)

3z(Ac(x,z) A SE(z)

1
—

fl
>

H
>

=y)v

I
<
~—
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2. Sp(a) = A A sc(A) = ).
The Herbrand Universe for the theory T is:

H(T) = {auh, Spla)s Spla), Sp(a), vons So(Sc(ad), - ..

Sp(5p(@) .3

The interpretation H(I) is:

H(I) = <H(T), s A, ACH(D), s 5>
with
At < (o, oo, <a, Sp(a)>, <Sp(a), Sple)>, <o, Sc(a)>,
<Spladsaz, <Sp(a)s Sgla)>, <S(sp(a)) Sp(Sp(a))s,

<a, Sp(Spla))>, <Sc(Spla)),a>, <a, Sp(Sp(Spl)))>, ..} .

with ¢ such that:

ofa) =1 o(Sp(Sp(a))) =1
o(Spla)) = 2 o (Sy(Sp(Sp(a)))) = 2
o(Sg(a)) = 3 o(Sp(Sp(sy(e)))) =3
o(2) = 2

we have
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with
[a] ={o, Sg(Sp(e)), Sp(Sp(Sp(Sy(a)))), ... }
[S(a)] =Spla)s Sy(Se(Sp(a)))s Sp(Se(Sp(Se(Sp(@))))), ...}
[Sp(e)] = {Sg(a)s Sp(S(Sp(e))), SUSE(Sy(SE(Sy()))))s -
[A] = (A, Se(Sp(a))s Spispled)s Sp(Sy(a))s ... ).
Also, H(I)/K(e) 1s such that
H(I)/K(p) = <(lal, [Sp(e)]s [Sg(e)]s [AIY, [ad, 121, e HOD/KG) g s s

with
achI/K(e) = (107, [0>, <[al, [Sple)]>s <[al, [Sp(a)1>

<[sD(0L)]s [OL]>5 <[SD(OL):|9 [SD(OL)]>’ <[0f':|s [)\]>s <[SD(0C)]: [)\]> s

<[Sg(e)1, [A1>, <[AT, 21>}

and

W([a]) =1
W([Sy(a)]) = 2
([sg(a)]) = 3
$(D) =

5.2 Binary Trees and Vectors

Note that in this and the following section we use the many sorted
generalization of our previous work.
Consider the following language:

L, =<0, A, errorn , succ, left, right, root, cons>

t
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where the sorting set is {t, n} and (using the notation of Guttag 77)

the syntax is:

EY'Y‘OY’n: - n

> n

At > t
left : t -+t
right: t->t
succ: n-=>n

root: t->n
cons: txnxt-t.

The axioms are:
B1. Tleft (cons(x, d, y)) = x
B2. right (cons(x, d, y)) =y
B3. vroot (cons(x, d, y)) =d
B4. Tleft (1) = A
B5. right (A) =2

B6. root (1) = error, .

The deta type vectors has language LV = <@, 0, 1, succ, A, insert,

access> where the sorting set is {vec, n, ind} and the syntax is:

Qr  ->n
0: =~»n
1: - ind
A: > vec

succ:.n > n
succ: ind - ind
insert: vec x 1ind x n ~ vec

access: vec X ind » n
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The axioms are:
Vi: 1= j - insert (insert(v, 1, dj), J, d,)

= insert (insert(v, J, d,), 1, d;)
Ve: insert (insert(v, i, d;), i, d,) = insert (v, i, dy)

V3: insert (A, i, Q) = A

V4: access (A, i) = Q

V5: access (insert(v, i, d), i) = d

V6: i = j - access (insert(v, i, d), j) = access (v, j)

5.3 Implementing Binary Trees in Terms of Vectors

The axioms B1, ..., B6 and V1, ..., V6 define theories T] and Tos
respectively. To implement binary trees in terms of vectors means
essentially that we must define a theory T3 (the "representation theory").
T3 is obtained basically by adding to the axioms defining T2 definitions
of the constants, operations and predicates of T]. That T3 has the
properties of T2 is then guaranteed by the fact that T3 is an extension
by definition of T2. That T3 has the properties of T] is a matter of
making sure that the definitions are correct or adequate. One criterion
for deciding whether the definitions are correct is to prove that the
axioms of T1 , are theorems of T3 .

To motivate our particular representation, consider the following

binary tree:
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We can represent this tree by the vector:

L1122 [3]als]el7]alalslalalo 1011 [aTa

This representation is obtained by using the usual heap representation
for trees:
(i) The root is stored in position 1;
(i1) If a node stored in position i has a left
(right) son, it is stored in position 27 (2i+1).
Otherwise, position 2i(2i+1) is Q.

We now need to define a relativization predicate which tells us whether

a given vector represents a tree or not:

D1: P(v) <> vi[access(v, i) =q - access (v, 2i) =0
A access(v, 21 + 1) =q].

We now proceed to define each of the operations of the type binary tree:

D2: root (v) = d <> (access(v,1) =d Av=A)vd-s= error .

The operation of extracting Teft and right subtrees is somewhat complicated

but can be defined as:

k+1

D3: Teft(v) = u <> ¥ivjvkve[(j = 2 + LA

k KL= 12K

i=2" Ad <2 >

access (u, i) = access (v, j)]

2k+2 k

D4: vright(v) = u + Vivivkve[j = -2+ LA

T AN L R N R A I

access(u, i) = access (v, j)].
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For example the following are, in order, the representations of the left

and right subtrees of our previous example:

Finally, to complete the definitions we have:
D5: cons(u, d, v) = X > root (x) = d A Teft (x) = u A right (x) = v
D6: A= v <« ¥ilaccess (v, i) = q].

The theory T3 is then defined by the axioms V1, ..., V6 and the
definitions D1, ..., D6. To prove that the representation is correct we
must show two things: firstly, we must demonstrate that the domain defined
by the relativization predicate P 1is adequate for describing all binary
trees. To do this we must demonstrate the following for the set defined
by P:

(a) it is non-empty;

(b) all constants of type binary tree are included;

(c) the set is closed under the operations definéd on binary tree

representations.

Formally, this is equivalent to showing that the following ¢losure axioms

are theorems of T3.
F1: 3xP(x) F4: P(x) > P(right(x))
F2: P()) F5: P(x) A P(y) = P(cons(x,d,y))
F3: P(x) > P(Teft(x))
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We leave the proofs of F1, ..., F5 to the reader.(See Pequeno 79.).
Secondly, we must demonstrate that the axioms defining the theory

T, are theorems of T3. Again the proofs are left to the reader.

1

6. In Conclusion

6.1 Summary

We propose in this report an extension of the algebraic theory of
abstract data types to the language of first order predicate logic. This
extension is proposed to overcome a number of drawbacks of the algebraic
method the most important of which are: Timitations of equational forma-
lisms for specifying properties of data types, the impossibility of treating
values (data structures) as structured objects, the lack of a proper theory
of implementation allowing the use of implicit definitions. The logical
theory is based on the presence of two characteristics for (logical)
structures which purport to implement data types or data structures:
reachability (all objects have names) and the existence of minimum model
(to guarantee the presence of an initiality property). We were then able
to generalize the initiality results of the algebraic theory to logic in
a simple, straightforward manner. The new theory was then illustrated
by a number of examples defining both data structures and data types.

The theory of implementation being developed for this logical treatment

was then iTlustrated.

6.2 Suggestions for Further Research

A number of problems related to this work still need extensive study.
Firstly, the characteristics of Togical structures used for implementing

or defining data structures/types need more detailed study. Secondly,
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the theory of implementation, based on the theory of definitions, needs

a more complete formalization (Pequeno 80). Thirdly, since the structures
we use in this work are minimum models, we need to develop a special Togic
for them. This logic would try to give both semantic and syntactic char-
acterizations of such structures. An important and related problem is

the need for a more complete syntactic characterization of those sentences
which admit minimum models. Fourthly, we need to study the comparative
usefulness of the algebraic and logical approaches. The power of the two
systems also needs more careful analysis since the inclusion of a boolean
sort in algebraic abstract data types seems to make the equational Tlogic
for these more powerful than is obyious at first sight. Finally, we will
have some suggestions (Pequeno 80, Veloso 80) for using such theories in

the methodology of program deve]opment:
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