EFFICIENT ABSTRACT IMPLEMENTATIONS FOR
RELATIONAL DATA STRUCTURES

by
Nicola Santoro
RESEARCH REPORT CS-80-21

University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

April 1980

EFFICIENT ABSTRACT IMPLEMENTATIONS FOR
RELATIONAL DATA STRUCTURES

by

Nicola Santoro

A thesis
presented to the University of Waterloo
iﬁ partial fulfillment of the |
requirément for the degree of
Doctor of Philosophy
in

Computer Science

IWaterloo, Ontario, Canada, 1979

© Nicola Santoro

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis

to other institutions or individuals for the purpose of
scholarly research.

[N tu\ Yoo W -

Signature

I further authorize the University of Waterloo to reproduce
this thesis by photocopying or by other means, in total or
in part, at the request of other institutions or individuals
for the purpose of scholarly research.

. .
\ \ |

Signature

The University of Waterloo requires the signature of all persons
using or photocopying this thesis. Please sign below, and give
address and date.

Efficient Abstract Implementations for Relational

Data Structures
Nicola Santoro

ABSTRACT

The goal of this thesis is to present some foundations for choosing
an efficient abstract structure for a relational data structure described
by means of its conceptual model. Assuming that data inter-relationships
can be expressed as binary relations, the time and space complexity of
abstruct structures are defined and conditions for an abstract structure

to be efficient and optimal, within a constant factor, are stated.

As a preliminary step to developing this theory, a formalism for
describing data structures is developed, first in terms of the algebra
of binary relations and then as an algebra over relational graphs.
The theory is then applied to hierarchical structures, that is, those
corresponding to relational trees. For these we present algorithms to
revise a given abstract structure into one which improves the time and/or
space efficiency. Where possible, these results are also extended to

nonhierarchical relational graphs.

The proposed techniques are illustrated by means of examples chosen
from data base design. Applications to communication network design and

to picture processing are also described.

Key Words and Phrases:

data structures, formal data models, computational complexity,
binary relations, efficient and optimal representations,

hierarchical structures, data base design.

Acknowledgements

First of all, I would like to thank my supervisor Frank Tompa for
his encouragement, suggestions and advice. His constant positive attitude

and his friendship have proven invaluable.

I would like to thank Fabrizio Luccio and Ian Munro for generating
my interest in computational comp]eXity and information structures, for

the many helpful discussions and their friendship.

Many people have contributed in several ways to the completion of this
thesis: to all of them my gratitude. In particular, I would like to
thank the members of my committee: Wes Graham, Tiko Komeda, Ian Munro
and Ken Sevcik; my friends and colleagues: Raul Ramirez, Hendra Suwanda
and Denis Therien; my wise friend Bruno Forte; all the people who made my
stay in Waterloo an en}iching experience: the alternative collectives,
Dumont, Integrated Studies, K.F. Gauss Foundatién, CKMS, the Emergency of
St. Joseph Hospital, Darlene, Ino, Jane, Saverio, Herman, and many, many
others; Mirella - in spite of whom this thesis was started, Antimo, Giovanni,
Luciana, i éorrenti Tutti and the many friends in Chieti and Pisa; and,

last but not least, Wiz - in spite of whom this thesis has been completed.

I wish to acknowledge the financial support of the University of Pisa,
the University of waferloo, the Natural Sciences and Engineering Research
Council and the Comitato per la Matematica del Consiglio Nazionale delle

Ricerche.

Finally, I wish to thank my parents and my children, Monica and Noél,

to whom this thesis is dedicated.

w w w w w
- . . L) .
4= w ~n

2
.3

TABLE OF CONTENTS

Page
INTRODUCTION
The Problem......coneeeiiiiiiiiiiiiiiiiiiii it 1
Related WOorkK....oviviniieiiiiiieisernennaneneenenanannns 7
Qutline Of The Thesis.......... e eeeesteecaisetes e aaeas 9
RELATIONAL ABSTRACT STRUCTURES
Fundamental ConceptsS...cvveereninernreeennsnseneossnnncnns 12
2.1.1 The ModeTl....iiuiriiniiieriiiineneneenoneeocasonnnan 12
2.1.2 Relational GraphS.......cviveivueenrncsescnnnccncans 17
2.1.3 Efficiency Parameters......ccevveevieroreccarncnnans 22
Fundamental Properties....ccoeviiueennarnciicnnnnnenennns 26
2.2.1 Equivalence PropertieS...cceeeericeecenneennecnanes 28
2.2.2 Constructing A;Perfect Implementation.............. 32
2.2.3 Hierarchical Conceptual Models...........coviennnnn 37
STAR GRAPH APPROACH
118 A o e [F ok v e 44
Constructing The Star Graph......cooviiiiiiieinineeennnn. | 51
Complexity Of The Star Graph..........c..cvvvvnienennnn.n. 53

Constructing The Complement.......cooviiiiiineeinnennnenn. 58

4. REDUNDANT GRAPH APPROACH

4.1 Introduction.ttt e e e, 66
4.2 Constructing An Efficient Redundant Implementation......... 68
8.2.1 GENEFAl CASE...uen'nnnnneeeeeeeeeseeee e 68
4.2.2 SPeCial CaSeS..uuueeeneneeeeneeeenneesoeasaanensennns 76

5. GENERAL CONCEPTUAL MODELS

5.1 Introduction.....eiiiiiiiiiiiii it e 80
5.2 Heuristic Methods.......coeviriiiniiiiiiiinieeninnnnnnnn.. 82
5.3 Relational Graphs With One Circuit....covveeverneennennnnn. 90
6. CONCLUSIONS AND APPLICATIONS
Bl SUMMAIY. et ei i e e e e e e .97
6.2 A Final Example...... e 102
6.3 Other Applications.....coveiiveiiiiinnnnerennnnenenennnns 112
6.3.1 Picture Processing..........cecvvennnn.. e, 112
6.3.2 Communication Networks........oovvvririiinernnnnnnns. 114
6.4 Conclusions And EXtensions...........veeeeeenennrnnnnnnnn. 116
o = ol - - 118
APPENDICES
A. Extended Algebra of Binary Relations.........cvvveeenvnnnnn. 125
B. Properties‘of Relational Graphs.......c.covviiiiiinnnnnnnnnnn. 128

C. Data For The Final EXamMple....ueeereireurnenneennesnnnnnens 131

CHAPTER 1

INTRODUCTION

1.1 THE PROBLEM

1.2 RELATED WORK

1.3 OUTLINE OF THE THESIS

Un tuffo dove 1'acqua
e piu blu.
Niente di piu.

FORMULA TRE

Do you understand, Mr. Lamont?
I do indeed - you are quite
right.

FLANN O'BRIAN

Tavta 8e Y€ ¢aivetar

aywyd mpdo AAARBetlav

PLATO

CHAPTER 1
INTRODUCTION
1.1 The Problem

In recent times, the desirability of attacking problems at several
levels of abstraction has appeared in different fields. For example
the structured programming approach [Ben, Dij, Hoa, McGo, Wirl, the use
of abstract data types [Gut, Lis], and the introduction of an open system
architecture [ISO], all used to improve the modularity of programs and
therefore simplify their design, are the major examples of this trend
in the areas of programming languages, data management and data communi-
cation. In data structure design, many authors have each emphasized
only one or two Tevels of abstraction [DIm, Ka, La, McC, Me, Mi, Sel, Sul.
A detailed description of the problem and a survey of suggestions previously
proposed are contained in [To2], where five levels of data refinement are
distinguished:
1. data reality: the real world, data object.
2. conceptual model: a model of the real world where (only) the
properties relevant to the specific application(s) are contained.
3. abstract structure: a refinement of the conceptual model in which
only some properties are made explicit, the others derivable
indirectly through computation.

4. storage structure: a model of the abstract structure in terms of

representations for each of the data type occurrences.
5. primitive encoding: the computer representation that concerns

the physical devices involved.

To each level of abstraction for data, we can associate a level of
abstraction for the operations performed on the data. Thus we can
distinguish the following levels:

1. the goals of the problem in terms of real objects.
the specification of a solution in terms of conceptual models.
the algorithm incorporating the specifications. |

the program implementing the algorithm.

[S2 B~ I 7 B A

the object code implementing the program to operate in a particular

machine environment.

The relationships among different levels of abstractions are
hierarchical, that is, any modification at one level implies a change
in lower levels but should not necessitate a change in any upper level.
At the same-time, there is a dependency between levels of abstraction
of data and levels of operations on data. For example, at the storage
structure level if we use lists instead of hash tables to represent a
symbol table theﬁ we have to implement different programs for all the

algorithms that manipulate the table.

The problem of efficiency has been examined at different levels of
abstraction and at the transition from one level to the next [Low, Tol,

To2]. Although it is widely recognized that improvements to an algorithm

are more significant than improvements to a corresponding program, less
research has been devoted to the transition from a conceptual model to
an abstract structure than to the one from an abstract to a storage struc-

ture.

The aim of this thesis is to narrow this research gap by analyzing
the first transition; that is, to analyze the refinement process that
leads to express directly, in the abstract structure, only some of the
properties contained in the conceptual model, the others being available
through computation. We will discuss the concept of efficiency (induced
by such computation), as well as the notions of implementation, semantic
equivalence and integrity. In just one sentence, we will examine the
problem of choosing an efficient abstract structure implementing a given

conceptual model.

In terms of data base design, this problem is to decide which data
relationships should be stored explicitly in order to maximize the
efficiency of the system. Although the formalism introduced in this
thesis can be used to describe complex structures arising in several
different (and often unrelated) large-scale software applications, we
will preferably refer in our examples to problems and situations arising
from data base design. The main reason lies in the immediate correspondence
between the five-Tevels view of the data used in this thesis and the
views used in all the important data base models (for example, the

ANSI/SPARC architecture [Tsill, the infological/detalogical model

[Lan, Sun], and the role model [Bacl).

We will assume that all the relationships among data can be
expressed as binary relations. This apparent restriction has been
defended elsewhere, since several models for data structure design use
only binary relations [Ab, Ne, Br, Fel, Ash, Le, Se2]. Furthermore,
as discussed later, any n-ary relation can be expressed as a set of
binary relations; therefore this assumption does not 1imit the generality
of the formalism, although efficient solutions for binary relations

may not indicate efficient solutions for n-ary relations.

Under this assumption, a conceptual model can be defined by a set
of data elements and a set of relevant relations on the data. Thus an
abstract structure implementing the conceptual model can be characterized
by a set of relations whose transitive closure contains the whole set
of relations in the conceptual model. Using this formalism we can
precisely describe conceptual models and abstract structures and analyze

the efficiency of structures implementing a conceptual model.

The parameters introduced in order to evaluate the efficiency of
an abstract structure take into account the space and the time complexity
of the structure. We measure the space efficiency of an abstract
structure by the numbers of explicitly stored relations, and the time
efficiency by the number of relations that must be composed in order
to answer a query (retrieval time). This is done in order to use

complexity measures that are general and defined at the considered level

of abstraction, and at the same time are "realistic" (i.e. immediately
translatable to complexity parameters used at Tower levels of abstraction).
For example, if we are in a paged environment where exactly one relation
fits on a page (or a fixed number of pages), the number of relations
describes how many pages are needed to store the information, and the
retrieval time measures the number of paging operations required to answer
a query. Using these parameters we will state conditions for an abstract

structure to be efficient and optimal (within a constant factor).

In this thesis we have obtained several original results, whicﬁ,
using a dichotomic view of reality, can be partitioned into "theoretical®
and "practical" ones. The first basic theoretical result is the formal
definition of a useful framework to analyze the transition from the con-
ceptual model level to the abstract structure level. As part of that
framework, the most interesting theoretical result is the determination
of a basic equivalence between two general problems, as follows. We
prove that there exists a basic class of implementations for any conceptual
model, and that to solve the efficiency problem (i.e. the problem of
finding an efficient abstract structure implementing a given conceptual
model) is equivalent to transforming a member of that class into another
"semantically equivalent" abstract structure. This result gives us a
constructive way to attack the efficiency problem and to obtain practical

results.

In the realm of practical results, we show that, for any given
conceptual model, there are two important abstract structures implementing
it. The first structure, I*, requires O(hz) space and allows 0(1)
retrieval time, where n is the number of domains in the model; the
othere structure, IO’ needs 0(n) space and 0(n) time. Both
structures are limiting ones; in fact we prove that it is impossible
to implement a conceptual model using less space than Iy or achieving
better retrieval time than I* . Therefore we have directed our
attention to structures that achieve a better trade-off between space
and time. We show how to construct structures that allow O0(1) retrieval
time with only O(n log n) explicitly stored relations. The advantage
of these structures with respect to IO depends on the actual cost of
space and time in the particularapplication. For instance, in a paged
environment, the trade-off is between whether it is more convenient to
have 0(n) pages but 0(n) page-in/page-out operations on average
when we process a query, or rather to have 0(n log n) pages with a

constant number of paging operations.

The second class of abstract implementations considered in the thesis
is perhaps the more important one. We show that is is possible, under
certain conditions, to construct abstract implementations requiring
O(n) relations (i.e. the minimum amount of space needed to implement
a conceptual model) and achieving 0(1) retrieval time (i.e. the minimum
possible retrieval time). We analyze the conditions under which such
"optimal" implementations can be constructed and show that these conditions

depend on the nature of the relations in the model.

A1l the above results are proved for an important class of conceptual
models, i.e., the hierarchical models. Extensions of these results to
more general models are discussed. Many problems arising from data base
design and other applications are inherently hierarchical in nature
(e.g. hierarchical data bases [Tsi2], networks of binary relations
associated with n-ary constraints [Moll, some CODASYL-compatible data

bases [Dehl, etc.).

As a final contribution, the thesis also contains some origina}
results in graph theory, primarily a partitioning existence theorem on
trees. We have introduced relational graphs (i.e. directed edge-labelled
multi-graphs) as a useful mechanism to describe abstract structures.
After transforming the algebra of binary relations into an algebra over
relational graphs, graph-theoretic results have been used to prove

properties of abstract structures.

1.2 Related Work

As previously noted, the transition from conceptual models to
abstract structures has been largely ignored, mostly because of the
absence of a formalism in which the problem could be defined and analyzed.
Although many researcﬁers have more or less explicitly stated the need
for such investigation [Bub, Ham, Ka, To2], no systematic research,
to our knowledge, has been devoted to this problem. This absence of
theoretical work is reflected in the practical applications. For

example (with the possible exception of the study of normalization [Beel),

in data base design there has been a fatalistic approach toward the
abstract structure level: designers are given one abstract structure

and their only problem is how to implement it; after formulating a correct
abstract structure, no further consideration is given as to whether the

structure is the most efficient statement for the problem.

While there is practically no research done on the transition from
conceptual models to abstract structures, several studies have been
pursued at the next lower level of abstraction. Typically, the alge-
braically-based formalisms [Gut] for data-types, and the techniques‘based
on graph theory [Cha, Got, Har, Maj, Mun, Rayl assume data abstractions
as a "datum", without any reference to conceptual models or to the

refinement process that led to the determination of such structures.

Many sub-problems analyzed in this thesis have been studied in
different contexts and/or from different perspectives. For example,
several studies have been done in the field of the semantic equivalence
of data structures [Bil, McGel, and in the analysis of semantic-preserving
transformations on simple structure§ [Dal, Ros]. Techniques similar
to the redundantygraph approach have been studied to increase reliability,
and it is worth noting than the notion of a star graph introduced in

this thesis is implicit in some of Senko's writing [Sen2].

Finally, research on problems similar to the one studied in this

thesis has been done in fields other than data structure design; noticeable

examples can be found in picture processing [Mol, Sall, and in communication

networks design [Cer, Sa2].

The related work will be described in more detail where appropriate

in the remainder of the thesis.

1.3 Outline Of The Thesis

Following this introduction, we present the formalism to define
conceptual models and abstract structures. In Chapter 2, we also
introduce relational graphs as a useful mechanism to describe abstract
structures and analyze their complexity; define time and space efficiency
of abstract structures and state conditions for an abstract structure
to be efficient and- optimal (within a constant factor); state a funda-
mental equivalence which will enable us to attack the efficiency problem;
and characterize a particular class of conceptual models, the hierarchical

conceptual models.

In Chapters 3 and 4 we present two methods to derive efficient
abstract implementations for hierarchical conceptual models, analyze
the properties of such implementations, and derive bounds on their complexity.
Then in Chapter 5 we extend these results to general conceptual models,

and present techniques to solve the efficiency problem for such models.

Finally, in Chapter 6 we summarize the results obtained in this

thesis, describe through a detailed example some of the proposed

- 10 -

teChniques, and preseht some problems that can be reformulated and solved
using the techniques discussed in this thesis, even though these problems
arise from fields unrelated to data structure design. Chapter 6 also
contains a brief survey of open problems and directions for further

research.

Throughout the thesis, we will assume that the reader has some
familiarity with the algebra of binary relations and with the properties
of digraphs (see, for example [Ber, Gral). Brief descriptions of both
the classical and the non-standard terminology and definitions used;
in this thesis are contained in Appendices A and B. Appendix C

contains the data used in the extended example described in Chapter 6.

2.

NN

- 11 -

CHAPTER 2

RELATIONAL ABSTRACT STRUCTURES

FUNDAMENTAL CONCEPTS

.1 The Model

.1.2 Relational Graphs

1.3 Efficiency Parameters

FUNDAMENTAL PROPERTIES

1 Equivalence Prqperty'

.2.2 Constructing A Perfect Implementation

.2.3 Hierarchical Conceptual Models

- 12 -

CHAPTER 2

RELATIONAL ABSTRACT STRUCTURES

2.1 Fundamental Concepts

2.1.1 The Model

Let us describe the model we are using in our research. A conceptual
model has been defined above as a model of the real world in which the
properties relevant to the problem are contained. Given a set of data

D, Tet R, denote the set of all possible binary relations between

D
subsets of D (see also Appendix A).

Definition 1. A conceptual model I is a couple i = (D,R) where

D is a non-émpty set of data elements and R ¢ Ry
is the set of all the data interrelationships relevant

to the problem.

Since all relationships of interest to the application being modeled
are, by definition, included explicitly in R , then a query on I s
equivalent to a request for the value of some relation r in R ; thus,
in our model, a ggggx on I is any relation r ¢ R . If &dlrl and
rd[r] represent the left and right domain of r , respectively, then
let C(R) = {dng | reR (dj = pd(r] or dj = 1d[r])} denote the set

of domains of I . We will assume that each data element appears at

- 13 -

at least in one domain.

A (relational) abstract structure is a refinement of the model in
which only some relations are made explicit, the others derivable

indirectly through computation.

Definition 2. An abstract structure Ii implementing the conceptual

model I = (D,R) 1is a triple Ii = (Di,Ri,wi) where

1. DigD

2. (Ri)*'g R where (Ri)* denotes the set of all
distinct relations that can be obtained through
composition of elements of Ry -

3. by R~ S(Ri) is a query mapping defined as follows:
for all r e R, wi(r) is a sequence q ¢ S(ri)
of minimum Tength such that q = r (i.e., q and
r are equivalent, see Appendix A).

4. There is a one-to-one correspondence between C(Ri)

and C(R) , (C(R) <=> C(R;)) .

In this definition we use inclusion instead of equality to show that
supplementary data_efements and relations may be introduced in an imple-
mentation. In general, the representation of a binary relation implicitly
contains the representation of its inverse, e.g. in a Boolean matrix

representation, the inverse of a relation is represented by the transpose

- 14 -

of the given matrix; in the fo]]owing we will assume that if r ¢ R

then r'] e R.

Let us remark that condition 2 in the above definition does not
imply the existence of the query mapping vy - For example, let

R = {a,b,c,d,e} with ¢ =a-b and b = a']

- d-e ; the set Ri = {a,d,e}
is such that (Ri)* 2 R, but it is easy to see that no query mapping

is constructable using such set.

Let us observe that, for a given conceptual model I = (D,R) ,-
there is always atleast one abstract structure implementing I . In
fact, the abstract structure (D,Qiﬁzj s whereL/97ﬁs the identity function,
is obviously én implementation of I . Later in this paper we will

make use of this observation and refer to ,(D,Ri}zj as I* .

When equality holds for the sets of data elements and (Ri)* = (R)* ,

we will say that the relational abstract structure is a perfect implementation

of the conceptual model. Let G(I) denote the set of all abstract
structures implementing I , and P(I) the set of the perfect implemen-

tations of I .

Among all the relational abstract structures which perfectly implement
a conceptual model, we can characterize a set Basis(I) to be the minimal

perfect implementations, as follows:

Ii e Basis(I) iff I, « P(I) and yr ¢ Ri (Ri—r)* > R

- 15 -

Informally, a relational abstract structure Ii in the basis is such

that no substructure of Ii implements I . The basis is possibly an
empty set, and is unique for a given conceptual model; in fact, in many
cases it consists of only one element. Our interest in Basis(I) is not
purely based on academic grounds: since we are concerned with efficiency,
the number of relations needed to implement a conceptual model is (as

we will discuss later) an important space-comb]exity parameter. When
non-empty, Basis(I) consists of implementations of I that do not contain
redundent relations to be stored explicitly; therefore it represents’
space-efficient ways of implementing I . A set inclusion diagram of

G(I) , P(I) and Basis(I) is shown in Figure 2.1.

\

)

G(I) [implementations’

P(I) [perfect implementations]

<i¥_ Basis(I) [minimal perfect imp1ementations]‘:>

Fig 2.1 Set inclusion diagram of the abstract structures implementing I.

The analogy between the above terminology and the one used in relational
data base systems [Cod, Date] is not accidental. Let us further note
the similarity betWeen the query mapping Uy and the search path in
independent accessing models [Gho, Schl: the user's view of the data

is defined independently of the structure used for the implementation.

To the users, all relations appear to be equally accessible (as in the

- 16 -

conceptual model), although in the implementation there exists a retrieval
mechanism (the query mapping), hidden to the users, to access the

relations.

Before proceeding, we will attempt to illustrate the central concepts

by means of a trivial example.

Example 1.

Let I = (D,R) be as follows:

D= {u,m,a,b,c,s],..,,55,t1;.,.,t5}

-1 -1 1 1

R = {t,e,p,ep,te,tep,t'],e .p_ ,ep'],te° ,tep™ '}

where ep = e-p, te = t-e, and tep = t.e.p, and the relations

are as follows:

t = {(u,a), (usb)s (m,c), (8,8)}
e = {(2,57), (a,55), (bisg)s (cus4)s (c155), (8,8)}
p = {(systq)s (sp5t5)s (s35t5)s (s4.t4)s (s5stp)s (6,68)2

ep= {(a,t;), (a,t,), (b,t3), (c.ty), (c,tp), (8,8)3

te= {(u,sy)s (uss,), (Uss3), (mysy), (mysg), (8,8)}

tep= {(u,t;), (usty), (u,ts), (msty), (mytg), (68,68)}
The set of domains C(R) 1is given by C(R) = {d],dz,d3,d4}
where dy = {u,m}, d, = {a,b,c}, dy = {515555845845851 and

d4 = {t],tz,t3,t4,t5} .

A perfect implementation of I is I, = (D,R],w1) where

R] = {tep,e,p} and ¥y is defined by:

-17 -

e —> <e> ot —> <tep p-] e-]>;

p —> <p> ; te— <tep p 1> ;

ep—><e p> ; tep—><tep> .

It is easy to show that I « Basis(I) . Other elements in Basis(I)
are 12,13,14,15,I6 where RZ = {te,e,p}, R3 = {t,e,p},
R4 = {t,ep,p}, R5 = {tep,ep.,pl, R6 = {te,ep,e} .

2.1.2 Relational Graphs

There have been several recent papers describing abstract stfuétures
in terms of graphs and graph grammars [Cha, Maj, Mo2, Ray, Ros, Tsul.
In fact, the notation of graphs is very useful for visualizing properties
of binary relations, and therefore we will now transform the notions of

relational abstract structures into their images in relational graphs.

A directed edge-labelled multigraph is a triple (V,L,E) where

V and L are arbitrary non-empty sets of elements, named vertices and
labels, respectively, and E <V x V x L is a named set of edges.

Given x,y e V, z e L, if there is an edge e ¢ E from vertex x

to vertex y having label z , we denote this e = (x,y;z) and call x
the start vertex; y the end vertex and z the label of e . (Further

relevant graph theoretic concepts are included in Appendix B.)

A relational graph is a directed edge-labelled multi-graph in which

the vertices represent domains and the labels name binary relations.

- 18 -

We claim there is a (natural) isomorphism between relational abstract
structures and relational graphs, where the image of (Di’Ri’wi) is
the graph (Vi’Li’Ei) in which the vertices represent the domains in
C(Ri) , the 1abeis represent the relations in Ri , and a directed edge
labelled r; has start vertex dj and end vertex dk if, and only if,
the relation rs is between the domains dj and dk ([r1]=(dj’dk)) .
The relational graph corresponding to the abstract structure I] in Example

2.1 is shown in Figure 2.2.

Because the notion of query mapping is central to the calculation
of time efficiency (as it will be discussed later), we now relate a
sequence of relations and inverse relations in ~R1 to its image in a

relational graph. Thus, if (d],dz;r) is an edge in E. , we say that

i
(dz,d];r-]) is an inverse edge in E; 5 and if (d],dz;rl) R (dz,d3;r2),

...,(dm,dm+];rm) is a sequence of edges or inverse edges such that there
is at most one occurrence (reversed or not) of each element in the sequence,

then we say that DS LUTER i is a relational path (or simply, path)

from d1 to dm+1 in the relational graph, and that dm+1_ is reachable

from d] by the label NS LOTERS PR

dz2

dl

- 19 -

(;g b c)
e
(s1 s2 s3 s4 s5)
P
(tl £2 t3 t4 £5)
tep
(u m)

(a)

Fig. 2.2 (a) Natural relational graph for the abstract structure I

of Example 1, and (b) a description of the data interrelationships.

We can therefore interpret a query mapping as a function from relations

in a conceptual model onto their shortest "equivalent" path in a relational

graph, where the notion of equivalence is as for sequences of relations.

Furthermore, a labelled reachability graph, i.e. a graph that represents

such a path as a single labelled edge, represents the transitive closure

of the relations of the abstract structure and therefore can be used to

determine whether or not the graph implements a particular conceptual

model.

Informally, a relational graph depicts the basic components and

connections for a relational abstract structure, and thus characterizes

- 20 -

how a conceptual model is implemented: the vertices represent the domains
and the labelled edges represent the explicit relations. Each edge can
therefore be interpreted as representative of a two-column table of
elements in which each column confains elements from one of the domains

of the relation and each row denotes a relationship between two data
values. Alternative graphs over the same set of vertices represent
alternative choices for which tables to store, as long as the labelled
reachability graph is identical to, or contains, the given relational

graph.

The construction of Hi = (vi’Li’Ei) follows in a natural way from

Ii = (Di’Ri’wi) , thus we shall refer to Hi as the natural relational

graph for Ii . However, there may be other relational graphs that can
represent Ii . In the rest of the thesis, whenever a relational graph

H and an abstract structure I are specified with the same subscript,

it is implied that they are isomorphic images of each other.

Definition 3. A relational graph Hj = (Vj,Lj,Ej) is said to support

the relational graph Hi = (Vi’Li’Ei) if
1: there is a one-to-one correspondence between Vi

d V.
_an j

2. forall r e Li there exists a path p in Hj

such that p=r .

Let ﬁ(Hi) denote the set of all the relational graphs supporting

Hi , let é(Ii) denote the set of the corresponding abstract structures,

- 21 -

A

é(Ii) = {Ij : Hj € F(Hi)} , and Tet F(H*) denote the set of the isomorphic

images of the implementations of I , F(H*) = {Hi : Ii e G(I)} . In

the following sections we will return to these concepts, and we will
characterize the above sets in order to solve the efficiency problem, i.e.
the problem of finding an efficient abstract structure implementing a

given conceptual model.

- 22 -

2.1.3 Efficiency Parameters

The execution efficiency of abstract structures is typically a
function of run time and storage space. For example, in (binary)
relational databases, these two depend primarily on the number of tuples
accessed to respond to a query and the total number of tuples stored,

respectively.

In the following, time will be defined in terms of maximum and
average response time in the given implementation for queries in I ,
and space will be defined in terms of the total number of relations
stored in the implementation. In fact, the difference in size between
relations may be very large, so an alternative measure of complexity
could be to count the number of tuples, and consider its effect on the
time required to join relations together. In fact, in Section 3.4 we
refer to the number of couples of data elements when measuring the space
complexity of particular abstract strucfures, but in general, in this
research we simplify calculations by counting "virtual" relations of

average size. Let us now formally introduce these parameters.

Given a query q ¢ R and given Hi e F(H*) (i.e., the isomorphic

image of an abstract structure I. implementing I), we define the

1

retrieval time for q in Hi as

¥v;(aq) = [ws(q)]

- 23 -

that is, the retrieval time for a query q in Hi is the number of
relations in Ii whose composition is needed to computer q . We
will also define the maximum retrieval time as
W(Hi) = max Wi(q)
geR
Definition 4. A relational graph Hi e F(H*) is said to be d-time

efficient if yq ¢ R VHj e F(H*) we have

v.(q) < wj(q) * d

Informally, every search in Ii takes at most d times more steps than
the equivalent search in any other relational abstract structure
implementing I , i.e. it is at most d times worse than the time-

optimal structure.

Let us now consider the space complexity. Since we are considering
relations of average size, then the parameter to evaluate the space

complexity of Ii » also called the space requirement for Ii » 1s given

‘by the total number of stored relations counting each relation and its

inverse as only one relation. That is, the space requirement

@(Hi) = IRil/Z is the number of arcs in h(Hi) . Let h(Hi) be the
skeleton of Hi » 1.e., the undirected multigraph obtained from Hi
by eliminating the orientation of the edges. Ignoring the labels, and

considering each edge together with its reversed edge as one single arc.

- 24 -

Definition 5. A re]ationa1 graph Hi e F(H*) 1is said to be d-space

efficient if for all Hj e F(H*) we have
°(Hi) < @(Hj) * d

Informally, the space requirement for Ii takes at most d times more
stored relations than any other relational abstract structure implementing

I ,i.e. it is at most d time worse than the space-optimal structure.

The choice of implementation, unfortunately, can seldom be made on
the basis of time and space alone, but rather depends on both. We
therefore define two further performance measures to account for both

time and space together.

Given H, e F(H*) , let space (H;) be the minimum e such that

H; 1is e-space efficient, and time (H;) be the minimum e such that

Hi is e-time efficient.

Definition 6. A relational graph Hy e F(H*) 1is d-time optimal if

it is d-time efficient and VHj e'{Hk € F(H*)ttime(Hk) < d}

space(H,) < space(H.)
1 J

Informally, Hi is d-time optimal if it is a d-time efficient graph

with minimum space requirement.

Definition 7. A relational graph Hi e F(H*) is d-space optimal if it

is d-space efficient and VHj ¢ {H « F(H*)jspace(Hk) < d}

- 25 -

time(Hi) < time(Hj)

In other words, Hi is d-space optimal if it is a d-space efficient

graph with minimum retrieval time over all the queries.

- 26 -

2.2 Fundamental Properties

In this section we will establish a fundamental equivalence between
the general efficiency problem (i.e., the problem of finding an efficient
abstract implementation of a conceptual model I) and the reduced efficiency
problem (i.e., the problem of finding an efficient graph supporting a

perfect implementation of I , cfr. Def. 3).

The contribution of this result is that, if Ii is a perfect
implementation, then the reduced problem and the original problem
are the same; that is, by finding a solution to the reduced problem we

do not neglect any better solution to the general problem.

Therefore, the process to find an efficient abstract structure
implementing a given conceptual model I can be reduced to the execution

of the following basic steps:

Solution To The Efficiency Problem

(see Figure 2.3)

step 1: find a perfect implementation Ii of I
step 2: derive the natural graph Hi
step 3: find in E(Hi) a graph Hj that minimizes certain costs

step 4: derive the abstract structure Ij having Hj as natural graph

- 27 -

((| | I))e(x)

F(H*)

H.
/N

y/AN

F(H;)

(I) 8(1;)

Fig. 2.3 Graphical representation of the steps to be executed to find

an efficient abstract structure implementing the conceptual

model I.

Because of the isomorphism between abstract structures and relational
graphs, steps 2 and 4 can be easily performed. In Section 2.2.2 we
will present a method to find a perfect implementation of I , thus
solving step 1. Chapters 3 and 4 will treat the problem posed at step 3.
Let us now analyze the properties of the sets ?(Hi) and é(Ii) , and

derive the desired equivalence.

- 28 -

2.2.1 Equivalence Prdperties

Let us now prove some important properties of the sets F(H*) and

E(Hi) when I,

j is a perfect implementation, and discuss their relevance

to the solution of the efficiency problem.

Property 2.1 Let I,,I; ¢ P(I) . Then H, < ?(Hj) .

proof: Since Ii’Ij e P(I) , then C(Ri) = C(Rj) = C(R) . Therefore

Vi = Vj . In order to complete the proof, we have to show that for all

re Rj there exists a path p in H_i such that p = r . Given

»I1:. € P(I) , then (Rj)* = (R)* = (Ri)*c

1°7]
Therefore r e (R;)* , i.e., there is a path in Hi equivalent to r .

re Rj , obviously r ¢ (Rj)*; since I

As a consequence, if Ii is a perfect implementation then é(Ii)
contains all perfect implementations of I .
Corollary 2.1 If I, e P(I) then P(I) < é(Ii) .

Another interesting property of the set ?(Hi) is given by the following

Property 2.2 Let I;,I; ¢ P(I) . Then ?(Hi) = ﬁ(Hj) .

proof: Given a relational graph H' = (V',L',E'), we will prove that if
H' ¢ E(Hi) then H' ¢ ?(Hj) and vice versa. If H' = Hi then, by
Property 2.1, it follows that H' ?(Hj) . If this is not the case, let

- 29 -

r e Rj . Since Hs e'?(Hj) then there is a path p in Hy such that
p=<rry...r.>=r , where re € Ri,1 sk s<n. Since H' ¢ E(Hi) R
then for each i T < k'sn there exists a path Py such that

>=1r , where r el' , 1T<s<k'.
k! k k-

"
Let us consider the path p' ='<p]p2 ee Py in H' . Obviously

P' = p =r . Furthermore, since H' ¢ ﬁ(Hi) then there is a one-to-one
correspondence between V' and Vi ,» and, since Hi € ﬁ(Hj) , there is a
one-to-one correspondence between V' and Vj . Therefore H' ¢ E(Hi)

implies H' ¢ E(Hj) . The converse follows in a similar way.

That is, all the sets of graphs supporting a perfect implementation
contain exactly the same elements. We will now use this result to prove
that the set of graphs supporting the isomorphic image of a perfect
implementation of I 1is isomorphic to the isomorphic images of all the

abstract structures implementing I .

Property 2.3 Let I. e P(I) . Then &(I) = é(Ii) .

j) be a relational graph. We will prove that

if Hj e F(H%) then H, < E(Hi) and vice versa.

proof: Let Hj = (Vj,Lj,E

(1) Hy e F(H¥)===>H, < F(H.) : we have to show that V<= v
and that for all r ¢ Ri there exists a path p in Hj equivalent to
r . Since both H; and Hj belong to F(H*) , then

C(R;) <=> C(R) <=> C(Ry) » i.e., V.

; j <=> Vi . For each r ¢ Ri s

- 30 -

obviously r € (Ri)* ; Since I e P(I) , then (Ri)* = (R)* ; therefore

r ¢ (R)* . From Hj e F(H*) it follows that (Rj)* 2 (R)* . That is,

re (Rj)* :

(2) Hj € F(Hi) ==> Hj e F(H*): we have to show that Dj 2D,

(Rj)* 2 (R)* and that C(Rj) <=> C(R) . Since Hj € ?(Hi) and

R. € P(I) , then C(Rj) <=> C(Ri)'<=> C(R) and (Rj)* 2 (Ri)* = (R)* . Now

1

Dy v {6} =2 {6} LJ d = LJ {x,y: (x,y)er} »
deC(Rj) Y‘ERJ-

_LJ {x,y: (x,y)er} =D u {8} .
rE(Ri)*

Therefore Dj 2 D, and the proof is completed.

The above result gives us the key to attack the efficiency problem,
i.e., the problem of choosing an efficient abstract structure implementing
a given conceptual model. In fact, to find a solution to this problem,
we need to explore the "solution space", i.e., the set G(I) . It is
not difficult to see that, given a conceptual model we can construct an
infinite number of abstract structures implementing it (a good analogy
for G(I) is the set of the Turing machines implementing a given function).
That is, G(I) 1is an infinite set, and therefore a brute force search is

meaningless.

The contribution of Property 2.3 is that we can now restrict ourselves
to the analysis of the reduced efficiency problem, i.e., the efficiency

problem on the set ?(Hi) instead of F(H*) , where I implements I .

- 31 -

As the rest of this thesis will show, if Ii is a perfect implementation,
then the reduced problem is "tractable"; that is, we can characterize

the set, determine bounds and develop algorithms to solve the problem.

- 32 -

2.2.2 Constructing a Perfect Implementation

In this section we will introduce an algorithm to construct a perfect

implementation of a given conceptual model 1 .

Intuitively, we will construct an abstract implementation by removing
from H* as many edges as possible while the resulting structure is

still a perfect implementation of I .

Let us order the relations in R and number them from 1 to n .

Let <i,...7 > denote the subset of R composed of r, ,...,r. ,
1k i T

where i, < 1 <3<k, and <> denotes the empty set. Given

if e

<i 1k> » we will denote by I<i]...ik> the structure

1
(D,R<i1...ik> s w<i]...ik>) defined recursively as follows:

~- R<> =R
==y = P

-- R<i1...ik? = Reipod > - {r; ,rik']} ; (notice that rik and

rs are removed)
k

-—-yrer w<1]...ik>(r) is ¢<1]...1k_]>(r) where all the occurrences

of rs have been substituted by a sequence q ¢ S(R<i1...ik>)
K _
of minimum length such that q = ry s if no such sequence exists,

k
then ¢<1]...1k> is undefined.

That is, I<i].;.ik> 1s the structure obtained from I by deleting

- 33 -

relations rs s..+5r; and their inverses, and adjusting (if possible)
1 k
the query mapping. The recursive definition gives us an algorithmic

approach to the construction of I<iy...7 > once we have 'I<i]...ik_]> .

Let us now informally describe the algorithm. Function REPRES(I*)
determine a perfect implementation of I , using backtracking, as follows:
1. Consider the graph obtained from H* by deleting an edge (x,y;rj) s
1 <j < oH*) , and check if the corresponding isomorphic structure still
implements I (i.e., if y<j> is defined). If this is the case, then
we have I<j> ¢ P(I) (this will be proved formally below); in addition,
I<j> has one explicitly stored relation less than I does.

2. In a recursive fashion, given I<iyo..dp> e P(I) , we check if

I<i]...ik is> still implements I , ik<1‘S < o(H*) .

3. If, at any given time, we find that the structure under examination

is a minimal perfect implementation, we stop the execution of the algorithm.
4. In order to examine each implementation once only, we use the total
ordering of the relation indices: from structure I<1]...ik> » We can
examine only the structures I<i]...ik i§> with 13 > ik . It is easy

to show that the latter structures can be accessed only from 'I<i]...ik> s

and only if I<1f“'ik> e P(I) .

We will now introduce the algorithm and make use of the above recursive
definition. Recall I* = (D,R,&) , and that H* = (V,L,E) fis its

isomorphic image.

- 34 -

type structure = (set of data; set of re]étions; mapping) :
procedure SEARCH (<i1...ik> : set; ¢<i1...ik_]> : mapping;
found: Boolean; I0 : structure);
begin
found = FALSE;
construct ¢<i]---ik> :
if y<iy...i > is defined then
begin
if e(H*)-k < @(HO) than I, = I<iy...i>;
if (¥r e Re<iq..ip> (Re<ij...qp>-r)* £ R) then
found = TRUE;
else begin
' i=141 3
while (js@(H*) and found = FALSE) do
begin
SEARCH(<11...ik,1> s ¢<i1...ik> , found, IO);

i=1i+1;

end;

- 35 -

For sake of readability, the above procedure contains some redundant
calculations; in fact, we do not need to perform the "while" loop for
those relations r which satisfied the test (R—<i]...ik>-r)* ZR

previously in the controlling “iff" condition.

The function constructing a perfect implementation of I by using

the above recursive function is the following:

type structure (set of data; sets of relations; mapping);
functions REPRES(I*:structure) : structure;
begin
structure IO;
found = FALSE;
I0 = I*;
SEARCH(<>,¢<>,f0und,Id);
end;
IO;
In order to prove the correctness of the algorithm, we will first prove

the following lemma.

Lemma 2.1 Let I<i]...ik_]> e P(I) and let w<i]...ik> be defined.

Then I<iy...ip> e P(I) .

proof: Since I<i]...ik> has exactly the same domains and the same set

of data as ‘I<{1"‘1k-]> » then we have only to show that (R<iy...i >)*

(R)*

- 36 -

Since I<i]...ik_]> e P(I) , then (R<i]...ik_]>)* = (R)* ; since
3 £ . - K3 [* = ‘ . Q'
y<iy...i > is defined, then (R<11"‘1k-1>) (R<1]...1k>)* .

"~ Using the above Lemma as an induction step and using the relation
I<> =(D,R, ¥) ¢ P(I) as inductive basis, it is easy to show that
{I0 e P(I)} 1is a time-invariant predicate everywhere-in procedure SEARCH.

That is,

Property 2.4 I0 e P(I)

Finally, let us state a property of IO that will be used in the

next section:

Lemma 2.2 Let Io<--REPRES(I*) . Then, no substructure of I0 is

a perfect implementation.

that is, even when IO is not a minimal perfect implementation as formally
defined, it is still "minimal" in the sense that no substructure of I0

is a perfect implementation. The proof is obvious.

- 37 -

2.2.3 Hierarchical Conceptual Models

In this section we will define and analyze the properties of a
particular class of conceptual models, the hierarchical conceptual models,

and investigate the properties of their implementations.

Definition 8. A conceptual model is said to be hiérarchical iff for
every cycle SPyry..r > 3 ry e {rysrps...or b such that
-1

L LS TS EER A PR I

Because every relationship of interest in explicitly indicated in the
conceptual model, if there are more than one relationships between a

pair of domains, any two of them form a cycle. Thus, Definition 8 implies
that in a hierarchical conceptual model there is at most one relationship
(and its inverse) of interest between any two domains. We will state a
simple method to determine if a given conceptual model is hierarchical

later in this section.

If the conceptual model is hierarchical, then there is at least

one corresponding minimal perfect implementation.

Property 2.5 If I 1is hierarchical then Basis (I) = 0

proof: If I 1is hierarchical, then in any cycle there exists at least
one relation equivalent to the inverse of the composition of the other

relations in the cycle. Let us construct a new graph from H* by

- 38 -

removing the edge associated with such relation, and apply this process
recursively to the resulting graph. It is easy to observe that the
isomorphic image of the final graph is a minimal perfect implementation

of I .

Property 2.6 If I 1ds hierarchical then Id < Basis(I)

proof: Let us first observe that if I 1is hierarchical, then h(HO) is

a tree. In fact, if it is not a tree,then there is a cycle in H0 s Say
<ry...r> . Since I is hierarchical, then r, e {rys...ory} such

that rj = <rj+1...rkr]...rj_]>'] ; therefore, the structure obtained by
removing from IQ the relation rj would still be-a perfect implementation,
in contradiction to Lemma 2.2 Since h(HO) must be a tree, then the

removal of any edge in Hof will divide the graph into two disconnected

subgraphs, and since h{H*) is connected then for all r ¢ RO(RO—r)* 2R .

The following property solves the problem of determining if a concep-

tual model is hierarchical or not.

Property 2.7 1 1is hierarchical if and only if h(HO) is a tree.

proof: In the proof-of Property 2.6 we have shown that if I is
hierarchical then h(HO) is a tree. Let us now prove the converse.

If h(HO) is a tree, then there is only one path between any two given
vertices; thus, all the relations in (RO)* between two given vertices

must be equivalent. From Property 2.4 and from the definition of perfect

-39 -

implementation it follows that (RO)* = (R)* . Therefore, also all the
relations in (R)* (and thus in R) between two given domains must be

equivalent, and this completes the proof.

In the rest of this section I is assumed to be hiérarchical.

— e ——t———— or—— ——

Because efficiency and optimality are judged relative to the
performance of alternative implementations, the first task is to determine
graphs which minimize each measure. We will now analyze some of these
graphs and determine bounds on the efficiency. One of such graphs is

H0 , the isomorphic image of I0 .
Property 2.8 H0 is 1-space efficient

proof: Since I 1is hierarchical, then, by Property 2.7, h(HO) is a
tree; that is, every graph requiring less space than H0 is not connected

and thus its isomorphic image does not implement I .

Using the above property, we can derive a closed formula to evaluate
the space efficiency factor, space (Hi) ,» for an implementation

I_i e G(I) .

Lemma 2.3 Let I; e G(I) ; then space (Hi) = FQ(Hi)/(n-l)T

proof: Since H0 is 1-space efficient (Property 2.8), then space (Hi)
is the only integer such that (space(Hi)-l) x @(HO) < @(Hi) < space(Hi) x @(HO).
Since I s hierarchical, then, from Property 2.7, it follows that h(HO)

- 40 -

is a tree; that is @(HO) =n -1 . Therefore, space(H.) = F@(Hi)/(n-T)71->

i

The other limiting graph is H* . Using the above Lemma, we can

immediately determine its efficiency factor.
Property 2.9 H* 1is [m/(n-1)7-space efficient.

Let us observe that I* contains explicitly all the relationships
of interest in the application. Therefore, in general, H* will be
more similar to the complete graph than to H0 ; that is, in general
m = 0(n**2) and, thus space(H*) = 0(n) . The great advantage of H*
is obviously not with respect to space, but to time. In fact, in H*

each query réquires the traversal of exactly one edge, i.e.,

Vg eR | Fla)] =1 . Thus
Property 2.10 H* 1isa 1-time efficient

Unlike for space, we are unable to derive a closed formula for the
time efficiency factor of an arbitrary Ii e G(I) ; that is, we do not
have an easy way, besides brute force, of checking the time efficiency

of a structure. However, we can derive an upper bound for HO :
Property 2.11 Hy s (n-1)-time efficient
The proof follows directly from Property 2.7.

A1l the above results are summarized in Table 1.

- 4] -

Ii : : Hi time (Hi) space (Hi)
I*=(D,R, &) | H*=(V,L,E) . 1 I/ (n-1)1
Ig=(DRysvg) Hg=(VsLgsEq) | n-1 .

Table 1. Bounds on the efficiency of I* and IO » where
n=|V| = |C(R)] = C(Ry)| and m is the number of arcs
in h(H*) , i.e., m = |R|/2 ; usually m = O(n**2),

Let us illustrate the above properties by an example.

Example 2.

Consider the conceptual model of Example 1. The isomorphic image

of I* = (D,RL)?7) is the graph H* = (V,L,E)- shown below with
its skeleton h(H*):

» d a—
1 1
-1 -1
tep tep t T t
. 2, 2
ep| e T e -1
te te
d &—/—— q —
3 3
-1
ep x -
p P
4 4

H* h(H*)

- 42 -

Let us construct the implementation I0 from I* by applying
function REPRES,}and let us assume that the indices of the
relations in R are as follows: tep = r1> € = Iy, te = ras
t=rs e= re and p = re- Then, function REPRES(I*) will
cause IQ to be the abstract structure that was called I3 in

Example 1. The isomorphic image of I0 and its skeleton are shown

below:
a d
1T 1
t t?
v
d » d
2 2
e e ?
v
d d
3¢ 3
p p~?
A 4
a d
4 4
Ho h (Ho)

Since h(HO)' is a tree, then, by Property 2.7, it follows that I

is hierarchical. We have n = |V| =4 and m=6 . Therefore,

by Property 2.9 it will be space(H*) = m/(n-1)] = [6/3] = 2 ;

that is, H* requires twice as much storage requirement as HO . On
the other hénd, by Property 2.11, time(HO)s n-1=33; that is, to

answer a query in H0 may take three times as much time as in H* .

3.1

3.2

3.3

3.4

- 43 -

CHAPTER 3

STAR GRAPH APPROACH

INTRODUCTION

CONSTRUCTING THE STAR GRAPH

COMPLEXITY OF THE STAR GRAPH

CONSTRUCTING THE COMPLEMENT

- 44 -

CHAPTER 3

STAR GRAPH APPROACH

3.1 Introduction

In the previous sections, we have shown how to construct I0 a
perfect implementation of a given conceptual model I. In order to complete
the solution of the efficiency problem, we must now determine an abstract

structure that minimizes certain costs and whose image supports H0 .

In this chapter, we consider hierarchical conceptual models. For
such models we present a method to revise an abstract structure without
altering its semantics; that is, the image of the revised structure still
supports the original one. Under certain conditions which wi]] be discussed
later, it is possible, using this method, to reduce the retrieval time
drastically with only a limited increase in space complexity. In fact,
we show that, under certain conditions, the resulting structure is both
space and time optimal and thus represents an optimal solution to the
efficiency problem. In the rest of this chapter, we will present a
method to revise' I0 , discuss the mefhod's complexity, and show when

the above-mentioned conditions oocur.

Before proceeding, we will informally illustrate the basic concepts

by an example.

- 45 -

Example 3.

Let us assume that the relations in the conceptual model I are as
follows: R = {r],rz,r3;xr]2t= Fi oo Fog = FoTrss rip3 = r]-rzor3,
and their inverses}, and that Viri‘]-ri = 1 (where 1 denotes

the identity relation), and that ry = (A,B), ry = (B,C), rg = (c,D) .

Let us now consider the abstract structure IO<--REPRES(I*)

A
l r where Yg is as follows:
B r—n
l . Fo—1
C ? r3—>"3
l . rlz——~>r]r2
3 .
D o3 —*"3

M23™>""r3
The maximum retrieval time for IO is given by

Hy) = =3
¥(Hy) rg:g lgla) |

Let us now consider a generalization of the above example:

A] ' A2 : A3 ! An > An+1

" T2 "n

- 46 -

Then we have
W(HO) =n

and, more importantly, assuming all queries equally Tikely, the

average retrieval time is

ave wo(q) = 0(n)
qeR

That is, the average retrieval time is proportional to the number

of relations.

Let us consider, instead, the following abstract structure I+ :

™23

D«

where y+ 1is as follows: ry > rys ry > r]']-rlz, rs > rlz']-r]23,
‘ -1
27 M22 Y237 " *T123° M23 " M23 -

It can be proven that I+ is a minimal perfect implementation of

I . Let us now look at its maximum retrieval time

- 47 -

¥(H+) = max [y+(q)] = 2
qeR

The improvement over I0 is not very significant, but let us

consider the generalized situation:

n+1

In this case we still have
y(H+) = 2

That is, the maximum (and thus obviously the average) retrieval

v

time is independent of the number of relations.

The above example shows that the revised abstract structure I+
allows consiant retrieval time over all the queries without any increase
in space complexity. Therefore, I+ appears to be the desired solution
to the efficiency problem. Because of its topological structure, we
will refer to H+ as the star graph. Unfortunately, the revised
structure I+ does not always implement I . In particular, when
reconstructing a relation, say ro s in the above example, we were using
several properties and equivalences of the relations. Namely, to reconstruct

r, » we required that r, = r]']-r]Z = r]']-r]-rz . In order for the

- 48 -

-1

above equivalence to hold, it must be ryocry s (the identity relation),

which was the case in our example. Unfortunately, this property
(r]']-r] = 1) 1is not generally true as can be seen from the example

in figure 3.1.

i |
r =Eryr

d, L)

d; &—— « e D)

Figure 3.1 An example of problems with the inverse of a relation:

1 1

r, :r, =t and Py ory® v, but ryor; = 1oand

roefy © = 1 where ry = {(a,b),(a,c),(s,5)} and

ro = {(b,d),(b,e),(c,f),(s,8)} .

Note that r2'1-r2 z 1 (e.q. rz']'rztd] = {d,e} and that
r]'l-r] z 1 (e.qg. r]'].r][b] = {b,c}) . What this really means is that
the star graph shown in figure 3.2(a) does not implement I , because
it is impossible to reconstruct ro from r and ryo - This, however,
does not mean that in our example we cannot construct a star graph

implementing 1. In fact, let us observe that r]-r]'] = 1 and that

- 49 -

1. 1 . This implies that in the star graph shown in figure 3.2(b)

1 -1_
, but rpry =1

rory
we can reconstruct ry s in fact, ML= T2 Ty = Fperpery

and therefore the above equivalence holds.

d, d,
12 " "2
d, d,
—y d3 d3<————————

(a) . (b)

Figure 3.2 (a) Star graph whose isomorphié image does not imp]emenf the
conceptual model of figure 3.1;

(b) star graph that implements that conceptual model.

We will now formalize all these concepts by introducing the notion
of the complement of a relation. Since I is hierarchical, then, for
any two domains .x and y , there is exactly one relation of interest

between them, denoted rxy .

Definition 9 The complement of a relation rxy eR 1is the relation

Py = [y,x] such that ¥z e C(R) "xy "xz T Tyz

- 50 -

Informally, the complement ny is that relation needed to proceed
from y to x , such that the subsequent move from x to z answers
the desired query. Let us anticipate that the complement of a given
relation might not be in the set R ; we will come back on this point

later in this chapter.

- 5] -

3.2 Constructing The Star Graph

We will now present an algorithm to construct the star graph I+
from I0 . The proposed algorithm uses the complement of a relation as

defined in the preceding section.

type relational graph = (set of vertices; set of labels; set of edges);

function STAR(HO:re]ationa]_graph):re]ationa] graph;
relational_graph H+; |
V+:=V0;
choose xeV+;

for all yeV+ and y=x do

begin
L+:= L+ u rxy u fxy;
Ev:= B+ u (xaysry) o (yaxs7,)3

H+;

Let us informally describe, using the terminology of relational
graphs, how function STAR works. Given H0 » We choose an arbitrary
vertex x ¢ V0 ;'this vertex will become the center of the star graph
H+ that we are going to construct. From a topological point of view,

H+ will be composed of edges originating at the center. From a semantic
point of view, we want H+ still to implement the conceptual model,

i.e., we want to be able to respond correctly to all the queries.

- 52 -

Since I 1is hierarchical, then given y,z ¢ C(R) , there is only

one relation of interest between y and =z , ryz . We simulate in

I+ the relation ryz by first going from y to x through ny

and then going from x to 2z through ez The definition of complement

guarantees that the result is exactly the desired one, i.e., =r

"xy' "xz = Tyz -
It is easy to see that to answer any query in I+ , we need at most two

steps; in fact, rap € R,

X or b =x

1 if a
lot(r)| = |

2 otherwise.

This observation, together with Property 2.10, leads to the

following:
Property 3.1 H+ 1is 2-time efficient

Evaluating the space complexity of the star graph is more difficult
than evaluating its time complexity. In fact, the space requirement of
H+ depends on whether I+ 1is a minimal perfect implementation of I
or not. In the hextAsection we will state a necessary and sufficient
condition for I+ e Basis(I) and analyze the corresponding space complexity.
In Section 3.4 we will consider the case in which I+ ¢ Basis(I), and

we will analyze the increased space requirement of the star graph.

- 53 -

3.3 The complexity of the star graph

If for all r ¢ R it happens r']-r = 1+ (the identity relation),

then I+ e Basis(I). This condition ({ VreRr']-r'é 1}) is a-very.
strong (and unrealistic) one. However it is possible, in some conceptual
model, that no all the relations satisfy the above condition but the star
graph is still a minimal perfect implementation. An example is shown

below.

Example 4.

Consider the following graph H0 [Tsi2]

country » territory
b
a
v
state » town
d
c
v
city

where the doémains and the relationships are as follows:

country = {a ;a s@a}
1772’73

state = {b1=---:b5}

territory = {C1""’C6}

city = {d],...,d7}

- 54 -

town = {f],...,f7}

a = {(ay.eq), (a7.6,)s (ay.c5), (agacy)s (agicp), (agsce)?

b= {(a;,b;), (a7.by)s (apsbs), (ag.by), (2g.bg)}

C = {(b]Qd])’ (b'l ’dz)’ (b] ’d3)’ (bz’a)’ (b39d4)’ (b4’d5)9
d = 1bpafy)s (0pafp)s (byafy)s (byufy)s (bga8), (bg.fy),

and where the queries are

R = {a,b,c,d,b']-a,a-d,a'c,d71-c,b']-a-c,b'1-a-d, and their inverses} .

1 1

It is easy to observe that a -.a # {, e.g. a_ -alc5] = ala3] = {c4,c5,c6}.

At the same time, let us consider the following star graph obtained

from HO’E

territory

-J}]
a b
city - state = » country
c a

I
town

It is trivial to show that I+ 1is a minimal perfect implementation of
I even though not all the relations satisfy the above described property

of the inverse.

- 55 -

By looking at the above example, we may find which conditions the
relations must satisfy in order that I+ is a minimal perfect implementation
of I . Let x e V+ be the center of the star graph H+ , and let
V(x) < R denote the set of relations between x and all the other

domains. Then

Lemma 3.1 I+ e Basis(I) if and only if ¥r e V(x) r = r'] .

proof: (¥r e V(x) r = r'] ==> [+ eBasis(I)) R+ 1is composed of all the
relations in V(x) and their complements. Since ¥r e V(x) r = r']',

then we can implement the complement of r e V(x) by using its inverse
Pl Therefore, R+ will be composed of only the elements of V(x) and
their inverses. That is, h(H+) 1is a tree. Therefore, for all

re R+ R £ (R+-{r})* . | .

(I+ ¢ Basis(I) == re V(x) r o= r']) If I+ ¢ Basis(I) then all the
complements must be elements of R . Since I 1is hierarchical, then

there is only one relation between x and any domain y , r and

xy?

only one relation between y and x, ny . Therefore, the inverses must

satisfy the defining equation of the complement, and the lemma is proved.
Let us now éna]yze the complexity of the star graph when I+ ¢ Basis(I).
Property 3.2 Let I+ e Basis(I), then H+ 1is 1-space efficient

proof: From Lemma 3.1 it follows that if I+ e Basis(I) then

¥r e V(x) r = ol ; that is, h(H+) 1is a tree or, equivalently,

®(H+) =n -1 . Thus, by Lemma 2.3, it follows that space(H+) =1 .,

- 56 -

By combining Properties 3.1 and 3.2 we can determine the time
optimality of the star graph when I+ 1is a minimal perfect implementation

of I.
Property 3.2 Let I+ ¢ Basis(I), then H+ 1is l-space efficient

proof: From Lemma 3.1 it follows that if I+ ¢ Basis(I) then
¥re V(x) r = r-] ; that is, h(H+) 1is a tree or, equivalently,

o(Ht) =n - 1 . Thus, by Lemma 2.3, it follows that space(H+) = 1 .

By combining Properties 3.1 and 3.2 we can determine the time
optimality of the star graph when I+ 1is a minimal perfect implementation

of I.
Property 3.3 If I+ e Basis(I), then H+ is 2-time optimal.

That is, if we want a retrieval time not greater than two, we cannot

use less space than H+ requires.

In order to establish the space optimality of I+ , we need the

following Lemma stated by Goldberg [Gol] and reported here without proof:

Lemma 3.2 If Hi, is a strongly connected digraph without loops and

with |E,

;| edges and [Vi| vertices, and if Hy 1is not

an elementary circuit then

d(H;) = r2(]v,[-1)/(1E; -]V, [+1)1

and this is the best possible result.

- 57 -

where d(Hi) is the diameter of Hi .
Property 3.4 If I+ ¢ Basis(I), then H+ 1is 1-space optimal.

proof: From Property 3.2 we know that H+ is 1-space efficient. Let
?(H+)/1 = {HjeE(H+)Ispace(Hj)=1} be the set of all the 1-space efficient

structures implementing I . To complete the proof we have to show that

A

¥ Hj € ?(H+)/] we have time(H+) < time(Hj) . Let us first observe that

if d(H+) < d(H;) then time(H+) time(H;) . Since H; e F(H+)/1 ,

J
then h(Hj) is a tree; that is, Rj contains exactly 2(n-1) relations.

IA

Therefore, by lTemma 3.2, it follows that
d(H;) = r2(]V5[-1)/([Eg 1=V, 1+1) 1 = r2(n-1)/(2(n-1)-n+1)1 =
r2(n-1)/(n-1)1 = 2 . Since d(H+)< 2 , then the property holds.

That is, with n-1 explicitly stored relations, we cannot have a better

retrieval time than by using I+ .

In conclusion, if I+ ¢ Basis(I) (and because of lemma 3.1 this can
be easily tested), then I+ 1is a solution to the efficiency problem.
In fact, it allows constant retrieval time and requires only the minimum

possible number of explicitly stored relationships.

- 58 -

3.4 Constructing the'complement

In the previous section we have analyzed the complexity of the star
graph when I+ 1is a minimal perfect implementation, that is, when the
inverses of the needed relations satisfy the defining equation of the
complement. In this section we consider the case when this property
does not hold, and we present an algorithm to construct the needed
compiements. The algorithm modifies the set of data elements by introducing
“dummy" elements, thus increasing the space comp]exityvof the star graph.
After the presentation of the algorithm, we will analyze the degradétion
in space of the resulting structure I+ , and present an upper bound

~on its space complexity.

The following function constructs the complement by modifying the
set of data elements D . Some extra elements are introduced to
augment certain inverse relations. These elements can be marked to
disregard them when the inverse is used. While the time complexity of
the new graph is unchanged, the space complexity is greatly affected
by the number of new data elements, and thus by the number of couples

of data elements, needed for storing the complemented relations.

type relation (set_of couples of data);
function COMPLEMENT(r:relation):relation;
relation r;

if el p— then Fe=r

else

- 59 -

begin

r:=p;

for all aetdlr] do r:=r u (6,a);

for all aerd(r] do
begin /* insert new element a' */
r:=r v (a',s);

r:=r v (a,a');

for all seV(x) do

©if 30eS(R) s.t. yy(s)=<rq> then
for all (a,b)eq do s:=s u (a',b);
end;

end;

We will illustrate how the function COMPLEMENT works through the
following simple example. Consider the graph Hy shown in Fig. 3.3(a),
where the queries are R = {r],rz,r3, F1g = M1 Tps Tpy = ryelg; Moo = ricroras
and their inverses}, and we are to construct the star graph H+ having
the vertex associated with domain B as center (Fig. 3.3(b)). The
query mapping for the structure corresponding to H+ is straightforward
for all relations in R except ry . In order to reconstruct ry » we
need to compose ry and rog - To construct T s the function COMPLEMENT
performs the following operations. Consider the set

rd[r2] =C-= {C],cz,c3} . For each C; € C we create a new data

- 60 -

element Ci' which will augment the domain B , and we insert into

.'). We now need to modify all the relations starting

rs the couple (ci,c1

from B that use ro for the query mapping Yo in this case, only
rp3 - In order to have Fp:Tp3 = I'y 5 We insert into rog the couples
(Ci"dj) where dj € r3[ci]. Because the domain B has been augmented,
the relations r]'] and r, must also be augmented to include the new
couples (ci',d); analogously FZ must include the couples (a’bi) .

The resulting .interrelationships for Fz and ro3 are shown in Fig. 3.3(c).

- 6] -

(4 $ C %3)

E / A |

b3 c3')
"23 \ \d /\\\ \d)/

(c)

O - 0 4+
O
-—
o
ammad
(=2
no
O
n

Fig. 3.3 (a) Natural relational graph Hy and a description of the
data interrelationships; (b) star graph H+; (c) resulting

data interke]ationships for Fz and rog

Because we are modifying the domains without explicitly adding new
relations, the number of relations cannot be used as a reliable measure

of the space complexity; instead, the number of couples of data elements

- 62 -

needed to store the ré]ations will give us a more accurate description

of the space degradation. However, as will be shown later, the space
degradation expressed in terms of coupTes of data elements can be seen

as degradation equivalent to the introduction of new relations; therefore,
we can still use the same notion of space requirement in order to describe

the space complexity of this graph.

Let us now analyze the degradation in space of the star graph when
constructing complements by the function COMPLEMENT. A1l the newre]ements
are added only in one domain, precisely x . In fact, ¥r e V(x) we
have either 1d[rl = x or rdlr]l = x . Therefore, every time we modify
1dlr] (and we modify it when construcint r) we change all the relations
in V(x) . Let us analyze in detail how many couples of data elements

in the worst case are introduced when using function COMPLEMENT. When

we use function COMPLEMENT, we practically duplicate in the domain x

all the elements of the other domains. In fact, given rs e V(x) ,

COMPLEMENT (ri) creates a new element a' for each element a ¢ di = rd[rij.
Relation r; will be composed of |d1| couples of data elements (a,a');
given rj e V(x) , the number of new couples of data elements inserted

into rj when cdmp]ementing rs is exactly the number of couples in the
unique (recall I 1is hierarchical) relation between di and dj s rij .
Therefore, when complementing all the relations in V(x) = L0 PRI 5 I

the total degradation will be

- 63 -

e~

Degradation(m) <

ik (Idil + Z lrijl)

i<j=m

where the ordering on the indices in the inner summation is needed in

order not to count the same relation twice.

Let us observe that the number of couples of data elements in the

complete graph H* is exactly

m
RS1 = T T Iryl
i=1 i<j<m
At the same time, the summation ||C(r)|] = Vi ldil gives exactly the

total number of data elements (not necessarily distinct) in all the
domains. That is, Degradation(m) = ||C(R)|| + ||R*||. Since
[IC(R)[] < ||R*]] , then we can write ﬁ

Degradation(m) < 2 ||R*|| .

That is, the space degradation (in terms of new couples of data elements
inserted) due to the construction of the complements, is equivalent to
the creation of at most 2 [R*| new relations. (Recall |R*| is the
number of relations and ||R*|| is the number of tuples.) Therefore

we can still express the space complexity of the star graph in terms

of its space requirement as follows:
Property 3.5 If I+ ¢ Basis(I) then space(I+) = 0(n)

In other words, if the isomorphic image of the star graph is not a

- 64 -

minimal perfect implementation, then its space complexity is of the same

order as that of I* .

Finally, let us recall that the above analysis is a worst case
analysis; therefore the upper bound of property 3.5 is very far from

the values found in many practical applications.

- 65 -

CHAPTER 4

REDUNDANT GRAPH APPROACH

4.1 INTRODUCTION

4.2 CONSTRUCTING AN EFFICIENT REDUNANT IMPLEMENTATION

4.2.1 General Case

4.2.2 Special Cases

- 66 -

CHAPTER 4

REDUNDANT GRAPH APPROACH

4.1 Introduction

In the previous section we have introduced a method to generate an
abstract structure supporting a given hierarchical conceptual model, and
we have analyzed the conditions under which the revised structure is both
time and space optimal. If the resulting structure is not a minimal
perfect implementation of the conceptual hode], then the degradatioﬁ in

space can be as bad as the insertion of 0(n**2) new relations.

In this chapter we will discuss a different approach to the construc-
tion of an efficient abstract structure implementing a given hierarchical
conceptual model. Let us assume that the star graph I+ constructed by
function STAR(I*) is not a minimal perfect implementation of I . 1In
this case, Fhe star graph might not be a practical solution to our problem.
In fact, both I* and I+ allow an 0(1) retrieval time but may require
0(n**2) explicitly stored relations. That is, in both cases we are
going to have a ?arge space complexity in order to keep the time complexity
to 0(1) . In this case, we might well ask if there is a better way to
guarantee a constant retrieval time; that is, if there exists a structure
that implements I with 0(1) vretrieval time but with o(n**2) explicitly
stored relations. In the following sections we will give a positive

answer to this question. In fact, we will present a method to revise Io

- 67 -

to form a structure tHat allows a constant retrieval time with only

0(n log n) explicitly stored relations.

Given a hierarchical conceptual model I and the corresponding
abstract structure Io , it is a trivial observation that if we add more
explicitly stored relations (i.e., if we add redundancy) to Io , then
the retrieval time for some queries may be reduced while the resulting

structure will still implement I .

Definition 10. An abstract structure Ii = (Di’Ri’wi) is said to be a

redundant implementation of the conceptual model I

iff Ii e P(I) and RogRigR

In other words, a redundant implementation of I 1is a structure having
Io as a substructure, and its relations are elements of R . A simple

example of a redundant implementation of I ds the structure I* .

By definition, the set of redundant implementations of I 1is composed
of Io and all the structures obtained by adding to Ro a subset of
the relationships in R* - Ro . Therefore we are interested in finding
in this set a structure that needs o{n**2) explicitly stored relations

and that guarantees a constant retrieval time.

In the following, we will prove that, given a hierarchical conceptual
model I , there always exists a redundant implementation I€ of I such
that I(H) < (n-3)1og (n) + n-1 . Better bounds can be proved for special

cases.

- 68 -

4.2 Constructing an efficient redundant implementation

4.2.1 General Case

Given a hierarchical conceptual model I , let us use REPRESENT (I*)
to construct the structure I0 . Since I is hierarchical, then (by
Property 2.7) h(Ho) is a tree. Before showing how to construct the

redundant graph He » let us introduce some terminology.

Given an undirected tree T = (N,A), where N 1is a set of nodes and
Ac Nx N 1is a set of arcs, and given a node x ¢ N, the degree of x
is the number of arcs incident on x and will be denoted by g[x].
Any node x ¢ N will partition the tree T into the g[x] subtrees,
T1(x), T2(x),...,Tg
number of nodes in Ti(x) ». and, without loss of generatlity, let

(x) .

x as shown in Figure 4.1. Let ti(x) be the

t](x) > t2(x) 2 .,..2t

glx]

Figure 4.1 Partition of the tree T induced by the node x ¢ N

Let us now define the following measures:

- 69 -

A](x) = t](x) - tgx

that is, A1(x) represents the maximum imbalance in the number of nodes
when partitioning the tree T into gfx] sbutrees; and
gLx1
Az-(x) = lt](x) - Z tJ(X)I
j=2
that is, AZ(X) is the imbalance in the number of nodes when partitioning
T into two subtrees with T](x) in one and all the other nodes (except x)

in the other. Let
A{x) = min [Al(x)’AZ(X)]

be the imbalance factor for x . Now, a node Xg € N is said to generate

a best partition of T if ¥x ¢ N A(xo) < A(x).

Consider a procedure that creates an undirected graph TE from a
tree T 1in the following way: find a node Xg determining a best
partition, connect all the nodes to Xg o apply the same process recursively

to all the subtrees rooted in Xg This may be coded as follows:

type graph = (set of nodes, set of arcs);
function REDUNDANT (T:graph) :graph;
graph Te’Tie;A
T =T
€

find Xg € N generating a best partition of T;

for all x e N except Xq and its direct children do

- 70 -

A€:=AE u (x,xo);

for i=1 step 1 until glxol do

begin
Ti€:=REDUNDANT(Ti(x0))3
A=A uA, ;

€ [le

end;

Using the above function, we can now construct the isomorphic image
H€ of the redundant implementation IE
type graph= (set of nodes, set of arcs);

type relational graph = (set of vertices, set of labels, set of edges);

function REDUNDANT_GRAPH (HO: relational_graph): relational_graph;
relational_graph HE;
graph TO’TE;
HE:=HO;
T0:=h(H0);
T_:=REDUNDANT (Tg);
for all (x,y) € A_ - Ay do
begin -
L€:=L€ U'rxy u ryx;

E_r=E_ v (Gysr) v (ysxsry, s

- 71 -

We will now prove that the retrieval time in I€ is at most two and

that the space requirement is 0(n Tog n).
Property 4.1 H€ is 2-time efficient.

proof: We have to show that for any r. ¢ R, either r « LE

Xy Xy
or there exist in L_ two relations r and r such that
€ XZ zy
Pyz Tzy” = Txy - If 1,y €L, then the property trivially holds.

If this is not the case, consider the set B(HO) of the nodes in N0
(and therefore vertices in VO) chosen to generate best partitions when-
recursively applying REDUNDANT (TO). Since rxy ¢ L€ , then x ¢ B(HO)
and y ¢ B(Ho) ; since X,y ¢ N0 , then there exists one and only one
node z ¢ B(HO) » generating a best partition during the recursive
application, such that x and y belong to two different subtrees
rooted in z . By construction, in TE there must be an arc from x
to z and one from z to y . That is, there are in HE two edges,
‘rzy = r and the property

(x,z3r) and (z,y;rz) , such that r

XZ Yy XZ Xy

is proved.

In order to determine the space complexity of H€ » We need the

following two lemmas.
Lemma 4.1 Let xov generate a best partitionon T . Then
Ln/glx0]1) = t{(x0) < Ln/2]

proof: t1(x0) = Ln/g[x01] trivially follows from

- 72 -

t](xo) 2 tz(xo) 2...2t (xo) . Assume that t](xo) > Ln/2] .

g[xOJ
Then t](xo) =1n/3 +e=1T0(n-1)/2T + e for some e =1, which
implies that

glx0] }
Z t‘i(xo) = [(n-1)/2] - ¢

i=2
Since t1(x0) > Ln/2| then
ti{xg) - tg[xO](XO) 2 ty(xg) - 2i t:(xg) 5 thus

gCx0]]
A(xo) = AZ(XO) = t](XO) - .22 t'i(XO) = lr(n-])/ﬂ te - L(n-'i)/ZJ + EI
'I=

Let x' be the root of subtree T](xo) . Node x' partitions T

into g[x'l subtrees T1(x'), Tz(x'),,..,T (x') as shown in Figure 4.2.

glx']
Let Ta(x) be the subtree composed of TZ(XO)""’Tg[xoj(xo) and node
Xq - We have
glx0]
t(x') = 1 tixg) +1=1L(n-1)/2] -e+]1
j=2
and

P tj(x') = ty(xg) - T =T(n-1)/21 +e-1.
j=a

Now A(x') < AZ(Q') = |) t.(x') -t (x')] =
Jj=a J a
= | M(n-1)/21 +e-1-L(n=1)/2) +e-1]-= Mxg) - 2.
That is a(x') < A(xo) which contradicts the hypothesis that xg 1s

a best partition of T .

- 73 -

The above lemma generalizes a well known property for binary trees

(see [Brel).

Fig. 4.2 Graphical description of Lemma 4.1.

Lemma 4.2 Let A(n) be the number of arcs added by function REDUNDANT

to a tree T with n > 3 nodes to form TE ; then
A(n) < (n-3) log n

Proof: By inductiqn} The lemma can be observed to hold for n = 3 .
Assume it to be true for 3 <n<m-1 . The function REDUNDANT

connects to Xq all the nodes in T except Xy and its children.

It is then applied to T](xo),...,](XO) . Therefore

Tg[xo

- 74 -

: glxnal
Am) < n' + .210 A(t;(x)))
i=

where n' =m - glxyl -1 . For simplicity, let t, = ti(xo) and

g =9glxyl . Since forall i ,1<1i<g, we have t, <m , then
0 i

IA

(by inductive hypothesis) A(ti) (ti'3) log (ti) . Recall Jiti=m-1.,

Therefore

A(m) < n' +)i (ti'3) log t;<n'+ (}i (t1-3)) log t; =
n' + (m-1-3g) log ty < n' +n' log t, . Since t1 < Lm/2] by Lemma 4.1,
then

A(m) < n' +n' log (Lm/2f) < n* + n' (Tog(m)-1) < n' logm =
(m-g-1) Togm . Since g =2, then A(m) < (m-3) Tog m and the lemma

is proved.

We can now determine the space complexity of the redundant implementa-

tion I of I.
€
Lemma 4.3 é(He) < (n-3) logn+n -1

The proof follows from Lemma 4.2 and by observing that @(HO) =n -1

Using this lemma together with lemma 2.3, we obtain
Property 4.2 space(HE) <logn +1

Properties 4.1 and 4.2 establish a surprising fact shown in Table 2:

it is

possible to reduce the order of magnitude of space in the complete

graph without increasing the order or magnitude of time.

- 75 -

I; H. time(HT) space(Hi)
I* H* o(1) 0(n**2)
I8 H€ 0(1) O(n log n)

Table 2 Worst case complexity of I* and I_, where n = |V|

is the number of domains.

- 76 -

4.2.2 Special Cases

In the previous section we have stated a general upper bound on the
space requirement of the redundant implementation IE . If we have some
additional information about the topology of IO (e.q. h(HO) is a binary

tree) then we can state tighter bounds on the space requirement.

In this section we examine three special cases; namely we consider
the case when h(HO) is a strict k-ary tree, a perfectly balanced

binary tree or a chain.

A strict k-ary tree is a tree where the degree of each vertex is

either k+1 or 1.
Lemtma 4.4 If h(HO) is a strict k-ary tree then
@(He) < (n-k-2) logn+n -1

The lemma follows from observing that in the proof of Lemma 4.2 we have

A(m) < (m-g-1) and that g = alxgl = k + 1 .
Corollary 4.1 If h(HO) is a strict binary tree, then
@(HE) < (n-4) Togn+n -1

Let us now consider the case of perfectly balanced binary trees,

i.e., binary trees with n = (2**k) - 1 nodes and depth k .

- 77 -

Lemma 4.5 If h(Ho) 'is a perfectly balanced binaby tree then
@(He) < (n+1) Tog(n+1) - 2n

Proof: Let h(HO) be a perfectly balanced binary tree. Then we construct
h(He) as follows: connect all the nodes to the root (except the direct
children of the root) and then apply recursively the same process to
the left and right subtrees. The total number of arcs added to form
h(HE) is given by A(n) =n - 3 + 2 A((n-1)/2) . After k = log(n+l)
iterations, the recurrence equation becomes
k-3 k-3
A(n) =) (2%*i)((2%*(k-i))-1)-[3) (2%*i)] = k(2%*k) - 3((2**k)-1) + 1
i=0 i=0
that is, A(n) = (n+1) Tog(n+1) - 3n + 1 . Since h(HO) already contains

n - 1 arcs, then the Lemma holds.

Another interesting tree is the chain, i.e., the tree in which each

node has degree either one or two.
Lemma 4.6 If h(HO) is a chain then
¢(H€) < (n+1) Tog(n+l) - 2n

Proof: 1In a chain with n = 2 nodes, there are only two leaves. The
center of a chain is a node such that the difference of the distance of
the node from the leaves is minimal. Let us construct h(HE) as follows:
connect all the nodes to the center (except the direct children of the
center) and apply recursively this process to the two subtrees rooted in

the center. The number of arcs added to form h(HE) is given by

- 78 -

A(n) =n - 3 + 2 A((n-1)/2), the same as for perfectly balanced binary

trees. Therefore the above bound holds.

- 79 -

CHAPTER 5

GENERAL CONCEPTUAL MODELS

5.1 INTRODUCTION

5.2 HEURISTIC METHODS

5.3 RELATIONAL GRAPHS WITH ONE CIRCUIT

- 80 -

CHAPTER 5
GENERAL CONCEPTUAL MODELS

5.1 Introduction

In Chapters 3 and 4 we have been dealing with hierarchical conceptual
models, and we have determined efficient ways to implement such models.
If the conceptual model I 1is not hierarchical, i.e., h(HO) is not a
tree, then the problem of finding an efficient abstract structure implementing
I 1is much more difficult than in the hierarchical case. In fact, the
properties proved in the previous chapters were based on the assumption
that h(HO) was a tree, and thus there was a unique relationship (and
its inverse) between any two domains. The presence of circuits in h(Ho)
greatly increases the number of possible different relationships between
domains; for this reason a direct extension of the above proposed approaches
is in many cases infeasible. However, if the topology of I0 1is quite
simple, i.e., h(HO) contains only one circuit, then we can transform
the structure in such a way that it becomes possible to apply one of the
approaches for the hierarchical case; the resulting structure will have

the same complexity as if the conceptual model were hierarchical.

In this chapter we will propose different methods to revise 1I0
when the conceptual model I 1is not hierarchical, the particular method
depending on whether there are more than one circuit or not. The methods

for the general case are based on heuristics that use the star graph and

- 8] -

the redundant graph approach. Even though these heuristics do not allow
us to determine direct bounds on the complexity (with the exception of

the worst case), some experimental behaviour of the revised structures
seems to show that they are quite useful tools to solve the average
efficiency problem in the non-hierarchical case. If h(HO) contains

only one circuit, then we are able to derive an algorithm (i.e., not
merely heuristic) that is a direct extension of the hierarchical approach;
the revised structures require the same time and space complexity as

those for which I 1is hierarchical.

- 82 -

5.2 Heuristic Methods

In this section we present two heuristic methods based on the star
graph and on the redundant graph approach to revise I0 when h(HO) is
not a tree. Let us informally describe the general idea behind these
two heuristicg. Both the star graph and the redundant graph approaches
were designed to wo?k with structures whose skeleton was a tree. If
h(HO) contains circuits, then we can look at h(Ho) as the union of
edge-disjoint trees and apply one of the above methods to each of these

trees.

In order to describe the proposed heuristics more precisely, let
us again introduce some notation. Given an undirected graph h(HO) s
the skeleton of Hi , we will denote by T[h(Hi)] a spanning tree of
h(Hi) and by H/T[h(Hi)] ‘the corresponding relational graph. Let us
now present the function HEU_§TAR(HO) that generates a relational graph
SH+=(V,SL+,SE+) . This function finds a spanning tree T of h(Ho) ,
generates a star graph on this tree, and applies the same process
recursively to each connected component of the graph T - h(HO) .

type relational graph = (set of vertices, set of relations, set of edges);

type graph = (set of nodes, set of arcs):

function HEU_STAR(HO:re]ationa]_graph):re]ationa]_graph;
relational_graph SH+,H1,Hj,Hk;
graph h(SH+) ,h(H;) ,TCh(H,) 13
SH++ Hi:= HO;

- 83 -

w_hj_]__e_a_E].zﬁdo‘
bégin
if h(H;) is connected then
begin

construct TEh(Hi)]; /* spanning tree */

X
=
|

= H/T[h(Hi)];
STAR(Hk);

(%) @I

—

+

.]
il

+ 3
SL+ v LJ,

wn

m
+
I

+ .:
SE+ v EJ,

begin
let Hi""’Hp be the relational graphs corresponding
to the connected components;

fors=1 step 1 until p do

begin

Hj:= HEU_STAR(HS);
SE+:= SE+ v Ej;
SL+:= Sl+ v Lj;
end;

end;

SH+;

Let us now analyze the complexity of the resulting relational graph

SH+ .

- 84 -

Property 5.1 If in each star graph constructed by function HEU STAR
the inverses of the relations to be complemented

satisfy the defining equation of the complement, then
o(SH+) = @(HO)

That is, we do not use more relations than HO ; the proof follows directly

from Property 3.2.

The time complexity of SH+ is not as easy to derive. In fact,
each query requires at most two steps to be answered if the correspbnding
path in SH+ remains within only one of the star graphs; that is, if
the search is within one star graph, then the time complexity is the
same as for the hierarchical case. If the path corresponding to a given
query traverses more than one star graph component, than the retrieval
time can be as bad as twice the number of traversed star graphs; that
is, in the worst case the retrieval time can be twice the time required

to answer the same query in HO as shown by the following example..

Example 5.

Let HO and SH+ be the graphs shown in Figure 5.1 and let relations

-1 1T -1 -1

a , ab-], abc™', ', fe©' and fed”! satisfy the defining

equation of the complement. To answer the query be = b-e 1in graph
SH+ , we have to traverse the two star graphs components of SH+; 1in
fact, Sy + (be) = ! ab £ ef> . Therefore, Sy + (be) = 4

while Wo(be) =2,

o4 «
a d R
o o
b e ab fed
M L—»o
c £ abe £ fe
R e — >

(a) (b)

Fig. 5.1 (a) the relational graph Hy and (b) the corresponding
graph SH+ obtained through function HEU STAR.

However, we may still obtain an improvement in performance by using

SH+ 1instead of HO , as shown by the following example.

Example 6.

Let H, and SH+ be the graphs shown in Figure 5.2, and let

0
b1, be™! and bed”! satisfy the defining equation of the com-
plement. Then it is easy to observe that gvg lwo(q)[= 3 while

€
avE ISy+(q)| = 2.6 that is, to answer a query on SH+ requires on
e
the average almost half a step less than in H0 .

- 86 -

|

(a) (b)

Fig. 5.2 Relational graph SH+ (b) obtained by applying the
heuristic function HEU STAR to H0 (a).

The second heuristic for constructing an impiementation of a general
conceptual model is based on the redundant graph approach. Similarly to
the previous method, we partition the graph h(HO) into edge disjoint
trees and then apply the redundant graph approach to each tree, generating
the relational graph SHé = (V,SLe,SEE) . The procedure is formally
described below.

type relational graph (set of vertices, set of relations, set of edges)

type graph = (set of nodes, set of arcs);
function HEU_RED(HO:fe]ationa]_graph): relational_graph;
graph h(H.);
relational_graph SHe’Hi’Hj;
SH€:= H;:= HO;
while Ei = 0 do

begin

it h(Hj)

- 87 -

is connected then

begin

const

Hj:=

SE :=
€

wm
—
1]

ruct TCh(H;)1;

REDUNDANT_GRAPH(H/TCh(H,)1);

SE_ U 3 |
€

begin

let
to th

for

H1,...,Hp be the relational graphs corresponding

e connected components;

s =1 step 1 until p do

begin

Hj:= HEU_RED(HS);

SE

. SE8 U Ej;

SL . :

€

SLé U Lj;

end;

end;

end;

SH .3

€

Let us now analyze t

he space complexity of the new structure SI

- 88 -

Property 5.2 @(SH;) < o(Hg) log @(HO) +‘®(HO)

Proof: When constructing SHe s we decompose h(HO) into edge-disjoint
trees and then construct the redundant graph for each tree. Therefore
the total number of arcs added to form h(SHE) is given by

SA(n) = E A(n.)

i=1 !

where n1,n2,...,np are the number of edges of the trees in which
h(HO) has been decomposed, and n = &(HO) . Therefore, by Lemma 4.2,
we have SA(n) =<)i (ni—3) log n.. Since ¥i n; =n then ;
i n; Tog n, <n log n ; that is, SA(n) <n logn . Since ¢(HO) =n

relations were already there, then the property holds.

In other words, the abstract structure constructed with the proposed
heuristic has the same order of space complexity as the structure constructed

with the redundant graph approach in the hierarchical case.

As for the time complexity, the observations made for the heuristic
based on the star graph approach still hold. Again, if the query is
expressed as a path within on]yvone redundant subgraph (i.e., a subgraph
constructed by applying the redundant graph approach to one of the trees),
then the retrieval tfme is at most two. However, in the worst case it
is proportional to the number of redundant subgraphs traversed by the path.
Similarly to the other heuristic, if we consider the average behaviour

then SH_ maylbe more favourable than Hj .

- 89 -

Example 7.

Let us consider the relational graph H0 of Example 6 shown in
Fig. 5.2. The relational graph generated by function

HEU_RED(HO) is shown in Fig. 5.3. By simple calculation we obtain
ave |yga)| =3 and max |w0(q)i =5

geR geR

while

ave [Sy_(q)] = 2.2 and max [Sy_(q)] =3

geR qeR

0 « a p
i

ab

b e
v

» 0

cd

o d

Fig. 5.3 Relational graph SHE generated by function HEU_RED(HO),

where HO is the relational graph shown in Fig. 5.2(a).

- 90 -

5.3 Relational Graphs With One Circuit

Given a non-hierarchical conceptual model I , the skeleton h(HO)
of the natural implementation I0 is an undirected graph containing at
least one circuit. If h(Ho) contains exactly one circuit, then it is
possible to reduce this case to the hierarchical one and thus apply
the technique discussed in Chapter 4. In this section, we will present
a direct method to revise I0 whenever h(HO) contains exactly one
circuit; the revised structure allows constant retrieval time and requires

0(n log n) explicitly stored relations.

If h(HO) contains only one circuit, the number of arcs in h(HO)
is exactly n , where n denotes, as usual, the number of nodes (i.e.,
domains). First let us informally describe how to revise HO, by means

of a simple example.

Example 8.

Consider the relational graph Hg shown in Fig. 5.4(a), where the

queries are R = R' u R" , where R' = {r12',r23',r34',r41',r24"' =

r23'-r34',r31' = r34'.r41',rd2"' = r41'.r12',r21"' = r23'.r31',r32' =

r31%r12',r43" = r42.r23'} are the “"clockwise" relations, and

R" = {rij"lrij" = rji"]} are the "counter-clockwise" relations.
In other words, for any pair of domains x and y , there are two
different -queries (and their inverses) between x and y ; e.g.

between x2 and x4 there are ré4 = <ré3 r§4> and

-9

with r2

raq = 41
"2
X1)
' r23
X4 <4 X3
T34
(a)

1 -

4% Toq -

(b)

Fig. 5.4 (a) Relational graph Hy (b) its skeleton

h(HO) contains only one circuit.

The graph h(HO) can be transformed into a tree with n + 1 nodes

by simply "sp]itting":an arbitrary node. That is, we choose an

arbitrary node (e.g.

distinct nodes (x'

X-l in

and x") .

Fig. 5.4) and consider it to be two

In this way we obtain the tree

h(THO) shown in Fig. 5.5(a) with the corresponding relational

graph TH0 .
Xq > X > X > X > XY
]] - 2] 3 1 4 !]
"2 r23 Y34 'y

(a)
X Xp X3 Xy X

, (b)
Fig. 5.5(a) Relational graph THO obtained after "splitting" X1

into xi and X3

; (b) the skeleton h(THO) is a tree.

- 92 -

The next step is to apply the redundant graph approach to the
structure TH0 using only clockwise relations and their inverses.

The resulting relational graph THe_ is shown in Fig. 5.6.

Xy ———— X » X » X
‘1 2 . . 3 4

"3 3

Fig. 5.6 Relational graph TH€ obtained by the application
of the redundant graph approach to TH0 .

At this point, all the queries that do not traverse Xy can be
_answered in at most two steps. In order to allow all the queries

to have retrieval time at most two, all vertices X; must be

connected to X4 by relation r%]; and Xq must be connected to all

x; by rii. The final relational graph HH, s shown in Fig. 5.7.

rla’
r2l'?
x1? — %2 —p x3 ’ —r xi $» x1"
ri2! ’ r23" T , r34' rdl’ I

ri3t _ r3’’

Fig. 5.7 Final relational graph HHe .

Let us now ask how many relations have been added. In the first step

- 93 -

("splitting" x1) we .did not add any relation. In the second step we
have applied the redundant graph approach to a tree with 5 nodes.
Therefore (Lemma 4.2) at most 2 log 5 new relations have been introduced.
In the final step, we have connected twice to X3 (once as Xi s
the other time as x{) all the vertices not already connected with both
rii and r%] . In the example, two new relations have been added, bringing
the total number of relations added to R0 to A(4) = 4<2log 5 + 6.

That is @(HHE) = 0(n log n): the space complexity of the new

structure is of the same order as the one obtained if the conceptual

model were hierarchical.

Let us now extend these results to an arbitrary graph with one

cycle, as shown in Fig. 5.8, where T, denotes a tree rooted in node Xy -

T T
1 ‘! 2
12

x
v

Fig. 5.8 Relational graph HO whose skeleton contains only one circuit.
The process to generate HH€ from H0 follows:

step 1 choose an arbitrary vertex X7 in the circuit, choose an
arbitrary direction in the circuit and call that direction

"clockwise"; transform the graph h(HO) into a tree h(THO)

- 94 -

by "splitting" node X4 into xi and x{ .

step 2 apply the redundant graph technique to THO using only clockwise

relations and their inverses.

step 3 connect all vertices x; to x; with ri;; connect x, to

. . .
all vertices X; with r1i -

Property 5.3 @(HHe) < (n-2)Tog{n+1)+3n-2

Proof: In step 1 we do not add any relation. In step 2 we apply the
redundant graph approach to a tree with n + 1 nodes. Therefore, by
Lemma 4.2, at most (n-2)log(n+1) new relations have been introduced.

In the final step we doubly connect each node X; to X (if not already
connected by rii and r%]). That is, at most 2(n-1) new relations have
been added. Therefore the total number of relations added to Ry to
generate HR: is A(n) = (n-2)log(n+1)+2(n-1) . Since @(HO) = n

relations were already there,-then -the bound holds.
Property 5.4 HH€ is 2-time efficient

Proof: Let us consider four possible cases depending on the possible

values of a giveﬁ query q ¢ R .

Case 1 (q=rii or q=r%] for some i): every such query requires only one
step in HH (see Step 3).
Case 2 (q=r]i’or q=r%]): since rfi = ri and riy = ris then it

will again take only one step to answer this kind of query.

- 95 -

Case 3 (q=r%j or q=r;j and q does not traverse x1): because of the

redundant graph approach used to construct TH, , then it will take at
most two steps to answer this kind of query.

Case 4 (q=r%j or q=r$j and q traverses x]): it will take exactly

. ‘ -1
. - t 1 (. =
two steps; in fact, rij <r1j rij> and rij rji
1 i ']) 1 "] 1 "']
> = > .

- STy T Tii 0 T4

- 96 -

CHAPTER 6

CONCLUSIONS AND APPLICATIONS

6.1 SUMMARY

6.2 A FINAL EXAMPLE

6.3 OTHER APPLICATIONS

6.3.1 Picture Processing

6.3.2 Computer Networks

6.4 CONCLUSIONS AND EXTENSIONS

- 97 -

CHAPTER 6

CONCLUSIONS AND APPLICATIONS

6.1 Summary

Given a conceptual model, we can construct several different abstract
structures implementing the model; that is, all the properties (relations
among data) contained in the model are still available in the structure,
either directly or through computation. Since the abstract structure
contains the notion of "computation", we can introduce some abstract
complexity measures that enable us to analyze the efficiency of a given
structure and to compare different structures implementing a given conceptual
model in order to determine which implementation is ﬁore efficient.

In Chapter 2 we have. introduced some abstract complexity measures and
developed some tools to analyze the efficiency of the implementations of
a given model. Let us now first briefly summarize the results obtained

in Chapters 3 and 4, where the conceptual model was assumed to be hierarchical.

The first observation to be made is that given a conceptual model I ,
there is always a structure I* dimplementing I . In the design of
binary relational data bases, the structure I* = (D,R*hszj is the

description of the given problem. This structure has the following

complexity (Properties 2.9 and 2.10):

H

Q(n**2)
(0(1)

space complexity o(I*)

it

time complexity ¥(I*)

- 98 -

where n 1is the number of domains in the model. In other words, I*
allows constant retrieval time at the expense of a quadratic space

requirement.

Through function REPRES(I*) we can construct another implementation

of I, I0 » with the following complexity (Properties 2.8 and 2.11):

0(n)
0(n)

space complexity @(IO)

time complexity T(IO)

that is, the order of the space complexity has been reduced at the expense
of an increase in the order of the time complexity. Recall that in
practical applications Iy is the first (and often the only) implemen-
tation considered; in fact I* 1is regarded as a description of .the

problem rather than as an implementation.

Through the redundant graph approach, we have been able to determine
an alternative structure I& whose complexity is a compromise between

the ones of I* and I0 (Properties 4.1 and 4.2):

O(n Tlog n)
0(1)

space complexity o(L.)

time complexity ¥(1)

The above structure is obviously more efficient than I* ; in fact,
it requires less space to achieve the same time complexity. A comparison
between IE and I0 involves a trade-off between time and space.

However, in a paged environment (where the number of relations represents

- 99 -

the number of pages aﬁd the retrieval time gives the number of page-in/
page-out operations) the trade-off is between having 0(n) pages and
0(n) page-in/page-out operations in the worst case to we process a
query, or rather to have 0(n log n) pages but a constant number of

page-in/page-out operations.

The most interesting implementation is the one obtained through the
star graph approach. In fact, if the resulting structure I+ is a

minimal perfect implementation, then (Properties 3.1 and 3.2)

space complexity 8(I+) = 0(n)

1]
o
—~
e
e

time complexity v(I+)

that is, we can implement the conceptual model with only 0(n) relations
(pages) and this structure allows constant retrieval time. Furthermore,

we cannot do better (Property 3.3 and 3.4), that is, there does not

exist any structure implementing I that needs less relations, and with
n -1 relations we cannot achieve better retrieval time. If I+ is

not a minimal perfect implementation than (property 3.5) its worst case
complexity is comparable to that of I* . These results are summarized in

Table 3.

- 100 -

I . ¥(H,) o(H.,)

I* 0(1) 0(n**2)
I+e Basis(I) 0(1) 0(n**2)

I& 0(1) 0(n Tog n)
I+¢ Basis(I) 0(1) 0(n)

Iy o(n) o(n)

Table 3. Complexity of the implementations I*, IO, I+ and I€

described in Chapters 2 through 4.

Chapter 5 consideréd non-hierarchical conceptual models. If the
structure Iy is "simple" (i.e., h(HO) contains only one circuit)
then we can apply a generalization of the redundant graph approach and
construct an implementation II€ that has the same properties (to within
a constant) -as the redundant implementation Ie for the hierarchical

case. These results are shown in Table 4.

I | ¥(H;) o(H.)
I* o 0(1) 0(n**2)
IT, 0(1) 0(n log n)
I0 0(n) 0(n)

Table 4. Time and space complexity of the implementation of a “"simple"

general conceptual model.

- 101 -

If this is not the casé, then heuristic methods based on the star

graph and on the redundant graph approach have been proposed to construct
implementations of the given model. These abstract structures have the
same space complexity as the corresponding structures for the hierarchical
case. No direct bounds on the time complexity have been derived but the

observed behavior of the retrieval time is lower than the one observed

in I0 .

- 102 -

6.2 A Final Example

In this section we will show how the formalism introduced in
Chapter 2 can be used to describe a data base containing information
about television companies in the world; the abstract structures I0

and II, 1implementing the corresponding model will be determined and

&
their efficiency measured.

The problem under consideration is a Tist of information about world
television companies taken from [Frl; a sample of the data concerning

the Canadian television companies may be found in Appendix C.

Let us first re-express the problem as a conceptual model. The
set D of data is composed of all the elements in the domains defined

by the relations of interest (possible queries); that is

D = 4e(py ¢

where
C(D) = Nation u Name u Address u City u Telex u Cable u Tellephone
Call u Cha v Kw, and the domains are:

Nation : set of names of nations;

Name : set of names of TV companies;

Address : set of addresses;

City : set of names of cities;

Telex . set of telex #;

Cable : set of cable #;

- 103 -

Telephone : set of telephone #;

Call : set of names of TV stations;
Cha : set of channel #;
Kw : set of Kilowatts.

The set R is composed of the queries that can be asked in the model;
that is, R contains the following relations (for brevity, we will use
in the following discussion only the underiined portions of the relations'
name) :
[namel = (Nation, Name)

e.g. nCCanadal = {CBC, CTV, TVA, ORTQ, OECA}
-(Name, Cable)

[cablel

(Name, Telex)

[telex]
[telephone] = (Name, Telephone)
[station] = (Name, Call)
e.g. s[ORTQ] = {CIVM, CIVQ, CIVO}
[where] = (Call, Address)
[in] = (Address, City)
[headoffice] = (Name, Address)
[chal = (Call, Cha)
e.g. ch[CBIT] = {5}
.g. ch™1[57 = {CBYT, CBIT, CBLT, CBXT}

e
wil=w.i. = (Call, City)
[txt] = tx1.te = (Telex, Telephone)
[txcl = tc”!

.ca = (Telex, Cable)

- 104 -

-1

[tec] = te .ca = (TeTephone, Cable)
rchkl = ch™ .k = (Cha, Ku)
Cchwil = ch™low.i = (Cha, City)

[chw]l = ch™'-w = (Cha, Address)
-1

[kwl = k "-w = (Kw, Address)
[kwil = kK Vew-i = (Kw, City)
[nt] = n.te = (Nation, Telephone)
[nx] = n.tx = (Nation, Telex)
[ncl = n-ca = (Nation, Cable)
[cas] = ca”'.s = (Cable, Call

(Telex, Call)

m
(na
bod
7]
(-}
it
ct
b
wn
n

[tes] = te”!.s

[nswil = n.s-w-i = (Nation, City)

(Telephone, Call)

[ns] = n.s = (Nation, Call)
[swil = s.w.i= (Name, City)

[skl = s.k = (Name, Kw)

[sch] = s.ch = (Name, Cha)
[swl = s.w = (Name, Address)

- 105 -

Nation

nswi

Fig. 6.1

T
Name \\\\ ca
% 8k
e EZA \\\\\\\\\\‘
Telephone <Xt Telex—EXC » Cable

l\‘l SV L1

e
LY,

NV

kwi

Relational graph H* describing the conceptual model of the

example.

- 106 -

The relational graph H* corresponding to I* = (D,Ré/g7) is

shown in Fig. 6.1. For such graph we have

y(I*)
o(I*)

1
30

Let us now apply function REPRES(I*) to derive I0 . The corresponding

graph H0 is shown in Fig. 6.2 and its complexity is the following:

1]
=Y

w(Io)

@(IO) 10

ft

Fig. 6.2

- 107 -

Nation

n
Name
ca.
te tx
Telephone Telex Cable
S
h .

//\ k

Address Kw

i Cha
City

Image of the abstract structure I0 implementing the

conceptual model of the example.

Let us now describe how to construct the redundant implementation

SI . Consider the skeleton h(HO) shown in Fig. 6.3(a); this graph
€

has exactly one circuit; therefore we can apply the direct method described

in Section 5.3 .

- 108 -

o Nation o Nation'

E;;;;;) Name §E§§g) Name'
Call <x(::: Call (k::::z

e Address o0———0 Address
© 0 Nation"
@ (b)

Fig. 6.3 (a) skeleton of the graph HO and (b) the corresponding
tree obtained by "splitting" the node Nation.

The first}step consists of "splitting" a node, e.g. Nation, of two nodes,
Nation' and Nation", obtaining a tree as shown in Fig. 6.3(b). We can

now apply the redundant graph approach to the tree; this can be accomplished
by finding a node in the tree that generates a best partition, connecting
all nodes to it, and then applying the same process to the subtrees

rooted in that node. This process is shown in Fig. 6.4 where the dotted

lines denote arcs that are added at each step.

Fig. 6.4

,
~ sz
c/kji;é:‘ _—

I:
~\ﬂ -

Q

(a)

The dotted lines represent the arcs added to the tree of Fig. 6.3(b)

- 109 -

0]

(b)

when applying the redundant graph approach (a) to the tree, and

(b) to the subtrees rooted in the chosen node.

The last step of the redundant graph approach consists of connecting

Nation' and Nation" to all nodes.

Not all the new relations introduced by the above process are needed.

In fact we can eliminate all the introduced relations that are not needed

for answering a query in at most two steps.

For example, the relation

corresponding to the edge (Call, Nation") is not an element of R and

is not needed to answer any other query. Therefore SR€ = RO u {ns,wil.

(Recall the convention used in this thesis that if a relation belongs

to a set so does its inverse.) The corresponding graph SH€ is shown

in Fig. 6.5.

- 110 -

Nation

ca
tx

Telex Cable

Telephone

Kw

City

Fig. 6.5 Relational graph SHE obtained by applying the redundant
graph approach to the graph HO of Fig. 6.2.

- 111 -

For such graph we have

2

fl

?(SE)

@(S%) 11

The above results support the theoretical properties analyzed in
the previous chapters. In addition, the actual bound on the space
complexity of SIE seems to indicate that the redundant graph approach

may be more efficient than the theoretical upper bound would imply.

- 112 -

6.3 Other Applications

The results of our research rest mainly in the field of data structure
design with obvious applications in data bqse systems and other large-
scale software applications. However several problems, arising in
different fields, can either be re-expressed in terms of our research
topic or be seen as applications or sub-problems. In this section we
will present two problems found in picture processing and communication
networks, respectively; and we will show how these problems can be

solved using some of the results presented in this thesis.

6.3.1 Constraint Management in Picture Processing

In picture processing; constraints (invariant properties of the class
of pictures under consideration) play a very important role, and an
explicit and consistent treatment of them can be very advantageous
[Mo, Sall. For example, a systematic specification and utilization of
the available constraints could significantly reduce the amount of search
in picture recognition. In fact, the specific elements or features
searched by recognition routines must be dependent on the elements or
features already- recognized; for example, the search for the nose,
when recognizing human faces, must 1imit the areas where it may be
present; this is further restricted if the position of the mouth and
of the eyes have been determined. With a proper use of constraints, the
search space can be reduced and only the first elements will be time

consuming. Montanari [Mo2] gives a formal treatment of constraints in a

- 113 -

more general way as a network of algebraic equations between possible
values assumed by pairs of variables. In addition, a constraint involving
many variables is given as an undirected acyclic network of binary
relations. Since there are several alternative networks describing the
same constraint, there exists the problem of determining an “efficient"
network from among them. The efficiency of a network is a trade off
between the number of relations in the network and the composition

time, where the latter is the number of relations that must be composed

to calculate the additional relation among the entities already recognized.

In its original formulation, this problem is still open. Let us
use the notation introduced in Chapter 2 to describe the above probiem.
It is easy to see that the given constraint is exactly the skeleton of
the structure I* , and that any network equivalent to the cbnstraint
is a skeleton of a relational graph associated with an abstract
implementation of I . Montanari showed that there always exists an
acyclic network equivalent to a given constraint; this implies that we
are dealing with hierarchical conceptual models only. Let us finally
observe that the composition time on a network is exactly the retrieval
time on the corresponding relational graph. Therefore, the problem of
finding an efficient network of binary relations equivalent to a given
constraint is exactly the problem of finding an efficient abstract
implementation of a given hierarchical conceptual model. In other words,
all the results obtained in Chapters 3 and 4 can be applied to the above

problem.

- 114 -

6.3.2 Topological Design of Communication Networks

To design communication networks is a complex task requiring the
analysis of different parameters. In particular, time delays, the number
of communication links, and reliability are some of the major factors
to be considered. A communication network can be represented by é
linear graph; this allows us to establish bounds on delay and reliability
of the network [Cel. Time delays can be characterized by measuring the
distance between two nodes in the graph; reliability can be characterized
by the edge connectivity of the graph. A useful aid to the design of
computer communications networks is the study of the so-called "ideal
networks", i.e., networks built on the same set of nodes as the "real"
one but that minimize certain costs or maximize reliability. In other
words, an “"ideal" network is a guideline against which the designers
may measure their networks. Since ideal networks (also called topological
schemas) represent how the topology of the network should Took in order
to minimize -time delays or maximize reliability; then, it is extremely
important for such schemas to be as "efficient" as possible. That is, an
"efficient" topological schema should optimize as many different variables
as possible. Usually the parameters under consideration are the time delay
in transmission (distance between two nodes in the graph), reliability
(edge-connectivity of the graph), and number of communication lines

(number of edges).

The problem of determining an efficient topological schema is a

simpler problem than the one analyzed in this thesis. In fact, there are

- 115 -

no semantic constraints on the graph, i.e., all paths between a pair
of nodes are equivalent in value. The only difference with the efficiency
problem for abstract structures is that we need to take into account

also the edge-connectivity of the graph.

In the literature two schemas have been presented; they allow either
a strong edge-conneétivity and a small distance (at the expenses of the
number of communication lines) or a small number of communication lines
(at the expenses of the edge-connectivity and node-distance). As a
result of this thesis research, a new ideal network, based on a generali-
zation of the graph H+ , has been proposed [Sa2l. This schema, called
the logarithmic star graph, is obtained by constructing log n star graphs
onthe same n nodes. The proposed schema has been proved to be more

efficient than one of the two others, and to offer a valuable alternative

to the other one.

- 116 -

6.4 Conclusions and Extensions

Although several problems have been solved in this thesis, there
are some obvious limitations (and thus problems open to research).
For example, all the properties of the model of the real world must be
expressed as binary relations while, especially in data base applications,
many models use n-ary relations. However, from a theoretical point of
view, any property involving many data elements simultaneously can be
expressed as a set of binary relations [Mol, Nil; namely, each n-ary
relation can be expressed as a relational star graph with n + 1 vertices
(the extra domain contains an element for each key in the original
relation). Therefore, any problem modeled in terms of n-ary relations
. can be expressed as a problem on binary relation, and thﬁs the results
~of this thesis can be applied. However, it does not necessarily follow
that the solution found in terms of binary relations can easily be
transformed into a good solution in terms of n-ary relations. This must

still be explored.

The efficiency of abstract structures implementing a conceptual
model, has been analyzed with respect to their worst case complexity.
However, the time and space complexity observed in some examples in
this thesis seem to indicate that the proposed techniques may be more
efficient than the theoretical upper bounds would imply. For example,
the quadratic worst-case upper bound for the space complexity of the star
graph when I+ 'is not a minimal perfect implementation, is very far from

the values found in practice. To measure the actual effects of the proposed

- 117 -

transformations analytically is a complex task: the values for the
variables to be considered (e.g. the topology of the relational graph

and the nature of the relations composing the model) depend on each
application individually. That is, there can be no closed form solution

for space or time without a closed form statement for the inputs. More
experimentation for average case behaviour and expected worst case behaviour
could probably give a better insight into the complexity of abstract
structures. Furthermore experimentation is also valuable for understanding
the behaviour for applications which incorporate probability distributions

other than the uniform one.

As mentioned in Chapter 5, in practical applications the conceptual
model is often either hierarchical (e.g. hierarchical data bases, network
of binary constraints equivalent to a n-ary constraint) or very simple
in structure (e.g. the conceptual model of Section 6.2). However, all
the approaches (worst case, average case and expected worst case as
well as consideration of different probability distributions) should
also be analyzed for the remaining conceptual models. The work presented
here for hierarchical structures has laid a firm foundation towards such
research. In particular, the modification of the redundant graph algorithm
to graphs with one circuit can first be extended to graphs with several

edge-disjoint circuits and then to graphs with arbitrary circuits.

Ab...

Ash..

Bac..

Bee..

Ben..

Ber..

Bil..

Bra..

Bre..

- 118 -

REFERENCES

J.R. Abrial, Data Semantics, in Data Base Management Systems,

North Holland, Amsterdam, 1974.

W. Ash, E.H. Sibley, TRAMP: An Interpretative Associative Processor

with Deductive Capabilities, Proc. 23rd ACM Nat. Conf., 1968.

C.W. Bachman, M. Daya, The Role Concept in Data Model, unpublished

manuscript, 1979.

C. Beeri, P.A. Bernstein, N. Goodman, A Sophisticate's Introduction
to Database Normalization Theory, Proc. Int. Conf. on Very Large

Data Bases, 1978.

J.P. Benson, Structured Programming Techniques, Proc. IEEE Symp.

on Computer Software Reliability, 1973.
C. Berge, The Theory of Graphs, Methuen, London, 1962.

H. Biller, On the Equivalence of Data Base Schemas: A Semantic

Approach to Data Translation, Inform. Systems 4 (1979).

G. Bracchi, A. Fedeli, P. Paolini, A Relational Data Base Management

Information System, Proc. 27th ACM Nat. Conf., 1972.

R.P. Brent, The Parallel Evaluation of General Arithmetic Expressions,

JACM 21 (1974).

Bub..

Ce...

Cha..

Cod..

Cre..

Dal..

Dat..

deC..

- 119 -

J.A. Bubenko, S. Berild, E. Lindencrona-0Ohlin, S. Nachmens,
From Information requirements to DBTG-Data structures, Proc.

Conf. on Data Abstraction Definition and Management, 1976.

V.G. Cerf, D.D. Cowan, R.C. Mullin, R.G. Stanton, Topological Design
Considerations in Computer Communication Networks, Grimsdale and

Kno eds., NATO Advanced Studies, 1974.

L.C. Chang, D.K. Pradhan, A Graph Structural Approach for the
Generalization of Data Management Systems, Information Sciences 12

(1977).

E.F. Codd, A Relational Model of Data for Large Shared Data Banks,
CACM 13 (1970).

A.B. Cremers, T.N. Hibbard, Orthcgonality of Information Structures,

Acta Informatica 9 (1978).

A.G. DBale, N.B. Dale, Schema and Occurrence Structure Transformations
in Hierarchical Systems, Proc. SIGMOD Int. Conf. on Management of

Data, 1976.

C.J. Date, An Introduction To Database Systems, 2nd edition,

Addison-Wesley, Reading, 1975.

R.L. deCarvalho, A.L. Furtado, A. Pereda-Borquez, A Relational Model
Towards the Synthesis of Data Structures, Technical Report 17/77.

Pontificia Universitade Catolica do Rio de Janeiro, 1977.

Deh..

Dij..

DIm..

Fe...

Fr...

Gh...

Gol..

Got..

Gr..

Gut..

- 120 -

C. Deheneffe, H. Hennembert, NUL: A Navisational User's Language
For a Network Structured Database, Proc. Int. Conf. on Management

of Data, 1976.

E.W. Dijkstra, Notes on Structured Programming, in Structured

Programming, Academic Press, New York, 1972.

M.E. D'Imperio, Data Structures and Their Representation in Storage,

in Annual Rev. in Auto. Prog. 5, Pergamon Press, Oxford, 1969.

J.A. Feldman, P.D. Rovner, An Algol-Based Associative Languagé,

CACM 12 (1969).
J.M. Frost (ed.), World Radio TV Handbook 33, Billbord, London, 1979.

S.P. Ghosh, M.E. Senko, String Path Search Procedures for Data Base
Systems, IBM J. of Res. and Develop. 18 (1974).

M.K. Goldberg, The Diameter of a Strongly Connected Graph, (in
Russian), Dokl. Akad. Nauk. SSSR 170 (1966).

C.C. Gotlieb, A.L. Furtado, Data Schemata Based on Directed Graphs,
Int. J. Comput. Inf. Sci. 8 (1979).

. G. Gratzer, Universal Algebra, Van Nostrand, Princeton, 1968.

J. Guttag, Abstract Data Types and the Development of Data Structures,

CACM 20 (1977).

- 121 -

Ham.. M. Hammer, Data Abstractions for Data Bases, Proc. Conference on

Data Abstraction Definition and Management, 1976, 58-59.

Har.. W.T. Hardgrave, Theoretical Aspects of Boolean Operations on Tree
Structures and Implications for Generalized Data Management,
Computational Centre Report TSN-26, University of Texas at Austin,

1972.

Hoa.. C.A.R. Hoare. Notes on Data Structuring, in Structured Programming,

Academic Press, New York, 1972.
Iso.. Open System Interconnections, IS0/TC97/SC16, Document 117, 1978.

Ka... B.K. Kahn, A Method for Describing Information Required by the
Data Base Design Process, Proc. SIGMOD Int. Conf. on Management

of Data, 1976.

La... B. Langefors, Theoretical Aspects of Information Systems for

Management, Proc. IFIP, 1974.

Le... R.E. Levein, M.E. Maron, A Computer System for Inference Execution

and Data Retrieval, CACM 10 (1967).

Lis.. B.H. Liskov, S.N. Zilles, Programming with Abstract Data Types,
SIGPLAN Notices 9 (1974).

Low.. J.R. Low, Automatic Data Structure Selection: An Example and Overview,

CACM 21 (1978).

- 122 -

Maj.. M.E. Majester, Extended Directed Graphs: A Formalism for Structured

Data and Data Structures, Acta Informatica 8 (1977).

McC.. W.A. McCuskey, On Automatic Design of Data Organization, Proc.

AFIPS 37, 1970.

McGe. W.C. McGee, A Contribution to the Study of Data Equivalence, in
Data Base Management Systems, North Holland, Amsterdam, 1974.

McGo. C.L. McGowan, J. Kelly, Top-down Structured Programming Techniques,

Petrocelli-Charter, New York, 1975.
Me... G. Mealy, Another Look at Data, Proc. AFIPS 31, 1967.

Mi... M.F. Mitoma, K.B. Irani, Automatic Data Base Schema Design and

Optimization, Proc. Int. Conf. on Very Large Data Bases, 1975.

Mol.. U. Montanari, Network of Constraints: Fundamental Properties and

Applications to Picture Processing, Information Sciences 7 (1974).

Mo2.. U. Montanari, Data Structures, Program Structures and Graph Grammars,

Informatica 7 (1977).

Mun.. R. Munz, The WELL System: A Multi-user Database System Based on
Binary Relationships and Graph-Pattern-Matching, Information

Systems 3 (1978).

Ne... E.J. Neuhold, Formal Properties of Data Bases, in Foundations of
Computer Science, DeBakker ed., Mathematisch Centrum, Amsterdam,

1975.

Ray..

Ros..

Sal..

Saz2..

Sch..

Sel..

SeZ..

Su...

Tol..

- 123 -

F.B. Ray, Directed Graph Structures for Data Base Management:
Theory, Storage and Algorithms, Computational Center Report TSN-31,

University of Texas at Austin, 1972.

A.L. Rosenberg, Data Graphs and Addressing Schemes, J. Comp.

System Sci. 5 (1971), 193-238.

N. Santoro, Economic Handling of Constraints in Picture Processing,

Proc. IEEE Conf. on Picture Data Description and Management, 1977.

N. Santoro, On the Topological Design of Computer Communication
Networks, Proc. 6th Int. Symp. on Computers Electronics and Control,

1978.

L.S. Schneider, A Relational View of the Data Independent Accessing

Model, Proc. SIGMOD Int. Conf. on Management of Data, 1976.

M.E. Senko, E.B. Altman, M.M. Astrahan, P.L. Fehder, Data Structures
and Accessing in Data Base Systems, IBM Syst. J. 12 (1973).

M.E. Senko, DIAM II: The Binary Infological Level and its Data
Base Language -FORAL, Proc. Conf. on Data Abstraction Definition

and Management, 1976.

B. Sundgren, An Infological Approach to Data Bases, PhD Thesis,
University of Stockholm, 1973.

F.W. Tompé, Choosing an Efficient Internal Schema, in Systems for

Large Data Bases, North Holland, New York, 1976.

- 124 -

To2.. F.W. Tompa, Data Structure Design, in Data Structures Computer

Graphs and Pattern Recognition, Academic Press, New York, 1978.

Tsil. D.C. Tsichritzis, A. Klug (eds.), The ANSI/X3/SPARC DBMS Framework,
Information Systems 3 (1978).

Tsi2. D.C. Tsichritzis, F.H. Lochovsky, Hierarchical Data Base Management,

Computing Surveys 8 (1976).

Tsu.. T. Tsuji, J. Toyoda, K. Tanaka, Relational Data Graphs and Some

Properties of Them, J. Comp. System Sci. 15 (1977).

Wir.. N. Wirth, Program Development by Stepwise Refinements, CACM 14 (19771).

- 125 -

APPENDIX A

EXTENDED ALGEBRA OF BINARY RELATIONS

Relations

Given two arbitrary non empty sets D], DZ’ a binary relation

r from D; to D2 is a set r ¢ (D]ua) x (Dzua) of ordered pairs such

that

(1) ¥x e D; {(3yeD, such that (x,y)er) or ((x,8)er)}
(ii) Vy D2'{(33x601 such that (x,y)er) or ((8,y)er)}

(ii1) (8,8) e r

where & ¢ D] u 02 is a distinguished element of the algebra and is

called null element.

The sets D, and D, are called the left and the right domain or
r , respectively, and denoted by 1d[(r] = D1 and rdlr] = 02 s Or by
[r]l = (D],Dz).

Inverse

Given a relation r , [r] = (D],Dz), the inverse of r , denoted
1

by Pl , is the set r ' = {(y,x)|(x,y)er}. Of course, [rly = (D2,D1)

and (r'])'] =r.

- 126 -

Composition

Given a set of data elements D , let RD denote the set of all
possible binary relations between subsets of D . The basic operation
on RD is the composition of relations:
given ri,r, ¢ R, where [r]= (D11,D]2) and [r,] = (D21,D22) ,
the composition of r with ro s denoted by riers is recursively

defined as follows:

(i) ¥x € Dyy> ¥y € Dy if z3e Dy, n DZ] such that (x,z) €1
and (z,y) € ry s then (x,y) e risrs s

(i1) ¥x e D]] if Vy e D22 (x,y) £ ryero then (x,68) ¢ riers s
(iii) WYy € D22 if ¥x e D]] (x,y) £ ryets then (6,y) € ryery -

The above operation is such that r = ryers is a relation and

[rl = (Dy7,0,,).

By r» = {(6,6)} we shall denote the empty relation, and by

1= {(x,x)]xeD} the identity relation.

Given r1sTosTy € R , the following properties hold:
(1) Y‘]'(Y‘Z'Y‘B) = (r]'rz)'r3 ?

(2) r1-i = i-r] =r s

(3) Pisd = Aery =4

(4) (r]-r2

- 127 -

Sequences

Given a set of relations Ry < RD , we will denote by S(Ri) the
set of all the finite sequences of elements of Ri and their inverses
such that:

(1) in each sequence there is at most one occurrence of any relation;
(2) 1in each sequence q ¢ S(Ri) , 1If req (r-]eq) then r—] £ q
(réq).

Given p, q € S(Ri)) ='<p]p2...pn> and q = <q1Go. .-G > 5 We

will say that p and q are equivalent, p =q , if noncoincidenta]]y

p'l'pz'.."pn = q].qz'-'..qm .

‘We extend the definition of right and left domain to sequences as
follows: given p =’<p]p2...pn> € S(Ri) , then rd[p] = rd[pn] and
1dlp] = 1d[p1] .

Closure

Given Ri c RD , the transitive closure of Ri , denoted by (Ri)*’

is the set of all distinct relations that can be obtained through composition

of elements of Ri .
Domain

Given a set of relations Ri < RD , we will denote by C(Ri) the set

of domains C(Ri) = {DjsD(reR; (Dj=rd[r] or Dj = 1dlrl)} .

- 128 -

APPENDIX B

PROPERTIES OF RELATIONAL GRAPHS

A relational graph H = (V,L,E) 1dis a directed edge-labelled

multigraph, where V is a non-empty set of domains and L is a non-empty
set of labels naming binary relations; given x,y eV, z e L , there

ijs an edge e from x to y labeled z , e = (x,y3z) , if and only if
1d[z] = x and vrd[z]l =y . If (x,y;z) 1s an edge in E , then we say

that (y,x;z'1) is an inverse edge in E . Given a finite sequence of

edges and inverse edges, we will say that there is a reversed occurrence

of an edge (x,y;z) if (y,x;z']) is in the sequence.

Given a finite sequence of edges or inverse edges of a relational
graph H , such that there is at most one occurrence (reversed or not)

of each edge in the sequence, p = <(d1,d2;r]), (dz,d3;r2),...,(dm,dm+1;rm)> R

we say that-the sequence DA LT is a relational path (or simply
path) on the relational graph; dl1 1is called origin of the path, and
dm is called end of the path. A cycle is a relational path <Crye..rp>
where d] = dm+1‘ Opvious]y, if NS R is a cycle, then also

<r.r rr...r. .> is acycle, 1 <i<m.
i 1 1

i+1°°"'m i-

Given a relational graph H , the skeleton h(H) of H is the
undirected multigraph (or simply graph) obtained from H eliminating
the orientation of the edges, ignoring the labels and considering each

edge together with its inverse edge as one simple arc. Formally, a graph

- 129 -

G is a couple G = (N,A) where N 1is a non-empty set of nodes and

A< N=xN is a set of arcs.

The diameter of a graph G 1is the maximum distance between two
nodes in N , and is denoted by d(G) . The degree of a node x is

the number of arcs incident on x , and is denoted by g[xI.

Given a finite sequence of arcs, q = <(n],n2),(n2,n3),...,(nj,nj+])> ,

n; e N, T=si<j+1,wewill say that p 1is a ¢ircuit if nj+] = n

te

tx

ca

- 130 -

APPENDIX C

DATA FOR THE FINAL EXAMPLE

{(Canada, CBC), (Canada, CTV), (Canada, TVA),

(Canada, ORTQ), (Canada, OECA)}.

{(cBC, 613-731-3111), (CTV, 414-928-6000), (OECA, 416-484-4600)}.

{(CBC, 053-4260), (CTV, 06-22080)}.

{(CBC, broadcast)}.

{(CBC, CFLA), (CBC, CBYT), (CBC, CBLNT), (cBC,
(cBC, CBCT), (cBC, CBHT), (CBC, CBIT), (CBC,
(csC, CBOT), (cBC, CBLT), (CBC, CBET), (CBC,
(CBS, CBKRT), (CBC, CBKST), (CBC, CBRT), (CBC,
(CBC, CBUT), (CBC, CBAFT), (CBC, CBGAT), (CBC,
(cBC, CBVT), (CBC,CBRT-TV), (CBC, CBOFT), (cBC,
(CBC, CBWFT), (CBC, CBXFT), (CBS, CBUFT), (CcTV,
(CTV, CJCH), (CTV, CJCB), (CTV, CKCW), (cTv,
(CTv, CKco}, (CTV, CJOH), (CTV, CKSO), (CTV,

, (CTv, CFQC), (cTv,

, (CTV, CHEK), (CTV,

(CTv, CKY), {(cTv,
(CTV, CFRN), (CTV, BCTV

CK)
)
(ctv, crcc), (cCTvV, CITL)
)

(TVA, CJPM), (TVA, CHLT), (TVA, CHEM), (TVA,

» (CTV, CKCY), (TVA,

CBNT),
CBMT),
CBWT),
CBXT),
CBFT).
CBLFT),

- 131 -

(TVA, CFTM), (TVA, CFER), (TVA, CHOT), (ORTQ, CIVM),
(ORTQ, CIVQ), (ORTQ, CIVO), (OECA, CICO)}.

W = {(CFLA, P.0. Box 925-Stn. "A"), (CBYT, P.0. Box 610),
(CBNLT, P.0. Box 576), ~ (CBNT, P.0. Box 12010-Stn "A"),
(CBCT, P.0. Box 2230), (CBHT, P.0. Box 3000),
(CBIT, P.0. Box 700), (CBMT, P.0. Box 6000),
(CBOT, P.0. Box 3220), (CBLT, P.0. Box 500),
(CBET, P.0. Box 1609), (CBWT, P.0. Box 160),

(CBKRT, 1840 McIntyre St),
(CBKST, 5th Floor/CN_Tower/1st Ave South),

(CBRT, P.0. Box 2640), (CBXT, P.0. Box 555),

(CBUT, P.0. Box 4600), (CBAFT, P.0. Box 950),
(CBGAT, P.0. Box 2000), (CBFT, P.0. Box 6000),
(CBVT, P.0. Box 10400), (CBOFT, P.0. Box 3220),

(CBRT-TV, 273 ST_Jean Baptiste Ouest),
(CBLFT, P.0. Box 500-Stn "A"), (CBWFT, P.0. Box 160),

(CBXFT, P.0. Box 555), (CBUFT, P.0. Box 4600),
(CJON, P.0. Box 2020), (CJCH, 2885 Robie Str),
(CJBC, P.0. Box 469), (CKCW, P.0. Box 5004),
(CFCF, 405 Ogilvy Ave), (CKCO, 864 King St West),
(CJOH, 1500 Merivale Rd), (CKSO, P.0. Box 400),
(CFTO, P.0. Box 9), (CKCK, P.0. Box 2000),

(CFOC, 216 First Avenue North). (CKY, Polo Park),
(CFCN Broadcast House), ‘ (BCTV, P.0. Box 4700),

- 132 -

(CFRN, 18520_Stony Plain Rd), (CHEK, 3693 _Epsom Dr),

(CHFD, 87 North Hill St), (CICC, 95 East Broadway),
(CITL, 5026-50th_Street), (CKCY, P.0. Box 370),
(CFCM, C.P. 2026), (CJapM, C.P. 600),

(CHLT, 3330 _rue_King Ouest), (CFER, C.P. 590Q),

(CHEM, 1400 rue_Des Cypres), (CIMT, 1_rue Frontenac),
(CFTM, C.P. 170), (CHOT, C.P. 4010)}.

ch = {(CFLA, 8), (CBYT, 5), (CBNLT, 13), (CBNT, 8), (CICO, 19),
(CBCT, 13), (CBHT, 3), (CBIT, 5), - (CBMT, 6), (CBOT; 4),
(CBLT, 5), (CBET, 9), (CBWT, 6), (CBKRT, 4), (CBKST, 11),
(CBRT, 9), (CBXT, 5), (CBUT, 2), (CBGAT, 9), (CBAFT, 11),
(CBFT, 2), (CWT, 11), (CBRT, 3), (CBOFT, 9), (CBFLT, 25),
(CBWFT, 3), (CBXFT, 11), (CBUFT, 26), (CJON, 6), (CVO, 3),
(CJCH, 5), (CJBC, 4), (CKCW, 2), (CFCF, 12), (CKCO, 13),
(CJOH, 13), (CKSO, 5), (CFTO, 9), (CKY, 7), (CKCK, 2),
(CFQC, 8), (CFCN, 4), (CFRN, 3), (BCTV, 8), (CHEK, 6),
(CHFD, 4), (cIcC, 10), (CITL, 4), (CKCY, 2), (CFCM, 4),
(CJPM, 6), (CHLT, 7), (CHEM, 8), (CIMT, 9), (CFTM, 10),
(CFER, 11), (CHOT, 40), (CIVM, 17), (CIVQ, 15)}.

k = {(CFLA,.83), (CBYT, 10.6), (CBNLT.,214), (CBNT, 196),
(CBCT, 178), (CBHT, 56), (CBIT, 54), (CBMT, 100),
(cBOT, 100), (CBLT, 84), (CBET, 178), (CBWT, 100),

(CBKRT, 140), (CBKST, 325), (CBRT, 178), (CBXT, 318),

(CBUT, 47.6),
(CBVT, 173),
(CBWFT, 59),
(CJCH, 100),
(CKCO, 325),
(CKY, 325),
(CFRN, 180.3),
(cIce, 56),
(CJPM, 100),
(CFTM, 325),
(CIVO, 530),

- 133 -

(CBAFT, 163),
(CBRT, 100),
(CBXFT, 90),
(cJBC, 180),
(CJOH, 178),
(CKCK, 100),

(BCTV, 164), |

(cITL, 82),

(CHLT, 316),
(CFER, 325),
(CICO, 108)}.

(CBGAT, 153),
(CBOFT, 128),
(CBUFT, 105),
(CKcw, 25),

(CKS0, 100),
(CFQC, 325),

(CHEK, 60),

(ckcy, 100),
(CHEM, 125),
(CIVM, 242),

{(P.0. Box 925-Stn. "A", Goose Bay-Lab),

(CBFT, 100),
(CBFLT, 234)
(CJoN, 110),
(CFCF, 325),
(CFTO, 325),
(CFCN, 100),
(CHFD, 56),

(CFCM, 100),
(CIMT, 49),

(CIVQ, 259),

(P.0. Box 610, Corner Brook-Nfld.), (P.0. Box 576, Labrador °

City-Nfid.), (P.0. Box 1210-Stn. "A", St. Johns-Nf1d.),

(P.0. Box 2230, Charlottetown-P.E.I.),

(P.0. Box 3000, Halifax-N.S.), (P.0. Box 700, Sydney-N.S.),

(P.0. Box 6000, Montreal-Que.), (P.0. Box 3220, Ottawa, Ont.),

(P.0. Box 500, Toronto-Ont.), (P.0. Box 1609, Windsor-Ont.),

(P.0. Box 160, Winnipeg-Man.), (1840 _McIntyre St., Regina-Sask.),

(5th_Floor/CN Tower/1st_Ave South, Saskatoon-Sask.),

(P.0. Box 2640, Calgary-Alta.),

(P.0. Box 555, Edmonton-Alta.),

(P.0. Box 4600, Vancouver, B.C.), (P.0. Box 950, Moncton-N.B.),

(P.0. Box 2000, Matane-Que.),

]

- 134 -

(P.0. Box 6000, Montreal-Que.), (P.0. Box 10400, St. Foy-Que.),
(273 ST Jean Baptiste Ouest, Rimouski-Que.),

(P.0. Box 3220, Ottawa-Ont), (P.0. Box 500-Stn "“A", Toronto-Ont.),
(P.0. Box 160, Winnipeg-Man.),

(P.0. Box 555, Edmonton-Alta), (P.0. Box 4600, Vancouver-B.C.),
(P.0. Box 2020, St. John's-Nfld.),

(2885 _Robie Str., Halifax-N.S.), (P.0. Box 469, Sydney-N.S.),
(P.0. Box 5004, Moncton-N.B.),

(405_0gilvy_Ave., Montreal-Que.),

(864 King St. West, Kitchener-Ont.),

(1500 Merivale Rd., Ottawa-Ont.), (P.0. Box 400, Sudbury-Ont.),
(P.0. Box 9, Toronto-Ont.), (Polo Park, Winnipeg-Man.),

(P.0. Box 2000, Regina-Sask.),

(216_First_Avenue North, Saskatoon-Sask.),

(Broadcast House, Calgary-Alta.),

(18520 Stony Plain Rd., Edmonton-Alta.),

(P.0. Box 4700, Vancouver-B.C.),

(3693 Epsom Dr., Saanich-B.C.),

(87_North_Hi11_St., Thunder Bay-Ont.),

(95 _East Broadway, Yorkton-Sask.),

(5026-50th Street, Lloydminister-Sask.-Alta.),

(P.0. Box 370, Sault St. Marie-Ont.,), (C.P. 2026, Quebec-Que.),
(c.p. 600, Chicoutimi-Que.),

(3330_rue King Ouest, Sherbrooke-Que.),

(1400_rue_Des_Cypres, Trois Rivieres-Que.),

(1_rue_Frontenac, Riviere_du_Loupe-Que.),

(C.P. 170, Montreal-Que.), (C.P. 590, Rimouski-Que.),

h

wi

{(CBC, P.0. Box 8478),

- 135 -

(C.P. 4010, Hull-Que.)}.

(TVA, 1600 _de-Maisonneuve),

(CTV, 42 _Charles Str. East),
(ORTQ, 100 rue Fullum),

(OECA, P.0. Box 200 Station "A")}.

{(CFLA, Goose Bay-Lab.),

(CBNLT, Labrador City-Nfld.),
(CBCT, Charlottetown-P.E.I.),
(CBIT, Sydney-N.S.),

(CBOT, Ottawa-Ont.),

(CBET, Windsor-0Ont.),

(CBKRT, Regina-Sask.),

(CBRT, Calgary-Alta.),

(CBUT, Vancouver-B.C.),
(CBGAT, Matane-Que.),

(CBVT, St. Foy-Que.),

CBOFT, Ottawa-Ont.),

(CBWFT, Winnipeg-Man.),
(CBUFT, Vancouver-B.C.),
(CJCH, Halifax-N.S.),

(CKCW, Moncton-N.B.),

(CKCO, Kitchener-Ont.),
(CKSO, Sudbury-Ont.),

(CKY, Winnipeg, Man.),

(CBYT, Corner Brook-Nfld.),
(CBNT, St. Johns-Nfld.),
(CBHT, Halifax-N.S.),
(CBMT, Montreal-Que.),
(CBLT, Toronto-Ont.),
(CBWT, Winnipeg-Man.),
(CBKST, Saskatoon-Sask.),
(CBXT, Edmonton-Alta.),
(CBAFT, Moncton-N.B.),
(CBFT, Montreal-Que.),
(CBRT, Rimouski-Que.),
(CBFLT, Toronto, Ont.),
(CBXFT, Edmonton-Alta.),
(CJON, St. John's-Nfld.),
(CJBC, Sydney-N.S.),
(CFCF, Montreal-Que.),
(CJOH, Ottawa-Ont.),
(CFTO, Toronto-Ont.),
(CKCK, Regina-Sask.),

- 136 -

(CFQC, Saskatdon-Sask.), (CFCN, Calgary-Alta.),

(CFRN, Edmonton-Alta.), (BCTV, Vancouver-B.C.),
(CHEK, Saanich-B.C.), (CHFD, Thunder Bay-Ont.),
(cIcC, Yorkton-Sask.), (CITL, Lloydminster-Sask.),
(CKCY, Sault St. Marie-Ont.), (CFCM, Quebec-P.Q.),

(capPM, Chicoutimi-P.qQ.), (CHLT, Sherbrooke-P.Q.),
(CHEM, Trois_Rivieres-P.Q.), (CIMT, Riviere_du Loup P.Q.),
(CFTM, Montreal-P.q.), (CFER, Rimouski-P.Q.),

(CHOT, Hul1-PqQ.), (CIVM, Montreal-P.Q.),

(cIvo, Hull-P.qQ.), (CICO, Toronto-Ont.),

(CIVQ, Quebec-P.Q.)}.

ns = {(Canada, CFLA), (Canada, CBYT), (Canada, CBNLT),
(Canada, CBNT), (Canada, CBCT), (Canada, CBHT),

)

))
(Canada, CBIT), (Canada, CBMT), (Canada, CBOT),
(Canada, CBLT), (Canada, CBET), (Canada, CBWT),
(Canada, CBKRT), (Canada, CBKST), (Canada, CBRT),
(Canada, CBXT), (Canada, CBUT), (Canada, CBAFT),
(Canada, CBGAT), (Canada, CBFT), (Canada, CBVT),
(Canada,'CBRT), (Canada, CBOFT), (Canada, CBFLT),
(Canada, CBWFT), (Canada, CBXFT), (Canada, CBUFT),
(Canada, CJON), (Canada, CJCH), (Canada, CJBC),
(Canada, CKCW), (Canada, CFCF), (Canada, CKCO),
(Canada, CJOH), (Canada, CKSO), (Canada, CTFO),

(Canada, CKY), (Canada, CKCK), (Canada, CFQC),

(Canada,
(Canada,
(Canada,
(Canada,
(Canada,

(Canada,

CFCN
CHEK
CITL
CJPM
CIMT

~——r ~—— ~— ~— ~— ~—
-

CHOT

}.

- 137 -

(Canada, CFRN),
(Canada, CHFD),
(Canada, CKCY),
(Canada, CHLT),
(Canada, CFTM),

(Canada, BCTV),
(Canada, CICC),

)
)
(Canada, CFCM),
(Canada, CHEM),
)

(Canada, CFER),

	

