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Abstract

In this thesis, we consider the problem of providing an algebraic
classification of regular languages. An abstract monoid M recognizes
the language L C A* iff there exists a surjective morphism ¢: A* > M
such that L = Sd;-l for some S € M. Given a family M of abstract
monoids, it is a natural probleﬁ to try to characterize the languages
recognized by the monoids in M. Conversely, given a family of
languages L, we can ask for a characterization of the smallest family

of monoids which are needed to recognize all the languages in L.

A family M of finite monids is a variety iff it is closed under
morphic images, submonoids and finite direct products. A family L of
regular languages is a *-variety iff it is closed under boolean
operations, derivatives and inverse morphisms. Eilenberg's theorem
indicates that there exists a 1-1 correspondence between varieties of

monoids and *-varieties of languages.

Our approach makes use of congruences of finite index. The
conditions defining varieties are first expressed in terms of these
objects. We then present a method for constructing congruences which
generates *-varieties in a systematic manner. The languages produced
in this way have the property that the membership of a word x can be
determined by counting occurrences of subwords of length < m with
respect to a congruence of finite index on IN, taking into account the

context in which these subwords appear with respect to a previously
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given congruence y. This scheme is recursively applied, using as

basis the universal congruence x w y for all x, y € A*. Noting the
fact that every congruence of finite index on IN is the intersection of
a threshold t counting congruence and a modulo q counting congruence,
our *-varieties of congruences are characterized by four parameters:
the t and q of the congruence on IN with respect to which the counting
is done, the length m of the subwords that are counted and the depth i
of the recursion. Algebraic properties of the corresponding monoids

are then investigated in terms of these four indices.

For all values of m and i, if only threshold t counting is used
(i.e. q is fixed to 1), the generated monoids are aperiodic, and if
only modulo q counting is used (i.e. t is fixed to 0), the generated'
monoids are groups. The following table summarizes some characterizations

that have been obtained.

i=1, m=1,t2>20,q=1 commutative aperiodic monoids

i=1l, m=1,t=0,q=1 commutative groups
i=1,m=1,t20,q=21 commutative monoids

i=1, m20,t20,q=1 J-trivial monoids

i=1, m20,t=0,qz21 nilpotent groups

i=n,m=1,t =0, q=1 solvable groups of derived length < n

IA
=]

i=a,m20,t=0,qz21 solvable groups of fitting length

e
v
S

m=1, t20,q=1 aperiodic monoids
1i20,m=1, t =0, q=21 solvable groups

iz20,m=1,t=20,q21 monoids containing only solvable groups.

(v)



For the last three entries, the monolds are the same 1if we replace
m=1bym=z20. In sevefal other cases partial characterizations are
presented. 1In addition, tradeoffs between the various parameters are
analyzed and some families of languages are investigated from the point
of view of Kleene's operations. Finally, modifying the construction to
take into account one-sided contexts only, it is shown that R- and L-trivial

monoids are generated when threshold t counting is used.
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I. INTRODUCTION

The notion of regular language arises by considering finite
machines processing finite sequences of inputs. The ofiginal motivation
for this type of work came through attempts to model the behaviour of
the brain, but it was soon realized that the theory of regular languages
could be an important tool in the study of finite circuits and digital

computers (cf: Kleene [54], McNaughton [61]).

Connections with classical algebra were also established. A semi-
group S generated by a set A can be viewed as a machine over input
alphabet A, the states being the elements of S, where processing a
sequence of inputs means applying the semigroup operation. - The proper
formalization of this idga gives rise to a correspondence between
regular languages and finite semigroups. Consideration of the empty
sequence leads to a similar relationship between regular languages and

finite monoids (cf: Myhill [57], Rabin and Scott [59]).

This algebraic characterization was refined over the years, as
several subclasseé of regular languages were shown to correspond to
families of semigroups or monoids. For example, definite languages
(Perles, Rabin and Shamir [59]), star-free languages (Schiitzenberger
[65]), locally testable languages (Brzozowski and Simon [73]) and
piecewise testable languages (Simon [72]) were all characterized by

algebraic methods. This approach was formalized in the theory of



varieties presented by Eilenberg [76]: the essential result of Eilenberg
exhibits a 1-1 correspondence between *-varieties (+ - varieties) of

regular languages and varieties of monoids (semigrbups).

In view of the central role played by regular languageé in modeling
finite computations, it apbears to be a worthwhile problem to study
possible classification schemes that would induce a measure of complexity
applicable to those languages. Original attempts to provide such a
systematic classification centered on regular éxpressions. The
restricted *-height of Eggan [63] and the extended *-height presented
in McNaughton and Papert [71] were measures of complexity related to
the presence of the * operator in expressions representing languages.,
The family of star-free languages (i.e. those 1énguages of extended
*~height 0) was subdivided according to the doﬁ—depth measure introduced
by Cohen and Brzozowski [71]. Simon [72] further refined this class—

ification in his study of dot-depth one languages.

More recently, a different approach was used by Stréubing [79].
He introduced a ﬁew operétion on languages by counting certain factor-
izations of words. He thus obtained a characterization of those
regular languages corresponding to solvable groups. Furthermore, his
operation can be used to define hierarchies of families of languages
which correspond to natu;#l hierarchies of families of monoids.

Combining his operation with concatenation, he was able to generate

Mgol’ the variety of all monoids which contain only solvable groups.



In this thesis, Straubing's operation is extended in several
directions. By using only this generalized counting method, we are
able to systematically generate hierarchies of regular languages.
Moreover, it is shown that several well-known families of monoids can
be recovered by our construction. In particular, the limit of these

hierarchies is the family of languages corresponding to Msol'

In this introduction, we first present some definitiomns and
notation that will be used. This is followed by a section on varieties
in which basic results on the relatiomnship between.languages,
congruences and monoids are stated. Another section deals more
specifically with monoidé. Finally a summary of the results of this

thesis is included.



I.1 Definitions and notation

We denote by IN the infinite set {0,1,...} and by |A| the cardinality
of the set A. The set of all functions from B to A is AB. The image
of x under the function f is written (x)f (or xf for short) and functions
compose from left to right, i.e. (x)fg = ((x)f)g. The set xff"1 is

denoted by [x]f.

For any n 2 0, the set of all sequences of length n over a set A
is written AF; individual sequences are denoted by (al,...,an) ifnz1,
+
and by () if n = 0. A (A*) represents the set of all sequences of

length 2 1 (2 0). For x € A*, we define |x| = n iff x ¢ A",

A semigroup is a set S togethér with an associative binary
operation which is often denoted simply by juxtaposition. This operation
can be extended to subsets of S by defining S]_S2 ='{s1s2 : sl > Sl, sz € SZ}
for any Sl’ S2 C S. For convenience ssl and sls are written instead of
{S}S1 and Sl{s} ,‘Where s £ § and SlGZ;S . A monoid M is a semigroup
with an identity, i.e. an element 1 such that Im = ml = m for all
me M. A group G is a monoid in which every element g has an inverse

g—l satisfying gg_l = g_lg = 1; if G is finite this is equivalent to

requiring the existence of an integer n such that gn =1 for all g £ G.

For any semigroup S, T C S, s € S, the left (right) derivative of

T by s is defined as s-lT ={teS :steT} ('rs_1 ={teS: tse T}.

This notation is formal and does not imply that the element s is

1

invertible but if it is then s-lT = {s—l}T and Ts — = T{s—l}.
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For two semigroups S and T, ¢ ¢ TS is a morphism if (ss')¢ =

(s¢)(s'¢) for all s, s' € S. The morphism ¢ is surjective if S¢ = T.

If S and T are monoids and 1¢ = 1, ¢ is a monoid morphism: in this
case, if S is a group, then S¢ is also a group and (sc}))_l = (s_l)¢.
S is isomorphic with T, S = T, if there exists a 1-1 surjective

morphism from S to T.

An equivalence a on a set S is a binary relation (i.e. a subset
of SZ) which is reflexive, symmetric, and transitive. o partitions
S into disjoint equivalence classes and we write S/a for the set of

those classes; IS/aI is the index of a. We will also use o to denote
1

the natural projection from S onto S/a. We thus have [S]a = saq

{t : satl Conversely any function ¢ having S as domain induces an

equivalence on S, also denoted by ¢, defined by s ¢ t iff s¢ = t¢.

If S is a semigroup, the equivalence o is a right (left) congruence

iff s ¢ t implies su a tu (us o ut) for all s, t, u € S; this is

equivalent to requiring that [S]au_l (u_l[s]a) be a union of classes of

a for all u, s ¢ Sf @ is a congruence iff it is both a right and a left
congruence. The function o : S + S/a is then a morphism with the

operation on S/a defined by [S]a[t]a = [St]a' Conversely if ¢ is a morphism
having S as domain, then the equivalence ¢ is a congruence. The symbol ST
denotes the set of all congruences of finite index over S and wg (or w

if S is understood) represents the universal congruence, that is s wg t for

all s, t £ S.



If o is a right congruence on a semigroup S, the following common
representation will be used; classes of a are associated with vertices
of a graph and there is an arrow labelled s from the vertex [X]a
to the vertex [y]a iff xs @ y ; normally only arrows labelled with

some set of generators of S are given. If S is a monoid, the vertex

corresponding to [l]a is designated by an arrow coming out of no vertex.

+
Let A be any finite set.A (A%*) becomes a semigroup (monoid) under

the operation of concatenation defined by (al,...,an)(bl,...,bm) =

(al,...,an,bl,...,bm) (with () being the identity). In this context
sequences are called words; we write ajeeeay for (al,...,an) and A for

(). A language L over A* is a subset of A*. L is an g language iff L

is a union of classes of o for some equivalence a on A%, i.e.

1

L = Laa . Any language L is an oy language where o is the congruence

defined by

x a, v iff (uxv ¢ L iff uyv € L for all u, v € A¥%) .

L

oy is called the syntactic congruence and ML = A*/aL is the syntactic

monoid of L. Corresponding notions are defined when we consider

+
languages to be subsets of A instead of A*; the syntactic semigroup,
which may or may not be a monoid,is SL = A&YaL. A language L over A%
(A') is regular iff ML (SL) is finite. If L is regular then x lL and

Lx = are regular for any x in A*; indeed one easily verifies that they

are a; languages.

For any semigroup S generated by a set A, there exists a natural

s 3 . + =
surjective morphism ag * A -+ S defined by (al,...,an)otS aj.--a,

.with the operation on the right being that of S.
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If S is a monoid we obtain a surjective monoid morphism ag A* » §
by defining Aas = 1. Observe that for all s £ S, sas-l is a

+
language over A (or A*) which consists of all sequences (al,...,an)

vhich "multiply" to s.

A subset T of S is a subsemigroup of S iff T2 € T. If T has an

identity e then T is said to be a momoid in S; in this case e is
necessarily an idempotent, i.e. e2 = e. T is a submonoid of S if S is
a monoid, T is a monoid in S, and the identity in T coincides with that
of S. Every monoid in S is a submonoid of the monoid eSe for some

idempotent e. We say that S is group—free (or aperiodic) if every group in S is a

trivial one-element group. The notation T'< S, read T is covered by S, will

be used to indicate that T is an image of a subsemigroup of S under a morphism.

The reverse sP of a semigroup is the set S together with the

multiplication defined by sot = ts. The reverse o® of a congruence o
o

on A* is defined by x o y iff = o yp where A° = A and (xa)p = ax

for all x e A% a € A. The reverse Lp of a language L is

: Lpf='{ip'§ ihs L}.:

For m, n € IN, we write m|n if m divides n. If K is a finite
subset of IN, lem K and max K are the least common multiple and the

maximum respectively of the elements in K. If K = #, we define

lem K = 1 and max K = 0; if K' S K, lem K' | lem K and max K' < max K.
Observe that IN is a monoid under the operation of additiom. It can
be viewed as a free monoid generated by the integer 1. There are

essentially only two types of congruences in IN. For any t 2 0, q 2 1, let



m=n (thresh t) iff ((mn<tandm=mn) or (m2t and n 2 t))
and m = n (mod qQ)iff q | m-n.

One can verify that every congruence of finite index on IN is the

intersection of a threshold t congruence and a modulo q congruence.

We will write et q for such a congruence on IN: EN/Gt q is represented
’ >

in figure I.1l on the generator 1; it is a group iff t = 0 and it is a

group-free monoid iff q = 1.

Proposition 1.1: Let m,n,ty,t, 2 o, 459, Z 1;

a) If n # m there are a finite number of congruences 6 e INT such that n & m3

b) for all 8 ¢ INT 0 6 1 iff 6 = w;

0 8 - = @
c) tl,qlr\ ty9, max{tl,tz},lcm{ql,qz};

6 - 0 1 .
d) tl’ql;a tz’qz iff t1 < t2 and qllq2
{
0 /;%—ﬁ- v ] t > 0y )
e

Fig. I.1: The cyclic monoid IN/St q
?
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1.2. Varieties

This section presents elementary notions that are ‘relevant to
the classification of regular languages by algebraic methods; it
is largely inspired by Eilenberg [76]. The main result is
Eilenberg's theorem giving conditions under which a family of

regular languages can be characterized by the corresponding monoids.
We express these conditions in terms of congruences since these
wiil play a centfél role in our approach. In the sequel, all
languages are regular, all congruences are of finite index, and

all semigroups except A*, A*, IN are finite. The concepts that
follow are presented in terms of monoids but can be expressed in

terms of semigroups.

A solution to the classification problem is most satisfying if
we can arrange families of languages in hierarchies of increasing -
"complexity". Intuitively, the complexity of a congruence is related

to its power of discriminating between words. Inclusion thus provides a
natural order relation on A*T' , the largest élement being w . Note that,
as congruences on .A*, a'D o iff the corresponding morphisms are

related by o' = a¢ , for some surjective monoid morphism ¢ : A*/a + A*fa'
we will use both notions interchangeably at our convenience. Also
renaming the elements of a finite set B with elements of A*, i.e.

setting up a function ¢ : B -+ A%, yields a natural renaming of the

words in B*, by extending ¢ to a monoid morphism ¢ : B* - A*. Any
congruence o on A* can then be used to discriminate between u¢ and v¢ ,
for any u, v € B% such that u¢ + v¢ . The induced congruence ¢o on B¥

is no more complex than a in the intuitive sense that ¢a can discriminate

between two words u and v in B* iff o can discriminate between their
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respective renamings u¢ and v¢ in A%, Finally it is convenient to
use a measure of complexity on congruences which is independent of the
operation of finite intersection.
Now consider, for each finite set A; a family of congruences:
A*A C A*T and let A be the union over all A of these families. We say

that A is-a *-variety.of congruences iff the following properties hold:

i) closure under composition by morphisms, i.e. if o € A¥*A

¢ : B > A* | ¢' : A*/o > T are monoid morphisms, then dag' € B*A;

ii) closure under finite intersection, i.e. if a5 a, g -A*A , then

' *
ay; No, € A*A

1

Example: Let T be defined by

A*I'x = {a e A*T : there exists nvsuch that xn a A for all x e A*} .
Let P+ be defined by

A*P+»= {¢ € A*T : there exists n such that X" anl for all x € A*} .
It is easily verified that T and P+ form *-varieties of congruences.
We refer to the elements of r. and P+ as group and aperiodic congruences

respectively.

Proposition 2.1: Let a, a' € A*T, and ¢ : B* - A* be a morphism:

a) if o' D o then |A*/a'| < |A%*/a|;

b) |B*/¢a| < |A*/a|
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c) |a*/(ana')| < |A*/a| - |A%/a']| .

Proof: Clear. j

This last proposition shows that congruences of infinite index

cannot be introduced by the operations mentioned above.

We can view A as defining a family of languages L which is the

union, over all finite sets A, of
A*L = {L C A* : L is an o language, o € A%A}:

the notation A - L indicates that L is so defined.

Proposition 2.2: Let LC A* ; L is an o language iff a & a

L
Proof: Clear. d

17 ng'A*, Teixed*:x ¢ L}z e A%,

" ‘Proposition 2.3: Let L, L

and ¢ : B* =+ A% :

a) or = aL;

b) Na €Cao 3
“Ll L, (L, U L)

c) o g_az—lL and aLg_ o -1

Lz

d) ¢aL g GL¢_1 *



-12-

Proof: a) and b) are clear. To show c) suppose x o, y; then uxv ¢ L

L
1ff uyv e L for all u, v in A*. In particular zuxv ¢ L iff zuyv € L,
i.e. uxv ¢ z-l'L 1ff uyv e z—lL- The second inclusion in ¢) follows
by symmetry. To prove d) suppose x q>aL y for some x, y in B*; then
x¢ ap y$ and for any u, v in B* (uxv)¢ a (uyv)¢. This implies that
(uxv)$ ¢ L iff (uyv)d € L and thus uxv e ch_l iff uyv € ch-l . It

follows that x aL¢—l v. Q

Proposition 2.4: Let A +L where A is a *-variety of congruences; then

L is closed under boolean operations, left and right derivatives and

inverse morphisms.

Proof: This follows from proposition 2.3.02

Conversely let L be the union, over all finite sets A, of given

families A*L of languages over A*. [ is said to be a *-variety of languages

if it satisfies the properties stated in proposition 2.4. For any L, we write
L +4A if A is the smallest *-variety of congruences containing the

syntactic congruences of all languages in L.

A congruence o £ A*T is syntactic iff there exists L € A* such
that o = o .
. i = *
Example: For i 2 1, let A {al,...,ai} and let @, € A;*T be the

it * * *
congruence that partitions A * as {{7}, Ay 81500008y ai}.
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If 1= 1,2,ai can be verified to be syntactic by taking L = Ai*al .

Ifi2 3, forany I C{1,...,1i} let L= U_ A *a, and L'I =L J{r}.

jel "1 73
] ] . -
Any a, language is equal to LI or L I for some I; but aLI = aL,I
partitions Ai* into {{A}, ;gl Ai*aj s ;fx Ai*aj} thereby proving that

a, is not syntactic.

On the other hand, one can verify that every group congruence

o€ A*l"x is syntactic; indeed o = oy for L = [x]a for any x in A%,

A *-variety 4 of congruencesis said to be generated by a subset
A' if A is the smallest *-variety containing A'.

ERN

Proposition 2.5: *-varieties of congruences are generated by their

syntactic elements.
Proof: Let a € A*A and let A*/o = {[xl],...,[xn]}. Since [xi] is

an o language, a[x ];gtx.and thus « € A*A for i = 1,...,n. If

1 [x,]

Xoy does not hold for a pair of words x, y then neither does

. A ' f
X a[X] y Hence a[xl] i a[xn] € o and therefore
N ... F\a[x ] = © .0

o,
[xl] o

Proposition 2.6: If A is a *-variety of congruences and 4 + L then

L+a.
Proof: Suppose L - A'. To prove that A C A' it is sufficient to show

that some set of generators of A is contained in A' and this clearly

holds for the set of syntactic congruences of A .
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Conversely, A' is generated by the congruences ar s Le-L.

Since A ~» L , L is an a language for some o € A*A and a e A*A as

well since A is a *-variety and a C @ This implies that A = A' . QO

Lo

Proposition 2.7: Let L - A. Then a € A*A iff there exists Li € Ai*L, n £ IN,

:A*'*A.*frj.:l... D L Y = b4
¢i ;¥ fo , ,0 such that a2 alﬂ f\an where oy ¢iaLi

Proof: The sufficiency of the condition is obvious. To see the converse
suppose o € A*A : then o can be constructed from syntactic congruences of
languages in L by using morphisms and intersections. We prove the result by
induction on k, the number operations that are used. If k = 0, then

a=a for some L € L and the result follows.

If k > 0, we consider three cases according to the last operator

that is used.

i) a2 o' for some a' € A*A. We can apply the induction hypothesis on

a', so that a" Do, N ... N a s for some congruences o, as defined in

1

the proposition. Then a 2 cxl Nn...N an is seen to satisfy the condition.

ii) o = ¢B for some ¢ : A* > B%, g ¢ B*A. Applying the induction
hypothesis on B8, we have 8 2 Bl(\ N Bn for appropriate Bi. Then

aD ¢Blﬁ .0 ¢8_ also has the correct form.
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iii) o = alﬂ o, for some A, @, € A*A. Applying the induction hypothesis

on a, and a,, we have o, D a,. N ...N 4y s %y D a21(\ N A a,  for

1 11

Then ¢ Da..MN ...M\a Na.. D ..oNa
n. 21 '

appropriate «
PPTOP 11 1

1i°® 0‘23-' is again in

correct form. O

2m

If L is a *-variety of languages and L + A, the following stronger

result can be derived: B8 € B*A iff B = ¢_(a. N ... N a )¢, for some
1 L1 Ln 2
¢y 8 B> AR, L oe A%, ¢, : A*/(aLlr\ ...\ a ) > M.
n

Proposition 2.8: If L is a *-variety of languages and L - A then

A= L,
Proof: Let A > L'. If L e A*L then o, € A*A and then A~L' implies
that L € A*["; thus [€L'. Conversely suppose L is in A*['; L is

an o language for some a & A*A and by proposition 2.7 there exists

* . * * =
Ly € A, L, ¢; @ A* > A% for i = 1,...,n, so that a D alf\ ...(\an where

. a _
U ™ Ix] and it is sufficient to show
a.

a, = ¢ .0 =
i i Li . Hence L xel i=1

i
that [x] ¢ A% since L is closed under boolean operations. But
a,
i
[x] = ([x9.] )¢,'1 and we only have to show that [y]a € Ai*L .
ay ilay 774 Li

i

for an arbitrary y in Ai*‘ Now z a; ¥ iff (uzv ¢ L; iff uyv e L; for

i

-1 -1 1. -1

all u, v in Ai*); thus [y]a = 4, veA* u "Ly N VY *Liv .
u,vel

i uy'vr-:Li uyvéLi

Closure of L under boolean operations and derivatives imply the result. U
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The propositions 2.6 and 2.8 together prove that there is a 1-1
correspondence between *-varieties of congruences and *-varieties of

languages given by A > L and L + A .

Given a family of congruences A, we can also look at A from a
more algebraic point of view, i.e. by considering the abstract monoids
that correspond to congruences in A. Define A - M if
M ={M : M= A*/a, o ¢ A*A, for some A}; conversely for any family of

finite monoids M define M + A iff A%A = {a € A*T : A*/a = M, M ¢ M}.

Clearly M + A implies A + M.

Conversely let A - M and M ~ A'. It is clear that A G A'. Also
if a ¢ A*A' , there must exist B € B*A such that B*/8 = A*/a and then
a = ¢ , where, for any x € A*, x¢ =vw for some w € B%* such that [w]B
is related to [X]a by the isomorphism between B*/B and A*/a . Thus

if A is a *-variety, A" = A .

The following relations between congruences and monoids are

stated without proof.

Proposition 2.9: Let a, a5 O, € A*T, B eB#T and ¢ : B* > A%,

a) if 4 2 o, then A*/a1 is a morphic image Of-A*/az;
b) B*/¢a 1is isomorphic to a submonoid of A*/a ;

c) A*/(a; N o)) <{ A*fa, x A*/a, .
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Proposition 2.10: If A is a *-variety of congruences and A - M

then M is closed under morphic images, submonoids and finite direct

products.

Proposition 2.11: If M is closed under morphic images, submonoids

and finite direct products, then M > A implies that A is a *-variety

of congruences.

A family of monoids satisfying the properties stated in proposition 2.11

is called a variety of monoids. Proposition 2.10 and 2.11 together with the

remarks preceding proposition 2.9 indicate that *~varieties of
congruences and varieties of monoids are in 1-1 correspondence, given
by A M and M +> A , which we abbreviate as A <+ M . We also write

A M (M <y ) if A > M' for some M'€ M (if M > A' for some A'c Ay .

Example: Let G = {M': M is a group} and Ap = {M : M is group-free} .

G and Ap are varieties of monoids and G—=T , Ap « r, .

Proposition 2.12: A <« MIiff A& Mand M S 4,

Proof: The necessity of the condition follows directly from the
definitions. Conversely A < Mand M + A' imply AC A' . But Mc, A

implies A'C A so that A = A' and M« A . D
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I.3 Elements of semigroup theory

In this section, more properties of monoids and groups are
presented. References for the material of this section are Clifford
and Preston [61] for results on semigroups and Hall [59], for
properties specific to groups. Let M be an arbitrary monoid,

8, t £ M; define the following preorders on M:

i) s <, t iff MsM C MtM
ii) s st iff sM C tM
ii1) s < t 1iff Ms C Mt

t and s <.t .

iv) s <.t 1iff s < L

R
For any preorder < on M, we have an induced equivalence s = t

iff s < t and t £ s. For any equivalence o on M, we say that M is
a-trivial if s o t implies s = t. For example, s EJ t iff MsM =
MtM and M is J-trivial iff MsM = MtM implies s = t. The notions

above first appeared in Green [51].

M is a commutative monoid iff sf = ts for all s,t e M. If M

is commutative, the four order relations defined above coincide.

The reader may observe that in the monoid <IN,+>, the preorder

n sJ m (and thus each of the preorders SR’ SL and SH) is the ordering
n > m of the integers.

Any group in M is a subset of a class of the equivalence EH'
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If G is a group, any subgroup H induces a right (left) congruence on G
defined by g o g' iff Hg = Hg' (gH = g'H); note that H = [l]a' If,

for all g € G, gH = Hg, the subgroup H is said to be normal in G, which
we write G P Hor HQ G, and o is a congruence. The image G/a is

usually denoted G/H and if G/H = K then G is an extension of H by K.

A normal series of G is a sequence of nested subgroups of G such

that

= -
GO (} > Gl oee .

c Cc
n

1
l ..-Pn ,
cy 21, p; € I . The element g of G has N-order iff gq = 1 for some

Let I be a set of primes: q is a I-integer iff q = p

I-integer q. G is a Tl-group iff every element of G has I-order iff

|G| is a N-integer. It may be verified that G

m° the family of

I-groups is a variety. If ]G[ = pcq with p prime and p, q relatively
prime, G has a subgroup (not necessarily normal) of cardinality pc;

any such subgroup is called a Sylow p-subgroup.

Commutative groups are also called abelian. The center of G is

et

the normal subgroup

Z(G) = {h : gh = hg for all g in G} .
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A normal series

zo={1}< z1<1 ...dzm=c

- . . 3 C . =:
is a c¢entral series iff Zi/Zi_l._ Z(G/Zi_l) for i =1,...,m. If

equality holds for each i, the resulting series is the upper central series

and it is of shortest length among all central series of G. G is

nilpotent of class m iff the upper central series has length m. Equivalently

G is nilpotent iff it is the direct product of its Sylow p-subgroups.

1-1

The commutator of g and H is [g,h] =g h gh. For H, KEG
‘.[H,K] is‘the subgroup generated by all commutators of the form h_lk—lhk

h € H, k ¢ K. The derived subgroup is Gl= [G, G]; it is always the

case that G/Gl is abelian. The derived series of G is

G,=G® G, b ...

where G, = [G. ,,G. ,]. G is solvable of derived length n if n is
i i-1°"i-1
the smallest integer such that Gn = {1}. 1In this case there also exists

an integer k < n and a series

= 4 4 =
GO {1}<\G1 ...‘Gk G

such that Gi/Gi-l is the maximal nilpotent subgroup of G/Gi—l for

i=1,...,k; G is then solvable of fitting length k.

Let Gab’

respectively the family of abelian groups, p-groups, nilpotent groups

EE for an arbitrary prime p, Gnil and GSol denote

and solvable groups. The following chains of inclusion hold:
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in

ab nil sol

_GR = Gnil
Each of these families is a variety.

Often we will need to express properties of groups in terms of congruences.

For any a,B € A*T_, a C 8, define H = {[x}a : x B A} .

Bs0

Proposition 3.1: Let a € BC Y € A*

i) HB,G. 4. A*/a

ii) HB,a4 H‘y,a

iij H = H
D %'90'/ B,a YsB
Proof: Left to the reader. Q
The terminology of semigroups will be applied to congruences

whenever the context is clear. Thus we will speak of nilpotent

congruences, J-trivial congruences, etc.
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I.4 Synopsis

The correspondence between languages and monoids leads to the
problem of establishing the translation between language properties
and algebraic properties. One approach, much used in particular by
Brzozowski and his collaborators, is to construct, in a systematical
way, hierarchies of congruences and then investigate.the corresponding
families of languages and monoids. The constructions that have been
used generally involve considering specific factorizations, i.e. we
consider how a word is built from the letters of the underlying
alphabet. Two words are then congruent iff they have similar factor-

izations. It is this approach that is taken in this thesis.

In chapter II, we introduce a construction that generates
*-varieties of congruences. This construction is based on counting
occurrences of subwords of length m with respect to a congruence et,q
on IN and taking into account the context in which a subword appears
with respect to a.previously given congruence Y. Starting with Y = w
and applying the scheme recursively, our *-varieties are thus
characterized by four parameters: the length m of subwords that are
considered, the depth i of the recursion and the parameters t and q
of the congruence on IN with respect to which the countiﬁg is done;
such a variety is denoted by A?:i . This is a natural approach as
the simplest non-trivial *-varieties occur in the first step of this

construction (i.e. by takingm =1 = 1), It is also shown that, if

t = 0, only group congruences are generated and, if q = 1, we obtain
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m,1i

only aperiodic congruences. In the general case, properties of At q
3

can be inferred by combining results on Ag’: and A?’i.
’ ?

The following chapters investigate properties of the *-varieties
introduced in chapter II. We adopt the convention that unless

explicitly specified otherwise, m,i,t,q represents fixed, but arbitrary

. . . m,* m,1i
integers, m,i,t 2 0, q 2 1. Also we define At:q,= 150 At:q , and
similarly for m, t and q.
*.1
In chapter III, we show that AO’* > Gnil and we relate the inter-
3

mediate Am’1 to the variety of nilpotent groups of class m. A method

0,*
for constructing large families of normal subgroups of G from the
corresponding congruences is indicated. Bounds on the *-height of the

*
languages are derived. 1In chapter IV, the relation A*’i <~ J is
L4

proved where J is the variety of J-trivial monoids. These congruence

characterizations for Gnil and J complete results of Eilenberg [76]

and Simon [72] respectively. We also examine the existing tradeoff

between the various indices.

Chapters V and VI study the congruences in Ag’; and A?’
3 bl

* % * %
. R . ’ R
ively, for i > 1. It is shown that AO,* > Gsol and A*,l <> Ap . The

respect—

b

. . . i * 1 . .
intermediate *-varieties Aé’* and AO,* are characterixed in terms of
b b

the derived length and fitting length respectively. Partial results
, . % 4
on the corresponding aperiodic congruences Ai’i and A*’i are given,
' ’ ’
which parallel those obtained in the group case. Also the original

construction of congruences is modified to consider one-sided contexts

only. It is shown that this modified construction still yields solvable
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groups 1if modulo counting is used, but in the aperiodic case, R-trivial

monoids are now generated.

In chapter VII, the general case is investigated. It is proved

* %
that A, **-Hsol , the variety of monoids in which all groups are
k4

solvable. A relationship between threshold 1 counting of subwords in

context and concatenation of languages is indicated.

Finally, we outline in the conclusion, a number of problems that

remain unsolved.
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II. GENERATING *-VARIETIES OF CONGRUENCES

In this chapter, various families of congruences are introduced
and shown to be *-varieties. The congruences arise from counting
the number of certain factorizations of words. The simplest.congruences
are those which count occurrences of letters (i.e. subwords of length 1)
in words. These are generalized to count subwords of arbitrary length

and to take into account the context in which the subword appears.
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IT.1 Letter counting congruences

In this section, it is shown that the simplest non-trivial
*~varieties of congruences consist of congruences counting the number
of occurrences of letters, with respect to a congruence of finite

index on IN.

The family of congruences 2 defined by A*Q = {wA*} forms a
*~variety which is in correspondence with 1, the variety of monoids

consisting of the trivial momnoid alone.

For any a € A*T , x € A* , there exists t 2 0, q 2 1, such that

xt+q . Let A be any *-variety such that ¢ £ A*A . For any

x° o
alphabet B, b € B, consider the morphism ¢ : B* + A* defined by b¢ = x
and b'¢ = A for all b' ¢ B - {b} . Two words Yis Yy € B* are ¢o

b b b

of the letter b in y. Thus for any A the family A*A must contain congruences

. 71 Y2 y .
congruent iff et q where ( ) € IN is the number of occurrences
’

that can count (with respect to Bt q) occurrences of letters.
?

Let a, q € A*T be defined by:

X at'q y iff (:) et q (Z) for all ae A.
] . 9

We will use the notation Bt q for the corresponding
s

1 * = . .
q be defined by A At,q {a :aDa,_ 1}

congruence over B* ., Let At
b4
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Theorem 1.1: Forany t >0, q21, At q is a *-variety of congruences.
’

Proof: 1t follows from the definition that for any

* T A* ! * A*A
a, a' € A At,q’ ¢ 2 A*/a > M, we have a N a' ¢ A At,q and a¢e £,q
Let ¢ : B* » A% | o g A*A 3 it must be shown that ¢a D B .
t,q = t,q
Since a D a , it is sufficient to show that ¢a, 2 B . It is

t,q t’q t’q

easily seen that for any x, y € B¥%,

(3) = ot ) (%)

(2) = o @) G -

Assuming x Bt,q y , we have (;:) et q (l};) for all b € B. Thus
?

(i» (ba¢> et,'q (Z) Qbad)) and {\Xa(b) et,q(ya¢)' Hence At q is a *-variety. Q

3

It is easily verified that for any x,y € A* , a € A s

(xz) = (:) + (Z) . In particular (x:) = n(z) and consequently

-

t t
X a q X +q for all x € A* ; by considering the case x = a ¢ A , it
, ,

is seen that these exponents are the best possible.
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Lemma 1.1 : 1) AO,l = Q

1) 4, (C T iff =0
i41) 4, C T iff q=1;

t' and qlq' .

1A

) A S B g Mt

Proof: The first three statements follow from the property

tt+q . .
o x for all x € A* . To prove iv) we have A C A iff
X t’q P ) t,q = t',q'

* % . { i i
A At C A At',q' for any A : this holds iff at,q?- at',q' iff

: 1 1
et’qg et,’q, iffet<t', qq" .0

Lemma 1.2 : If A is any non-trivial #*-variety of congruences, then

. C .
AO,p C A for somg prime p or Al,l C A

Proof: Let a + w € A*A . There exists x € A* , t >0, q 2 1, (t,q) # (0,1),

+
such that xt o xt 9. The argument preceding theorem 1.1 can be

used to imply that for any B, Bt q e B*¥A . Thus At q c A. Ifte=0,
9’ bd
it must be that q > 1 ; for any prime p dividing q we then have

cC C . C C .
Ao,p_At’q_A Ift>0,Al’l_At,q_A a

Monoid characterization for the varieties At q are easily derived.
H

Let M be the variety of commutative monoids and M be the variety
com t,q

t+q

of all monoids M in which m = mt for allme M.
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Theorem 1.2: For all t 20, q 2 1, 4 g > Mcomﬂ Mt q
2

Proof: Let o € A*A q . Then a 2D at . Thus xt+q Ia. x" for all
x € A* ., Also (xy (y) (Y:) so that xy a £,q yx and xy o ¥xX .
This shows that A, C.—) M. .

Conversely let M ¢ Mcom N Mt q be generated by the set A. It

2

is sufficient to show that Gy € A*T is in At . Using the
TE @)
2 a 2
l LK N J n

where A = {al,...,an} '« Using the second property of M, it is seen

commutativity of M, we have, for any x ¢ A% , x ay 2

c c
1 n - X -
thatxaM a, cee @ where c; = [(a)]e for i =1,...,n .
t,q
e c
Thus if x at,q y , we have x ay 3y cee @ O Y - Hence

ay € A*At,q and Mcomn Mt,qq At q° By proposition I.2,.12 we conclude

’

A M .
that t’q++ comﬁ Mt,q a

Corollary 1.1 : i) A ~— ApN M
—- com
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A complete description of all *-varieties of commutative congruences
can be obtained. Let {pl,pz,...} be an enumeration of all prime numbers,
and extend the order relation < on IN to the set IN U {*} by defining
n<* forallne IN . Consider the set N ='{(n0,nl,...) :my € INU{*}} |
and for N = (no,n sees), N' = (né,ni,...) e N, define N<N' iff njéngl
for all j20 . Also define

c c ,
* = . = < < i= -
A*D {a: a2 % .q such that q pil 1...pir r, t<ng , cj..nij for j=1,...,r}

Lemma 1.3: Let N, N' ¢ N ;
i) AN is a *-variety of congruences;

ii) ANQ._ I'+ iff nJ.=0 for all j21 ;

iii) AN cr, iff n0=0 H

iv) A C Ay iff NSN' ;

v) if A is a *-variety of abelian congruences, then A = AN for some

NelN.
Proof: The proof is straightforward and it is omitted. [d

This lemma provides a complete description of the lattice of

*-varieties of commutative congruences ordered by inclusion.
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II.2 Generating *-varieties of congruences by counting subwords in context.
In this section, we first extend the concept of counting letters to

counting subwords of arbitrary length. We further refine this notion by

taking into consideration the context in which a given subword appears

in a word. This is shown to lead to *-varieties of congruences and

basic properties of this construction are investigated.

The following definition and lemma are borrowed from Eilemberg [76].

Let u = aj...a , a; ¢ A,m20, x e A* ;

1 if u=21 (i.e. m = 0)

x —
(u) N
the number of factorizations of x of the form

X = X.8,X, ceo & X X, £ A% otherwise.
0°171 mm *> i ’

This notation agrees with our definition of (z) whenm =1 .

Lemma 2.1: Let u, x, y € A , a ¢ A . Then

v (V) 7w, W) G)

172

ii) 1 if u=X oru= a

0 otherwise;
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iii) 1 1if wu=X

(&)

0 otherwise .

Example: If x = abbab, u = ab, then

(z) = 4 since X = Xalbbab,
X = Aabbab,

X = AXabbab A,

and x = abbaib .

As the notation suggests, this concept constitutes

binomial coefficients to free monoids on more than

an extension of the

one generator.

Indeed for words in {al}* we have ( ) = (Z) . Many properties of the

n
a

m
a

binomial coefficients have direct counterparts in this more gemeral

setting. For example the familiar identity

@) - G+ ()

becomes

() + () e

(xb
ua

( x ) otherwise .
ua
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If A={a,,...,a_} , the notion above gives rise to a morphism from
1 n
A* into the multiplicative monoid of IN[A], the semiring of polynomials in
the non-commuting variables al,...,an with coefficients in IN. The morphism

is induced by the mapping a¢ = 1+a for all a € A, and for any x € A* we have

x¢ = uéA* (i) v

We now introduce congruences related to subword counting. For

anym 20, t 20, q 21, x, y € A%, let

v

m (x v\
X y iff for all u € (AUX) , (u) et,q (u> .

o
t,q

Lemma 2.2: For anym2>20, t 20, q > 1, a: q € A*T .
?

m

¥, - Then for any u € (A{)A)m, by
t,q °2

m
Proof: Let Xy at,q Yy s Xy 0

lemma 2.1,

("1"2) . g
u u=u1ul

()

1

(22) -

m * [ 71\
Since for any u,, u, € (AUX)" , we have ] and
1’ "2 u/ t.9q \ul

X y X.X .y

( 2) 8 ( 2) , it follows that ( 1 2) 0 ( 1 ?) . Also the index of o

U,/ tsd \u, u t,q u t,q

is bounded by |IN/6_ q| |(AUMN®| = (t+@) |(AUM®] , so that aI: 0 A*T . T4
’

’

]

1
It is clear that o o as defined in section 1.
t,q t,q
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We now show how to refine this notion of subword counting by
taking into account the context in which u appears in x, i.e. by

considering the intermediate segments x.,...,Xx in the factorization
0 m

X = XaX) ... ax -
* = %* = . * luf+1
Let v € A*T , u ay.ecq  » XE A* |V ([VO]y""’[Vm}Y) € (A 1Y) .
Define
1 if u =X and x v v0 .
(3) -
)
the number of factorizations of x in the form

X = xoalx1 cee amxm , with LI v for i = 0,
..oy oOtherwise.
For any n 2 1, we call the elements of (A*/Y)n y-contexts. We introduce

the following operation on y-contexts. If

V= ([VO]Y’...,[vm]Y) € (A*/Y)m-*-l and V' = ([V(;]Y’.‘.,[VI'I]Y) € (A*/Y)n+l s

then

w' = ([VO]Y’°"’[v(m—1)]Y’ [vmv(')]Y , IVi]Y,-~-,[v;]Y) e (ax/y)mHL

Lemma 2.3: lLet u, X, y e A¥ , a € A, Y e A*" , V ¢ (A*/Y)lu|+l . Then

b, e (), (D),
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1 if (u=\A and V=([a]Y))

or (u=a and V=([A]Y,[X]Y))
. a -
ii) (u)v =

0 otherwise ;

1 if u=A and V = ([A]Y)

111) (x)
Uy

0 otherwise .

Proof: Left to the reader. Q1

Counting subwords in context induces the following equivalente on A¥%.

let Ye A*T ,m20,t>0,q21, x, ve A* : define

x Yo Q v iff foralluc (UL | for all V e (axjy) 18l¥1
? .

(@)

v et,q (Z)V ’

Lemma 2.4: For any Y € A*T , m >0, t 20, q 21, Y(a? q) € A*T
9’

m m
Proof: Let X, Y(at,q) Y1s %5 Y(at,q) Yy

Then for any u ¢ (Aiik)m , Ve (A*/'y)'ul+l , we have



(- )
u V=V1V§ uy

by lemma 2.3. Since ("1) 6, (yl) and (xz) 0, (Yz) , it
Y1 v 4 \Uy v “2’v, 21 \Yy v,

follows that (1% ] Y12 . Also the index of Y(am ) is
u t,q u /y t,q

bounded by I]ZN/Gt > - |A*/Y||u|+1) = (t+q) (T mlA*/Y||u|+l) ,
*1 ye(av ) ue (AUR)

so that Y(a& ) e A*T . [
t,q

v

o
-
0

v
s

The reader may verify that, for any Yy € A*l , t >
(t,q) # (0,1), m 2 0, we have Y(ao' ) =y and y(a© ) =
t,q 0,1

: e , . e s m
can be identified with our previous definition of o, q "
’

Lemma 2.5: Let y D y' & A*T , Ostst' , 1 < q/q' and O<ms<m' . Then

m v, om'
Y(Ott’q) Qv (at.,q.) .

Proof: Let x Y'(al::l, q') Yy « Also let u ¢ (AUA)m ,
b

_ |u|+i
V= ([VO]Ys“',[VIu']Y) € (A*/Y)

and V' = {([v(')]Y,,...,[viul]Y,) : vi Y vy, i=0,...,[u|} s the set V' is

11 defi ', Y = X
we efined because v D ¥ Now (u)v V'EV' ( ) ' and

u
(2), = wtur (2), - st ()

that (z)v' et’q (z)v' and (;{)v et,q (Z)v . Thus x y(aI:’q) y . ()

8., . (Y) for all V' ¢ V', it follows
v Lt ,q u V'
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Corollary 2.1: Let vy, y' € A*T , Ost,t' , 1<q,q' , O<m,m' , max{t,t'}<t" ,

lem{q,q'} | q" , and max{m,m'}<n" . Then

m ' m' . m"
Y(Ott’q) Oy (at.’q') 2nNny" (at..,q") .

)
Proof: From lemma 2.5, it follows that y(a: q) and Y'(a:, q,) both
3 ’
17"

contain (v N ¥') (e}x g - 0

We extend the construction to *-varieties of congruences. For any

*-variety A, m, t20 , q21 , define A(A!::l q) by
b
A*A (AR = P a o™ € A*AY1 .
R = R (G I ]

m

) is a *-variet
t,q y

Lemma 2.6: For any *-variety A , m, t> 0, q21 , A(A

of congruences.

m

Proof: If aDa' and a' ¢ A*A(Am ), then o ¢ A*A(A. ). 1If
- t,q t,q

adD y(am ) and o' D Y'(am ) for some y, Y' € A*A then
- t,q - t,q

afNa'DyEr HNY'@® YD (yNy")@™ ) by corollary 2.1 . Thus
- t,q t,q — - t,q

m
aNa' e A(AI;1 q) since YO y' ¢ A . Now let ¢ ¢ B*¥ > A* and o ¢ A*A(At q) 3
9 )

thus o Qy(al:: q) for some y € A*A , and ¢a 2 <1>(y(ocl::l q)). To show that
b4 b

m
¢a € B*A(A" ) , it is sufficient to establish that ¢(y(a )) 2 Gy ) .
t,q t,q t,q
If t = 0, q =1, there is nothing to prove as both congruences are w .

Otherwise let x (dw)(OLI::l q) y for some x, y € B* and let
9

+
u=a...a e Aay A)m , Vo= ([VO]Y,...,[vr]Y) € (A*/“y)Iul 1 . We must show that
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(%)

, % q (Ylf’)v . Ifu=2A, (x‘f)v =1 iff xpY v, and ("j)v

otherwise; but x¢ v y¢ so thac (7¢) = 1 1£f yo v v ana (F) = 0
v

otherwise. Thus (§¢) 0 (y¢) . Ifue A+ , any factorization
A »q A ¥

of x¢ = (b1¢)...(bn¢) as x¢ = zoalzl zr determines uniquely a
factorization of u as u = Ujenslg o u, € A for i =4i,...,s8 , such

that u, is a subword of bj ¢ , for 1 < jl <’j2 < «ves € j <£mn . More~

i i s
over if Vi = ([viO Y""[viluil]ﬁ) denotes the context in which uy

appears in bj ¢ , we have
i .

[®19) vov (g 91DV (I 410) oen (b,

$)] )...V ({m, )b ... (b_$1) =
i1 l iy -1 J +1 n’’ vy

(2ol seees [210)

. +
Conversely any factorization of u as u = Uje.oug U € A a subword .
of bj ¢ for 1 =1,..., s , determines a unique occurrence of u in x¢

i
with the contexts satisfying the property above. Thus

(), - F6,%) () ()

IIM

1
V1 Vé
where the inner sum extends over all u = Uy...u, U € A, b, ...b, e B,

= (glyy seees gl ) e (RN

such that V = ([w0¢]Y)Vl\[wl¢]Y)...VS([WS¢]Y) . Note that w ¢y w'

implies w¢ Yy w'¢ so that the sum is well-defined. Since

X (¢Y)(a€ q) y , we have
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for any bj ...bj e B° , V' ¢ (B*/¢y)s+l . This in turn implies that
1 s

(#),  o. € - O

The definition of counting subwords in context is now applied
recursively. For any *-variety A , m, t 20 , q21,
let

 if t=0andq=1

0

) T

]
A(At
A otherwise ,

X m,i, _ » m,i-1 m
and for i 21, A(At,q) = (A(At,q ))(At,q)

Theorem 2.1t For any A , m,i, t >0, q 21, A(A:’:) is a *-variety
‘ ’

of congruences.

Proof: The result trivially holds for i = 0 and arbitrary m, t 2 0 ,

q 21 . The proof is completed by induction on i, using lemma 2.6 . QT
Lemma 2.7: For any *-variety A , m, i, t >0, q 21,
m,i m,i
* ’ = : ’ *
A A(At,q) {o :a ;Zy(aF,q) , Y € A®A}

w if t=0 and q=1

)

m,0
where o’
‘Y(t’q

Y otherwise
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m,i—l))( m )

m,i
and o’ = o o
v ( t’q) (v( t.q £,q

Proof: The lemma is easily established when i = 0,1 . For i > 1,

m,i-1

. Assumin
t.q ) g

a € A*A(Am’l) iff o D Y'(am )} for some y' € A*A(A
t,q t,q
inductively that y' > y(a?’;_l) for some y € A*A , it follows from
’

i-1 m m,1
lemma 2.5 that o D et o = ? .
D (v( t.q ))( t,q) Y(at,q)

We now proceed to show that counting subwords of length m can

always be simulated by counting subwords of length 1, provided we are

willing to increase the recursive depth at which the contexts are taken.

Lemma 2.8: Let v € A*T , u = uyay, € A+ s X € A%

V= ([VO]Y seees [ViU|]Y) € (A*/Y)|u|+l s
Iu |+1
Vg = ([volY ’...’A[VIUOI]Y) e (A*/y) R
|ull+l
v, = ([v|u0|+1]Y yeaes [VIUI]’Y) e (A*/vy) . Then

Proof: Left to the reader. (]

2l1,1 1,1
Lemma 2.9: For any *-variety A, i, £t >0, q 21, A(At q ’ )(_:_.A(At q) .
’ ’



-41~

i
Proof: If t =0, q =1, then A(Ai :11’1) = A(Ai"i) = @ for all
? ? 1
i20. Suppose now that t >0 or q >1 . If i =0, then A(A'Z: :11’1) =
?
1,1
A(AD? = A,
( t:,q)
i-1 .
Now let i > 0 and assume inductively that A(A: _1’1) C A(At’;-l) .
2 b}

2i1,1 251,
Let a € A*A(At q ’>*) . By lemma 2.7, a‘;)_y(at q ) for some y € A*A ,
?

i 9
and it is sufficient to show that Y(ai ;1) > Y(at’i ) since
9

H

vl e axaabd) . et x y(al*h) y for some x, y e A* . Let u e A*
t,q t,q t’q

be of length < 2°-1 and let V = (vply seees Ly 1y e sl

i

o

If u= A, then (}:)

y . ¢t - 1,0 1,
X et,q ( iff xvyy § but ¥ Y(at,q) 2 Y(Ott’

uV

+
Thus x Y(al’i) y implies (x) ] (y) . IfueA ,
. tsq’, My Balr/ o

there exists a factorization of u as u = u au; , a e A,

0
i-1

luol,lull £ 27 7-1 ; then let V0 = ([vo]Y seeasy [v|u0|]y) and

Vy = (v, . ;
1 (I I,Uol'i'l]Y s s [VIU|]Y) With these fixed V0 and Vl .

let, for any 0 < ko > ko2

Uk K = {([wo] 1,i-1. ° [wlly(al’i_l)) :(u ) et,q ko s (u ) etsq kl} .

0’71 0 1
Y(at,q ) t.q v, v,
PR | 1,i-1
Observe that by the induction hypothesis Y(at q )D y(at’:l' ) so that the
’ . ]

X %0 *1

set U | is well defined. By lemma 2.8, ( ) = lax ( > ( }
0’1 EEA A e U N VA o
0 1

y y
and (y = X (0 (1 . Thus
u Y=¥p2¥1 \Yg Y
v v

0 1
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X _ b4
(u)v T 02k ,k st4q vEy kokq (a) ,
0 ko,kl v

and similarly for (y) .
Yy

Since x Y(al’i) y we have (x) ] (y) for any V' € (A*/y(o l i- 1))2
t,q a V' t,q a A sq
. x y 211 1,1
and therefore ( 6 ( . This establishes that y(a Yy Dy, ,) - A\
u)y 4 \u)y t,q = — t,q

Corollary 2.2: For any *-variety A, m,i, t20 , g 21,

A(Am’l)c: A(Al :Yiog(m+£1 , where the log is taken to base 2, and Ml

is least integer greater or equal to n.

Proof: The result is true when i=0 . If i>0 then A(Am’;) = (A(Am : l))(AIE q) -
’ >
We can assume inductively that A(Am i- l)(: A(Al él l)(iog(m+l.\
’

Applying lemma 2.9, we get

m,i X 1,(i—1)Yiog(m+1;\ n
AcA ,q) - (A(At,q ))(At,q)

- (A(Ai:éi-l)viog(m+lﬂ ))(Ai:giog(m+£“ )

Al fl.rlog(m+l‘\ E]

a(
We next proceed to show that mod q counting of letters in context
preserves the property of being a group and that thresh t counting of

letters in context preserves the property of being group-free.
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Lemma 2.10: If y e A*T  then Y(ao,q) € A*T' for any q 2 1.

Proof: Let k be such that xk Y A for all x € A* , We show that

qu ‘y(a0 q) A for all x € A* . Since xkq Y A , we have
s
xkq A
( ) = ) =1 1iff v, vy A, and both quantities are 0O
M vy VM 0
0’y C'y

otherwise. Also,

o)

]
[}
e
.c .
L~
4 .
e
S
e M
P
N

k
All terms containing a factor (f;) with V' + ([A]Y) vanish.
v'

xkq xk A
Thus (a) = q(a) eo 0=(a) .U
v v 4 v

. ) * 2 * .
Lemma 2.11: If vy € A F+ then y(at,l) e A F+ for any t 2 0 .

Proof: Let k be such that xk Y xk+1 for all x € A* ., We show that

2k+t
x2k+t Y(at l) x2k+t+l for all x € A* . We have (? A ) =1 iff
’ v
2kt dett | 2kt K2kt
V= ([x t]Y) : since x Y X this shows that ( A ) =1
' v

x2k+t+l \
iff ( =1. Next letaec A, V=([v.]l , [v.].) e (A*/Y)
A \' 07y 'y

<
]

= {([VO]Y s [Vl']Y) : vl'x Y vl}

<
|

1 ] . k N k
1= {([VO ¥ [Vl ]Y) oxvy' Y v, vy'x oy vl}
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and Y, = {(vy'] , [yl xkvo Y vl -

Y

(%2k+ﬁl Xk) xt xk
Then = X ( + I ( ) + z ( ) s
a v.eV aly VleV a/y VZeV2 aly

(X2k+t+1> xk (xt+1 5 (xk)
and = ) ( ) + b ) + a/, -
a v v V. eV v V.l vV

t .
€ V1 such that (ia)vl > 1, then x° = xlxoaxlx
t=i-1 Y vl' . Then, for j = 0,...,t - 1, we
t-j-1

If there exists V1 t-i-1

. i '
with x X, Y v0 and xlx
t _ 3 t-j-1
have x = X X(ax X
t+1 _ _j t-j . j t-j
x = X X,ax X with ([x xo]Y . [xlx ]Y) € Ul . Thus

xt Xt+1
z ( ) >t and z ( ‘z 2 t.
v, el aly Vlevl a

1 1

. 3
with ([x xo]Y . [xlx ]Y) £ Vl and

t+l
We can reverse the argument if there exists V1 € Vl such that (xa.) 21.
v

(x2k+t . X2k+t+1 . 1
Therefore a > et,l ( )V . O

v a

Our next result deals with reversal of congruences.

Lemma 2.12: If y e A*T , £t 20 ,q21, m> 0, then

(rloy N7 =P )

Proof: Let x (Y(a? ))p vy, i.e. %" y(am ) yp . Any factorization

»q t,q
p p

of X as x = xoalxl...amxm with XY vy for i=0,..., m,

induces a factorization of x as x = x pa xp ee.a. X e with
m m m-1 170

P P Y

X Yp vip for i =0 ,..., m , and similarly for y . Thus x

m
i Y(at, )y

q
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implies x ¥° (czl:’q) y and Yp(cxlt‘:l q) > (y(oatz,q))p . Replacing y by ¥°
b

we also have Y(a? q) > Cyp(a? q))p , and reversing both sides
s

)

e.qd This completes the proof of the lemma. U
2

(wr(ct':;’q))p >+ (a

The final lemma of this chapter summarizes basic properties of

the *-varieties A(Am’l) .
t,q

Lemma 2.13: For any *-variety A , my,i , t 20, q2z21

1) A(A':’é) = o iff (t=0and q=1) or
]

(A = @ and (m=0 or i=20));
ii) ifmsm' ,ic<i',tst', q|q' , then
ph € aelty
iii) 1f AC T then A(A:;::) cr, -;

s . m,1i .
iv) if AC P+ then A(At’l)q; F+ s

v) if A = A’ then (A(Alz’;))p = A(At’i) , where A%AP = [P : o e A*A}
? 9
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Proof: The easy proofs of i) and ii) are left to the reader. To

1,1i{10g(m+)\
0,q

It is thus sufficient to show that A(Aé”:)(_': I‘>< for all i 2 0 . This
, .

prove iii), we have A(Ag:i)gg ACa ) by corollary 2.2.
trivially holds when i = 0 . The proof may then be completed by
induction using lemma 2.10 . The proof of iv) is similar to iii)
except that lemma 2.11 is used in the induction step. For v), the
result is easily seen to be true when i = 0 . Again, an inductive
argument, using lemma 2.12 , may be applied to establish the result

for arbitrary i. QO

In the following chapters, we will investigate in more detail the

hierarchies of #*-varieties of congruences obtained by starting with

. m,i m,i
A= . We will use the notation A for Q(A ) . Also the

t,q t,q
superscript i is dropped when it is 1 . From lemma 2.7 , we have
m,i . m’i
that A*At is generated (under 2 ) by the congruence a q° Unless
b ?

explicitly specified otherwise, we assume throughout the following

chapters that m , 1 , t 2 0 and q 2 1 are fixed but arbitrary integers.



~47-

IIT. COUNTING SUBWORDS MOD Q AND NILPOTENT GROUPS.

In this chapter, the *-variety Ag 4 15 shown to correspond to
’
Partial results on the intermediate AT  are

the variety Gni 0,q

1

also given. Some properties of nilpotent groups are examined with

respect to this congruence characterization. In particular,

information on the subgroups of A*/ag g is obtained in terms of counting
’

subwords. Finally a bound on the star-height of ag q languages is
b}

derived.
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I1I.1 Monoild characterization of AS % *
b2

In this section we generalize a result of Eilenberg [76] on

p—groups to characterize the variety of monoids corresponding to As % °
’

Proof: This follows from lemma II.2.13 iii) since @ €T . O

We can use the results of chapter II to derive a bound on the

order of the elements of the groups A*/a , o € A*Ag q "
s

k
Lemma 1.2 : Let o € A*Ag q° k = Yiog(m+15‘ . Then x1 a A for all
?
X € A% ,
m Zk-l
Proof: For our choice of k, we have 4 c1§; AO q By lemma II.2.9,
k 3 bl
27-1 1,k : 1
A A-*" . Therefore o D ao.’ where o.’ 1is the generator of
0,6 € %0,q 2 %,q 0,4 3
1,k & 1,k
A*Ao’q , and it is sufficient to show that x ao’q A for all x & A* .
3 b

This clearly holds when k = 0 . The proof is completed by induction

on k using the argument in the proof of lemma II.2.10 . [1

Corollary 1.1 : If p is prime, ¢ 2 0 ,

m
Bt G
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Proof: By lemma 1.2, every element of the group A*la , o € A*Ag pc

has order pr for some r 20 . Q

Corollary 1.2 : AO,q,‘;>Ghil

c c
Proof: Let q = 12 1 ees P n s Py prime for i = 1,...,n . Then

m
L. I o ...N % o S -

]
O’p]_ 1 sP

m
c e =
]_r\ r\eo’pﬁcn and consequently % q

= 0
0,q O’Pl

By proposition I.2.9 c),

m m m
A% A% Cy X ... X A% c_ .
/2,4 < /“0,p1 1 A /"‘o,pn n

The ith factor of the direct product is a p;—group by corollary 1.1
so that A*/ag q is covered by a nilpotent group. Hence ag q is a
? »

nilpotent congruence. O

The key result needed to characterize AS 5 1s the following
’

theorem of Eilenberg.
Lemma 1.3 : If G is a p-group and G = A*/o_, then a, € A*A% .
—_—= G G 0,p

Lemma 1.4 ¢ If G is a nilpotent group, G = Gl X o.. X Gn with Gi

- ~ Ak *A% = coa .
a p;-group, and G = A /aG , then a, € A AO,q for q = py---P,



Proof: Let ¢>i = a . T, where T is the natural projection mot A*/C!G - Gi

Gi

Then ¢i € A*T is a P;—group congruence; hence qbi € A*Algip for some
2

i
m, 2 0 by lemma 1.3 . Let m=max{mi :i=1,..., n} . Then
n n
m m m -
= - -
¢i 2 aO,p fori=1,..., n Then s {=& ¢i 2 {=i aO,p. - ao,q ,

i i

where q = Pye-eP_ . Hence 4y € A*Ag q° g
b

Theorem 1.1 : i) Let IIq = {p : P is prime, plq} and Iq =

{1i21:1iis a Hq integer} . Then

*

AO,q A Gnil (1qu MO,i)
§ %
ii) : 'AO,* > Gnil

Proof: By corollary 1.2 A* C—) G ;; and it follows from lemma 1.2

that A C—?M ﬁog(m+lw for every m 2 0 . Thus A* C-) Gnlln (11-:1

MO,i) then

G = G1 X44oX Gn . Gi a p,-group for some p; € Hq . If G = A*/a , by

* %
lemma 1.4 @, € AO,q . Thus G r\ ( O,i) <y AO,q and thus

Conversely if G ¢ G (\ ( U

n U i
AO,q G .y N (iqu MO,i) . The second part follows directly. O

MO,i

)
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III.2 Congruence description of some properties of nilpotent groups.

From theorem 1.1, we obtain a "combinatorial"” description of
nilpotent groups. Indeed if G is a nilpotent group generated by A,

i.e. G = A*/a then G is covered by A*/ag q for somem 20 , g 2 1.
’

G ?
Eilenberg's proof of lemma 1.3 may be adapted to show that we can

always take m = |G| and q = py---p, Where {pl,...,pn} = {p : p prime, p{]G]} .

s m o, . . .
Since the definition of ey q is in terms of counting, one can describe
’

the monoid A*/o~ as a set which is a cross-product of cyclic counters

0,q
with the operation on this set modeling counting of subwords. This is

an extension of the fundamental theorem on abelian groups since count-

ing subwords of length 1 can be modeled by the usual direct product.

Theorem 1.1 also implies that A*¥ = A* , , whenever
0,9 0,9

{p : p prime, p|q} = {p : p prime, p|q'} . On the other hand, it is

not true in general that Ag q = Ag q' for all m. For example, consider
] 9
the cyclic group {al}*/a, _2 ; it may be verified that a, 2 ¢ {a}*Al 2,
0,p 0,p 0,p

but @y p2 ¢ {a}*Aé p ° We now examine the trade off between m and q in
3 k4

the simple case of abelian congruences.

Lemma 2.1 : Let p be prime, ¢, d > 1 m > 1 ; if pd > m then pcl(il)

iff 4d 2 ¢ + (m)p where (m)p is the highest power of p dividing m .

d
Proof: The lemma is easily verified whenm=1. Ifmz2 2, then pcl(il> iff

(%) pcm(mrl)...Z | pd(pd-l) .ee (pd-m+1) .

Since pd z2m, m(m1)...2 | pd(pd—l) cee (pd—m+1). Also (j)p

(Pd-j)P for
j=1,...,m - 1. Thus (*) holds iff (pcm)p = ct@m) < (pd)p

da.Qq
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Lemma 2.2 : Let p be prime, ¢ 21 , m2 1. If k 2 m then pc|(1:> for

i=1,...,m iff (k)p > c+uogpmj , where |n| is the largest integer

less than or equal to n.

Proof: Conmsider of c e {a}*A" ¢ . By lemma 1.2, [a] m has order
0.p o.p %0,p°

d
Pd for some d 2 0 . On the other hand af ag Pc A iff
4P d dy
Pcl(a 1)‘ (pi> for 1 = 1,...,m . If p¢ < m then p® camnot divide (Pd)
2 p

so that pd 2m . By lemma 2.1, it must be that d > ¢ + (i)p for

£=1,...,m . But pcl(l;) for i = 1,...,m iff a of c A iff pd|k iff
b B
l,...,m} = u.ogpm_l.

If there exists r £ m such that (r)p = j , then pJ < m.. Thus

' (k)p >d . It remains to show that mai:{(i)p s i

1 :
max{ (:'L)P ti=1,...,m} g \Llog m.& Conversely p\_ogpml < m so that

L}ogqu < max{(l)p :i=1,...,m} .

Lemma 2.3 : Let p be prime, 1 s c<d ,m21. Then Aé d C Ag c

s - >P

iffd_<_c+\_logpnﬂ

Proof: Suppose d > ¢ + L}ogp qj . By lemma 2.2, we know that
P<:+ El.ogpm_l o d c+|log mj

a %,p¢ A for ag’pc > {a}*Ag,pc . Butp /| p ‘ hence

Pc+ \_]_.ogpmJ 1

a aO,pd A does not hold. Thus Aé,pd C Ag’pc implies

d <c+ [}ogp@] . Conversely suppose d £ ¢ + \}ogpq} , and let

i (a)
x of ¢ A for x e A* s of ¢ e A*AY ¢ . Then pci X -—( for
0,p 0,p 0,p i i

i=1,...,m . By lemma 2.2, c + Llogpmj < ((:))P , that is Pdl(:) .
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1 m m
Hence x Uo,pd A . Now x a Pc y iff xw % pc A for some w such that wy

b ?

am c A . Then xw aé

d
0,p p vy and

bd H

pd A and wy aé,pd A . Therefore x aé

d m c . . . 1 m .
a9, p ;2 %5, p Since A was arbitrary this shows that AQ,Pd g; AO,pc 0

%) dcA® iffm>1l,

Lemma 2.4 : Let p be prime, 1 £ d.. Then A >
—_— »p = 0,q

| (q)P >1land d g (Q)p + \}ogpmj .

Proof: Let x € A* be such that (z) >m and x ag q A . In particular
H]
o\ @, [
ql( i) for i = 1,...,m . This implies that p F|\ ; ) for i=1,...,m .
a

X .
By lemma 2.2, we have then (q)p + \}ogpgj < ((a)) . Ifm2>21, (q)p 21

P
and d 2 (q)p + L}ogpmj , we then conclude that pdl(z) , l.e. x aé pd .

>
Using the same reasoning as in the previous lemma, this implies that
m 1

1 m .
AO,pd g; AO,q . Conversely, if m = 0 then AO,q = Q and AO,pd C Q
. K v
does not hold. If (q)P = 0 , then we have in {al}* a ag q A for some
k b

k 2 1 but since pd'does not divide qk,aq aé pd A does not hold. Hence
2

1 m . 1 d: m \
aO,pd é ao,pc , l.e. AO,pd S AO,pC . Suppose now d > (q)p + LZ!.ogpm_l .

k (@
We have ql(i) for i = 1,...,m iff p - Pl(i) for i =1,...,m , for all

@' (D *llog,ml) oI

0,q A

p dividing q . It can be verified that x = a

where (q') =0 . But x al d X does not hold since pd does not

0,p
(q)p + L}ogp@J 1 o
divide q'(p ) . Again this establishes that AO,pd é; AO,q .0
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1 m . .
C A iff >1 implies
0,9 = "0,q' (q)p P

(q')P > 1 for any prime p , m 2 1 , and (q)p < (q')p f \}ogp ml .

Corollary 2.1 : For any q 21 , A

1 m
iff A c,C A
’q' O’pi i-— O,Q'

1
0

for i =1,...,n . The result follows from lemma 2.4 . 1\

Proof: If q = plci .o pncn , then A q,g; Ag
]

ml

m
C A
q = 0,q

The problem of finding conditions under which Ao
’

remains unsolved in the general case.

Lemma 2.2 can also be used to determine the minimal integer k satisfying

xk aY A for all x in A% .
0,q
“1 “n k m
Lemma 2.5 : Let q = 12 e P, » Py Prime, m 21 . Then x aO,q A

| 4
for all x in A% iff p, ... p_ |k with 4y = c;+ |log, m\|, for
h|

j = 1,...,11 .

Proof: Consider the identity

0 otherwise .

Thus a° o A iff q](k) for 1 = 1,...,m . This is true iff p chC‘)
0,q i e i M

for i=1,...,m , and j = 1,...,n . By lemma 2.2, (k) >c, + \}og mj
Py 3 P;
for j = 1,...,n . Thus, the first condition is seen to imply the
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second. For the converse, we will use the following identity whose

proof we leave to the reader:

c
Using once more lemma 2.2, we have that Pj jl(:) forr=1,...,m ,

j=1,...,n . Thus ql(i) for r = 1,...,m and ql(ﬁl) so that x* ag q .0

We now turn our attention to the variety of nilpotent groups of

class £ m , for fixed m > 0 , which we denote by G_, . If G is
nil,m

nilpotent of class m , recall that the upper central series is given By
G) = G =
Z,©6) = {114 2,6) 4 ... Az ) =6

where, for i > 1 ,>Zi(G)/Zi_l(G) = 2(6/2;_,(®)) .

. ~ 0
Since Gnil 0= {1}, A > G

0,q nil,0 for any ¢ 2 1 . Also

Gnil,l = Gab so that by corollary‘II.l.l ii) Aé’* > If

Chi1,1

|A] = 1, A*/a is a cyclic group for any o € A*" . Hence A*/a is
nilpotent of class < 1 . We now consider the case of an alphabet of

cafdinality 22 .
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m-1

. m *pA D * /o2 = . .
Lemma 2.6 : Let a € A*A . Then Zi(A /ao,q) {[x]am ! x aO,q

o’q O’q O’q

for i = 0,...,m .,

Proof: The lemma clearly holds when 1 = 0 . For 1 > 0 , we can assume

. , . %/ 0 - . n-i+1
inductively that Z; (A /ao,q) {[x] n X aO,q A} . Then

a

0,9
%/ 0 . o Ak it . %/ m-itl
(A /ao,q)/Zi_l(A /ao’q) A /ao’q . We claim that Z(A /oto’q )

| m-i+l m-i m-1i
. *
{[x]ao’q ! x aO,q A} . Suppose x aO,q A . Then, for any v ¢ A% ,

we@URTIR L (7)o (3) (1) b0 (D) (2) 0 s
172 1 2

X 3 I yx /Y (X) ‘
QI(u;) whenever 1 < [ull f£m-1i . Similarly (11) eO,q \u).+ =) so
that xy ag i+l yx . Conversely if x a9, ; A does not hold, there exists
’ b ]

u=u'a,aecA, 1< |u] £mi such that q does not divide (:i) .

Since |A| 2 2 , we can choose b ¢ A, b+ a. Then

(=) = (&) me ()

Therefore q does not divide xb) _ (bx m-i+1
bu bu

bx does not
0,9

) , 1.e. xb o

hold. Thus Z(A*/am_l+l) = {[x] m-i+1 : a™ % A} as was claimed. Now,
0,q ao’q 0,q
- -1
{xl;n  : x ap o A} {[x]m ap Tt h)
O,Q ’ O,q >4
~ . m-i
= {[x]am_i+l PXog o A}

0,q
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by proposition I.3.1. This establishes that Zi(A*/ag q) = {[x]am : X O
? 0

>4

completing the induction step. a

m
Corollary 2.2 : A <L> Gnil o

m
0,q ’ and for q > 1, AO,q <F> Gnil,m-l .

Proof: By lemma 2.6, A*/ag q is a nilpotent group of class exactly m ,
3

when |A| 22 . O

We now present a detailed analysis in terms of subword counting

of a well-known family of groups.

Example: Let Dr , T 2 3 , denote the group of rigid transformations of
an r-gon onto itself. Numbering the vertices 1, 2, ..., r, vertex 1
can be mapped onto any other vertex and the remaining vertices may be
placed in either élockwise or counterclockwise manner. Thus Dr has
order 2r ; it can be shown that the group Dr on two generators is

determined by the relations a2 = b2 = (ab)r =1.

Let Yoo B2 2 , be the right cbngruence on {a,b}* represented
in figure II.1 . The congruence Y; generated by Y, can be found by a

well-known algorithm and is represented in figure II1.2 . From this
: n
figure, it is seen that the relations a2 = b2 = (ab)2 = 1 hold in
A*/y! so that A%/v!4 D . Also |a%/y'| =2 = |p | and thus
n n o0 n o

*/v! =
A /Yn D2n .
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. . b Q b /(/- o \ Q /' e
<—4®<——> R Q b
Representation of the right congruemce y_on {a,b}* .

/
~

Representation of the congruence Y; generated by Y, ¢

The following are claimed to be equivalent.

For all x, y ¢ A* , n 2 2,

1 (3) %, (¢

2n—l . +
) for all u such that (ab) =uu' , u' € A 3

i

1i1) (i) . 2 (i) for u = a , (gb)z i=0,...,0-2 .

i) implies ii)

The claim is proved by induction on n .

_ .. . [x y
n 2 : It can be verified directly that x Yy ¥ implies (u) 60’2 (u)

for u=a , ab , aba .

also have that (}W
ab

Using the numbering given by figure II.1 , we

N X
9 p 1 iff [x], 2 3 and (ab;) 0y, 1 iff

2
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n>2:

n-2
that for u = (ab)2 -1

X . _ on—1
a, (u) 89,2 1 1ff [X]Yn—l = 2 .

Identifying all pairs of states i and 2 +1 -4 , it is seen

that Yo-1 > Yo and that (i) 60 9 1 iff [x]Y = Zq_l or [x]Y
b
2n—2

n
for u = (ab) “1a . Also, using the formulas

Il
o

()
)+ (§) x xmen

|
x - '
(v) if x=x"a,

we have that [ * 6. .1 4iff [x]. > 21 4+ 1. The proof will
2n—2 0,2 Y

(ab) n

be complete if one shows that [x]Y = i implies

n

0 if i< ™!

X
( 2n—2‘\) = (Z) for y such that
(ab) u

[y]Y =1 - 2n—1 otherwise,
n

2

n-1

We assume inductively that the claim holds for n - 1 and also

+1
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n-2
and this for all u such that (ab)2 =uu' , u' e Af . An easy

argument by induction on |u| is left to the reader.

ii) implies iii)

The subwords which are counted in iii) form a subset of the set

of subwords which are counted in ii). The claim follows.

iii) implies i)

By induction on n .
n =2 It may be directly verified.

n > 2 We have shown that Yn—1;2 Y, by identifying the states i and

X
. n-1
2n—%) 60,2 1 4iff [x]Y > 2 +1 .

2™41-1i . It was also indicated that (
n

(ab)
Combining these observations with the induction hypothesis

yields the result. [J

Now consider the group A*/y; of figure II.2. One verifies that

Z(A*/y') = {1, 2"41} , that (ax/y!)/Z(a*/y!) = A*/té;l forn > 3,

and that A*/Yé is a nilpotent group of class 2 . Hence A*[y; is
nilpotent of class n . On the other hand, the best subword counting
representation that we are able to get involves counting subwords of

length 2n—1 . We conjecture that this is best possible and that

n-1 n-1

'. 2 2 1
' 9 - *
Y. E {a,b}fAO, {a,b} AJ,

r

, foranyq=2 , r2>1.

As an intermediate step in obtaining a congruence characterization
m-1

. 2
for Gnil,m , we also propose the conjecture that Gnil,m (O AO,* .
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We close this section by considering the problem of describing

more explicitely the congruences in Ag q
2

Let £ = I k.u u be a polynomial in IN[A] . The supEoft of £ is
supp £ = {u : ku 4 0} and the degree of f is deg £ = min {r : supp £ C. (AU MY .
Any such polynomial induces a function £ : A* > IN

= 5 X
given by (x)f = & ku (u) .
Let F be a finite collection of polynomials such that 1A € F .
With each f of degree > 1 , we associate an arbitrary congruence ef £ INFX.

These notions lead to the following equivalence on A* :

X o0py iff (x)f Gf (y)f for all £ in F of degree > 1 .

For any f ¢ IN[A] , deg £ 21, a € A, define

g = Z, k. u'
a u=u a u

g = $, k. u .
a u=au u

Observe that fg (f;) is a polynomial of degree deg £ - 1 .

Let deg F = max {deg f : £ ¢ F} . We say that f is a linear
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combination of £ ,..., f_iff there exists k, ,..., k€ IN such that
_— 1 n 1 n

n
f = £1 kifi . We define F to be complete iff the following conditions

hold:

i) for each f ¢ F with deg £ > 1 , for all a € A, fz and f; are

linear combinations of elements of F ;

ii) if fR =k, £ +...+k f and 6 , 0 are the congruences
a nn 0,q 0,q

171 NP
i
associated with f and fi respectively,  then qlqiki for i = 1,...,n ;

the same condition is required to hold on fi .

Lemma 2.7 ¢ If F is complete then ap € A*T

Proof: Let x a_,y . We show that xa a,, ya for any a € A . We have

F F
ok (xa)
u u

(xa)f

(Nf + (x) fi

(NEf + kG +o.+k ®F

where ki e IN, fi e F . Since x ap ¥ "(X)fi GO,qi (y)fi for i = 1,...,n ,

where eo’qi = efi . If ef = eo,q we have, because F is complete, that
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q[kiqi for i = 1,...,n . Thus k,(x)f; 0  k,(y)f; for i = 1,...,n , and
(xa)f Bf (yva)f . By induction on the length of z it follows that
Xz o, yz for any z € A* , A symmetric argument, using fz instead of fz .

shows that zx ap 2¥ for all z € A* , Thus ap € A*T . O

Lemma 2.8 : Let F, F' C IN[A] be such that each f € F is a linear

n
combination of elements of F' . Furthermore if f = igl kifi .

.ef = eo,q , efi = eo’qi » assume that qlkiqi . Then ep 2 Gpr .

Proof: Let x ag, y . Then (x)fi 90 q (y)fi for i=1,...,n , and
]
i

ki(x)fiAe q ki(y)fihfor i=1,...,n . Hence (x)f © q (y)f for any

0, o,

feFsothat x apy . a

Lemma 2.9 : Let F ¢ IN[A] with deg F £ m have the property that it is

complete and that for each f € F of degree 21 , £ =1 kuu and

s m
ef = 90’qf imply that qflkuq for all u € supp £ . Then ag 2 aO,q .
_m=' o [Terr W = v 1
Proof: ay . = ap, for F {1+u : |ufsm} and 6, 6 q for all £' e F' .

The conditions of lemma 2.8 are satisfied and ap D ag q " 0
?

Corollary 2.3 : Let F satisfy the condition of lemma 2.9 . Then

H={[x]m :xoa_,A}]d A*/m .
aO,q F aqu
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m
is a congruence containing a . Q

Proof: It follows from the fact that a 0,q
td

F

Thus we have provided a description in terms of counting subwords

m
0,q °

normal subgroups in A*/ag q " If m=1, it can be shown that every

5

of congruences in A This consequently gives us a description of

element of A*Ag q is of the form ap as given in lemma 2.9 . It is an
E]

interesting problem to determine if there exists congruences in

A%pT s, When m > 1 , other than those of the form a

0,q F°

Example: For any u e A* , [u] < m, let F = {1eu' : u e A*u'A*}
and let 8_ = 6

£ 0,q
all segments u' of u . It can be verified that the hypothesis of

. X y
for all £f ¢ F . Thus x aFu y iff (u,) eo’q (u') for

corollary 2.3 are satisfied so that H = {[x] m : xa_, A} 4 Axfa®
@y q Fu 0,q
?

Also let F = {1-u' : u e u'A*} = {1°u' : u e A*u"} and

p(u) » Fs(w)
for any U = {ul seses ur} such that u = uu, implies u, € Uoru, U

let F, = {1°ui : ui'e U} . The sets

U
H) = {[x]mtcx)l,q P X an(u) A}
H, = {[xl“g,q : X qu(u) Al
and Hy = {[x]m :x op A}

0,q U
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m

form (non—normal) subgroups of A*/aO q’ Moreover the largest normal

subgroup of A*/ ag q which is contained in Hl (HZ) is H .
> .
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m

II1.3 Star-height of % q -languages.
H]

From a famous theorem of Kleene [56], it is known that the family
of regular languages over A* is the closure of {{a} : a € A} under
boolean operations, concatenation and star. This theorem may be used
to provide a description of any regular language by an expression

indicating in which order the operations mentioned above may be

applied to the letters to generate the launguage.

The problemrof finding "simplest" regular expressions for
languages is notably difficult, specially when the star operator is
involved (see Brzozowski [79]). For any regular language L , let
the star-height of L , denoted Lh , be the minimum number of nested
* operators that are required to generate L . This induces a

hierarchy of languages

where Hi = {L : Lh 5 i} .
It is known that L € H0 iff M is aperiodic (Schutzenberger [65])

and thusfﬂ)gi Hl - It is not known at present if Hl + H2 . The

following lemma appeared in Henneman [72] .

Lemma 3.1 : Let L € A* ; if I-iL is a group and H 4 M'L is abelian, then
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Lh < L'h + 1 where L' is a language of maximal star-height such that ML' = Mi/H R

m m . 0
For anym >0, q >1, let AO,q > LO,q . Trivially LO,q C HO

and Lg 1 C HO . Since Al consists of abelian congruences, lemma
b4

0,q

1
. - . C .
3.1 implies that LO,q - Hl

Lemma 3.2 (K. Culik): Let L ¢ A*Ho and L' = (L + (aL*)q—la)* for some

aeA, q=21. Suppose that any word x € L' can be uniquely written as

X = XjeeeX, , X; T2 0rX € L fori=1,.e.,r . Then L ¢ A*Hl .

Proof: Clearly x € L' iff x = Xy eee X, T2 0 , with x; € Lor

x;=a, and the number of indices such that x; = a is 60 q congruent
b
to 0 . For fixed r , this will hold iff the number of indices such

that x, e L is 0 congruent to r . Hence
i 0,q

q-1
L= U ((@+DHx@+ 1T N (@aw)Ta + @an Ty |

Indeed for each fixed r , the first term of the intersection deter-

mines that x can be written as x = XjeeoXg 5> X € L or x;, = a for
- .

i=1,..., s and s 8 r ; the second term determines that s' of the

0,q

$ ' ‘ 1 x = .
indices are such that x; € L for s eo,q r . Since a beA-{a} 2P 9 »

this shows that L' ¢ A*H1 .0

Proof: Let a D ag € A*Ag q - Any o language is also a ag
b

s
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language and it is sufficient to show that [x] 2 € A*H1 for arbitrary
)
0,q

X e A% , HWow [x] 2 = r\ {y : Y) 0 x)} . From lemma 2.3,
%,q 1<|u|<2 (u O,q(u

we can infer that {y :(ayi) 60 q k} is an o'.1 , language if q' is
. ,

0,q

chosen large enough. Thus, for any k , {y :(y2> 60 q k} € A*Hl . It
a ’

, : Ay %
remains to show that {y : (ab) eo’q k} € A Hl when a # b . Let
y = yobyl ; we say that the occurrence of b which is singled out has

y
a-weight k' iff (ao) 60 q k' . Such an occurrence of b will contribute
’

y
' y . v\ _ 0)
k' to (ab) since (ab\ _'Y-‘-ngyl(a « Let

_ . q=1 .
K {(kl,...,kq_l) t ko€ IN/eo,q . 4Z7 ik, eo’q k} .

Then
(Y =
{y : (ab) 8,q X!

q-1

(k k .) ek :Ql {y : y has ki occurrences of b of a-weight i} :
q-1

l,--c,

denote by Li the sets occurring on the right hand side. First

Ky

consider the case when k, $# 0. Let

(a 2%aan) 4T 2

L=
L, = ((A%ahA* a A*aA*®) )% (A%aA® a A*aA®)
L, = wLTl b 4L
k-1
L. = (bL¥) bL*DA* - .
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We claim that

- _ T, .
L = (Ll leA*)L2 L3

i’ki

let x be in the language on the right hand side. Then x = X XyXq with

e L. - L.ba* | X, € L. * , Xq € L3 . From the definition of Ll .

o S S 2

X

1 8 i ; also x, does not contain any b of
0,q 1

it follows that ( a

a~weight i since X ¢ leA* . Furthermore x, € L2 implies that X,
contributes 0 (modulo q) b of a-weight i and Xq € L3 implies that X4

contributes exactly ki b of a-weight i . This shows that

(Ll - leA*)LZ*L3,€;_Li,ki . Conversely x € Li,ki implies that X=X Xy Xq
x, is the longest prefix of x not containing any b of a-weight i and .
i

= 1
x3 bx3

being such an occurrence of b . It follows that X, must contain

contains exactly ki b of a-weight i , the initial letter of

X3

0 (modulo q) occurrences of b of a-weight i . These observations

- * % .
imply that % € L1 leA » Xy € L2 »Xg € L3 ; hence

Li k.gg (Ll—LibA.*)Lz*L3 . If ki =0 , we replace L

’

3 above by

) 1 | o |
L., = (bL¥* *BA* : = - * i

4 = (BL*)7 "bL#bA* and Li,ki (L; = LpA®)L,*L, J L bA* . The first
term of the union takes care of those words having rq occurrences of b
of a—weight i when r > 0 , and the second term takes care of those

words having no such b . Now, since A% = 7, L L3 and L4 € A*H1 .

Also L2* € A*Hl by lemma 3.2 . Thus Li K € A*Hl and this is sufficient
]
1

to insure that [x]aZ € A*H1 for any x € A*¥ . O
0,q
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\2/5)

0,q

. n * m . = .
Lemma 3.4 : If aO,q e A AO,q , then H {[x]atct)l . : X a
m 3

abelian normal subgroup of A*/d.o q°
’

A} is an

m \P/ZJ m
Proof: H 4 A*/a0 q since % 2 «a . Also suppose [x] o’

> 0,q
%0,4q
n xv\ _ x\/y
(yl] n cHand letue (AUL)" . Then (u) o=t (u )(u ) .
ao q 172 1 2
]

I£ up t A, uy A, etther 15 fuy| <|F) or 1s ul 5\.%J’ so that

x y Xy x y
either (“1) 89, 0 oF <u2) 9,q 0 - Thus (u) . q (u‘) + (u> and

similarly (Y:‘() 60 q (z) + Kl}:) . This establishes that H is abelian. ]
?

Corollary 3.2 : Letm > 2 : then LT C H .
0,q m
2+\}0g -5_1

Proof: By lemma 3.3 , 12 <oy Applying lemma 3.1 and lemma 3.4

0,g= 1
inductively, it can be verified that for m > 2 , Lrg q c Hi+l when
]
Zi+2:l'-1 <m< Zi+l+21 s i.e. when 3~21_l £m< 321 | It follows that
[

C .
0,9 = H2+\£og %j d



-71-

IV. COUNTING SUBWORDS THRESHOLD T AND J-TRIVIAL MONOIDS.

In this chapter, we complete a result of Simon to characterize the

variety of monoids corresponding to A} 1 - It is shown that
b}

A: 1= Ai 1 for any t 2 1. Simon had obtained the characterization

] ’

Af‘l ++ J , where J denotes the variety of J-trivial monoids. We also
?

prove that threshold t counting of subwords of length m can be done by
threshold 1 counting of subwords of length mt+t-1. Finally a description

of congruences in A: 1 is given, which parallels our description for
?

m
congruences in A .
g 0,9
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*
IV.1 Monoid characterization of A* 1
14

It is known from lemma II.2.13 that AT . = Q(Am ) ', , since
t,1 t,1 +

1,Tlog(m+1)\ and

Q € T, . Indeed, using the fact that AT . C &
t,1 t,1

+

applying lemma II.2.10 inductively, it is seen that xk o xk+1 for all

X € A%, o e A% |, k= (2ﬁ°g(m+1ﬂ- Lt .
?

a smaller value of k such that xk o xk+1 holds for all x € A*, a-€ A=’=A1;1 1

We are able to determine

Lemma 1.1: Let o ¢ A*Am Let

t,1 °

m if t=1

Then xk o xk+1 for all x € A* .,

 k k+1
Proof: Since a D o , it is sufficient to show that (x ) 3] (x
= Tt,1 u t,1 u

for all x € A* , ue (AU A)m. The case when t = 0 or m = 0 is

trivial since a = w . Supposenow t > 0, m > 0 . If u = A, then

xk xk+1 ) o
(A)=( A ) =1 ., We also observe that for any u € (AU 1) ,

f Jul sl
u = 0 iff u =0, for all r 2 0. Now let |u|] 2 1 and

ul
(xu ) > 1 ;it is claimed that

xlul+r '|u|+r
(*) u 2 Iul for allr >0 .
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. x|u|+r |ul+r ' : +
If lul =1, then " 2 |u[+r = |“| . Suppose u = u'a, u' € A}

|ul
since we assume that (xll ) > 0 , we must have (:) > 0 . The equation

(*) trivially holds when r = 0. For r > 0, we have

xlul+r xlu!+r-1 x|u|+r-1>
(o) ) 1

Assuming inductively that (%) holds for [u'| < |u| and r' < r, we have

xlul+r (lu]+r—l Qu|+r—l _ (Iu|+r
(u >2 fal ST\l )7\ el

k
and the induction step is complete. Consider now (ﬁl) . In all three

cases left to deal with, the relation k 2 m holds, hence k > |u] .

xk xk+1 xk
Thus, in all three cases, (Jl) = 0 iff ( a ) =0 . If (11) > 0, we

can use (*) to imply x > k . If t =1, then k = m and
A lu

m+l and therefore

e ()2 () 2 (5) - e

xk xk+1 Xk
Thus in all cases <11) 2t , and since ( " ) 2 (u ) , it follows that

() een(3) 0

(ISI) > (i) =1, Ifl<ts<<m, then k

k
(x)z(mﬂ>zmzt. If m < t, then k
u lul

It can be verified that the values for k given in lemma 1.1 cannot
be lowered for arbitrary alphabets. Indeed, for a fixed value of m > O,

let A = {al,...,am} » X = 8,...a , U=a...a; - If t = 1, then m is
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the smallest integer with the property that ( ) 1,1 ( ) for all

r>0. Similarly, if 1 < t < m, m+l is the smallest integer with the

property above. Finally if m < t , comsidering u = a; » the reader

/.t t+1
may verify that t is the minimum integer satisfying \: )et 1 (x ) .
1 ’ 1

Let J denote the variety of J-trivial monoids. It is known that

MeJiff M and MP are partially ordered, i.e. M (ij satisfies the property

]
=)

m m,m = ml implies m,m, 1

Y
for all m, ,M, My e M Q) .

Lemma 1.2: Let o e A%AT Then o is a J-trivial congruence.

t,1 °

B

Proof: It is sufficient to show that e 4 is a J-trivial congruence.
,

Clearly, for any u, x, ¥y, 2 € A* | )s ( ) (xyz . Hence
Xyz X\ . . Xy X m . .
( a ) et,l (u) implies (u) et,l (u) , So that x at,l xy? implies

This shows that A*/ocm is a partially ordered monoid.. A

G.m X
t,l 7. t,1

symmetric argument establishes that (A*/Otr::l l)p is partially ordered as
b}

well. O
The following deep rosult has been proved by Simon [72].

Lemma 1.3: If M is a J-trivial monoid generated by A, then ay € A*Ai‘ 1"
’
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Theorem 1.1: i) For any t 2 1, A: ~—J
?

1

> J

11) 8% ;

Proof: By lemma 1.2, A% lc? J, for all t > 0. Conversely J & A% | by
’ ’

Simon's theorem. Since Af l_C_ A: 1 for all t 2 1, we also have
» »
JS A: 1 for any t 2 1. Hence A* . > J.
b4

1 The second result follows
9

directly. O
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IV.2 More properties of A: 1
’

Theorem 1.1 indicates that threshold t counting of subwords can

always be implemented by threshold 1 counting since A: 1= Af 1" of
’ ’

m - m
e,1 - %11

a tradeoff between t and m. This situation is similar to the case

course it is not true that A for all m. There thus exists

investigated in chapter III, where A* ¢ ¢c_ was seen to be equal
0,p1 1..-pn n
, ‘ m m
A% h fi only A c c A need hold.
to °’P1'--Pn , though for any fixed m, only O’Pl l"‘pn n_;? O’Pl"‘pn

But unlike the situation of chapter III, we are this time able to determine
a precise bound on the length of the subwords that must be considered
when counting threshold 1 instead of threshold t.

. mt+t-1
Lemma 2.1: At,lq; Al,l

Proof: We want to prove that for any A, a?.l;;chf‘l . It is sufficient
. b4 »
to show that [x] m 1is a am+t- language for an arbitrary x e A¥*.
@ 4 1,1
]
Since [x]m = ) {y: AN %)} and
at,l !u|5m - (U) t,l (U)
t=1
. y = M y = 3
{y - (u) et,l t) j&5<{y : (u) ik

it needs only to be shown that {y : (z) = j} is an aT+§_l language for
td

j=0,...,t-1 . To complete the argument, we will prove that
{y : (z) = j} , j=0,...,t-1, can be expressed as a boolean function of

sets in the family

{{z : (i) =0}, {z: (z) > 1} & ju] £ wHi} .
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This result clearly holds for j=0. If j>0, assume inductively that

A AN V|

D G e (N R e
particular, Y, = g, N, = {u}). Let YJ {v e N ( 3 =i},
Nj = (Nj-l - Yj)\J {voavl PvgYy € Xi,a e A, (_Ou l) >3} . Observe

that max{|v| : v ¢ Yj} = m+j-1, max{|v| : v e Nj} = m+j . Thus the

induction step will be complete if we show that

*» y:(X)-1-Y 2, :(2)2 11N QNJ tz : (%) =01 .

If z is in the set defined on the right-hand side of (*), then
z vy _ . z . z .
(v) > 1 for some v such that (u) = j . Hence (u) 23 . If (u) > j, let
v be any subword of z such that (Z) > j but no proper subword of v has

this property. Then |v| > lul > 1 and there exists a factorization of v

as v=yv av1 , such that v.v. € Y, for some k £ j. This implies that

0 01 k

. PR . AN
Vv E Nk and also that v € Nn for k £ n < j. Thus (*) implies that (v)

a contradiction. This proves that (z) = j. Conversely if

(YN {'\ .(2\ 2 oad
z € {y : (u} j} then clearly z € ‘aN {z : (v) 0} . Again let v be any

subword of z such that (Z) = (z

u) = j but no proper subword of v has this

property. If j =1, then v = u ¢ Yl since it was in NO . Otherwise there

i _ 0 1) _ :
exists a such that v = Vyavy and 1 < (\u =k < j . Hence vyavy € Nn

= f— 1 n . z
for n = k,...,j-1 and ve ¥, . Thus z ¢ VEYj{z t{v) 2 1} . O

It is easily seen that equality does not hold in lemma 2.1 1Indeed

x
= . = * .
let L = {x : (ab) 0} € {a,b}* . Then a € {a, b} Al 15 on the other

1 . 1
hand o ¢ {a,b}Az,l since ba a, ) ab but ba ¢ L and ab ¢ L.



We now consider the problem of determining explicitly the congruences

of A: 1" We use the same terminology as in the last part of III1.2; f
’

is a polynomial in IN[A] and F is a finite family of such polynomials
containing 1+A . This time, to each f € F is associated a congruence ef

in INF+ . The definitions of a fi and fg are as in III.2 .

F ’

We say that F is complete if the following properties hold:

i) fg and fg are linear combinations of elements of F, for each

f ¢ F of degree 2 1;

ii) if fi = k. f +...+knfn and © are the congruences

171

associated with f and fi respectively, then £ < kiti for i=1l,...,n

8
t,1° ti,l

the same condition is required to hold for fg o

Lemma 2.2: Let F be complete. Then ap € A*T

Proof: Let x tp ¥V - Then, for any a € A,

R
(xa)f = xf + xfa = xf + kl(x)fl +...+ kn(x)fn

— v R — +
and (ya)f = yf + yfa = yf + kl(y)f1 +...+ kn(y)fn . Since xfi ati’l yfi

and t_<_kiti we have ki(x)fi et,l ki(y)fi , so that (xa)f St 1 (ya)f .

b

Hence xa ap ya . By induction on the length of z, we then conclude that

) R
xz o, yz for all z € A* ., A symmetric argument, using fg instead of fa s

F
. n
*
proves that zx ap ZY . The index of Cp is bounded by feF |A /afl .
Hence aj ¢ A*T . O

Lemma 2.3: Let F, F'g;]N[A] be such that each f ¢ F is a linear
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combination of elements of F' . Furthermore if f = klfi +...+ knf; ,

and et 1° et 1 are the congruences associated with f and fi respectively,
H i’

assume that t < kiti for i=l,...,n . Then aFQ Gpr -
Proof: Similar to the proof of lemma III.2.8 . QT

Lemma 2.4: Let F ¢ IN[A] with deg F < m have the property that it is

complete and that for each f € F of degree > 1, £ = Zkuu and ef = et 1

f’

. m
implies t_ < kut for all u € supp £ . Then ap ;gat 1"

f s

Proof: Similar to the proof of lemma III.2.9 . O3

The construction above thus provides a description of congruences

in A*A: in terms of counting subwords. If m=1 , all congruences in

s1

A*A? 1 are of the form Cp for some F . This raises the problem of
H

. ) m
determining if there exists congruences in A*At 1°®> 1 , other than
’ -

those given by the Qg

We close this chapter with the following observation. If ocl::l L€ A*A‘: L
’ ’ 3

then {x : (ﬁ) >t for all u e (A\)A)m} is a two-sided 0 of A*/az 1
bl

Thus every J-trivial monoid contains a two-sided 0 . If M is J-trivial
and ¢ : M > M' is a monoid morphism, then O¢—l = I is a two-sided ideal

of M, i.e. MIM =1 . If F satisfies the properties of lemma 2.4, then

the set I = {[x]m : (x)f > t_ for all f ¢ F , where 6_ = 6 } is a
a4 £ f tf,l
?
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two—sided ideal of A*/a? since I = 0¢~1 where 0 is the two-sided zero

»1

of A*/aF . We conjecture that all ideals of A*/u? 1 can be described as
?

above for suitable F .
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V. MODULO COUNTING OF SUBWORDS IN CONTEXT AND SOLVABLE GROUPS

In this chapter, we characterize the monoids corresponding to the
* %

’ .
0,*
by counting subwords in context, modulo some integer q . We also

derive monoid characterizations for the intermediate varieties Al’i and

0,q
*
AO,: . But wé. first introduce congruences defined by one~sided contexts.
9

It will be shown that in the group case, one-sided and two-sided contexts

*-variety A It is shown that all solvable groups can be obtained

are equivalent. This property makes groups essentially easier to

characterize.
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V.1l One-sided context

In this section we introduce the notion of counting subwords in

one-sided context.

> m+l
* = % = *
Let vy € A*T , u aj...a_ , X €A%,V ([voly,...,[v ]Y) e (A*/v) .

Define
1 if u=2X (i.e. m=0) and x ¥ Yo
(x) - the number of factorizations of x in the form
u/>
Vv

X = X)X, ...a X with Xga Xy X, YV, for i=0,...,m

otherwise.

? will be called a left context. We introduce the following operation

on left contexts. If V = ([vO]Y,...,[vm]Y) € (A*/y)m+l , and

V= ([vé]Y,...,[v;]Y) £ (A*/Y)n+1 , then .

min+l

VI = (Ivglyoeees vy 1 1o [l lvpvil seees [y vl ) e (a%/y) :

X
The following lemma enables us to compute (u)+ .
v

> ul|+l
Lemma 1.1: Let y € A*T , u,x,yeA* , acA , V ¢ (A*/Y)l | :

v
i

Xy - : X Y‘> .
1 ( u ) u=uiu2 (ul)+ (uz N ?
\'f \'{
= 2
V.Y, 1
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11) 14if v=a , V = (A1, [al)
(2)7 = or u=A , V = ([a]Y)
0 otherwise
iii) 1if u=A, V = (1)

0 otherwise.

Proof: Left to the reader. U

Counting subwords in left context induces equivalences on A* in

a natural way. Define for any x, y € A%, y € A*T ,

—

x v(ay ¢ ¥ iff, for all ue (AU, for all V e (a%/y)
b]

() e Q)
Uy B4 \ug

We extend this construction to varieties- of congruences.

—
*-variety: then A(A? q) is defined by
’

— —_——

A*A(A" ) = {a : @ 2 v (ot

' € A*T} .
t,q t’q) s Y .

Applying the construction recursively, we also define

(o if t=0 , q=1
0
m
A(A?
( t,q)
A otherwise

]ul+l

’

Let A be any
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m,i i-1 ~
m m,1— m

d for i>0, A(A™?h) = (a(a™ A .
and for £0, A(AT7 ) = (AT TTNMY )

o, 1

—_ ,
It is clear that A*A(Af’q) ={a : a EB"Y(Q:’:) for some Yy € A*A}, where
] ?

w if t=0 and g=1

0
m,
o
Y( t,q)
vy otherwise
— T >
m,i m,i~ m
a = o .
R CReumdICHS

The proof of the following results are similar to the corresponding

ones on two-sided contexts and they are omitted here.

—_—
Lemma 1.2: If vy € A*T' , then y(a? q) e A*T ,
9

— _

Lemma 1.3: A(A?’:) is a *%-variety of congruences.
?

——— —

1,m

m,]1
Lema 1.4: A(A ?7)C A(A .
2omme 2.2 ( tsq)" ( t,q)

. k kq —
Lemma 1.5: i) If x vy A for all x € A%, then x Y(ao q) A for all x € A% ;
bl

———

.. m,1i
ii) If AC I, then A(AO:q) c T.

~k+t+1

Lemma 1.6: i) If xk ¥ xk+1 for all x € A*, then xk+tfy(athl) b4 for all
—_— LIt

x € A% ;
—_—

m,i
ii) 1f AC I‘+, then A(At,l) (_:_I‘+ .
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.-._._y

Lemma 1.7: If m<m', i<i', tst', q|q', then A(A ’ )C: A( 1

»q' Do

By duality, all the definitions and lemmas of this section can
be restated in terms of right context. It is verified that the following

result holds true.

— e

L 1.8: (a(a®i))P = AP a™ Yy |
emma (A( t’q)) ( t,q)

—+———>——>———>
We will write A *L for Q(A »t ) and a Y for w(a ’ ) .
t,q q t,q
—
m m
Lemma 1.9: A(A C A(A .
( t’q)___ ( t,q)

Proof: It is sufficient to show that for any A%, y € A*A, we have
—_—

m m m m
* i =3, e AV
Y(at’q)EE'Y(at’q) Suppose x Y(at’q) y and consider u=a;...a_¢ ( )

!u|+l

V= ([VO]Y""’[VIuI]Y) e (A*/y) Let

v ={([v6]Y,...,[viul]Y): v 031 i...a vy \A for 1—0,...,|u|}

It is verified that

(§)+ = vy (i) and (§)$ = V'EV(Z)V

v v'

. X y 1 (y) .
Since (u>v' £,q ( ) for all V' ¢ V, we thus conclude that ( )+ t,q 3

—_—

Therefore x Y(am yy . Q
t,q
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m,1

Corollary 1.1: A(Am’ YC A(Am’i)
t,q — t,q

Thus, in general, counting subwords in one-sided context only can
be done by counting subwords in two-sided contexts. We now show that

the converse of lemma 1.9 holds when we are dealing with groups.

e
m m
Lemma 1.10: Let A C r, . Then A(At,q) gA(At,q)

Proof: It must be shown that for any A*, vy & A*A, we have
—_— —_—
m m m .
o 2 v(a . Suppose x v(a and consider
Y( t’q) 2 v(a, q) pp ¥( t’q) y

2

- m luf+1 - -
usa,...a_ € (AUXN)  , V—([VO]Y,...,[vr]Y)e(A*/Y) . If t=0 and q=1,

there is nothing to prove as both congruences are w. Otherwise
x y(a? q) y implies x vy y. Let
’

VT = ([VOJY’[VOal ;l[vl]"'"[VOalvl"'ar];l[Vr]Y) e (A*/Y)lu|+l .

Then (i)v = (z)_* and (i)v = (K)VT « Since (ﬁ)_* et,q (z)GT then

VI v'

x A y m
e . e
(u)v £.q (p>v as well. Thus x Y(ut’q) v-. U

—

) myd, _ , m,d
Corollary 1.2: If ACT_ , then A(Ao,q) A(AO,q) .

—_—

The congruence aé’z is closely related to an operation on sets
?

introduced in Straubing [79].
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*,
V.2 Monoid characterization of A

O
.

In this section, we characterize the varieties of monoilds correspond-

ing to the *-varieties Aé’; , AO,q for arbitrary 120, q21. This is done
’

by showing that modulo counting of letters (subwords) in context is

closely related to extensions of an abelian (nilpotent) group H by a

group K.

Lemma 2.1: For any q=1, let Hq = {p : p is prime, plq} and

- . . . m,i
Iq {n :nis a Hq integer} . AO,q oS nqu o.n

Proof: By corollary I1I.2.2, Am »1 C:Al 1riog2(m+il Applying lemma ITI.2.10

0,q
inductively, it is clear from the proof of the. lemma that for all
x e A%, a ¢ A*Al’l(iOgZ(m+l;[ x¥ o A for some r=0. Hence

m,i U
AO,q < nqu MOzn - Q

) . s i
Note that the *-varieties Ag’q are closed under reversal, by lemma
’

II.2.13v).
Next we extend corollary II.2.2.

. % o . .
Lemma 2.2: Let y € A*T_,q>1. Then H {[x]Y(ag y P XY A} e Gnil,m

Proof: It follows from proposition I.3.1 i) that H is a normal subgroup

of A*/Y(ag q) since y 2 y(am q) . Consider the sequence of subgroups
H ’

= {[x] : x y(@©¥ ™) A} for n=0,...,m. By proposition I.3.1 ii),
Y(a q 0,9
’
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we have Hd = {1}‘4"-1{14 e 4 Hm = H. The result will follow if we

show that Hn/Hn—lc Z(H/Hn_l). Using proposition I.3.1 iii),

Hn/Hn-l = {[x]Y(am—n+l) ! x Y(OLIS::) A} and H/Hn—l = {[x]‘{(vm—n+1 t Xy A} .

o
0,q 0,q )
Thus it is sufficient to establish that x y(alg-;l) X, vy A imply
-4
m-n+1 m-n+l , Ve (A%/y) |ul+1 , we have

xy v(e, q ) y9x . For any u e (AU })

(), 7wy (2) (2)

- v v
V=V, V, 1 2

Using the hypothesis on x and y, this yields (xy) ] (x) + (y) .
u v O’q u v u v
Similarly (Y

u

X) % q (z) + (}:) and the proof is complete. (3
v 4 v v

Let G 4 . denote the family of solvable groups of derived length < i
_ger,t
and Gfit i denote the family of solvable groups of fitting length < i .
_Lit,2
It can be shown that G ., and G_.,, . are varieties of monoids for
der,i fit,i

any i 2 0 .

Lemma 2.3: Let o ¢ A*Al’:L . Then A*/a € G .

—— 0,q der,i

Proof: It is sufficient to show that A'«'f/ml’l € G ., « This trivially
0,q der,i

holds if i=0 or q=1. Let i>0 and q>i , and consider the sequence of

subgroups H = {[x]al,i T X aé’z A} for n=0,...,i . It follows from
0,9 ’ .
proposition I.3.1 that H0 = A*/aé’; DHlD ...B Hi = {[A]al,i} , and
’ 0,q
o . 1,n _ . :
that Hn/Hn+1 = {[x]a(]).,;&l Pxoag’y A} for n=0,...,i-1 . By lemma 2.2,
R A
H /H is abelian and thus A*/otl’l is solvable of derived length =< i .
n' nt+l 0,q

Note also that x € H dimplies Y e H .0
n n+l
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Lemma 2.4: Let a ¢ A*Am’i

*
0.q Then A*/a ¢ Gfit i
Proof: This proof is similar to that of lemma 2.3. Note that the series
of subgroups obtained is such that Hn/Hn+l is a direct product of

pj—groups for P; dividing q . O

To complete the results of this section, we will use notions from

automata theory. We adapt the exposition of Ginzburg [68] to our needs.

A semiautomaton A is a triple (R,A,8) where R is the finite set
of states, A is the finite input alphabet and § : R x A+ R is the
transition function; this induces a transition function § : R x A* + R
by letting (r,\)é=r , (r,xa)$§ =((r,x)6,a)é , for allr € R, x ¢ A*,la € A.
The semiautomaton A = (R,A,8) is covered by the semiautomaton A' = (R',A,8')
iff there exists P& R' and a surjective function h : P - R such that
for all p‘s P, a € A, (ph,a)s = (p,é)d'h; this relation is denoted
A { A' . Any congruence y € A*l determines a semiautomaton in a
natural way by letting AY = (A*/y,A,8) with ([x]Y,a)S = [xa]Y . For
Y, Y' € A*T we have AY< AY' iff A*/Y< A*/y' . TFor any monoid M, we

also define AM = (M,M,d8) where (m,m')S§ = mm' .

Given two semiautomata Al = (Rl,Al,Gl) and A2 = (R2,A2,62), and a
function g : R, X A~ A, , we define the cascade g-connection of Al

and AZ to be Al g A2 = (Rl X Ry, Al,5) where

((rlgrz) 33)6 = ((rl,a)sl, (rzs (rl,a)g)Gz) .
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Of particular importance in the sequel will be the case when Al = A.Y

T, = ces *® *
for some v ¢ Al T Note that, for any x a; a ¢ A1 s Z € A1 > Ty € R2 »

we have

(({z]y,rz),x)é = ([zx]Y,(rz,([z]Y,al)g([zal]Y,az)g...([zal...an_l] ,an)g)éz) .

Y

Lemma 2.5: Let vy € A*T', H ¢ Gab(\ MO ,q>1 . Then AY g AH'< AY(dé y -
Co [}

Proof: Let r be an arbitrary state of AY 2 AH and § be its transition
function. It is sufficient to show that x Y(aé’q) y implies

(r,x)8 = (r,y)é, for any x, vy ¢ A* . But t = ([z]Y,h) for some

z € A, h ¢ H . Using the remark preceding the lemma and the properties
of H , it follows that (r,x)8 = ([zx]Y,hthl...hncn) and

d d
(r,y)é = ([zy]Y, hhl l...hn n) , where

H={h,,...,h_} , c. 6 z x R
| 1 n i 0,q ([sz]Y,a)g=h!:a) ([VO]Y’[VI]Y)

1 .
d . Since x yvy(o. ) vy , we have
0,q

= T _- y
t “""o]v""‘)g‘hi(a>([voly,[vl]Y>

zx Yy zy and ¢; = d; for i = 1,...,n . Hence (r,x)§ = (r,y)§ . O

Lesmma 2.6: Let v € A*T and H ¢ Gni Then there exists q 21 , m 20 ,

1"
such that AY AH”< Ay(ag q)..

0O

Proof: 1If H = {1}, then A.Y g AH is isomorphic to AY and, for any q > 1 ,

A = . Otherwi =

Ay‘< Y(Gg ) AY erwise let q = p
»q

{pl,...,ps} = {p : p is prime and p||H|} . By lemma III.1l.4, there

1...ps where
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€ H*Am where aH is the

m m
exists m 2 0 such that o 2D
H= "0,q * "0,q 0,9

congruence corresponding to the natural morphism oy ¢ H* -+ H . Let

X = aj...a , Y= a]'_...a:" € A* . Then for any z € A*, h € H, we get

1
((IZIY.h),x)G = ([ZX]Y’hhl’“hn) and ([Z]Y,h),y)é = ([zy] ,hhi...hﬁ)

where 8§ is the transition function of Y g AH » hy = ([Zal a; 1]Y,ai)8

for i=1,...,n and h' = ([za!...a! ,ai')g for i=1,...,3 . Viewing

1 1]Y

h ...hn as a string in H* , we have, for any w ¢ (HU l)m

(hl.;-hn)= z G)V

ut—:AIWI
veV
u
where
= * =
Vbl"'bk (vl seeeslv ) e (4 1O (lavgpyvy vy 1)obE =y
for i =1,...,k} .
(h ...h') a
Similarly w |w| ( ) . Suppose x Y(“o,q) vy . Then x v ¥y
ucA
VeV
u

. ; (hl...hn> (h]'_...h:ll)
and [zx] = [zy] . Also (U)V %.q (“)v so that Y %.q .

- m . = h! '
Since aH_D_ "o,q ° it follows that hlf"hn hl"'hj and therefore

e . = ! LI ' . i A A A .
hhl - hhl hj Altogether, this proves that Y g H< Y ( t(!)l q) 0
?

Lemma 2.7 (Ginzburg [68]): Let H< G, where G is a group generated by

a set A. Let a, € A*T_ and aG/ e A*T_ be the congruences corresponding

G H
to the morphisms as ¢ A*¥ >~ G , aG/H ¢ A* > G/H respectively. Then
A A T A% .
Aa < 5 o A, for some function g : A /OLG/H x A+ H

(] c/u 8
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Let G . denote the variety of groups G for which there exists
der,i,q
i = D D ..b =‘ '] » ‘ .
a normal series G G0 G1 . Gi {1} where G1/Gr+1 £ Gab(\ MO,q

Let G_,, . denote the variety of groups G for which there exists a
fit,1i,q

i = D ‘> b - . Py
normal series G G0 Gl Gi {1} where Gi/Gi+1 is a nilpotent

group which is the direct product of p j-groups for pj dividing q.

Lemma 2.8: Let G e G . be generated by A. Then a_, € A*Al’l .
—_— der,i,q G 0,q

1,1

Proof: If i=0 or q=1 , then G = {1} ; thus 4, = 02 a; q =Y 1f
>
i>0and q > 1, there exists H4d G such that He 6, N M and
ab 0,9
G/H € Gder,i—l, . By lemma 2.7, Ah ‘( Ad g AH . Assuming inductively
-ger, 7.9 G G/H
that o, Do’ F 1 | A ‘( Al,i-1 o AH . By lemma 2.5 and transitivity
G/H= 0,q > a a? g
G 0,q
of covering, we conclude that Aa -< Aal,i . Hence A*/aG~< A*/al,i and
Li g G 0,q 0,q
®ATIL
aq € A AO,q
* i
. xA 0L,
Lemma 2.9: Let G ¢ Gfit i, be generated by A. Then e, € A AO,q
Proof: If i=0o0or q=1, then G = {1} and G = 0D ag’; =w . If
’
i>0and q > 1, there exists H] G such that G/H € Grir -1 q and H

is a direct product of pj—groups for pj dividing q. The rest of the

proof parallels that of lemma 2.8 with lemma 2.6 being used in the

induction step. O

o 1,1
Theorem 2.1: 1) AO,q > Gder i,
1,1
11) AO,* A Gder,i
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*,i
iii) A’ — G

0,q fit,i,q
L

: ]

iv) AO,* -« Gfit 1

1,% _ %%
v) AO,* A0,* A Gsol
Proof: By lemma 2.3, A1 Gy g . By lemma 2,8, G < alet
* 70,q der,i,q *7? “der,i,q 0,q

Thus i) holds. Taking the union of these respective families over all
q 2 1 yields ii). The proof of iii) and iv) is similar, this time using
lemmas 2.4 and 2.9. Finally v) is obtained from ii) and iv) by taking

the union over all i 20 . QO

Straubing [79] obtained characterizations of the family of languages

corresponding to Gd . and G 1° As we have mentioned earlier, he
er,i 1]

made use of an operation on sets which is the language equivalent of our
—
1,1

congruences o -
0,9
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VI. THRESHOLD COUNTING OF SUBWORDS IN CONTEXT AND APERIODIC MONOIDS

Having considered the case of modulo counting in the last chapter,

*
we now characterize the monoids corresponding to the *-variety A*’l .
?

* %
It is shown that A*,l <> Ap . We also obtain information on the

Iy

. . i *,1
intermediate *-varieties Ai’l and At’i , though no complete
’ ’

characterization has been established. Finally we carry out the same

investigation when one-sided contexts are considered. We show that

=%

A*’l +> R , the variety of R-trivial monoids.
?
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* %
Vi.1 Monoid characterization of A*,l .
. H

In chapter V, it was seen that many well-known families of groups
could be characterized in terms of our congruences. This indicates
that the operation of counting subwords in context is a natural one
from the algebraic point of view. In this section, we consider the
aperiodic equivalent of the families of group congruences that were

studied in the last chapter. First it is shown that globally the

* %
*-yariety A*’l is in correspondence with the family of all aperiodic
]
monoids. Then we obtain some partial results on the intermediate
1,1

. % i
*-varieties At’l and At’i . These results parallel those obtained in
’ b

the case where modulo q counting was used.

* % :
Lemma 1.1: A*,l < Ap .

3

Proof: Since §;F+ » it follows from lemma II.2.13 iv) that A?’i c:F+.,
]

*

* %
. >
1 ST, » or equivalently A, 1C->z_&_g . Q

: %
for all m,i,t 2 0. Hence A’
H] ?

CAl’lrl°g(m+ls\ and lemma II.2.11

Using the fact that A?:i =5
inductively, we see that for k = (Ziiiog(m+li\—l)t , we have xk o xk+l
for all x € A* | a ¢ A*A?:i . Note élso that by lemma II.2.13 v), each
family A?:i is closed under reversal.

Let U be the monoid represented in figure V1.1 .



* Figure VI.1 Representation of the monoid U .

Lemma 1.2: If y € A*T , then A_ o A A 1,2, .
—_— v ? Y 8 U'< Y(ay’7)
9
Proof: Let ([z]Y,m) be an arbitrary state of AY g AU and let & be its
transition function. We must show that x Y(ai’i) y implies
?

(([Z]Y,m),x)5 = (([Z]Y,m),y)d . For any v € A*, a € A, define

- ' . [V .
wv,a = {lv ]Y(ai:i) : < ')([v 1y [vg 1) 6, , 0 for any v, ¢ A*,.a' ¢ A such

' -1
that ([zvavo]Y,a ) $ 18 71 .

Suppose x = ajeedy and y = al...a . Then
((IZ]Y,m),X)G ([zx} smm, .+« .m ) and (([Z] Lm),y)8 = ([zy] ,mml--—m )

where mj ({zal...a ] ,a )g for j=1,...,k and mJ = ([zai... 5- l]Y J)g

. . N 9 . . -
for j=1,...,n . Since vy ggy(al’l) , X Y(al,l) y implies [zx]Y [zy]Y .

1
This is possible iff

If mm ceem = 1, it must be that m=1 and mj € 1g_l for j=1l,...,k .

x ) 0.

z
acA 1,1
([sz]Y,a) ¢ lg ([VO] . [V ]Y)

1,1 1,2 X y Y A
Since Y(al,l) 2 Y(al,l) we have (a) 91,1 (a)v for all a ¢ A , V¥ e (A*/Y)

Therefore
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T x 6
achA ( ) 1,1 L (Y)
([V ] ’[V ] ) ? aeA
([zvolYaa)‘ $ 18 0%y" " 1y ([zvolY,a) ¢ lg

= ' ' - . =
and o, .oy 1 iff Lo RERL 1. 1If mmy ..l = Uy, there must exist

an index j, 0<j<k such that mj = ui and m_ € lg"l for s=j+l,...,k (we

take m, to be m). This is possible iff

b4
aEA (a) e1,1 1

vel v
a

where Va = {([VO]Y(ai,i) . [vlly(al 1)) :

([2vyl ,a) & v g ,[v]( Ly el b

b4
or m = u, and X 61’1 0.

1 acA
([ZVO]Y,a) é lg ([Vo] s [v ]Y)

. ) 1,2 . . - ;
Again, the fact that x Y(al,l) y implies that Wy .eemy = Uy iff

mm'...m" =u

Jeeem The case mm,...m = u, is handled s1mllgr1y.‘3

1° 1

Lemma 1.3 (Krohn—-Rhodes [65]1): If a & A*P+ , then Aa‘< U g ..._g U for
: 1 n

some n20 .

*
Lemma 1.4: Let M ¢ Ap be generated by A. Then Gy € A*Ai’1 .
?

Proof: By lemma 1.3, Aa {U g cee g U for some n20 . Equivalently
M 1 n

A ‘( A o Uo ...o U and applying inductively lemma 1.2,

¢ “ g &1 n

([vglys vy 1)
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*lg&. By lemma 1.4, Apc—)All. The
*

*
conclusion follows from the inclusion Al’ 1S Ca ’l !

Proof: By lemma 1.1, A

From theorem 1.1, it is seen that the sequence of varieties Altl:l’l
3

ultimately equals the sequence of varieties Ai’i . This raises the
?

problem of analyzing the trade-off between the various indices.
1,

Lemma 1.5: A

—_— t,

Proof: The lemma trivially holds when i=0. We establish the case i>0

by showing that the set {x : (:) et 1 j} is an ai’i language for all
b4

. 2
aeh Ve @8Iy 520,00t . Let V= ([vy] 1L,i-1 , [v)] 1,i-1) ,
t,1
%1 %e,1
v Ly e 1,1 , 1,i-1
and V {([v ] t,i-1 , [vl] t,i l) PV %1 Vg1 o0’ vl} . The

ll ll

set V' is well defined, since we can assume inductively that

— . X
1 0 ={x: v'gv' (a)v, 6,1 9

Da ’]1_ =1 . Then {x : (x> et'

1,11
% aly t,

s1

Let O<j<t and consider a fixed a € A, V = ([v ] 1 i-1 , [v ] 1,i-1) .
%¢,1 %,1

Let V {([v ] tyi-1 ..., [v ] t,i-1) : v(') v]'_...av1'< o
t 1 tl

...av al’i-l k=0,...,j-1}

Vi1 2Vk42 t, 1 '1°
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1,i-1
and V = {([v ] tyi-1 ,..e, [v!,.] t,i-1) : v'av!...av' o’ V. ,
l 1 j+l o l,l 01 k t,l 0
' ' l,i—l _ .
vk+1avk+2"'av3+1 .1 vy k=0,¢00,3} &

Again the induction hypothesis implies that V ,V1 are well-defined.

. /X L. U AR
But {x : (a)v 0,4 3} = vl {y .<aj> o 1 1)
\')

0
N N ..y
v el {y : (j+1) 1,1 0} .
Y1
Hence {x : (x) 8 j} is an at’l language. Finally, we note that
al 't,1 1,1 ’
t-1
. [X = U . [X .
{x : <a)v et,l t} 320 {x : (a)v et’l i} ,

and the proof is complete. U

Corollary 1.1: A (iogz(m+11 (iogz(t+l—\

Proof: By corollary II.2.2, the inclusion Am’l C At’i(1°g2(m+13\ holds.

By lemma 1.5, we obtain A ’ C:At ]'QDgZ(m+l_\ . Applying corollary

11.2.2 again, the result follows. E]-

We have not been able to characterize completely the *-varieties

At’i and A*’l in terms of monoids. We now present partial results in
2

that direction.
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The approach taken here has been introduced by Straubing [80].
let ¢ : Ml > M2 be a monoid morphism. For any idempotent e € M2 , the
set e¢-l is a subsemigroup of Ml . I1f § is a family of semigroups, ¢
is said to be an S-morphism iff e¢—l € S for any idempotent e ¢ M2 .
If M is a variety of monoids and S a variety of semigroups, let
M(S) = {M: M <M1 and there exists an S-morphism ¢ : Ml - M2 s MZ e M} .
Straubing used the notation S(M) for this concept: we have reversed
the order to be consistent with our notation for the *-varieties A(A?,q) .
We also define y_(go) = M and for i1, _rg(§_i) = (y_(gi'l))(g) . It can be

verified that.g(gé) is a variety of monoids for all i20 .

We now describe a method by which one can induce a variety of
semigroups from a variety of monoids. It is known that any variety of
monoids (semigroups) can be described by equations (see Eilenberg [76]).

t+1
m

For example, the pair of equations mm' = m'm and mt = defines the

variety M N\M ; another example is the variety J which is

com t,1 o

. . , t t+1 Wt N -
characterized by the family of equations m =m , (mm') = (m'm)
for some t20 (i.e. M € J iff there exists t20 such that the above pair
of equations is satisfied for all m, m' ¢ M). If E = {el = ei,...,en = e;}
is a set of equations defining the variety M , let CM be the variety

2 r) . = = 1 .

of semigroups defined by the equations zge121 zoelzl,...,z.oenzl zge 21
Thus a semigroup is in CM iff the equations defining M are satisfied

in any context (zo,zl) . Note that the family of monoids contained in

CM is precisely M (take zg =2z, = 1.
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Lemma 1.6: Let A <> M . Then A(At,l)6;>_g (cu  MOM ).

>

Proof: Let vy € A*A and ¢ : A*/Y(at 1) + A*/y . It needs to be shown
2

that ¢ is a C(Mcom(\ Mt’l)—morphlsm. Let e = [w]Y be an idempotent in

A*fy and let z X,¥ € A* be such that their respective y(at l)
]

0°%1’
. s -1
class is in e¢ . We must show that zoxyzl Y(at,l) zoyle and

t t+1 .
zZyx z, Y(at,l) zpx zg - It is clear that zoXyz, Y 25yxzy and

t t+l
zox zl Y zox z1 so that

Z XYz Z_ VYXZ z x° z xt+1z
0*7%1 o 4 i) and L O 1) 4 0 1
A t,1 A by t,1 X *

_ 2
Let acA, V= ([vO]Y s [vl]Y) e (A*/y)" .
Let Uo = {([vo]Y , [vi]Y) : viw Y vl} s
v, = {([v(')]Y ’ [Vi]y) PNV Y Vg s VIV Y v}

and

Vz ='{([v(')]Y R [Vl]Y) : wvé Y vo} .

n

(fd) X y 51
z + % ( ) + z ( > + z >
VosVO a V. eV, \a v VleVl a V stV2 aly

Then
v 171

(7
; a
v 0 1 2

ZgYX2y oxyz oyxz
and similarly for ) . Thus , and
a v v t,l

(:zoxtz1 x

. +

2(X¥2Z, Y(at,l) zgyxzy Also a )y (~ )v + 32 ’ (?)v
11 ™1

z
: (1)
VzeV2 a

v

2
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VA Xt+12 Z z
and (0 . l) =y EV (f) + (t+1) v Ly (x) +y Ly (1) .
v 0% Yo 151"v1 28Y2 av2

t
Z.X 2 zZ_ X z t t+l
Thus 0" "1 0 0 1) and zgX 2, Y(at,l) zpx Tzg Q
a v t,l a v

Corollary 1.1:

1,1 i
e Lt

14) A,{:i 1 cer N aph

Proof: We can apply lemma 1.6 inductively to get i). The second assertion

follows directly. {1

Note the special case i=1l. The morphism ¢ : A*/at’i + A*/w has the
’

property that e¢—l = A*/ai’i . Thus e¢-l is a monoid and
. 3>
l_(C(Mcomf\ Mt,l)) = Mcom(\ Mt,l . In this case, we know that the

converse of lemma 1.6 holds true.

This property of congruences in Ai’; is an aperiodic equivalent of
3

the property of congruences in Aé’: described in theorem V.2.1. If G
sq

is a group and ¢ : G +~ G' is a CM-morphism, then e¢_1 e CM for each
idempotent e of G'. But the only idempotent of G' is 1 and 1¢—1 contains

the identity of G, i.e. it is a monoid (in fact a subgroup of G). Thus

1,i
0,q

which makes clear the parallel between threshold and modulo counting.

theorem V.2.1 i) could be restated as A «~ 1 (C(M N M )1),
- com 0,q
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Lemma 1.7: Ap = Uo 1 (C(M r\Mt l)i) for any t > 0 .
9

*
Proof: By theorem 1.1 Ap «> 3:-’1 for any t > 0. It thus follows from
»

corollary 1.1 that Ap C \>) 1c O l)1) . To establish the

converse inclusion, it is sufficient to show that _l\g(C(Mcomf\M ))C__E

’

whenever MC Ap . Let ¢ : M, > M, be a C(Mcomﬁ Mt,l) - morphism and

Mz eM. If Gis a group in Ml then G¢ is a group in M,; hence

G =

easily seen that every monoid in C(Mcomn Mt l) is aperiodic. Hence G
2

3

2 . -1 .
C
e since M, e Ap . Thus G& ep ~ € C(Mcomn M l) . It is

is trivial and the result follows. O

* 1
The result we have been able to derive for the *-varieties At,l
9’

is weaker. For any variety of monoids M, let LM = {S : eSe ¢ M for

each idempotent e of S} . It can be verified that LM is a variety of

semigroups and that oM CLM.

Lemma 1.8: Let y € A*T |, x, v, z € A% , Ifxyyyzyxzand

m 2
z v(at’l)z , then

i) (zxz)m+t_l Y(a?’l) (zxz)m+t

ii) (zxzyz)nﬂ_t_l Y(OLI::I 1) (zyzxz)m-l-t-'l .
b]
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)|u|+l

Proof: i) Let ue (AUNT, Vv = ([VO]Y,...,[VmJY) e (A*/y It

(zxz) t-1 (zxz)m+t
must be shown that 0 . This holds if u=A\
u v t,l u v

m+t-1

since (zxz) Y (zxz)m+t . Let |u|>0 . 1f, for some r>0 ,

mtr . . .
(zxz) = anlzl"'a zn , there must exist an index j such that

= olynt? =
z, zszj . Then w zoalzl...az

'zz!''a ...a z 1s a factorization
J Sl A nn
m

j+l

of w such that z'zz'' y z, and w v(a_ ) (zxz)m-l-r—l . Thus
i3 k| t,1

m m+t-1 m+t
((zxz) ) = 0 implies ((zxz) 2,= 0 and CZXZ) ) = (0 . Suppose
u v u u v

(sz)m >0 Equivalentl (zmxzm)m > 0 and (zmxzm)m = 7z a z az
* y u v 0°1°1°""“n'n °

If there exist two indices 0<j<ks<n such that 25 = zJ!zzE' and

' , then, for s=0,...,t-1,

W= Z. a,Z;e0.a z'z(zxz)sz"a ces z'z(zxz)tcl_sz" eeed Z = WnaA.W,.e.8 W
0%1%1°°%5-1%; i 2 %k-1%k k 2k %n%n - Y0%1"1'*%n"n

is a factorization of w such that L Y zg for i=0,...,n and

6 t and similarly

mt-1 ) ((zxz)
u t,1

o m+t—1)
\"; Y(at,l) (zx2) . Hence

A

(zxz)m+t
) e t . If no two such indices exist, then
u v t,1

(zxz)m = 24812008 2, has the property that there exists 0<j<n such that

= z""3 = o m-2 1o,
z = 2ga;2) .. .2y ZJ » 2 = 24 J+l J_H_...a z and 2 zsz(zxz) zxz’ 3

moreover [zi]y ¢ A*/Y[z]YA*/Y for i4j . It can be verified that this

(zxz)m+t_l (zxz)m'*'t (zxz)m
implies ( > = ( ) = ( ) . This completes the
u v v v v A

(zxz)m+t_1 (zxz) t .
proof that ( ] (
u v t,1 u v
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i1i) The proof of the second assertion is obtained by the same

kind of analysis as in part i) and it is omitted. TJ
Lemma 1.9: Let A +> M . Then A(AY ;) & M(LY) .
b4

Proof:  Let vy € A*T and ¢ : A*/y(a? 1) + A*/y . Lemma 1.8 implies that
2

¢ is a LJ-morphism. O

. 1 .
Corollary 1.2: 4_°; © 1(L1) .
1

Proof: Apply lemma 1.9 inductively. T)

The remarks following corollary 1.1 apply in the case of LJ-morphisms.
Ihafis, corollary 1.2 implies that A::i‘:é_i and by theorem IV.1.1l the
converse also holds in this case. Also corollary 1.2 constitutes an
aperiodic equivalént of theorem V.2.1 iv) (though, unlike the group case, the

characterization is not complete). The corresponding result for groups
* i i

P G .
0,* (L )

could be stated as A nil

. -V i
Lemma 1.10: A = ;5,1 L3 .

Proof: As in lemma 1.7 . a
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This result has originally been obtained by Straubing, using a

different approach. Straubing also made the following remark. Let

L be an o language, o € A*A%’i . Lemma 1.6 cannot be used to imply
b
¢l ¢2 ¢i

the existence of a series M = My == .. = M, = {1} , where ¢j

would be a C(Mcom("\Mt l)—morphism for j=1,...,i. It is known only

3

that ML is covered by a monoid for which such a series exists. If

the same property could be inferred for ML’ this would provide an
effective criterion for determining if L is an a language, o € A*Ai

1
,1

*,1
No such criterion is known at present. The same is true for At,l in
»

connection with lemma 1.9.
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*

VI.2 Monoid characterization of A*’l
3

In this section we characterize the monoids corresponding to the

*-variety A Also a one-sided version of lemma 1.6 is given.

1

Let R denote the variety of R-trivial monoids. A monoid M is in

R iff m,m,m, = m, implies mm, = m for all m;5W, Mg € M.

|

Lemma 2.1z A

g

o

Proof: Using lemma V.1.4, it is seen that A" C: A T . Hence the

- t, 1
lemma will follow if we show that ai:i is a R-trivial congruence for
—_—
all i>0 . This trivially holds when i=0 ., Let xyz ai’; x for some
—_ ’
X, ¥, z € A* . Then xyz at:i—l x and, assuming inductively that
e o

1 i~ lls an R-trivial congruence, we have xy ai i—l x . Hence

t 1
Xy X - > x l,i-i , )
(k et’l (X)V for all Ve A /at,l . Also, for any a' e A, if

T =
1’1_1 xa' , then ( k for all V e (A*/a »>"%) . Thus
t,l t,1

(x)_» < (xy)_) < (xyz)_> . If C:)_) 8, 4 XZZ)_> , it must be that
aN aly aly v ot v

—I_?
X xy) ,
(a)+ 9:,1 als* Therefore x at 1 as required.. a
v v
Let U, be the monoid represented in figure VI.2 .

1
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Figure VI.2 Representation of the monoid U1 .

—
Lemma 2.2: If y e A*T , then A o A < A 1,1, .
—_— Yyg U Y(e;’])
?

Proof: Let ([z]Y,m) be a state of AY g AU and let 8 be its transition
1
" function. We must show that x Y(di’l) y implies
= = = ' '
(([z]Y,m),x)S (([z]Y,m),y)d . Suppose x ajecedy and y aj...a .
= = 1 1
Then ((IZ]Y,m),X)G (IZX]Y,ml---mk) and (([Z]Y,m),y)é ([zy]Y,ml.--mn)

where mj = ([zal...aj_l]Y,aj)g for j=1,...,k, and mj = ([zai...ag_l]y,ag)g

. ;
for j=1,...,n . Since v 2 y(ai’i) , we have [zx]Y = [zy]Y . Also
b}

mmg .. emy = 1 iff m=1 and mj € lg'-l for j=1,...,k . This is possible iff

) x 8, , 0 .
agA (a)————————» 1,1
(fzvglsa) e wg s (Colyaly

->
Since (:)?/’ 0.1 (;’)v for all V e (A*/y)% , a ¢ A, o ..o = 1 iff

) 1 - = =
mm, ..M 1 . Finally LR uy iff m uy or

xN_____
aEA -1 (a (vl J[v.1) el,l 1.
([sz]Y,a) € ug 0O'y* 1y
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i = ' t =
Again W .ol = Uy iff Wy ...m = U . a

Lemma 2.3 (Meyer-Thompson [69]): If o € A*T is such that A*/a e R,

then A < U o ... 0 U for some n20 .
a lg

1 En 1
1.+
Lemma 2.4: If M € R is generated by A, then Ay € A*Ai"1 .
>

Proof: By lemma 2.3, Aa < Ul g .e. 0 U for some n20 . Equivalently

M 1 n 1
A < A o U o ...0 U and applying inductively lemma 2.2,
a lg g 1
M 0 1 n
A { A T,n . Therefore a € A*Al . d
1,1 M 1,1
Th 2.1 ol o a5 L
.1 = >« R.
eorem 1.1 %01 R

R ' 1%
Proof: By lemma 2.1, A*’l C—)B . By lemma 2.4, R & Al 1 * The
b
R

conclusion follows from the inclusion A ’ C A, ’ . D

We close this chapter by giving the one-sided equivalent of lemma
1.6. If M is a variety of monoids defined by a set of equations

E = {e = e] e =e'l | let CHM be the variety of semigroups defined
n ———

l,o.- n

: = U = '
by the equations ze; = zej,...,ze = ze .

Lemna 2.5: Let A <> M . Then 83 )C-> M (CH___ M D)
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Proof: The proof is similar to that of lemma 1.6 . L1

1,i
. s 1
Corollary 2.1: 1) At,l <—>_l_ (C(McomﬁMt’l) )
1 1 i
$ ’
i) 4,27 S 1 CO VDY) .

Proof: This follows from lemma 2.5 . Q3

Other congruence characterizations of R-trivial monoids have been

obtained by Fich [79].
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VII COUNTING SUBWORDS IN CONTEXT: THE GENERAL CASE.

In this chapter, we combine results of the previous chapters to

* %
derive a monoid characterization of A, - It is shown to correspond
’

to Msol » the variety of monoids in which all groups are solvable. In

the second section, we relate threshold 1 counting of subwords and

concatenation of languages.
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* %
VII.1 Monoid characterization of A*’* .
)

Lemma 1.1: Let A <M . Then A(A_ ) S A ({CHNAY Q)

3

Proof: The proof is similar to that of lemma VI.1.6 . O}

Let ¢ : M + M' be a monoid morphism. If G is group in M, then
G = G/H is a group in M' and H is a group in ed -1 where e is the unit

of Go . Thus G is an extension of a group in e¢-1 by a group in M' .

Let M . = {M : all groups in M are in G . ).
der,i,qg der,i,q
Lemma 1.2: Al 1c O M .
frmhicmvamomtaioiaibouy tq derlg

Proof: The lemma trivially holds when i=0 . Let i>0 and G be a group

1,1 1,1 1,i-1
in A*/a”?" . There exists a morphism : A¥fa T » A¥%/a? . B
/ t.q P $ / t.q / toq y

the remark preceding the lemma, G is an extension of a group H in ed

1,i-1 ) 1,i-1
by a group G' in A*/a’’ . We
t,q 7 ) % BEOWP /% g

can assume inductively that G' e M . . Let f be the identity
der,i-1,q

for some idempotent e of A*/a

of H. By lemma 1.1, hh,=fh h, f=fh)h f=h,h, , and f=fhqu=hlq for any

172 21
hl’h € H. Hence G ¢ Mder,i,q . Q
Let M ={M : all groups in M are solvable} .

sol

Lemma 1.3 (Krohn-Rhodes [65]): If A*/a € Msol , then

= = H.
A -< Al gl cea gn_l An where Ai AU or Ai AH for some abelian group
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%
. 1 14
Lemma l.4: If M e Msol is generated by A, then ay € A*,* .

Proof: By lemma 1.3, AaM{ A1 gl gn_l An with Ai = AU or Ai = AH
for some abelian group H. Using lemma V.2.5 and lemma VI.1.2

inductively, the result follows. O

Theorem 1.1: A

) 1,*% 1,%
Proof: By lemma 1.2, A,°, <& M, ; - By lemma 1.4, Msolc_) A*’* .

*, 1
1, 1,k B % mi~ 1,1V0g, (@)

Hence 4, > M, . Also 4.7, & A7y and At’qg Ag 2

* % VL, %
implies A*’* = A"X’,‘K - D

]

. - U i

Corollary 1l.1l: Msol 130 1 (CMcom )

Proof: By lemma 1.1 and theorem 1.1, it follows that M < U (cM l).
sol i>0 com

Conversely it is easily verified that every monoid in —]:(CMcoml)

contains only solvable groups of derived length < 1 . a
s . * i
For completeness, we give results concerning A*’*.
3

Lemma 1.5: If y € A*T', then ¢: A*/y(oztl)1 q) +> A*/y is an LGnil-morphism.
———— |} B ¥ Ot

Proof: Left to the reader. [
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For two varieties of monoids Ml and MZ’ define their join

— —

. v M
M VM, = M:M <Ml x My, My € ﬁ, M, e 3’1_2_}- In other words E]; 2

— e—

is the smallest variety containing Ml and MZ' The same definition can

be made for varieties of semigroups.

Lemma 1.6: Llet M be a variety of monoids, Ml’ M2 be varieties of monoids

or varieties of semigroups. Then M (Ml) vM (Mz)_C_ M (Ml v MZ)'

Proof: Let Me M (El_) VM (M,)). Then M { M x M, where M; ¢ M (34_1_)

sty_,(bl:M +~ N, a

and Mz e M (MZ)‘ There then exists Nl’ 1 1
Ml-morphism and ¢2 : M2 > N2 a M2—morphism. Since M is a variety,
Nl x I‘I2 e M. Let ¢ : Ml X M2 > Nl X N2 be defined by

(ml,mz)d; = (m1¢1,m2¢2). It must be shown that ¢ is a Ml v M2—morphism.

If {e 2) is an idempotent of N1 X NZ’ it must be that ey is an

1°¢

idempotent of N, and similarly for €. If (ml’mZ) € (el,e2)¢-l, then

1

= -1 . - -
ml¢1 = ey mquz = e,. Thus (el,e2)¢ is a subsemigroup of el¢l 1y e2¢2 1

and therefore (el,e2)<j>—l € M1 vy ., O

Lemma 1.7: Let A <> M. If y € A*A, then A*/y(a” ) e M(LJ V LG_..).
A e = t,q’ & === nil

Proof: From the definition of Y(aI: o) it follows that
b4
m - m m x m < ax m " m
Y(ut,q) Y(at,l)nY(aO,q)' Thus A /Y(at’q) < A /y(at,l) x. A /y(ao’q).
From lemma VI.1l.9, we infer that A*/y(mt::l l) e M (LJ). From lemma 1.5,
b
. * m
it is seen that A /y(ao’q) e M (LGnil)' Hence

m
%/ ’
A Iy(at,q) e M (LJ) v M (LGnil). By lemma 1.6,

M (@) vM (LGnil)g_ M (LI V LGnil)’ completing the proof. U
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. -V i
Corollary 1.2: M_ . = ;54 1 (@iv LGnil) ).

Proof: Let a ¢ A*AI::I’i

-

. Then A*/a <A*/OLI:’;. Iterating lemma 1.7, it
2
* %
follows that 4%, <> J

verified that every monoid in 1 ((LJ V LGnil)l) contains only solvable

i1 ((LJ v LGnil) . Conversely it may be

groups of fitting length < i. O
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VII.2 Threshold counting of subwords and concatenation.

®ok
In chapter VI, it was shown that Al’1 <> Ap . A famous theorem of
’
Schutzenberger [65] indicates that the corresponding family of languages
consists, for each alphabet A, of the closure of the family {{al : a € A}

under boolean operations and concatenation. This result is extended to

* %
A(Al’l) for an arbitrary *-variety of congruences A .
*

The following notation will be used. If A <+ L , we denote by

Lm’i the *-variety of languages corresponding to A(Am’l)

. For any L
t,q t,q v b

[M denotes the smallest family of languages containing LU{A} and
closed under concatenation; LB will stand for the smallest family of

languages containing L and closed under boolean operations.

%
Lemma 2.1: If A <> L then A*Ll’ig_. (AxLU{{a} : a € ADMB .

Proof: Let y € A*A ; we have to show that for any x € A* ,

[x]y(aT’l) € (A*L\J{{a} :ae A)MB . Let
Yx = {(u,V) : |u|Sm and (z)v 91’1 1} and
N_= {(,V) : |u|sn and (z)v 0, 4 0} . Then
[l ) ° N vgla vyl eyl
(al-.-ar,(f\IO]Y,---,[vr]Y))s Y.
(ﬂ\ (ﬁ\ [VO]yal[vlly"'ar[vr]Y .

(al...ar,([vO]Y,...,[Vr]Y))e Nx
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Since [v]Y e A*L for all v € A* , this proves the lemma . O
*

Lemma 2.2: If {A} € A*L then (A*L U {{a} : a ¢ A})MBQA*L1’i
<9

Proof: Since A*L o1 is closed under boolean operations, it is sufficient

1,1
to show that Ll"'L e (A*L U {{a} : a € A})M implies that
Ll...Lk A*L i . For Ll...Lk as above, then, for i=1,...,k , either
L = {a} or L; is a union of y;-classes for some v, ¢ A*A where L < A .
= {5 . - N s
Let I = {i : Li + {a}, a € A} and v iel Yir\ TP Then each Li is

either {a} or a v language. Distributing concatenation over union, and

using the fact that A*L is closed under boolean operations, it is

1, l

seen that it is sufficient to show that Ll"'Lk e A¥* Ll’l when Li = {a}

or L, = [x]Y for some y ¢ A*A , i=1,...,k . If L = {a} , we replace

L1 by {J\}L1 . If for some 1l<i<k-1 L; and L,y are both in {{a} : a € A} ,

we replace L by Li{A}L if Li = [x] and L = [y] , we can

i+l ?
-1L ) . Note that a lL is a y-language.
i+l i+1

i+l
U
replace L.L, . by L, (Y, a a

Finally if L e {{a} : a ¢ A} , we replace it by Lk{l} . Noting that
{1} is a y-language and distributing concatenation over union, Ll"'Lk
is seen to be a boolean function of languages of the form

= < . i
L [vdkal[vl]Y"'ar[Vr]Y for some r,k» Since

= {x : X 9 1} , it follows that
a....a 1,1
1 r ([vO] yeeoslV ]Y)

* ’ ’
LeA Ll 1 and Ll...Lk e A Ll 1 a

lemma 2.3: Let A <> L . Then A*Ll’l is the closure of (A*LU{{a} : a € A})

under boolean operations and concatenation.
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Proof: By iterating lemma 2.1, A*Lz:itg (A*LU{{a} : a ¢ A})(MB)i , and
thus A*L;:IS} ;;é (A*LU{{a} : a ¢ A})(MB)i . To prove the converse,
observe that {i} = !:k A*aA* is a Y-language for v € A(Aizi) . Clearly
caxLU{{a} : a e ANC (A*L;:ilj {{a} : a € A}) and the hypothesis of

*
lemma 2.2 is satisfied for A*lL .1 . Hence

1,1

(A*L U {{a} : a ¢ ADMB C (A*Lz’i U{{a} : a € ADMB

% 3

Iterating this result, we get (A*L U {{a} : a ¢ A})(MB)ig; A*Ll,i+l ,
t ]

and this completes the proof. Note that our proof indicates that

(A*L U {{a} : a ¢ A})(Mmj'lies between A*Li’i and A*L:,i+1 o
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VIII SUMMARY AND OPEN PROBLEMS

The goal of this thesis was to obtain an algebraically meaningful
classification of regular languages. This problem has two aspects.
First it is necessary to design a method for generating families of
languages, and then, these families must be characterized by the

properties of the induced monoids.

Eilenberg's theorem gives conditions under which an algebraic
characterization is possible for a family of languages. In chapter I,

we expressed these conditions in terms of congruences of finite index.

In chapter II, we presented a method for generating regular
languages, where membership of a word x is determined by counting
certain factorizations; that is,we counted occurrences of subwords of
length m Vith respect to a congruence et,q on IN, recursively taking
into account the context in which these subwords appear. This member-
ship criterion was expressed in congruence form and it was shown that
*-varieties of congruences were produced. These *-varieties are thus
defined by four parameters: the length m of the subwords that are
counted, the depth i of the recursion, and the indices t and q of the
congruence on IN with respect to which the counting is done. Moreover
these families of congruence A?:i can be ordered by inclusion according

to the values of m, i, t and q, thus providing hierarchies of

increasing complexity.
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This is a convenient approach in many respects. For each A ’3
,
and each alphabet A, there exists a unique congruence a?’: on A* such
b

that o € A*A::i iff aDa ’i. Also, the Krohn-Rhodes decomposition theorem
indicates that the structure of any finite monoid can be described by
appropriate combinations of groups and aperiodic monoids. For our
construction, we showed that groups were generated iff t=0 and aperiodic
monoids were obtained iff q=1. In the general case, properties of A?:i

can be inferred by combining properties of Ag:: and At l Finally, it

was shown that the simplest instance of our construction, i.e. taking
m=i=1, led to the smallest varieties of monoids, i.e. to varieties of
commutative monoids (figure VIII.1l). 1In section II.1l, a complete

characterization of all varieties of commutative monoids was given along

these lines.

In subsequent chapters, we studied the families of monoids corres-

ml

ponding to the congruences in At q
’

In chapter III, the correspondence AO i-++ Gnil was established.

The hierarchy of #*-varieties of congruences

g iC Al 1§ ..._C_AIS lC ces C:A()”,e was related to the hierarchy of
’
varieties of groups Gnil,oq; Gnil,1€; ...C G ail,m c... c:_G i1° which

is the natural algebraic hierarchy leading to nilpotent groups (figure

VIII.2). Also an attempt was made to characterize all congruences in

Am,l

0.q in terms of counting subwords.
?
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In chapter IV, we proved that A, i <> J. We suspect the existence

of an aperiodic equivalent to the notion of nilpotent groups of class

m, i.e. a hierarchy J, cIC... CJ C ... € J which would relate to

0,1 ClAl i

the group case (figure VIII.3). We again discussed a characterization

[ el

I

ces Af ig; C:.A ’ in a way similar to

in

the hierarchy A,

. m,1 , .
of congruences in At’l in terms of counting subwords.
’

1*

= a : -
In chapter V, we established that AO % AO £ < Gsol . The inter
mediate *-varieties Aé’i and AO’* were also characterized exactly by the

structure of the induced monoids (figure VIII.4). More specific results
were given when modulo q counting was considered, for a2 fixed integer q.
1,* %
In chapter VI, it was shown that A}’ 1 = A*,l <> Ap . Necessary

conditions on the monoids were derived for the intermediate *-varieties

i I and A T (flgure VIII.5).
Finally, in chapter VII, previous results were combined to yield
% % %
the characterization Al = A%, M . Partial results concerning
& * *’* sol
i’* were also given (figure VIII.6).

Throughout this work, we also considered the trade-off between the
. * % 1,* ,
various indices. Our results show that A °, ==Lj Al’q where the union ranges
’ 9

over all those q which are product of distinct primes. Thus to

generate Msol’ it is sufficient to count letters in context, using

threshold 1 and modulo p counting for p prime. It is easily seen that

no further restriction can be made on the set of indices. We also
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provided a modification of the initial construction which would take
into account one-sided contexts only. Nothing was lost in the group
case, but, with threshold counting, this modification led to the
varieties of R- and L-trivial monoids (figure VIII.7). Finally, some
study of the languages defined by our congruences was made from the
point of view of Kleene's operations. A bound on the *-height of ag’q

>
languages was given (section III.3) and a relationship between

concatenation and threshold counting of subwords in context was

indicated (section VII.2).

We now conclude by stating some problems that remain open and

suggestions for further research.

The most important problem to solve is certainly to extend our
classification to all regular languages. The idea of counting factorizations
of specific types has proved extremely fruitful from the algebraic point
of view. Counting subwords in céntext is sufficient to generate all
monoids containing only solvable groups. Left out of this classification
are all non-cyclic simple groups, and consequently, the monoids containing
such groups. In view of the fact that any group contains (not necessarily
normal) cyclic subgroups, it seems that the idea of counting some kind
of factorizations might play a role in generating congruences of finite
index for arbitrary monoids. We suggest the extension of our approach to
counting segments. Preliminary investigations indicate that a proper
formalization of this idea will generate hierarchies of varieties of
semigroups. It also seems that this approach can define in a systematic
way sequences of increasingly complex congruences where each member of
the sequénce can be reduced to the previous one, by using a generalization

of the notion of morphism.
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A second problem of importance is to complete the monoid
characterization for the *-varieties Ai’i and A*’: A natural approach
?

to the solution of this problem is to characterize the monoids

corresponding to Ai and A l’ and to combine these results with those

i
1
concerning Aé : and AO ;, which are already available. This solution
should respect the similarity in the construction leading to aperiodic
and group congruences. Indeed, we believe that the "algebraic meaning"
of the indices m and i can be analyzed independently of the type of
counting which is done. 1In other words if A::i corresponds to all
monoids having property P, then A i should correspond to all aperiodic
monoids having property P and AO * should correspond to all groups

having property P. This is exemplified in the initial level of the

hierarchy where the values m=i=1 determines the property of commutativity.

We recall that corollary VI.1.1 ii) indicates that Ai:i(;;g, where
MeM iff M is covered by a monoid M' for which there exists a sequence
of i C(Mcomf\ Ap);morphisms M“fl+ ces fi+ {1}. We suggest that this
property implies that there exists a sequence of mappings M fl+ cos Ei+ {1},
where the ¢j would be generalized morphisms having some property closely
related to commutativity. To be interesting, the existence of such a

chain would have to be decidable; hence relational morphisms as defined

by Tilson in Eilenberg [76] are not suitable for the task.

Another set of problems deals with the operation of counting subwords
when the context is not considered. Although we have characterizations

for the monoids corresponding to A, i and Ao’l, it is not clear how these
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characterizations are related. Following the discussion above, we feel
that J-trivialness is the aperiodic equivalent of nilpotency of groups:

it would be helpful to have a more exact description of this statement.

Also in the variety of nilpotent groups, we are presented with two
hierarchies; one more natural from the algebraic standpoint (classifying
by the length of the central series), the other more natural from the
language point of view (classifying by the length of the subwords that
must be counted). Our analysis of the dihedral groups seems to
indicate that the two hierarchies do not coincide. Establishing the
exact relationship between them would be a useful result. A more general
problem is to characterize the set of all varieties of nilpotent
congruences. Using the notation of section II.1l, we know that AE’l

is a *-variety of nilpotent congruences for all

N = (O,nl,nz,...), ng e INU{*} for j21 . Results on this problem would
certainly include a solution to the previous one. We also mention two
problems of lesser importance concerning this family. The first one is

to characterize the tradeoff between m and q, i.e. to find the minimal

1

m' such that Ag c, ¢ C Ag
’pl,',L,pn n ’pl"'pn

qg Ag'q, iff {p : p prime and p|q} C {p : p prime and p|q'}
b

. The result we got for m = 1

says that AR
0,

and qum'q' . We conjecture that it is true for arbitrary m. This result

and conjecture are to be related to the corresponding result in the

m C Am'
t,1— 1,1
m,1

problem is to determine if there exist other congruences in AO q than
b4

aperiodic case which says that A when m+t < m'+l . Another

those given by ap -
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Continuing on the similarity between nilpotent groups and J-trivial
monoids, we conjecture the existence of an algebraic property
paralleling central series; this property would define a hierarchy

R = = . i
:I_O_g__i];_C_._ =J C...C J, with Jy = 1 and J; Mcom{\z_\_yi It is

felt that understanding this property could help in simplifying the
proof of Simon's theorem. Closely related is the problem of determining

all *-varieties of J-trivial congruences.

Finally, we make some remarks on the longstanding *-height problem.
The definitions of our congruences yield precise descriptions of
languages in terms of counting certain factorizations and these in turn
can be readily expressed in terms of regular expressions. We are thus
in presence of a convenient framework for studying *-height. It is
known that any o language, o € Aé:i , has *-height 1. Two natural ways
for getting hard languages (from the *-height point of view) are
to count letters in deeper context and to count longer sub-

words. Going in the first direction, the following example is a simple

candidate for a *-height 2 language. Let A = {a,b,c} , x v v iff

X y - - [ x

(u) 60’2 (u) for u=a,b and I; {x '(\c) 60,2 0} . Thus
([HY’[V]Y)

Ll consists of those words which contain an even number of c's, where we

count only those c's appearing after even number of a's and even number of b's.
The syntactic right congruence that recognizes,Ll is renresented in

figure VIII.8. Going in the second direction, we have shown in

chapter 1I1 that any o language, a € Ag’:, has *-height 1. We are thus
’

led to counting subwords of length 3 as the next level of difficulty.

It can be shown that {x : ( x ) ) k} has *-height 1 whenever the
ajaya, 0,
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1° 3 and a, are not all different. The next candidate

*
*-hei = . (¥
for a *-height 2 language is thus L, {x : (abc) 90’2 0} C {a,b,c} .

three letters a

The syntactic right congruence recognizing this language is represented
in figure VIII.9. A final example can be produced along different
lines. The language L3 = (b(ab*a)*b+ab*a)* is recognized by the right
congruence represented in figure VIII.10. It can be shown that L3 is
‘an ag:; language and thus that it has *-height 1. Consider

L, = (ba*b(ab*a)*ba*b+ab*a)*, accepted by the right congruence

4
represented in figure VIII.1l. L4 is an example of a language of
*-height < 2 whose syntactic monoid is a solvable group of derived length 3.

It is not known if a *-height 1 expression can be found for L4.
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0,1

Fig. VIII.1 : Counting letters and related monoids
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1,1 =1

AO,* Gnil,l Mcom(\ MO,*
0,1 -
A0,* Gnil,O 1

Fig. VIII.2 : Modulo counting of subwords and related monoids

Lo |
Note: + M . means that A C3 M has been established but

a4

not the converse.
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-
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Je

== =7
m,1 | = 2 1
A*,l ‘ i‘!‘. ? X
N\ I__T-___,i

I

Fig. VIII.3 : Threshold counting of subwords and related monoids
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1,i %1
AO,* Ao,*
. [}

* L[]

N | )
1,1 %1
Boox Box

Fig. VIII.4 : Modulo counting of subwords in context and

related monoids

Gsol
L 3
o.. "
c G

der,i fit,1

N

[ ] 1 3

» [}

’ e
Cer,1 Ceie,1

Cger,0 = Cgir,0 ~ %
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Al’* = A*’* A
*,1 *,1 2P
. L)
.‘ ..
m-— - === - e
Licce Oy b D o1ash
¢ - com *,1 | : = :
L —_— b e o o — 1

{Mcom(\ M*zl - lﬁC(Mcom(\ M*,l))

1= -]—‘-(C(Mcomm M*’l)

Fig. VIII.5 : Threshold counting of subwords in context and

related monoids
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1.* % %
*:* = A*:*
L .
*,1 |,- b-imi rl_— -“—.i--'
A*’* I ;(CMCom ) ! , 16 i1 Vv LD,
- — - | 1
A*,l = CM ) v J= l(LG v 'LJ)
*, % com ="""com nil = ='""Ypil 0 ==
7l
0,1 0y _ 0
B 1=, % = L@6, VLD

Fig. VIII.6 : Counting subwords in context and related monoids
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Two-

sided context

Left context

Right context

No context

H-trivial

R-trivial L-trivial

J-trivial

Fig. VIII.7: Threshold counting of subwords in context and

Green's equivalences.
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g

Fig., VIII.8 : Representation of the syntactic right congruence of L1

/\Q,
I
U

RZEN
o
4
o
)
' v oo
/N
-
N
‘6‘9—"

vV

f‘

Fig. VIII.9 : Representation of the syntactic right congruence of L,
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!/\
ol oo
<__.___
b

Fig. VIII.10: Representation of the syntactic right congruence of L

(2
A

O

3

Fig. VIII.1l: Representation of the syntactic right congruence of L4
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