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Abstract

The representations used to implement an application's data
structures play an important role in determining its
execution cost. Since suitable representations may be
selected from a very large class, it is necessary to search
for the efficient ones systematically. In this thesis,
algorithms based on dynamic programming for selecting
efficient composite storage structures are presented.

The general problem is to design a storage structure for an
application whose behaviour 1is characterized by a set of
(abstract) data type occurrences for which the relative
operation frequencies are known, time-dependent functions.
Given a library of possible implementations for each
occurrence, this information <can be represented by a
collection of evaluation and conversion cost matrices as
follows. An evaluation matrix reflects the expected run time
and storage space required by each representation for every
data type occurrence at one phase of the application's
lifetime. A conversion cost matrix represents the costs of
converting from the potential representations for a data
type in one phase to any in the next phase. The goal is to
select a representation for each data type occurrence at
each phase, such that when considered as a whole, the total
cost of the application (including conversions) according to
a given cost formula is minimized.

Several special cases of this general problem are examined.
When only one evaluation matrix is necessary to characterize
the complete behaviour of the application, pseudo-polynomial
algorithms that select the most efficient implementations
for each data type occurrence are presented and discussed.
When an initial set of implementations has been adopted and
that selection is no longer the most efficient because the
relative frequency of operations has changed, it is



desirable to find the most efficient set of assignments for
this new phase taking into account the initial set and the
associated conversion costs. The algorithm presented to
solve this problem is also pseudo-polynomial in its running
time. If an application consists of only one data type
occurrence, which must adapt to all the phases of the
application lifetime, the selection of a storage structure
is identified with finding the optimal set of reorganization
points for a data structure that deteriorates with time, and
the algorithms presented for the solution of these problems
run in strictly polynomial time. Finally some solutions to
the general problem are described; their running times are
exponential in the number of data type occurrences or in the
number of phases.

All of the algorithms presented incorporate bounds on the
total amount of time and/or space available for each phase,
and solve the problems for arbitrary, monotonic cost
formulas.
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CHAPTER I

I. Introduction.

I.1 A framework for data structure design.

Current research in data structure design has 1led to
the specification of data at several levels of abstraction.
In this manner the design process proceeds through each
level independently, thus considering only those aspects
important to the particular 1level under investigation.
Since this partitioning into levels is hierarchical, changes
in a level of abstraction affect the levels under it only,
thus 1leaving the other levels unaltered. Some other advan-
tages, both conceptual and practical, can be found 1in

[Tompa77].

The levels of data refinement as introduced by Tompa

are as follows:

i) data reality: this level represents the data for
the application under consideration as it actually

exists in the real world.

ii) conceptual model: a refinement of the previous

level in which only those relationships considered



to be of importance are included. This level
defines the universe of discourse for all the uses
of the data structure, and it can be defined, for
example, in terms of n-ary relations or tables in

which all relationships are equally accessible.

iii) abstract structure: a further refinement in which
only <certain relationships are made explicit. The
others may be derived indirectly wvia algorithms
that traverse this structure. It is common to
specify this level in terms of a composition of

abstract data type occurrences.

iv) storage structure: at this level a realization of
the abstract structure is introduced in terms of
cells, lists and storage media. This 1level is
often diagramed using boxes to represent contigu-

ous nodes and arrows to represent pointers.

V) primitive encoding: a final computer representa-

tion of a given storage structure that specifies

the encoding of atomic objects.

Typically when designing a data structure, the designer
is constrained to a specified conceptual model defined by an

enterprise administrator, and to a given primitive structure



imposed by the hardware characteristics, programming
languages or operating systems under which the application
is to be executed. The designer's freedom lies then on the
selection of an appropriate abstract structure for the given
conceptual model, and on the selection of a storage struc-

ture realization.

As an example, consider a chemical company which
desires to automate the records of all its suppliers. The
managers of such a company must consider all aspects of data
reality, e.g., political stability of supplying countries,
financial status of suppliers, and so forth, as well as
those of particular interest to the data management applica-
tion, e.g., identification of supplier, which substances are

supplied by each supplier and at which cost.

The application managers communicate their needs at
this 1level of abstraction to the enterprise administrator.
It is the responsibility of this person (or ©persons) to
identify and integrate those relationships deemed to be of
importance. In this conceptual model all relationships are
equally accessible, i.e., no idea of computing efficiency is

yet introduced.



On the other hand, the remainder of the design is very
strongly influenced by efficiency considerations and is
therefore the responsibility of the data structure designer

or the database administrator [Tsichritzis78].

The task at the next level is to abstract which rela-
tionships can be expressed in terms of other more basic
ones. Thus the designer decides which relationships will be
stored explicitly, as well as which objects are decomposable
into more primitive ones (which implies the need to recon-
stitute the objects when desired as a whole). For example,
one could choose to represent a matrix as a primitive object
or as a composition of rows or columns. 1In fact, this
level, called the abstract structure, is commonly expressed
in terms of a composition of data type occurrences and in

terms of the valid operations over the data types.

In the example of the chemical company, the data struc-
ture designer, knowing the type of queries likely to occur,
might decide to represent the important attributes 1in the
application wvia 1inverted 1lists. Each such 1list 1is an
occurrence of a data type. Other queries involving attri-
butes not inverted will be computed by means of algorithms

that traverse the complete structure.



Thus, once the abstract structure is chosen, the correspond-

ing algorithms are also determined.

Given that the abstract structure is defined in terms
of a composition of data type occurrences, "representation
independence" is achievable. This means that the use of an
a data type needs not (in fact cannot) rely on any particu-
lar implementation for the type. This independence allows
the freedom at the next level of refinement to select or to
change the implementation of the type so as to improve some
measure of performance without recoding any application's
uses of the type. 1Indeed, programming 1languages such as
Alphard [Shaw77], CLU [Liskov77], Mesa [Geschke77], and SETL

[Dewar79] among others with the concepts of form, cluster,

class or map provide an ideal mechanism for expressing the

abstract structure of an application.

Under the framework just described it 1is possible to
identify the next 1level of refinement, called the storage
structure. At this level, the data structure designer, or a
compiler for a high-level language, can select from among a
set of implementations for each data type the ones that best
suit the application. Furthermore, if desired, there is the

flexibility to change implementations at will.



The creation of a repertory of implementations from
which the selections are made has been addressed by Tompa
[Tompa74] and by Low [Low76]. 1In database systems, such a
given set of possible implementations is commonplace (see,

for example, [CODASYL71]). A library of implementations

contains a set of possible representations for each of a
standard set of data types available at the abstract struc-
ture 1level. Each member is a cluster of code that imple-
ments the valid operations for a particular representation
of the type. For example, a set of valid operations for an
array data type might be to create an empty array, to locate
an element of the array, to read or to write its contents,
and to destroy the array. These operations can be imple-
mented for different representations, e.g., the array can be
represented as a contiguous store, linearly addressed store,
unary chain, bit map, binary tree structures etc.
[Gotlieb74]. Some of the implementations in the library may
be better suited than others for a particular application.
For example, if, relative to other operations, a large
number of insertions are to be performed, the linearly
addressed store is a good choice; however if the array is
sparse and storage space is at a premium, a unary chain may

be better.



The reliance on a library of implementations restricts
the solution space to that implicitly described by the
library. Another approach would be to allow the solution
space to «contain all possible implementations (an infinite
space). However, given that in the 1latter approach the
number of alternatives 1is so large and the characterization
of all alternatives is an open problem in itself, this
research 1is <constrained to the restricted space mentioned
first, It is felt that the restriction need not be severe
if the 1library 1is allowed to be large (which, in turn,

requires that its alternatives can be quickly appraised).

The time needed to select appropriate representations
depends very strongly on the number of degrees of freedom,

that is, the number of independent occurrences for which a

choice 1is to be made. If the number of occurrences of data

types is very large (as is often the case) it 1s important

to aggregate them into substructures. These substructures

are homogeneous collections of data type occurrences defined
at the abstract structure level. For example, although, in
principle, each row of a matrix could be represented by a
different implementation, it is usually convenient to treat
them as a single substructure and insist they, have a common

representation.



For this thesis, the choice of storage structure will
be made on the basis of a cost formula which is used to
evaluate the effectiveness of each selection.. The cost
formulas most commonly used weigh the total space consumed
by the total time this space was in use. However other mono-
tonic non-decreasing cost formulas could be used.
Throughout this thesis, cost will be assumed to be a func-
tion of space and time; thus each member of the library of
implementations is characterized by parametric formulas that
reflect the expected run time for the set of operations and
the expected number of storage cells used by the data

[Low76, Tompa76].

The library of implementations needs to be created and
its members characterized by parametric formulae once only.
Afterwards, to design the storage structure for a particular

application, it is necessary to generate an evaluation

matrix that can be used in an optimization procedure for
selecting the most efficient (according to the cost formula)
combination of implementations for each of the substruc-
tures. This evaluation matrix is produced by substituting
parametric values that reflect the application usage of the
data types 1in each substructure. In particular, the (i,3)
element of this matrix represents the expected run time and

the expected storage space consumed by the i-th substructure



when implemented by the Jj-th possible implementation for
this substructure in the 1library. The optimization pro-
cedure mentioned above consists of selecting an implementa-
tion for each of the substructures such that the total cost

as specified by the cost formula is minimized.

In previous research, Tompa first coded the application
program by means of the valid operations defined over the
library's data types, and next counted the relative fre-
quency of each operation, so that the parametric formulae
can be assigned values that reflect the application's
characteristics as well as the computing environment. The
evaluation matrix produced by these substitutions was used
in a branch-and-bound optimization procedure to select the
representations that minimize the application's cost accord-

ing to a given cost formula [Tompa74, Gotlieb74, Tompa76].

In related work, Low characterized each implementation
by statistical information provided by the user or collected
by monitoring the execution of the program when using
default representations. Using this evaluation matrix, a
hill-climbing optimization procedure was used to minimize
the expected space-time integral (sum of space required dur-
ing each unit of time) of the program execution [Low76,

Low78].
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The work of De, Haseman and Kriebel [De78] is also
related. Their work presents a method for building an
optimal network database from relational descriptions (see
[Computing Surveys76] for a brief overview of database
models) using a dynamic programming algorithm as the optimi-

zation procedure.

Berelian, Mitoma and Irani [Berelian73, Mitoma75]
present an alternative design methodology to automate and
optimize the production of network schema structures. Once

again they use dynamic programming to solve the problem.

In all of these studies, the selection 1is a static
selection, that 1is, no change in the relative frequency of
operations over the data types is considered. Given that in
certain applications it is ©possible to identify several
phases, each phase being sufficiently important to warrant
its own selection, it may be cost-effective to convert
representations between phases. Thus it 1is necessary to
consider the conversion costs between the implementations
possible at each phase so that the overall cost (again

according to a cost formula) can be minimized.

As mentioned above, Tompa determines optimal solutions
by means of the branch-and-bound algorithm. However, as the

number of variables (substructures and implementations)



increase, the amount of work as well as the amount of space
required to find the selection may grow exponentially in the
number of wvariables. With respect to the work of Low, the
disadvantages of a hill-climbing approach are well known: a
local optimum, or indeed a saddle-point, could be generated,
thus global optimality cannot be gquaranteed. Furthermore,
the algorithm may run in time exponential in the number of

variables.

The work of Irani, as well as that of De, 1is con-
strained to simple cost formulas, i.e., those in which the
only parameter in the cost formula is the time consumed by
the implementations as long as the selection does not exceed
a bound on the total space used. This type of cost formula
is called separable, since the total value is formed by

individual contributions from each of the substructures.

I.2 The thesis problem.

In this section, an overview of the thesis problems and
related results will be given. Precise terminology, formal
problem statements, and further comments on related research

will be included in later chapters as appropriate.



I.2.1 Problem description.

The goal of efficient storage structure design (for the
simplest application) consists in finding an assignment for
each substructure such that the final selection has the
least expected cost among all possible selections. If the
number of possible implementations for each of N substruc-
tures were M, an exhaustive search would require the expli-
cit consideration of M**N alternatives. It will be shown
that dynamic programming can be used as an optimization pro-

cedure to find the optimal assignment much more efficiently.

The input to the proposed dynamic programming algorithm
consists of an evaluation matrix constructed by any of the
methods mentioned above (which implies that the abstract
structure, application's usage, and the machine environment

are fixed), and a cost formula used to evaluate the effi-

ciency of the selections. The algorithm produces an assign-
ment, drawn from the library of implementations, for each of
the substructures defined 1in the abstract structure. The
assignment produced is the one with the minimum cost accord-

ing to the given cost formula.

First, cost functions for which the total application

cost increases monotonically with the sum of the costs for



each substructure are considered, and the proposed algorithm
incorporates bounds on the total amount of space and/or time
allowed  to be consumed by the selections. An algorithm for
more general cost functions (e.g., the product of space and
time) is then analyzed, and the algorithm again incorporates

bounds on the total amount of resources available.

Several extensions to this basic selection problem are
addressed. When the relative frequency of operations per-
formed on the data types varies with time, it is possible to
identify phases of activity for an application [Winslow75].
As a result, interesting selection problems can be solved.
If an 1initial set of implementations has been adopted, but
that set is no 1longer the most efficient, it may be
wor thwhile to convert to a more suitable storage structure.
It is therefore desirable to find the most efficient selec-
tion of implementations for this new phase, taking into
account the initial set and the <conversion costs between
the old and new selections. 1In this case the input of the
algorithm is the new evaluation matrix (reflecting the
application's usage of each substructure for the new phase),
a conversion cost matrix and a cost formula. The output of
the algorithm 1is the least costly assignment to adopt for

each of the substructures in this new phase.



A generalization of this problem is one to optimize
over several phases simultaneously. The input consists of a
sequence of evaluation matrices, one for each phase of the
application, a sequence of conversion cost matrices reflect-
ing potential conversion costs between successive phases,
and a cost formula that takes into account each phase and
the conversion costs between phases. A solution consists of
the assignments for each substructure at each of the phases
such that the total cost is minimized according to the given
cost formula. This problem is different from the previous
one; there an initial assignment of implementations was
already adopted, and here all the phases' assignments are

simultaneously chosen.

Another related problem addressed in this thesis is the
one in which a storage structure deteriorates with inser-
tions and deletions, given that the processing efficiency
can be regained by reorganizing the structure at some cost.
The question is, "When should this reorganization occur?"
This problem 1is also generalized to incorporate the possi-
bility of partial reorganizations, i.e., the potential to
reorganize a storage structure to distinct levels at dis-
tinct costs. The question is in this case, "When and to

what level should the structure be reorganized?"



I.2.2 Closely related research.

As already mentioned the work of Tompa [Tompa74, Tompa76]
and of Low [Low76, Low78] are related to this research. The
former used a branch-and-bound algorithm to find the optimal
assignment of implementations according to a cost formula,
the latter a hill-climbing procedure attempting the same

goal.

The optimization procedure of Mitoma and Irani deter-
mines an optimal schema from the alternatives allowed by the
network data base model [CODASYL71]. Their approach is
based on a dynamic programming algorithm to find the shor-
test route through a graph, similar to the method in Section
IT.3 [Mitoma75]. The same approach and goal is considered
by Berelian and Irani, however this work takes into account
issues such as security as well as paged environments
[Berelian77]. In both of these studies the cost fomulas
used to characterize different selections are restricted to
ones that are monotonic in the sum of the components' costs,

and no attempt is made to allow more general cost formulas.

De, Haseman and Kriebel studied the same problem as
Mitoma et al., however they start with a set of third normal
form relations and the functional dependencies among the

attributes, and produce optimal network data bases. They
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use a dynamic programming algorithm similar to the one
described in Section II.3 and allow slightly more complex
but still not arbitrary, cost functions. They also give
some ideas on how to improve the time complexity of the

algorithm similar to some of those in Section II.3.1.

The work of the SETL group is also related [Schwartz75,
Dewar79, Schwartz79]. Their system for choosing representa-
tions for sets is based on heuristics, global program optim-
ization and flow analysis, and is capable of selecting
acceptable representations for a given storage structure.
The emphasis of this work 1is on the grouping of program
variables (data type occurrences) into equivalence classes,
So as to minimize the number of some required operation,

e€.9., to reduce the number of hashing operations.

Cardenas [Cardenas73, Cardenas75, Cardenas79] describes
a model and system for the selection of file organizations
for data bases. This system generates estimates for the
expected storage cost and for the average access time of
queries for several file organizations. The estimates are
based on the complexity of the query, characteristics of the
data base, and characteristics of the given computing

environment.



However, in this study consideration is given to Jjust one
substructure (file) at a time for which several representa-

tions (file organizations) exist.

Another systematic method for the selection of storage
structures in secondary storage is described in the work of
Severance [Severance72, Severance75], who identifies impor-
tant parameters used in evaluating different structures. As
an example, he observes that 1linked structures can be
characterized by their position on a unit square of the
cartesian plane in which the x-axis represents "indirect-
ness" and the y-axis the proportion of linking. The system
determines which of many representations is most appropriate
for a specific application, searching by ad hoc and poten-

tially exponential means.

Several particular instances have previously been
recognized for the ©problem of determining reorganization
points for storage structures that deteriorate with inser-
tions and deletions. Shneiderman presented a closed form
solution for linearly increasing deterioration and reorgani-
zation costs under the assumption that reorganization
occurred at equidistant time intervals [Shneiderman73].
However, when these <costs are not constant, the optimal

intervals will not be equidistant. Tuel dropped the



equidistant assumption and gave a closed form solution for
arbitrary linear costs and an approximate policy independent
of the structure 1lifetime [Tuel78]. Unfortunately this
result applies to linearly growing files with linearly grow-
ing reorganization costs only. Yao, et al. have presented a
heuristic that is near optimal for constant reorganization
costs and claimed to be "superior" for increasing reorgani-
zation costs [Yao76]. To our knowledge, when these assump-
tions do not apply, no closed form solution is known and no
previous work on this area has been reported in the computer

science literature.

Lohman and Muckstadt identify the problem of finding
optimal reorganization points with the problems of optimal
checkpointing and batch updating, and they present a common
approach using known results of inventory theory [Lohman77].
In the operations research literature a similar problem has
been reported. The "equipment replacement"” problem consid-
ers the decision to replace or overhaul a machine which
deteriorates with age. Dynamic programming algorithms simi-
lar to the ones in Chapter III have been used for its solu-

tion [Dreyfus77].

To the best of our knowledge, no work has been repor ted

on 1linking selections of composite storage structures, on



the reselection of implementations, or on using arbitrary

cost functions in a dynamic programming context.

I.2.3 Summary of new results.

The contribution of this research is to extend previ-
ously known algorithms for solving related storage struc-
tures selection problems. The algorithms presented incor-
porate bounds on the available space and time resources.
Although other researchers have presented algorithms for
solving similar problems, the algorithms previously sug-
gested have exponential running time, produce suboptimal
solutions or deal with restrictive cost formulas only. None

of these problems remain.

For the re-selection of composite storage structures,
an algorithm having pseudo-polynomial running time which
also incorporates bounds on the total amount of available
resources is presented. The problem is further generalized
to a total optimization by considering all the phases of the
application simultaneously, and two different approaches are

presented for its solution.

The main contribution to the reorganization problem is

to bring to the computer scientists' attention the fact that



algorithms similar to the ones used to solve the equipment
replacement problem can be used for solving this problem as

well. 1In addition, the algorithm is shown to be optimal.

Another contribution of this thesis is contained in two
theorems concerning theoretical intractability. 1In particu-
lar, even the simplest selection problem is shown to be NP-
complete, and the most generalized problem is shown to be

strong-NP-complete.

I.3 Thesis outline.

This thesis is composed of five chapters. After this
introduction, Chapter II contains a formulation and presen-
tation of a pseudo-polynomial algorithm for the solution of
the selection of efficient storage structures. Initially the
general problem is posed as a zero-one integer programming
problem in order that it is well-defined, and it is shown to
be NP-complete. This is followed by a dynamic programming
solution for the case in which the cost function is monoton-
ically increasing as the sum of the individual contributions
from each substructure. Techniques that reduce the running
time and the storage space required by the algorithm are

described. Nex t a dynamic programming algorithm for



arbitrary cost functions is presented. A similar algorithm
is then described for the improvement of a composite storage
structure, and examples illustrating the solution for both
problems are given. The chapter concludes with some remarks

on the algorithms presented.

In Chapter III the problem of selecting reorganization
points for storage structures that deteriorate with time is
addressed. The problem description is followed by a dynamic
programming algorithm for its solution. The algorithm is
then applied to an specific example, and it is proved that
the algorithm itself is optimal. Next the solution is gen-
eralized for problems in which it is possible to have par-
tial reorganization. Here an interesting application of the
well known "divide and conquer" technique is described, and

some remarks are made on the application of these results.

Chapter IV is devoted to the study of the selection of
an efficient sequence of storage structures for an applica-
tion in which several phases are encountered during its
lifetime, each phase having different requirements. Once
again dynamic programming is used in the selection algo-
rithm. The problem is again initially described mathemati-
cally, followed by a solution procedure for the case in

which the application has only one substructure that needs



to adapt to all the application's phases. This solution 1is
generalized to an arbitrary number of substructures at each
phase and it is shown that this generalized storage struc-
ture selection problem is strong-NP-complete. Next a dif-
ferent approach is introduced: the algorithm is based on a
scheme that transforms a P-phase selection problem into a
l-phase problem. An example illustrating the solution is
presented, and the chapter concludes with some remarks

regarding the algorithms presented.

Finally Chapter V contains the thesis conclusions, as

well as some directions for further research.



CHAPTER II

II. Selection of efficient composite storage structures.

The problem investigated in this chapter is the selec-

tion of an efficient composite storage structure for the

abstract structure of a given application. In particular,
the representation 1is to be selected as the composition of
appropriate representations for each data type occurrence in
the abstract structure. As mentioned in the introduction,

each representation must be chosen from a finite set of

implementations, called the library of implementations, such

that the composite storage structure obtained 1is the most
efficient one in terms of a given cost formula. It will be

assumed that an evaluation matrix that reflects the

application's characteristics has been formed.

ITI.1. Formal problem definition.

The search of the evaluation matrix can be posed as a
zero-one integer programming problem with the following

definitions:



M(i)

s(i, J)

t(i, J)

the number of substructures for which an assign-

ment is sought,

the number of implementations in the 1library for

substructure i,

a zero-one matrix 1in which x(i,j) represents
whether or not implementation j is to be selected

for substructure i,

the estimated storage space consumed by implemen-

tation j when used for substructure i,

the estimated run time of implementation j when

used for substructure i,

the maximum amount of storage space and running
time, respectively, available to be used by the

combined selected implementations,

COST(X,S,T) a monotonic cost function in terms of the total

amount of space and total amount of time consumed
by the final selection X when constrained by the

bounds S and T.
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The problem is then to find

Z = MIN { COST(X,T,S) } (II.1)
for all X such that:
M(i)
E: x(i,j) =1 ¥i=1..N (I1.2)
J=1
N M(i)
2, Y. x(i,3) * t(i,3) <T (II.3)
i=1 =1
N M(i)
Y i x(i,3) * s(i,3) <s (II.4)
i=1 j=1
x(i, §) = 0, 1 ¥i=1l..N, j=1..M(i) (I1.5)

Equation (II.l) formulates the goal: to minimize a cost
that is a function of the run time and the storage space
consumed by the final selection. Constraints (II.2) force
the selection of just one implementation for each of the N
substructures, since the x(i, j) can only assume zero or one
values (constraints (II.5)). Finally constraints (II.3) and
(II.4) allow only assignments that do not exceed the given
bounds in space and time. Section II.2 shows that the
selection of composite storage structures problem, defined

above, is NP-complete.

There exist several methods for solving zero-one
integer programming problems (e.g., cutting plane techniques

[Salkin75] and enumerative techniques [Salkin75, Wagner75]).
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However, specialized algorithms that exploit the special
structure of the given problem, and that are more efficient

from the computational point of view are often employed.

One such class of algorithms is encompassed by dynamic
programming, an optimization technique wused to make a
sequence of interrelated decisions which maximize (or minim-

ize) some measure of value [Bellman57, Dreyfus77].

This technique is applicable since the original prob-
lem, as stated in TII.1 to II.5, can be partitioned into
stages, each stage representing a substructure for which an
assignment is to be made.* Each stage has a number of asso-
ciated states corresponding to the value of the amount of
storage space and time remaining to be allocated. These
states are used to represent the various possible conditions
in which the system might find itself when trying to make an
assignment for that stage. The effect of such an assignment
is to transform one state into a state associated with the

next stage.

Thus a sequence of states results in assignments to

each of the substructures. Given a particular state, the

* The order of the substructures does not affect the
final selection; however, it may affect the efficiency
of the algorithm.



optimal policy for the remaining stages is independent of
the policies adopted 1in previous stages. Hence, an algo-
rithm solving this problem finds first the optimal policy
for each state with no stages remaining, composes it next
with the policy for each state with one stage remaining,
etc., until the final solution is computed. The principle
of optimality is central to dynamic programming:

"an optimal policy has the property that

whatever the initial state and initial

decision are, the remaining decisions

must constitute an optimal policy with

regard to the state resulting from the
first decision." [Bellman57]

Therefore recursive formulations result.

IT.2. NP-completeness of storage structure selection.

NP is the class of all languages which can be recog-
nized by a non-deterministic Turing machine in time bounded
by some polynomial in the length of the input. A language
or recognition problem LO is said to be NP-complete if it is
in NP and if, given a deterministic polynomial time algo-
rithm to recognize LO, one can effectively find a deter-
ministic polynomial time algorithm to recognize every

language L in NP [Karp75]. It is said that L is reducible



to LO. The notion of NP-completeness is typically extended
to Boolean questions by treating the problem statement fol-
lowed by a candidate solution as the input to the language.
The notion 1is further extended to optimization problems by
solving a sequence of Boolean gquestions under a binary

search scheme.

Given that the class is very wide and includes problems
that have been studied for a long time, it has been conjec-
tured that no polynomial time algorithms exist, although
nobody has yet been able to prove or disprove this conjec-

ture.

Theorem:

The selection of efficient composite storage structure

belongs to the NP-complete class of problems.

Proof:

In order to show that a given problem is NP-

complete one typically takes the following tack:

i) Demonstrate that the problem is in NP by showing
that a correct solution or derivation can be

checked in time polynomial in the original input.
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ii) Reduce a known NP-complete problem to it 1in

(deterministic) polynomial time.

It is easy to show that the selection of efficient
composite storage structures problem is in NP; given a
selection of storage structures, a non-deterministic
Turing machine will simply check whether or not that
solution meets the specified constraints 1II.1 through
II.5. Clearly this validation of the solution can be
performed in polynomial time. Thus, the selection of

storage structures is in NP.

In order to satisfy requirement ii), the zero-one
knapsack problem will be used. This problem, which is
known to be NP-complete [Ibarra75], can be states as
follows; given a set of objects characterized by their
value and weight, an objective K and a constraint W,

is it possible to select a subset of them such that:

N
Y v(i) * x(i)

> K
i=1
N
Z: w(i) * x(i) < W
i=1
x{(i) = 0, 1 ¥i=l..N

where:



v(i) represents the cost of object i
w(i) represents the weight of object i
W represents the size of the knapsack

X (i) represents whether or not object i will be included.

A special case of the selection of composite
storage structures problem is to minimize time subject
to a constraint in space. If there are only two imple-

mentations for each substructure, this can be stated as

follows:
N 2
S Y t(i,d) * x(i,j) <K
i=1 j=1
N 2
5 Y. s(i,d) * x(i,j) <s
i=1 j=1
N
> x(i,j) =1 w¥j=1..2
i=1
x(i, j) = 0, 1 ¥i=1l..N, j=1,2
Clearly this minimization problem can be
transformed into a maximization by setting t'(i,j) = K

- t(i,j), where K is the maximum t(i,j). The reduction
of the zero-one knapsack problem to this selection

problem will be as follows:

Given a zero-one knapsack problem as above,



set t'(i,1l) = v(i), t'(i,2) = 0 W¥i=1l..N

s(i,l) = w(i), s(i,2) =0 ¥i=1..N

Next solve the following decision problem:

N 2
X ‘21 t'(i,J) * x(i,j) > K
j:

N
% S s(i,3) * x(i,j) < W
x(i, j) = 0, 1 ¥i=1..N, j=1,2

The t'(i,2) and s(i,2) represent slack wvariables
to satisfy the requirement that exactly one implementa-
tion must be chosen for each substructure. If x(i,2)
is one then the corresponding object 1 will not be
selected; however if x(i,l) is one then the object will

be selected.

The transformation shown is obviously polynomial,
and thus a polynomial time algorithm for the storage
structure selection problem will induce a polynomial
time algorithm for the zero-one knapsack problem.
Therefore the storage structure selection problem is

NP-complete.
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It is common belief that NP-completeness means intrac-
tability; however it has been recently pointed out
[Garey79], that for certain NP-complete problems, called
number problems, there can exist pseudo-polynomial time
algorithms for their solution. Pseudo-polynomial time means
that the time complexity of the algorithm can be bounded by
some polynomial in the input length and the magnitude of the
maximum number of a given problem instance that bounds the
time complexity of the algorithm. 1In the following sections
pseudo-polynomial time algorithms will be developed to solve

related storage structures selection problems.

The input to the selection problem <consists of the
evaluation matrix, the maximum amount of space and time, and

the cost formula. Thus the length of the input is:

N M(1i)
Y Y [log(s(i,3))+log(t(i,]))]+[log(S)+log(T)]+L =
i=1 j=1

O (M*N*log (S*T)+L), where L is the length of the description
of the cost formula. Assuming that each evaluation of the
cost formula requires only polynomial space and time in L, a
selection algorithm will be polynomial if it requires only
O(M*N*log(S*T)) cost evaluations. All solution algorithms

used to date (i.e., the naive approach and those suggested

* Logarithms are taken to base 2.



by Tompa and Low) require O(M**N) evaluations in the worst
case, whereas the one 1in Section 1II.3 will require
O (N*M*GS*T) and this is therefore pseudo-polynomial

[Garey79].

IT.3 Solution for separable cost functions.

A cost function is said to be separable, if it is pos-
sible to compose the total cost by individual contributions

from each one of the components (substructures) [Bellman57].

A degenerate case is the one in which the cost function
is separable and no restrictions are imposed on the total
amount of space or time used by the final selection. In
this case the best choice for each substructure is overall
optimal. When this 1is not the case special techniques

attempting to avoid the combinatorial explosion may be used.

When the cost function is separable and bounds on the
total amount of time and/or space are imposed, the minimum
cost of the composite storage structure is achievable by
minimizing the cost for each substructure, such that the

final assignment does not exceed these bounds.



2

M(1i)
Let COST(X,S,T) = z cost(i,j) * x(i,j) (II.6)
i=1 =1

where cost(i,j) represents the contribution of implementa-
tion j for the substructure i towards the total cost, thus

function II.6 is separable.

Let f(i,s,t) be the minimum cost obtainable from the
composition of substructures i to N, given that s units of
storage space and t units of time remain available to be

allocated. It is easy to show that:

f(i,s,t)= M I N {cost(i,))+£f(i+l,s-s(i,F),t-t(i,j))}
s(i,j)<s, t(i,)t (I1.7)
j=l..M(1)

By computing f(i,s,t) for s=0..S, t=0..T and using the boun-

dary condition

£(N,s,t)= M I N {cost(N,j)} for s=0..S,t=0..T
s(N,j)<s, t(N,j)<t (I1.8)
j=1l..M(1i)

the answer is given by f(1,S,T).

Since at each stage of the procedure f(i,s,t) is
selected from at most M(i) alternatives and computed for
s=0..5, t=0..T, the time complexity of the procedure just
described is O(N*M*S*T) operations, where M is the maximum

value of M(i) for i=1..N.



Observe that the space complexity of this procedure as
described by recursion II.7 has the Markovian property: the
value of f(i,s,t) depends only on the current value of the
state variables s, t and on the values of f(i+l,*,*). Thus
all the dependent history of the process can be contained in
just one column of values f(i+l,*,*) of size at most S*T.
Therefore only 2*S*T storage cells are required to compute
the value of the optimal value function. However, since not
the value of the best assignment F(1,S,T) is sought, but
rather the set of implementations that achieved this value,
it is necessary to store the alternatives selected. Since
at each stage there are at most S*T states and since there
are N stages, O(N*S*T) storage <cells are required, where
each cell is assumed to be capable of containing values

between 0 and M (i.e., O(N*S*T*log(M)) space is required).

IT.3.1 Reducing the number of alternatives for the state

variables.

In the previous section the state variable s ranged
from 0 to S, the maximum amount of space available, at each
stage in the recursion. However, it is possible to apply the
dynamic programming recursion to a subset of the values of s

only.
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Define:
sup(i) = M A X s(i,j) inf(i) = M I N s(i,3J)
J J
i-1 i-1
Ug(i) = sup (q) lo(i) = ) inf(q)
g=1 q=1
N N
us=(i) = ) sup(q) le(i) = ¥ inf(q)
g=1 g=1i
Theorem:

Given a problem having a separable cost function the
range of any state variable s at stage i of the recur-
sion is bounded by:

Max (1n (1), S-uL(i)) < s(i) < Min(S-145(i), ug(i))

Proof:
Upper bound: if s(i) > u_(i) then every implementation
fits into the resource constraints, thus it is possible
to select the best element for each implementation and
the optimal solution for f(i,s(i)) is identical to that
for £(i,us(i)). Substructures 1 to i-1 need at least
1,(i) resource units since otherwise no assignment is
possible, violating restriction 1III.2, thus S-1,(1)
resource units at most will be left for substructures i

to N. Therefore s(i) < Min(S-1q(i), ug(i)).

Lower bound: substructures 1 to i-1 can use at most u,

(i) resource units, thus leaving at least S-u_ (i) units



for substructures i to N. At stage i it 1is necessary
to have at least 1,(i) units of resource in order that

some selection will be possible for each substructure

between i and N. Thus s(i) > Max(la(i), S-u.(i)).

As a consequence of this theorem the required amount of
computation for the solution of the problem can be reduced
in practice. When more than one resource is consumed by the
implementations (e.g., space, time, etc), it is possible to
find similar inequalities for each of the state variables

i.e., a multidimensional bound will apply.

IT.3.2 Reducing the space complexity.

In Section II.3 it was observed that the straight for-
ward implementation of recursion II.7 requires O(N*S*T)
storage cells, since not only the value of the best assign-
ment was required, but also the set of assignments (i.e.,
implementations) that achieved that value. In order to
identify these implementations it was suggested to store the

alternative selected for each state at each stage.
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A modification of the basic scheme permits a solution
that wuses only O(S*T) storage space without a significant

increase of the time bound.

Theorem (R. Ramirez, J.I. Munro):

The space required to solve the selection of composite
storage strutures problem for separable cost functions
can be reduced to 0O(S*T) storage cells by wusing an

algorithm having time complexity of O(N*M*S*T*1og(N)).
Proof:

The modified algorithm is based on the well-known tech-
nique called divide-and-conquer. The application of
this technique relies on the fact that in order to find

the wvalue of the optimal assignment, it is not neces-

sary to store the assignments that achieved this value.

First solve the original problem as if only the
value of the best assignment were sought rather than
the assignment itself. However, when solving for sub-
structure (stage) N/2 (i.e halfway through) label each
assignment (state) by the amount of resources required,
that 1is, from 0 to S*T (there are at most S*T states).

From stage N/2-1 down to stage 1 carry for each state



at each stage the state that this assignment went
through when it was at stage N/2. When the value of
£(1,5,T) 1is computed, the identification of the mid-
assignment that the optimal set of assignments took at

stage N/2 will be known; call it assignment y'.

Once this assignment y' is known, solve the fol-
lowing two subproblems using the same strategy in a

recursive manner:

i) find the optimal set of implementations for a
problem with substructures 1 to N/2 forcing the

selection of implementation y' at stage N/2.

ii) find the optimal set of implementations for a

problem with substructures N/2+1 to N.

The first of the subproblems above is identical to
the original problem, except that it forces the selec-
tion of implementation y' for substructure N/2 and that
it is half the size. The second problem is identical
to the original one, but only half its size, and there-

fore the same algorithm could be applied recursively.

Since at any time in the solution of the problem

only one column of decisions of at most size S*T is



conserved, it 1immediately follows that only O(S*T)
storage «cells are required by the given algorithm. It
remains to show that the above strategy does not signi-

ficantly increase the time complexity of the procedure.

Let &(N) represent the computation time to find
the optimal assignment, and assume &(l1) = M, the number
of evaluations to determine the best implementation for
specified maximal s and t. Since N*M*S*T evaluations
are required to find the value of the optimal assign-
ment, the application of the above recursive scheme

produces the following equation:

@(N) = N*M*S*T + 2*%H (N/2)

The solution of this equation is given by:

@(N) = N*M*S*T * Jog(N) + M*N

This shows that the proposed method increases the time

complexity by only a log(N) factor.



IT.4 Solution for arbitrary cost functions.

Section II.3 was devoted to the study of the optimal
selection of storage structures when the selection criterion
was limited to one parameter consumed by the implementa-
tions. In this section, the criterion upon which a selection
is to be made is extended to 1include costs that 1involve
arbitrary functions of both time and space as used by the
library's implementations. The method will also allow for
constraining the solution to selections that do not exceed
given bounds on space and/or time. For example consider the

following problem:

N M(1)
COST (X,8,T) = {Cl(( Y S s(i,3)*x(i,3) )
i=1 =1
N M(1)
* (Y t(i,3)*x(i,3))) (II.9)
i=1 j=1
N M(1i)
+Cc2( ) ) s(i,3)*x(i,j)) ** 2}
i=1 3=1

The selection criterion II.9 1is commonly used as a
charging formula by computer centers, since it reflects the
total amount of resources used weighted by the total amount
of time wused and heavily penalizing the large usage of

scarce resources.



- 42 -

To solve this problem let:

1 if there exists a set of implementations
(assignments) one for each of the substruc-
tures i to N, such that

N N

s(k) = s, t(k) = t,
k=1 k=1

F(i,s,t)

that is, if a set of implementations fits ex-
actly in the resources available..
otherwise

The following recurrence relation can be derived:

1 if F3j such that
F(i,s,t) = F(i+l,s-s(i,]j),t-t(i,3j) =1

0 otherwise (I1.10)
The boundary condition is given by:

1 if #3j such that
F(N,s,t) = s = s(N,j) and t = t(N,])

0 otherwise (I1.11)

If COST(X,S,T) is expressed as a function f(space,time), the
solution will be found by taking the MIN f(s,t) such that
F(l,s,t)=1. In other words F(l,*,*) will have non-zero
entries for all feasible solutions; thus the best one
according to cost criterion II.1l could be easily selected.

Therefore the evaluation of the cost function (e.g., II.9)



is only required when choosing from F(1,*,*); this drasti-

cally reduces the number of function calculations.

For applications in which the constraints II.3 and II.4
are not present, let the maximum values S and T of these
equations be the sum of the largest spaces and times respec-
tively. This makes every combination of implementations

feasible.

The straightforward implementation of the recurrence
II.10 involves the computation of at most O(N*M*S*T) opera-
tions, since again for each stage (substructure) there are
at most S*T possible states (combinations of space and time
available) and each state requires at most M calculations.
The space required to trace the solution is O(N*S*T) storage
cells, since at each stage it is necessary to store the out-

come for each state.

The results of Section II.3.1 on how to reduce the com-
putation time by reducing the number of states at each stage
could be appliéd to this recursion as well. In this case,
very similar bounds can be derived. One of these bounds
restricts the number of possible states for the s state
variable, and the other restricts the number of states for
the t state variable. However, since for this criterion the

algorithm finds the set of implementations that fit exactly



into the available resources rather than the best fit as in
Section II.3, the bounds must be adjusted slightly. 1In fact
1(i) < s(i) < Min(S-1,(i), wu.(i)). The lower bound is
changed to allow the search for the implementations that
achieve an exact fit (i.e., the lower bound is for this case
only Lb(i) ) . This again makes it possible to reduce the
amount of computation and, consequently, to solve problems
of large size. Unfortunately, since the cost criterion in

this case is not separable, the technique of Section II.3.2

cannot be applied for this problem.

ITI.5. Re-selection of a storage structure.

A related problem frequently encountered in practice is
that in which the relative frequency of operations performed
on the data types varies with time. Typically a small
number of distinct phases can be identified. For example,
this behaviour may be exhibited by a database that is first
created and consequently requires a relatively high number
of insertion and updates as compared to the number of
queries. Once the database has reached steady-state, the
number of insertions and updates would probably decrease and

the number of queries increase.



The best assignment of implementations for one phase of
the application 1is not necessarily the best for the next
phase. It may therefore be worthwhile to change the imple-
mentation of some (or all) of the substructures between
phases.* These changes have an associated cost for convert-
ing the data from one representation to another, and these
costs might outweigh the savings gained by the new assign-
ment. Therefore special care should be taken when such

situations arise.

The problem studied in this section is the one in which
an initial set of implementations has been adopted, but it
is suspected that this set may no longer be the most effi-
cient one because the relative frequency of operations has
changed. It is desired to find the most efficient assign-
ment of implementations for this new phase taking into
account the initial set and the associated conversion costs.
In other words, the problem is to determine whether or not
it will be profitable to change the implementation of some
(or all) of the substructures and to which new implementa-
tions they should be changed. A more general version of

this problem is examined in Chapter IV.

* There exist studies that deal with the detection of
phase changes for an application (see for example
[Winslow75]).
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The re-selection problem can be formulated as follows

(using the same notation as in the preceding section):

N M(i)
Z=MIN{ COST(X,S,T) + ( Z: z: c(i,H*x(i,j))} (II.12)
i=1 j=1

where c(i,j) is the conversion cost from the initial imple-
mentation for substructure i to implementation j. The res-
trictions for this problem are identical to the problem in

Section II.1l.
The solution of this problem is achieved by defining

G(i,s,t) to be the minimum cost of converting the
implementation of substructures i to N from

the initial assignment of implementations.

It is now possible to derive the following recursive

relation for the solution of the problem:

M IN {c(i,j)+G(i+1l,s-s(i,j),t-t(i,j))} ¥j such that
J
G(i,s,t) = G (i+l,s-s(i,j),t-t(i,j)) is finite

infinite otherwise (I1.13)

The boundary condition is given by:
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M IN {c(i,j)} ¥j such that
J
G(N,s,t) = s(N,j)=s and t(N,j)=t

infinite otherwise (I1.14)
and the solution will be obtained by taking:

Z =MTIN {G(l,s,t) + f(s,t) } (I1.15)

s,t

The function G(l,s,t) will be finite if there 1is a
feasible sélution that wuses exactly s space and t time.
However, rather than being a Booclean function as was F,
G(1,*,*) will contain the minimum cost of converting the
implementations of substructures 1 to N from the initial
assignments. The second term in the above minimization for-
mula accounts for the cost of the implementations in this

new phase.

The run time of this algorithm is of the same order as
that in the previous sections, although more operations
might actually be performed. Thus, the number of operations
is O(N*M*S*T) and O(N*S*T) storage cells will be required.
Bounds differing only slightly from those of Section 1II.3.1

can again easily be derived.
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IT.6. Examples.

The examples presented in this section will help to
illustrate the application of the previous ideas. The first
is a simplistic example which serves to express the main
ideas without overwhelming detail. The values used in this
example do, however, closely resemble those of actual appli-

cations.

Consider an application composed of four substructures
(e.g., <chosen from array, set, tree, list, table) and a
library containing five different implementations for each
of the substructures. Suppose the following evaluation

matrices apply:

Substructures Substructures

1 2 3 4 1 2 3 4
11 2 2 10 10 | 11 7 11 1 1 |
2] 6 3 9 4 | 21 2 10 2 7 |
Implementations 3 | 4 5 8 3 313 8 3 8 |
4 | 3 4 4 2 | 4 | 5 9 7 9 |
5 11 1 1 1 | 5 110 12 17 17 |

SPACE TIME

In each of the above matrices, entry (i, j) represents the
amount of space or amount of time consumed by substructure i

when implementation j is employed.



For example, if substructure 2 were represented by implemen-
tation 3, 5 wunits of space would be needed for that sub-
structure and 8 wunits of time would be spent on that

substructure's operations.
Assume that the cost formula is given by:

f(s, £t) = (s * t) + (.05 * g ** 2) (II.16)
where S and T represent the sum of the spaces and the sum of
the times of the selected implementations. Assume further-
more that no restrictions on the total amount of space or
time have been imposed. The solution to this problem will

use the method presented in Section II.A4.

An iterative implementation of the proposed method
proceeds from substructure N to substructure 1. Thus the
first steb is to wuse the boundary condition to compute
F(N,*,*). The wvalue will be one for all possible space and
time combinations for which there exists an implementation
that fits exactly 1into that combination of resources. For
this example F(4,s,t) will have non-zero values for (s,t) €
{@ao,1y, (4,7), (3,8), (2,9), (1,17)}, and zero values for

all other pairs.

The next step is to compute F(3,*,*) using the recur-

sive relationship 1II.10. of Section 1II.4. This formula



establishes that F(i,s,t) will have a non-zero value for a
particular (s, t) combination if an only if there exists an
implementation j for substructure i that uses s(i,j) units
of space and t(i,j) units of time and F(i+l, s-s(i,j), t-
t(i,j)) is non-zero. 1In other words, F(i,s,t) will have a
non-zero value 1if and only if there exists a set of imple-
mentations one for each of the substructures i to N such
that the sum of the spaces is s and the sum of the times is

t.

At this point it is important to notice that, given s
and t units of resources there may exist several implementa-
tions that satisfy the above criterion, i.e., they collapse
into one entry of F(i,*,*). As an example when considering
the third substructure, the implementations with (s,t) €
{(10,1), (9,2), (8,3)} collapse for F(3,12,10) since
F(4,2,9), F(4,3,8) and F(4,4,7) respectively have non-zero
values. That 1is, solving for substructure 3 and 4 with 12
units of space and 10 units of time available has three
(equivalent) solutions. In fact, F(3,s,t) will have non-
zero values for 18 entries, representing the 5*5=25 possible

representations.

The same recurrence relation is next applied to deter-

mine F(2,*,*) for which there are 37 non-zero entries and to



compute F(1,*,*) with 157 non-zero entries in this example.
Once F(1,*,*) has been calculated, the cost formula is
applied to each entry of this vector, and the minimum wvalue
is the cost of the optimal selection. For this example the
optimal selection is implementation 5 for each of the sub-
structures. This selection uses 4 units of space and 56
units of time and consequently has a cost of 224.8 cost

units.
Some of the advantages of this approach are:

- The method produces all available space/time possibili-
ties at no extra computation. Thus once F(1l,*,*) has
been computed, several cost functions (charging rates)
can be applied without the need to solve the complete

problem again.

- Bounds on the total amount of space and/or time can be
specified without increasing the amount of computation.
In fact, such bounds actually reduce the amount of com-

putation.

- At any time during the execution of the procedure the

optimal solution for a subproblem is at hand.

- If new substructures are added to the problem, there is

no need to solve the complete problem again. In fact



only the new F(k,s,t) vectors need be computed using

F(1,*,*) as the boundary condition.

When the hill-climbing algorithm proposed by Low is
applied to this example, it produces a solution which is 86%
worse than the optimal. Branch—-and-bound performs rather
well for this example, using only 165 cost function evalua-
tions. However, if there were bounds for the total amount of
space or time used by a solution, the technique will not be
able to prune as much as for this example. Furthermore, if
all the solutions to the problem are desired, an exponential
amount of computation is required using branch-and-bound,
and it cannot be known a priori whether or not the technique

will be exponential in time or in space.

To continue the example, assume that the relative fre-
quency of operations has changed such that it is suspected
that the original selection of implementations may no longer
be the best. Assume furthermore that the new evaluation
matrices for the second phase (i.e., the remaining 1lifetime

of this application) are as follows:



- 53 -

Substructures Substructures

1 2 3 4 1 2 3 4
11} 6 6 3 1 | 1] 9 6 8 10 |
2 |1 7 4 10 5 | 2 | 7 10 1 6 |
Implementations 3 |10 5 9 4 | 311 8 2 7 |
4 | 9 8 8 3 | 4 | 3 3 3 8 |
5 | 8 7 4 2 | 51 5 4 7 9 |

SPACE TIME

It is possible to find the optimal set of implementa-
tions for this phase independently of the original one by

merely repeating the above procedure using these new

matrices. Unfortunately, if both phases are taken into con-

sideration this pair of selections may not be overall
optimal because of the cost of converting from one implemen-
tation to another between phases. Assume that the conver-
sion <costs from the initial implementation are the follow-
ing:

Substructures
1 2 3 4

Implementations

bW
O
w
o
=
o
w
o

CONVERSION
Entry (i, j) in this matrix represents the conversion cost
from the implementation for substructure i in the initial

phase to implementation j in this phase. Notice that since



implementation 5 was the optimal implementation for each of
the substructures in the initial phase, no conversion cost
is incurred if the same set of implementations is selected

for this phase.

As discussed in Section II.5, the method of solving
this type of problem is similar to that used when there is
only one phase. The difference is that when only one phase
is 1involved, if two or more assignments use the same amount
of resources the algorithm arbitrarily selected one (since
all have the same cost). However when conversion costs link
two phases these decisions cannot be arbitrarily made. If
the resources consumed by the assignments are identical, the
algorithm will pick the one with the smaller conversion
cost. In fact, a more costly set of assignments may be

chosen if the conversion costs are sufficiently low.

Initially the algorithm uses the boundary condition
IT.14 of Section 1II.5, thus computing G(N,s,t), for all
implementations j for which s(N,j)=s and t(N,j)=t thus for
this example G(4,1,10)=49, G(4,5,6)=52, G(4,4,7)=50,
G(4,3,8)=48, G(4,2,9)=0, and any other G(N,s,t) have infin-

ite values.

The next step of the procedure is to compute G(3,*,%)

using the recursive relationship II.13. Here is where the



procedure differs from the one 1involving only one phase:
when two (or more) implementations collapse into one value
of G(3,s,t) the algorithm selects the one that has the smal-
lest conversion cost. For example, when solving for
G(3,14,8), i.e., solving for substructure 3 with 14 units of
space and 8 units of time available to be allocated, imple-
mentation 2 for which (s,t)=(10,1) and implementation 3 for
which (s,t)=(9,2) are candidates to represent substructure
3, since both G(4,4,7) and G(4,5,6) are finite. However,
since 15+G(4,4,7) is more than 10+G(4,5,6), the latter is
selected when this combination of resources is‘ available.
For this example, G(3,*,*) will have finite values for 12

entries.

When solving for substructures 2 and 1, the same recur-
sive relationship 1is used, i.e., every time several imple-
mentations collapse into the same G(i,s,t) the one with the
smallest <conversion <cost 1is preferred. 1In fact, for this
example there are 49 finite entries for G(2,*,*) and 101 for

G(1,*,*).

Once G(1,*,*) has been computed, there will be finite
entries for every possible selection of implementations.
Moreover, the entry for a particular s and t combination

contains the smallest cost of converting from the initial



selection to a selection of implementations that use s and t
units of space and time (i.e., if there are several selec-
tions that consume the same s and t, the entry will contain

the smallest conversion cost).

Thus to find the best selection, the cost formula
should be applied to every entry in the G(1,*,*) vector. In
this example the best choice for this second phase is to
convert to implementations 3 and 2 for substructures 1 and
3, respectively and to leave substructures 2 and 4 imple-
mented as was (with a total cost of 501.05 units). This
selection would not be optimal if this phase were considered
by itself. Clearly the algorithmic advantages mentioned for
the first example are applicable to this procedure as well,
and the savings gained by converting implementations in this

case is approximately 10%.

As a practical example of the results, consider Gaus-
sian elimination, for which the algorithms are well under-

stood (see, for example, [Conte72]).

The principal data type in Gaussian elimination algo-
rithms is the matrix. One suitable definition of a matrix

is:



type matrix = array 1..N of row;

type row = array l..N of real;

Thus a matrix can be thought as 1linear array of linear
arrays of real numbers. A one-dimensional array may easily
be one of the basic building blocks for which there exist
several implementations (see Figure II.1). The implementa-
tions used for this example are described 1in most data

structures textbooks:

i) Linearly addressed store: a block of contiguous memory
in which all entries are represented (including null
entries) and in which entry i 1is stored in the 1ith

position of the block of storage.

ii) Contiguous store: an implementation in which only the
non-null entries are stored, each entry consisting of
an ordered pair of index and value; all such pairs are
stored contiguously and 1in increasing order of their

index.



bit map
contiguous store
linearly addressed
store
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Figure II.1 Implementations for a one dimensional array.



iii) Unary chain: a sequence of non-null entries, each entry

iv)

v)

being a node that <contains an index, a value, and a
pointer to the next node in the sequence. The nodes 1in
the sequence are ordered by their index, however they

are not necessarily contiguous.

Bit map: an implementation in which a boolean vector
acts as an indexing scheme as follows: all non-null
entries in the array have true stored in the
corresponding place in the boolean vector, and follow-
ing the boolean vector a contiguous block of storage
contains the non-null values 1in increasing order of

their indices.

Binary tree: an implementation in which each element is
represented by a node in a tree structure. Each node
contains an index, a value and two pointers to binary
subtrees. The nodes are arranged lexicographically

according to the index.



vi) Threaded tree: an implementation identical to a binary
tree except that the nodes with less than two non-empty
subtrees contain pointers back to an appropriate ances-

tor forming a thread through all the nodes.

Since in this given choice for abstract structure, a
matrix 1is composed of two substructures, the array of rows
and the arrays of reals, and since six possible implementa-
tions have been defined for arrays, it follows that there
are thirty six different implementations for the matrix data
type. (The number of different representations grows as the
square of the number of implementations for the basic type.)
For example the selection that <consists of 1linearly
addressed stores for both substructures is commonly used for
small, dense matrices, and the selection that consists of a
linearly addressed store for the array of rows and a bit map
for each row 1is commonly suggested for 1large, sparse

matrices.
A possible set of valid operations are (see [Tompa74]):

generate: create an array containing default values for all
elements, such that the structure is accessible

from a given cell.



probe:

locate:

insert:

remove:

next:

head:

access:

search a given array for the -element having a
given index and return a pointer to the

corresponding element or null if not found.

find the position of an element having a given
index within a given structure in order to add or
delete it, and return a pointer to the appropriate

location.

assign a non-null value to the element in a given

array at a given index position.

assign the null value to the element in a given

index position.

find the element having non-null value whose index
is the lexicographic successor of a given
element's index, and return a pointer to it or

null if no successor.

find the start of a given array.

obtain a particular field within an element of an

array, either to read it or to change it.



For example, in order to access the value of the (i, 7J)
element of the matrix defined above, the following opera-

tions are required:
probe for the ith entry of the matrix returning a row
probe for the j-th entry of the row returning an element
access the value field of the desired element

Gaussian elimination consists of two steps [Conte72]:

i) factorization: the original matrix A 1is factored as
PLU, where P is the permutation matrix associated with
the pivoting strategy, L is a lower triangular matrix
containing the multipliers used during the elimination
process, and U is an upper triangular matrix

"equivalent" to the A matrix.

ii) substitution: U is used to compute the unknowns.

Before the techniques of the previous section can be
applied, it is necessary to code the Gaussian elimination
algorithm in terms of the primitive arfay operations and to
compute the relative frequency of each operation parametri-

cally.
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The substitution for the parameters in the 1library of
implementations by values that reflect the application usage
of the data types produces an evaluation matrix. For a con-
crete example, assume that Gaussian elimination is to be
performed on a matrix of order 500 by 500, also assume that
the original matrix has 20% non-zero elements and that the
elimination process will produce a matrix with 40% non-zero
elements. The evaluation matrix produced is shown in Table
IT.1, where both single and double precision costs are

displayed.

TIME SPACE
MATRIX ROW MATRIX ROW
single double
lin. add. .13 5.35 .5 250 500
cont. st. .65 5.98 1. 250 375
unary ch. 15.74 9.22 1.5 225 300
bit map 24,27 118.30 .52 133 258
bin. tree 1.11 10.66 1. 300 375
thr. tree 1.14 5.37 1. 300 375

Table II.1 Evaluation matrix.

(time is in minutes, space in kilo-words)

It is clear that in order for a matrix to be invertible
all of its rows must be present, i.e., the matrix is non-
singular. As can be seen from Table II.l1, linearly addressed
store 1is the best implementation for the array of rows

structure, since it is the one from this library that uses
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the least time and space. The assignment of an implementa-
tion for the row (array of reals) structure is unfortunately
not as straightforward, since it is heavily dependent on the
cost formula being used. Tables II.2 and II.3 show the best
assignment for the row data type for different related cost
formulas. The cost formula used for these tables is similar
to that of Section II.4 with the parameter C2 set to 1 and
Cl varying as shown in the tables. For the purposes of this
example, again no restrictions on the total amount of space

or time have been imposed.

Cl=2 Cl=5 C1=50
impl. cost ratio to <cost ratio to cost ratio to

optimal optimal optimal
lin. add. 65496 1.32 69614 1.13 131387 1.
cont. st. 65811 1.33 70328 1.15 139278 1.06
unary ch. 55067 1.11 61392 1. 156272 1.19
bit map 49443 1. 96874 1.58 808343 6.15
bin. tree 96785 1.96 106512 1.73 252420 1.92
thr. tree 93606 1.89 98564 1.61 172938 1.32

Table II.2. Cost of different implementations for the row
data type.

(single precision real numbers)
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Cl=.5 Cl=2 C1l=100
cost ratio to cost ratio to cost ratio to
impl. optimal optimal optimal
lin. add. 251872 3.07 255968 2.67 524774 1.51
cont. st. 142898 1.74 145589 1.52 370431 1.07
unary ch. 91705 1.12 95920 1. 371268 1.07
bit map 82129 1. 128051 1.33 3128238 9.
bin. tree 143026 1.74 149104 1.55 546165 1.57
thr. tree 142033 1.73 145131 1.51 347525 1.

Table II.3. Cost of different implementations for the row

data type.

(double precision real numbers)

Table II.2 presents the best assignment when the row
data type is composed of single precision real numbers occu-
pying each one storage cell. When the extensive wuse of
storage space is heavily penalized (Cl=2) the time consumed
by the operations is of little concern and thus a compact
scheme 1is to be preferred, in this case the bit map imple-
mentation. Alternatively, when the amount of time consumed
by the operations is also of interest (Cl=5) the unary chain
implementation is selected; and when the most important fac-
tor is the time consumed, the 1linearly addressed store

(dense representation) is the one preferred.

Table II.3 shows the best assignment for the case in
which the elements of the row are double precision numbers.

Here the displayed values for Cl are different from those in



Table 1II.2 to stress the fact that the critical points for
preferring particular implementations occur at different

values of C1l.

IT.7. Some remarks.

In this chapter algorithms for solving related storage
Structure selection problems were presénted. The core of
the algorithms is the principle of optimality for dynamic
programming. As a result it is possible to obtain pseudo-

polynomial bounds for their running times.

An example involving few data types occurrences and few
library implementations was presented in order to demon-
strate that intuition and a priori selections might not be
the best manner of solving such problems. It also shows
that hill-climbing or branch-and-bound methods may not
always be appropriate. As the problem size grows, the
advantages of the algorithms presented become even more

striking.

There exist some special cases for which it is possible
to reduce the amount of computation required and/or the

amount of storage space consumed. For example, when the



cost formula is the ratio of two resources (e.g., the total
number of input/output operations per time unit) it is pos-
sible to devise algorithms whose running time is strictly
polynomial, in fact O(where N**3 * ]log N), (where N denotes
the number of substructures 1in the application (see, the

minimal cost-to-time ratio cycle problem [Lawler76]).



CHAPTER ITII

ITI. Selection of reorganization points for storage struc-

tures.

In this chapter the problem of finding optimal reorgan-
ization points for a storage structure that deteriorates
with time is addressed. A similar problem has been reported
in the operation research literature under the heading of
"equipment replacement" and a dynamic programming algorithm
similar to the one presented here has been used for its

solution (see [Dreyfus77, Chapter 2]). Consider the follow-

ing typical behaviour: a database is created and its con-
tents are organized in a manner convenient for efficient
processing of dqueries and updates. As updates are made,
however, performance of the storage structure degrades to a
point at which reorganization is required or, at least, jus-
tified. For example, if the information is stored in a
large sorted table, and a few new items are to be added, it
may be convenient to enter the new data in an unordered aux-
iliary 1list temporarily, since insertion into the primary
table would force the movement of many elements in the sys-
tem. Direct insertion into the primary table would not only

be expensive, but is very likely to be completely prohibi-



tive for an online database system. Using an auxiliary list
to collect a reasonable number of updates which can be
merged 1into the primary table at some convenient time is a
very attractive approach. An important‘ question 1is, of

course, "When should this merging occur?"

Although this example will be investigated further in
subsequent sections, the main thrust of this chapter is to
consider the more general problem of deciding when an arbi-

trary storage structure should be reorganized.

Consider the case, then, in which the demands to be
made on a storage structure are reasonably predictable, at
least for some fixed period of time. This predictability
does not preclude situations in which the volume of data
stored and the number of queries and updates vary widely in
time. Such time-varying but predictable situations exist in
practice, for example, in keeping track of the inventory of
a holiday supplies shop or maintaining student records for
an academic institution. As a consequence of the predicta-
bility, the cost of reorganizing a structure at any given
point, as well as the cost of using it in either form can be
determined. The problem is, then, to determine the reorgan-

ization points so as to minimize the total cost of the

operation. This total cost includes the operating cost of




using the storage structure (and thus implicitly the

deterioration cost incurred by not restructuring) as well as

the reorganization cost. Figure IIT.1 illustrates some of

these and related concepts.

If the costs are linear then previous results may be
applied to give a closed form solﬁtion {Shneidérman73,
Tuel78]. The example of a sorted table with an auxiliary
unordered 1list does not fit this linear criterion. Indeed,
many "updating systems" are sub-linear in their deteriora-
tion cost. Unfortunately, when the reorganization or the
deterioration costs are non-linear, no closed form solution

is known for most cases.

In this chapter an algorithmic solution to the problem
for arbitrary reorganization and deterioration costs is
presented. The algorithm is similar to the one reported in
Dreyfus and Law [Dreyfus77]. The basic concern is a storage
structure whose performance degrades with the number of
updates and for which there is associated a reorganization
cost. The problem is to determine when to reorganize it to

minimize the expected overall cost.
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It is assumed that the remaining lifetime of the storage

structure (i.e., the amount of time until the storage struc-
ture is no longer used, measured in hours, days, months,
etc.). 1is quantized into P time periods (not necessarily of
equal length). Furthermore if the storage structure is to be
reorganized, it 1s assumed the process will take place at

the beginning of a time period.

Enumeration of all possible sets of reorganization
points requires the computation of 2**P costs, since at each
period the decision whether or not to reorganize can be made
independently. Such a computation is, of course, infeasible

for P greater than 20 or 30.

The problem of determining optimal reorganization
points for a storage structure can be identified with the
problem of finding the shortest route in an acyclic network
(i.e., finding the route of minimal cost from source to
sink). Consider a grid of vertices at the non-negative
integral points in a portion of the plane (Figure III.2).
The x and y coordinates of each vertex denote respectively

the time and the storage structure deterioration or the

number of periods since the last reorganization.
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Figure III.2 Time vs. deterijoration.



The source of the network is vertex (x0,y0), where x0 is the
time at which the study begins (perhaps when the storage
structure is formed), and y0 is the time since the last
reorganization (y0 may well be 0). The decision not to
reorganize the structure in condition (x,y) is denoted by an
edge from (x,y) to vertex (x+1l,y+l). The weight of this edge
is the operational cost of running a system from time x to
x+1 starting with deterioration y. The decision to reorgan-
ize corresponds to an edge from (Xx,Y) to (x+1,1), with
weight equal to the sum of the reorganization cost of a
storage structure of deterioration y in period x and the
operating cost of a newly reorganized storage structure in
period x. If P is the storage structure 1lifetime, then

every vertex with x-coordinate x0+4P is connected by a zero-

valued edge to the sink vertex (x0+P+l1,0). As can be seen

from the above description, the network is acyclic (i.e., no
cycles are formed since time always moves to the right), and
the solution 1is represented by the minimal cost route from

vertex (x0,y0) to vertex (x0+P+1,0).

Section III.1 contains a dynamic programming formula-
tion of the solution for this shortest route problem and a
discussion of its optimality. In Section III.2 the algorithm
is applied to a non-linear example. Section III.3 contains

proofs of the optimality of the time and space required for



this algorithm, and Section III.4 extends all the results to
applications in which at the beginning of each period the
storage structure <can be partially reorganized to any of
several levels at various costs. Section 1III.5 contains

PASCAL code for the algorithms discussed.

II1I1.1. An Efficient Solution.

The storage structure reorganization problem can be
expressed in terms of dynamic programming as follows

[Dreyfus77]:

Let d(x,V) denote the operating cost from period x to
period x+1l of a storage structure with
deterioration y at the beginning of the
period,

r(x,y) denote the reorganization cost at the begin-
ning of period x of a storage structure of
deterioration vy,

and F(x,y) denote the minimum cost to get to the state
in which the storage structure has deteriora-
tion y at the beginning of period x, given
that the ©process began period x0 with a

storage structure whose deterioration was y0.



No assumptions (e.g., continuity, monotonicity, or even
non-negativity) have been made for the above functions
r(x,y) and d(x,vy). In fact, the functions may be
represented by arbitrary tables of discrete values (not
necessarily equidistant in time) computed or estimated by
monitoring, simulating, or analyzing the storage structure

under consideration.

At the beginning of each period there is the option to
reorganize the storage structure, and so, at the end of the
period the deterioration of the storage structure could be 1
or it could be one more than at the beginning. From Figure
ITI.2 it is apparent that the minimal cost expended from
time x0 until some later time x is the minimal cost to reach
period x-1 with deterioration y-1 plus either the reorgani-
zation cost plus the operating cost for the newly reorgan-
ized structure, or the operating cost in period x-1 of a

storage structure of deterioration y-1.
This leads to the following recurrence relation for F:

F(x, 1) = N F(x-1, y-1)+r(x-1, y-1)+d(x-1, 0)}

M I

y=2..x-1, y0+x-1

and (ITI.1)
F(x, y) = F(x-1, y-l1)+d{(x-1, y-1)

for y=2..x-1, yO+x-1



The boundary condition is:

F(x0, y0) = 0 (III.2)

It is relatively straightforward to write a program to
determine F(x0+P+l1, 0) = min F(x0+P, y) over all choices of
y=1,2, .. P and yO0+P: simply use the above recursion to
determine the optimal cost for each time step and state of
deterioration based on the optimal cost up to the previous
time step. Note that the wvalue of F(x, y) need not be
retained after F(x+l, y+l1) and F(x+l, 1) have been computed.
Hence at most P storage locations are required to retain
these values. 1In fact, each arc in the network is inspected
and used in some arithmetic computation once only, and thus
if the values of r(x, y) and d(x, y) can be computed, only
©(P) storage locations are needed to maintain the costs.
Furthermore, since each arc is inspected only once, it
immediately follows that ©6(P**2) basic operations are per-
formed. Note as well that the above recursion produces the
shortest route from the source vertex (x0, y0) to every

other vertex in the network.

However, the real problem is not to discover the cost
of the optimal reorganization scheme, but rather to deter-

mine the reorganization points that lead to that cost.
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Taking a closer look at Figure III.2, it 1is realized
that the only vertices that must store information regarding
the optimal path are those with y-coordinate 1. The only
way to reach the vertex (x, y) for y#1 is through vertex
(x-1, y-1), and so there is no need to store this informa-
tion while determining the optimal path. With this observa-
tion in mind, and since there are only P vertices with y-
coordinate 1, it follows that, if the values of r(x,y) and
d(x,y) can be computed, only ©(P) units of storage are
required to determine the optimal reorganization scheme as
well as its cost*. (Section III.5 contains an implementa-

tion of this implied algorithm written in PASCAL.)

Backward recursion, typically used in operations
research circles, consists of solving a problem starting
with the last stage and proceeding backwards toward stage 1
composing the solutions of each stage. Forward recursion
computes the solution 1in the opposite direction, i.e.,
starting with the first stage and proceeding towards stage

N.

* A function g(x) is O(f(x)) if there -exist constants
cl, c2, and x0 such that cl*f(x) < g(x) < ' c2*f(x) for
x>x0.



Equation III.1 uses forward recursion which is preferred for
the solution of this problem: it usesonly ©(P) storage cells
whereas wusing backward recursion would require O(P**2)

storage cells.

ITII.2. A Non-linear Application.

This section deals with the reorganization of a storage
structure whose deterioration and reorganization costs are
non-linear. 1In particular the application's deterioration
cost is logarithmic (i.e., sub-linear), and the reorganiza-

tion cost is super-linear.

Recall the example in the introduction to Section III
in which one of the structures maintained by the application
under consideration is an ordered table (i.e., a set of con-
secutive locations each containing one element, the elements
to be kept in sorted order). Using binary search, the
number of comparisons required to access a randomly desig-
nated element is essentially log(n), where n is the number
of elements in the structure. Inserting a new element into
the structure requires that a hole be <created by shifting
some elements down one position and then making the inser-

tion into the newly vacated cell. Since this operation is



expensive, it may be decided to keep the elements to be
inserted in an unordered secondary list. If an element is
not found in the primary table, the search continues with a
sequential scan of the secondary list. Since, when looking
for a randomly selected element, the primary table will
always be searched and the secondary list will be searched
in proportion to its relative size, the cost of accessing a
particular element is ©(log(n-k) + k*k/n) where n 1is the
total number of elements in both structures and k is the
number of elements in the secondary list. 1In fact, for this
example, the access cost used will be 1log(n-k+1)-1 +

(1+k/2)*(k/n), the expected number of comparisons required.

If there are no deletions, the structure will grow.
From time to time the elements in the secondary list may be
merged with the ones in the ordered table (i.e., the struc-
ture will be reorganized) at a cost of 8(k*log(k) + n)
operations: the k*log(k) term accounts for the average time
required to sort k elements (e.g., using Quicksort), and ©

(n) operations are used in merging the two sorted lists.

In summary, assuming that there are a total of n ele-
ments, (n-k) in the ordered structure and k in the secondary

structure, the following costs apply:



access cost: log(n-k+1)-1 + (1+k/2) * (k/n)
insertion cost: 1 (III.3)

reorganization cost: Cl * (k*log(k) + n)

where the parameter Cl is introduced solely to illustrate

the effects of various related costs.

A structure that is continuously reorganized has an
access cost of 1log(ntl) operations. Using these formulas
and assuming that the primary table initially has 1000 ele-
ments and the secondary list is empty, that there are 5000
accesses and 100 insertions uniformly distributed in each
interval, and that the lifetime (P) is 50 periods, the fol-
lowing results may be obtained from the algorithm presented

in Section III.1:

Cl optimal reorganization optimal cost
points (in 10000's)
1 3,5,7,10,13,16,19,22,25
28,31,34,37,40,43,46 272
10 4,8,13,18,23,29,35,41 335
20 5,10,16,22,29,37 391
50 6,13,22,31 531
100 7,15,25 712
500 no reorganization 1225

Table III.1.

In previous work, optimal reorganization points were

determined for 1linear costs only [Shneiderman73, Tuel78].
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Thus one might be tempted to compute those points by approx-
imating the costs by functions that are linear in k. A rea-
sonable linear model of the behaviour of the system, derived

by examining the optimal solution, is:

access cost: 1log(3500-K(Cl)+1)-1 + (1+k/2)*(K(Cl)/3500)
insertion cost: 1 (I11.4)

reorganization cost: Cl * (k*log(K(Cl)) + 3500)

where 3500 is the average value of n and K(Cl) is the aver-
age number of probes for searching the secondary list when

reorganization occurs under the optimal scheme.

The following results may be obtained under this linear

model :
C1l K(C1l) reorganization actual cost ratio to
points {in 10000°'s) optimal
1 147 1,2,3..49 281 1.033
10 278 2,4,6..48 383 1.143
20 357 3,5,7..47 495 1.266
50 550 3,6,9..45 704 1.326
100 625 4,8,12..44 1020 1.433
500 2500 5,10,14,18,22
26,30,34,38,42 3795 3.098
Table III.Z2.
The column labeled "actual cost"™ indicates the cost

charged according to the formulae in III.3 and using the



reorganization points suggested by this approximate solu-
tion. Comparing these results with the ones in Table III.1,
it is seen that, even when knowledge of the optimal solution
is used to derive the approximations, results based on
assumptions of linear costs can give solutions which differ
substantially from the optimal. Therefore the algorithm
that permits the removal of all assumptions regarding the
costs 1is a more desirable tool for storage structure

administration.

ITI.3. Lower bounds.

In Section III.1 it was demonstrated that the optimal
reorganization scheme can be determined in time quadratic in
the number of potential reorganization points and space
linear 1in this parameter. Of course, it is of interest to

find whether or not a better algorithm exists.

It will be assumed throughout this section that r(x,y)
and d(x,y) are computable rather than stored in tables of
discrete values; otherwise it is obvious that 6(T**2) space

is required merely to store the algorithm's input.



That the space bound cannot be appreciably improved follows
from the fact that the output (number of reorganization

points used) may be of length ©(T) *.

Intuitively, the quadratic time bound seems optimal as
well, since there are 6(T**2) potential situations for reor-
ganization. The following theorem and its proof formalize

this notion.

Theorem (R. Ramirez, J.I. Munro):

©(T**2) operations and ©(T) storage 1locations are
necessary and sufficient to determine the optimal reor-
ganization points even if the operation costs and the
reorganization costs are known to be monotonically

increasing as functions in the deterioration.

Proof:

The space bounds and the sufficiency of the time bound
follow from the algorithm presented and the observa-
tions above. To show that 6(T**2) basic operations are
necessary, it suffices to exhibit a case in which it is

more or less irrelevant which reorganizations are done,

* A more intricate argument shows that even ignoring
the space required to store the results, this bound
still applies.
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as long as a reorganization is performed at the partic-
ular time that allows the application to 1incur a
"cheap" operation cost at a specific, but unknown node.
That 1is, the shortest route must go through some unk-
nown point (x, y) and any path through that point has
the same cost. Since there are ©(T**2) potential
"cheap" edges, finding the crucial one requires that
all edges be inspected. A scheme which is not strictly
monotonic is outlined first. It 1is then modified

slightly to achieve monotonicity.

Consider an application for which the operation
and reorganization costs at each time step other than
the last are 2. At the last time step the reorganiza-
tion <costs are also 2, but the simple operation costs
are very large and all equal. Now alter an arbitrary
operation cost of weight 2 to 1. Hence the optimal
reorganization scheme must take advantage of this
reduced cost; anything else which is done 1is
irrelevant, proving the ©(T**2) lower bound without the

monotonicity assumption.

The weights can be arranged to be monotonically
increasing functions of y by setting the operating

costs to be d(x, y)=y, the reorganization costs for a



storage structure of deterioration 1 to be r(x, 1l)=2x
and all other reorganization costs to be r(x, vy)=2xy-
(3/2)y**2-y/2. Reducing one arbitrary operating cost by
1/2 results in a system that establishes the 6(T**2)

lower bound.

Repeated application of this proof technique also leads

to a bound on the time required to determine near optimal

solutions.

Corollary : ©(T**2/k) basic operations are necessary to
determine a reorganization schedule which is within a
factor of (1+1/k) of the optimal. This 1lower bound
holds even 1f the operation and reorganization costs
are monotonically increasing as functions of the the

deterioration.

II1.4. Partial Reorganization.

For some applications it is possible to have more than
the simple choice of reorganizing or not at each stage. For
example, there may be the option of several partial reorgan-
ization algorithms each transforming the storage structure

to a different level of operation cost as well as having



different reorganization cost. It is now necessary to know
not only when to reorganize the storage structure but also
which reorganization algorithm to use, in order to minimize
the overall cost. This extension 1is also addressed by

Dreyfus and Law [Dreyfus77, p. 29].

An extreme case is that in which it 1is ©possible to
reorganize the storage structure of deterioration y to a
level equivalent to that of any deterioration represented by
an integer in the range 0 to y. Of course the reorganiza-
tion and operating costs are again assumed to be arbitrary.
A simple modification of the previously discussed algorithm
to evaluate the O(P) reorganization alternatives at each
step will take ©(P**3) operations. 1In fact by using the
same argument as in the previous case, it can be shown that
©(P**3) operations are necessary for any algorithm solving

the problem.

Unfortunately, if the algorithm is implemented as out-
lined 1in Section III.1, at least ©(P**2) storage cells are
necessary to determine the reorganization points and levels
even if the reorganization and operating costs are comput-
able. From Figure III.3, it is clear that virtually every
node may be the target of one or more reorganizations in the

previous time period.
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Thus, unlike the situation described in Section III.1l, for
each of the O(P) values of F for a given time, O(P) reorgan-
ization points may have to be stored. When P is large this
storage requirement is at best annoying and at worst prohi-

bitive.

The following modification of the basic scheme, similar
in nature to that of Section II.3.2, permits a solution
using only ©(P) space while (roughly) doubling the previous
time bound. Again in discussing the possibility of linear
space, it is assumed that the deterioration and reorganiza-

tion costs are computable.

It has been noted in Section 1III.1 that storing the
optimal path to the point (x,y) is not essential for comput-
ing the length of the shortest path, but rather it is used
only to reconstruct the shortest path itself. Because of
the optimality of the shortest route, if follows that if the
shortest route from (x0, y0) to (x0+P+l, 0) passes through
points (x1, yl) and (x2, y2), then the shortest route from
(x1, vyl) to (x2, y2) must coincide with the shortest path
for the complete problem in the [(x1, yl), (x2, y2)1] inter-
val. Consequently the optimal reorganization points for the
subproblem are the same as those for the original problem

(in the [x1, x2] interval).



First consider solving the original problem as if only
the cost of the shortest path were required and not the path
itself. ©Now, at the midpoint (i.e., x0+P/2) label each node
in the period by its y-coordinate, i.e., a value from {1,
2,..,y0+P/2}. From time period (x0+P/2)+1 to the end of the
lifetime, record for each node the node through which the
route passed at period x0+P/2. 1In fact the wvalues can be
recorded as they are carried forward during the computation
of the cost of the shortest route. When time x0+P+1 is
reached and the value of the shortest route computed, the
mid-node, y', that this (optimal) route passed through will
be known. Since at any time period there are only ©(P)
nodes, it follows that only ©(P) space is required for for-

warding mid-node identification.

Once the node (x0+P/2, y') is known, solve the follow-

ing two subproblems (recursively):

(i) find the optimal reorganization points for a storage
structure starting period x0 with deterioration y0 and
running until time x0+P/2, with the constraint that it
must go through y' at the last time step

and,
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(ii) find the optimal reorganization points for a storage
structure starting period x0+P/2 with deterioration y'

and having a lifetime of P/2 periods.

The first subproblem is equivalent to finding the set
of optimal partial reorganization points of a storage struc-
ture starting period x0 with deterioration y0 and terminat-
ing period x0+4T/2 with deterioration y'. The second sub-
problem is identical to the original, except that it is half
the size and starts with a storage structure of deteriora-
tion y' at period x0+P/2, and thus the original algorithm
can be applied without alteration. (Section III.5 contains

an implementation of this method in PASCAL.)

The recursive application of this "divide-and-conquer"
technique will produce the set of optimal reorganization
points for the original problem. It remains to show that
the application of this technique will conserve the 9(P**3)
time bound. Let c*P#**3 denote the number of basic opera-
tions required to find the cost of the optimal arrangement
by the dynamic programming scheme first proposed, and let
& (P) represent the computation time required in the worst
case for the above scheme. Then, ignoring the minor cost of
recursive calls and some trivial pointer operations,

& (P) = c*P**3 + 2*5(P/2) for P>2 (ITI.5)
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and suppo se

a (1) =1 (ITI.6)

As a result a(P) = 2*c*P**3, that is, the time to find
the optimal reorganization points 1is approximately twice
that required to find the minimum cost alone and so is still
B(P**3), If the scheme maintained the 1/3 and 2/3 positions
(rather than the midpoint) of the optimal path and carried
them through on the first pass, the running time of the
algorithm would be roughly 3/2 that of the basic scheme, but
the space requirement, although still ©(P) would be notice-
ably greater than for the method outlined. It is straight-
forward to develop this time-space trade-off for maintaining

any fraction of the points.



III.5 The algorithms.

This section presents the PASCAL code for the algo-

rithms discussed in the previous sections of Chapter III.

Algorithm for selecting optimal reorganization points.

function shortest (x0, y0, p : integer) : real;
var £1, ftop, fopt : real;
X, ¥, YopPt, who : integer;
from : array [0..P] of integer;
f : array [1l..P] of real;
begin
ftop := 0; from[x0]:=TOP; {boundary condition}
for x := 2 to p do
begin
£l := r(x0+x-2,x+y0-2) + d(x0+x-2,0) + ftop;
from[x0+x-1]:=TOP;
ftop := d(x0+x-2,x+y0-2) + ftop;
for y := x-2 downto 1 do
begin
fly+l] := d(x0+x-2,y)+fly];
fl := min(£fl, r(x0+x-2,y)+d(x0+x-2,0)+£[y], who);
if who = 2 then from[x0+x-1]:=y;

end;
£[1] := £1;
end;

{ find optimal value }

fopt:=ftop; yopt:=TOP;

for y:=1 to p-1 do
begin
fopt:=min(fopt, flyl, who);
if who = 2 then yopt:=y;
end;

shortest:=fopt;

{retrace optimal path}

while yopt <> TOP do
begin
p:=p-yopp;
writeln('reorganize at stage',p);
yopt:=from[x0+p+11];
end

end;
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Algorithm for selecting partial reorganization points.
var f : array [0..PY0] of real;
half : array [0..PY0] of integer;
function shortest(x0, y0, p, yprime : integer;
forced : boolean) : real;
var ft, oft : real;
X, Y, 2, halft, ohalft, yp, who : integer;
begin
for y:=0 to p div 2 + y0 do halfl[y]:=y;
for y:=0 to y0 do fly]:=INFINITE;
fly0]:=0; oft:=0; halft:=0;
for x:=x0+1 to x0+p do
begin
for y:=1 to x-x0+y0 do
begin
if y =1 then f£t:=INFINITE
else ft:=d(x~-1,y-1)+f[y-11];
fly-1]l:=0ft;
if x-x0 > p div 2 then

begin
halft:=half[y-1]; halfl[y-1]:=ohalft;
end;
for z:=y to x-x0+y0-1 do
begin

ft:=min(ft,r(x-1,z,y)+d(x-1,y-1)+£[2],who);
if (x-x0 > p div 2) and (who = 2)
then halft:=half[z];
end;
oft:=ft; ohalft:=halft;
end;
f[x-x0+y0]:=£ft;
if x-x0 > p div 2 then half[x-x0+y0]:=halft;
end;
if forced then
begin
shortest:=f[yprime]; yp:=halflyprime];
end
else begin
ft:=£f[1]; yp:=half[l]; yprime:=1;
for y:=2 to p+y0-1 do
begin
ft:=min(ft,f[y],who);
if who = 2 then begin yp:=halfl[y]l; yprime:=y end
end;
shortest:=ft;
end;
if p = 2 then
begin
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writeln('stage',x0,' from',y0,' to',yp);
writeln('stage',x0+1,' from',yp,' to',yprime);
end
else if p = 3 then
writeln('stage',x0,' from',y0,' to',yp);
if p>= 4 { p div 2 >= 2}
f
3

then ft:=shortest(x0,y0,p div 2, yp, true);
if p >= { pdiv 2 >= 2}
then

ft:=shortest(x0+p div 2, yp,p-p div 2,yprime,true);
end;

IIT.6. Some remarks.

It has been shown that ©(P**2) basic operations and ©
(P) storage 1locations are necessary and sufficient to com-
pute the reorganization points for arbitrary or for mono-
tonic costs, where P 1is the storage structure lifetime.
Furthermore, it has also been shown that 6(P**3) basic
operations and ©(P) space are required to compute partial
reorganization points. The space-saving divide-and-conquer
technique presented 1in Section III.4 is applicable to any
shortest route path problem in which the weights of edges

are computable and thus do not have to be stored explicitly.

For some applications, reorganizing the storage struc-
ture may imply that all users must be locked out during the
reorganization period. A possible minor extension to the

algorithm is to compute reorganization points optimally



given a 1imit on the maximum number of reorganizations
and/or the total reorganization time for a given time inter-
val P (and thus gquaranteeing a minimal availability for the

storage structure).

The major limitation of this algorithmic approach is
its dependence on a discretized, finite storage structure
lifetime. There exist some special cases for which the algo-
rithm could be modified to handle unbounded lifetime, for
example when the deterioration and reorganization costs are
identical 1in every stage after some time P or when they are

periodic after P.

It should be noted that when the reorganization and
deterioration <costs are linear, Tuel's closed form solution
[Tuel78] is to be preferred to any algorithm since it
requires wvirtually no computation. Similarly, if other
closed forms can be found for particular cases, they should
be preferred as well; unfortunately no work has been
reported other than for the 1linear case. Therefore, the
simplicity, universality, and practicality of this reorgani-
zation algorithm make it a worthwhile tool for storage

structure or data structure designers.



CHAPTER IV

IV. Linking selections of composite storage structures.

Previous chapters dealt with the selection of unchang-
ing storage structures. It was implicitly assumed that the
relative frequency of operations over the data types
remained constant or that the average fredquency of opera-
tions over the lifetime was sufficient to characterize the
application. Thus once a selection of implementations for
the substructures was made, say at the beginning of the
application 1life, it remained for the complete lifetime.
However, as mentioned in Section II.5, there exist applica-
tions in which the frequency of operations changes as time
passes, making some other implementations more attractive
than the ones <chosen at the start. For these cases it is
said that the application passes through phases, each phase

having different requirements.

In general, converting from one implementation that is
optimal for one phase to the implementation that is optimal
for the next phase might not be overall optimal. It might be
possible to make a selection that is not optimal for the
first phase, and another that is also not optimal for the

second phase, but when composed, cost less than the previous



selections (see example below). Similarly, if a third phase
has different requirements it might be more efficient to
convert directly from the structure most suited for the
first phase to the one most suited for the third, at the
time that the application 1is only beginning the second

phase.

Consider the application represented by application
IV.1l, for which every combination of implementations is
assumed to be feasible. The Dbest selection for phase 1
alone 1is implementation 1, and the best selection for phase
2 alone is implementation 2. The combined cost of both

selections is 120 cost units.

If the selection algorithm of Section II.5 1is applied
to this example (i.e., it is assumed that the best selection
was adopted for phase 1) and it is now desired to find the
best selection for phase 2, that algorithm will select
implementation 1 for phase 2, with a combined cost of 40
units. This is clearly better because a local improvement

is achieved.

When the two phases are considered simultaneously, (a
total optimization) an algorithm solving this problem should
select implementation 3 for both phases, with a combined

cost of 30  units. An algorithm solving this type of
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problems must be supplied with the information regarding

each phase before any selection can be made.

Cost of Phase Conversion Cost
1 2 1 2 3
1 | 10 20 | 1 | 0 100 25 |
Implementations 2 | 20 10 | 2 | 100 0 25 |
3 | 25 25 | 3 | 25 25 0 |

Data for Example IV.1,.

IV.1l. Mathematical formulation for the selection of a

sequence of composite storage structures problem.

The selection of a sequence of storage structures prob-
lem can be described as a generalization of the selection

problem discussed in previous chapters as follows:

p the number of phases for which a selection is

sought i.e., the application lifetime,

N the number of substructures for which an

assignment is sought,

M(i) the number of implementations in the library

for substructure i,
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X (p) a zero-one matrix in which x(i,j,p) indicates
whether or not implementation j 1is to be

selected for substructure i in phase p,

s(i,j,p) the estimated storage space consumed by

implementation j when used for substructure i

in phase p,

t(i,j,p) the estimated run time of implementation j

when used for substructure i in phase p,

c(i,j,p,3") the cost of converting substructure i from
implementation j in phase p to implementation

j' in phase p+1,

S(p), T(p) the maximum amount of storage space and run-

ning time respectively available to be used

by the selected implementations in phase p,

COST(X(p) ,S(p) ,T(p)) a monotonic cost function in terms of
the total amount of time consumed by the
final selection X(p) when constrained to the

bound S(p) and T(p) in phase p.
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The problem can now be represented as:

P
Z = MIN E: { COST(X(p),S(p),T(pP)) +
=1
(IV.1)
N M(1i) M(i)
K *{( Z c(i,j,p,j')*x(i,j,p)*x(i,j',p+l)}
i=1 =1 3T
such that:
M(1i)
x(i,j,p) = 1 ¥i=1..N, p=1l..P (IV.2)
j=1
N M(i)
2 Y. s(i,3,p)*x(i,j,p) <S(p) ¥p=l..P (IV.3)
i=1 =1
N M(i)
Y t(i,j,p)*x(i,3,p) <T(p) ¥p=l..P (IV.4)
i=1 §=1
x(i,j,p) = 0, 1 ¥i=1l..N, j=1..M(i), p=1..P (IV.5)
K € R+ (IV.6)

The last expression of Equation 1IV.1 accounts for the
conversion cost between phases, since the conversion cost
c(i,j,p,J') applies only when both =zero-one variables are
one. The other equations are merely generalizations of the

ones presented in previous chapters.
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IV.2. Linking selections involving one substructure at each

phase.

Consider the problem in which there exists only one
substructure in each phase of the application. Thus for
each phase there are many possible implementations for this
substructure, and the problem consists of selecting one
implementation for each phase such that the total cost is
minimized. The solution for this simplified problem is
instructive in understanding one solution for the general

one.

Consider the graph in Figure IV.1l, each node (except
for nodes S and E) represent one possible implementation for
the substructure under consideration. Thus each phase of
the application 1is composed of M(i) nodes (a column in the
graph), each node (except for node E) is connected to all
the nodes immediately to its right (next column) by means of
directed edges. Each edge of the graph has a weight that
corresponds to the cost of using the implementation at the
target of the edge 1in the corresponding phase plus the

conversion cost to that particular implementation.
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Figure IV.1 Linking selections involving one substructure
at each phase.
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Since nodes S and E are special, the edges departing from
node S are weighted by the cost of using the implementation
at the target of the edge only, and all the edges pointing

to node E have a weight of zero.

Given that the total cost for this problem is additive,
(Equation IV.1l when N=1) each phase contributes a piece of
the total cost. Therefore, the problem has been reduced to
a shortest route problem from node S to node E. This prob-
lem has been investigated in Chapter III under the heading
of optimum reorganization points for data structures, and

consequently the algorithms developed in that chapter are

applicable here as well.

IV.3. Linking selections involving several substructures at

each phase.

The problem of linking P composite storage structure
selections can be represented graphically in 3-dimensions
(Figure IV.2) such that the x-coordinate represents the sub-
structures for which an assignment 1is sought, the y-
coordinate represents the possible implementations for each
one of the substructures, and the z-coordinate represents

the phases in the lifetime of the application.
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Figure IV.2 Linking selections involving N substructures
at each phase.
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Thus, each x-y plane characterizes one phase of the applica-
tion, and 1is related to the plane behind it by means of

conversion costs between the phases.

The problem consists now in selecting for each plane, a
set of «cells, one from each column, such that the cost of
the selection at each plane plus the conversion cost between

planes is as small as possible.

Observing the solution for the problem of the previous
section, in which only one substructure was present at any
one phase, one can devise a solution algorithm for this
problem as well. 1In particular if one had all complete
assignments for each phase, i.e., those that do not violate
the glven constraints, one could apply a shortest route

algorithm in the following manner:

Each node in the graph of Figure IV.1l (except S and E)
represents one feasible selection (rather than just one pos-—
sible implementation for a substructure as in the previous
section). A column in the graph consequently constitutes all
feasible selections for one phase of the application. Each
node is connected via directed edges to all the nodes in the
next column (phase) of the graph. The label (weight) of each
edge corresponds to the cost of using the selection of

implementations at the target of the edge in the
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corresponding phase plus the sum of the conversion costs to
that particular set of implementations from the node where
this edge originates. Again, since nodes S and E are spe-
cial, the edges departing from node S are labeled by the
cost of using the set of implementations pointed by the edge
only, and all the edges pointing to node E will have a label
of zero. (Given that every edge in the graph uniquely
determines the set of implementations at each phase, their
labels can be pre-computed prior to the execution of any

algorithm.)

Thus, the problem has again been reduced to a shortest
route problem from node S to node E. However, the number of
feasible solutions for each phase may be exponential 1i.e.,
O(M**N). Therefore, in this case the time complexity of the
algorithm will be exponential in the number of library
implementations. In fact the time complexity in the worst

case is O((P-1)* (M** (2*N))).

The following theorem and its proof establishes that,
unless P = NP, no polynomial or pseudo-polynomial algorithm
exists for selecting a sequence of composite storage struc-

tures.
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Theorem:

The selection of a sequence of composite storage struc-

tures problem belongs to the strong-NP-complete class

of problens.
Proof (M. Tompa):

In order to prove this theorem, it will be shown that
it 1is possible to transform the well-known NP-complete
problem concerning the satisfiability of Boolean
expressions (SAT) [Karp75] to the selection of a

sequence of composite storage structures problem.

The satisfiability problem can be stated as follows:
Given: set U of Boolean variables, collection C of
clauses in conjunctive normal form.

Question: Is there a satisfying truth assignment for C?

Given an instance of the satisfiability problem,
transform it into a selection problem in which for all

i=1..1Ul, and k=1..]|C|

0 if variable U(i) is in clause C(k)

s(i,1,k)
1 if U(i) is not in C(k)

0 1if the negation of U(i) (U (i)) is in C(k)

s(i,2,k)
1 if "U(i) is not in C(k)
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t(irjrk) = 0

0 if j = 3
c(i,j,k,3') =

1 otherwise

T=0, S =|Ul-1

For N=|U| and P=|C|, solve the following selection problem:

P N 2
Z = MIN ) {3 Y t(i 3,k *x(i,3,k) +
k=1 i=1 =1
N 2 2
Y 5 Y c(i,d, k.3 *x(i,3,k) *x(i,j' ,k+1)}
iT1 i=1 37=1

such that:

[] gt -2

2
Z s(i,j,k)*x(i,j, k) < N-1 wk=1..P
1 j=1

i
The interpretation of this restriction when applied to
the original satisfiability problem is to allow at most
N-1 variables in each clause to be false, 1i.e., at

least one variable 1in each clause to be true; conse-

quently, the whole expression must be satisfied.

If the selection problem just described is solvable and
if 1its solution has a cost of zero, then the original
problem is satisfiable by setting

true if x(i,1,k) =1

Uu((i) =
false if x(i,2,k) =1
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If there is no solution or if the cost of the solution
is greater than zero, then the original problem is not
satisfiable: since all the t(i,j,k) are zero, at least
one conversion cost was employed, which in turn means
that the truth assignment of a variable changes between

clauses (which is not possible).

Given that the input for this selection problem con-
sisted only of =zeroes and ones (there is no need to
enter the number N, just count the number of zeroes and
ones) the selection of a sequence of composite storage
structures is NP-complete in the strong sense

[Garey79].

IV.4. Transformation of a P-phase selection problem into a

l-phase problem.

In this section the transformation of the problem of
selecting a sequence of P composite storage structures prob-
lem into a l-phase selection problem is investigated. The
virtue of such a transformation 1is that the algorithms
presented in Chapter II can be wused with only slight

changes.
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To simplify the discussion, consider a 2-phase problem
in which there are N substructures for which an assignment
is sought. For each substructure i, there are M(i) 1library
implementations. The problem is characterized by two
evaluation matrices (one for each phase) and by N conversion

cost matrices (one for each substructure).

The transformation is indeed very simple. For each
implementation of substructure 1 in phase 1, construct a
vector segment by pairing it with all the implementations
for that substructure in phase 2. After all the implementa-
tions for the substructure in phase 1 have been considered,
a vector of size M(1)*M(i) will be generated. Each entry of
the vector will be characterized by a five tuple

<s(i,j,1),t(i,j5,1),s(i,j',2),t(i,3',2),c(i,j,1,3")>
identifying the pairing of the implementations for that sub-
structure. That 1is, implementation Jj in phase 1 using
s(i,j,l) space, t(i,j,1l) time and implementation j' in phase
2 using s(i,3j',2) space, t(i,j',2) time, the conversion cost

between the two given by c(i,j,1,3'").

Once this transformation is performed on all substruc-
tures, an evaluation matrix of size N*(M**2) will have been
formed. Utilizing this evaluation matrix, the following

problem should be solved:



- 112 -

Z = Min { COST(X(1),S(1),T(l)) + COST(X(2),S(2),T(2)) +

§: M(i) M(i)
K * c(i,j,1,3")*x(i,3,1)*x(i,3',2)}
i=1 jzﬁ jZ;l
(IV.7)
under the following constraints:
N M(i)
) s(i,j,1)*x(i,j,1) < 8(1) (IV.8)
i=1 =1
N M(i)
2 e(i,3,1)*x(i,3,1) < T(1) (IV.9)
i=1 j=
M(i)
x(i,j,1) =1 ¥i=1..N (IV.10)
j=1
N M(i) -
Y. i: s(i,3',2)*x(1,3',2) < S(2) (Iv.11)
i=1 jT=1
N M(i)
) £(i,3',2)*x(1,3',2) < T(2) (IV.12)
i=1 i=1
M(1i)
i: x(i,j',2) =1 ¥i=1l..N (IV.13)
iT=1

x(i,3,1), x(i,k,2) = 0,1 Wi=1l..N, j=l..M(i), k=1..M(i)
(IV.14)
This selection problem is similar to the one of Section
IT.5, except that four state variables (rather than just

two) are required for its solution.
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The following recursive relationships can be derived:

F(i,s(1),t(1),s(2),t(2)) =

MIN {C(i,j,l,k)+F(i+l,S(l)—S(i,j,l),t(l)—t(i,j,l),
Jek s(2)-s(i,k,2),t(2)-t(i,k,2)) }
¥j,k such that F(i+l,s(l)-s(i,j,1),t(1)-t(i,j,1),
s{2)-s(i,k,2),t(2)-t(i,k,2)) exist

infinite otherwise

(IV.15)
the boundary condition is given by:
F(N,s(1),t(1l),s(2),t(2)) =
MIN {c(N,j,1,k)} ¥j,k such that
Jek s(l)=s(N,j,1),t(1)=t(N,j,1),
s(2)=s(N,k,2),t(2)=t(N,k,2) (IV.16)

infinite otherwise

the solution will be found by:
Z=MIN {F(l,s(1),t(1),s(2),t(2))+£(s(1),t(1),s(2),t(2))}

s(l),t(1)

s(2),t(2) (IV.17)
Where f represents the value of COST(X,S,T) for a specific
pair of assignments. Clearly F(1,s(1),t(l),s(2),t(2)) will
be finite for all feasible solutions that use exactly s(1)

space and t(1l) time in phase 1, and exactly s(2) space and

t(2) time in phase 2.

The implementation of the above recursive relationship
will require O(N*(M*S*T)**2) operations, given that for each
stage, there are at most S(1)*S(2)*T(1)*T(2) possible states

(combinations of space and time at each of the two phases),
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and since the value of each state is selected from at most
M(i)*M(i) alternatives. The space required is O(N*(S*T)**x2)
storage cells, because the outcome of each state must be

stored.

Clearly similar bounds to those of Section 1II.3.1 can
be applied to each of the state variables of this recursion,
thus reducing the required time in practice. Furthermore, if
the functions COST(X(p),S(p),T(p)) were separable, the
approach of Section II.3.2 will reduce the space complexity

to O((S*T)**2).,

If the transformation just described is applied to a
P-phase problem, i.e., by collapsing P implementations into
a single vector entry, an algorithm whose worst time com-
plexity will be of O(N*(M*S#*T)**p) will be obtained. This
perhaps is more desirable to the approach of Section 1IV.3,
since it 1is expected that the number of phases will be
smaller than the number of substructures. This solution,

however, is still exponential, now in the number of phases.
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IV.5 An example.

This section illustrates the application of the algo-
rithm presented in Section IV.4, namely, the transformation
of selecting a sequence of P composite storage structures
into a 1l-phase selection problem. The example under con-
sideration is to find the most efficient representations for
the directories of a file for which several attributes
(domains) have been inverted. 1In this example, appropriate
implementations for each directory are sought, i.e., the
implementation for the 1inverted 1list themselves is not
addressed (for a discussion of how to represent inverted

lists see, for example [Cardenas79]).

In particular, consider a file for which three impor-
tant attributes have been inverted (e.g., for a chemical
substance file, the weights, cost per ton and supplier of
the substance). The characteristics of the attributes are

assumed to be as follows:
attribute 1: out of 5000 possible distinct values, at most
3000 are expected,

attribute 2: out of 1000 possible distincts wvalues, at

most 1000 are expected,
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attribute 3: out of 500 possible distincts values, at most

100 are expected.

Assume as well that in the application making use of
this file, one can distinguish two phases. 1In the initial
one, namely when the file is created, there will be a rela-
tively high number of insertions as compared to the number
of queries. In the second phase, the number of insertions
decreases and the number of updates increases. For this
example, 90% of the directory insertions and 10% of the
directory queries are assumed to be performed in the initial
phase, and for the second phase, 10% of the insertions and

90% of the queries will be performed.

The library of implementations used in this example

consist of:

linearly addressed store

contiguous store

unary chain

binary tree

threaded tree
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Under the assumptions just described and using the for-
mulas produced by Tompa [Tompa74], the following evaluation

and conversion cost matrices may be obtained.

TIME SPACE
Al A2 A3 Al A2 A3
lin. add. .16 .06 .02 10 2 1
cont. st. 59.05 6.84 .17 5.4 1.8 .18
unary ch. 41.34 6.90 .22 4 1.4 .14
bin. tree 1.52 .62 .12 5.4 1.8 .18
thr. tree 1.52 .65 .12 5.4 1.8 .18

Table IV.1l Evaluation matrix for the initial phase.

(time is in seconds, space is in kilo-words)

TIME SPACE
Al A2 A3 Al A2 A3
lin. add. .36 .30 .15 10 2 1.
cont. st. 15.16 2.82 .74 6 2 .29
unary ch. 199.82 61.67 3.33 8.5 2.9 .29
bin. tree 3.53 2.95 1.01 11.4 3.8 .38
thr. tree 3.47 2.77 1. 11.4 3.8 .38

Table IV.2 Evaluation matrix for the second phase.

(time is in seconds, space is in kilo-words)

From To 1lin. add. cont. st. unary ch. bin. tree thr. tree

lin. add 0 .34 .52 .63 .71
cont. st .30 0 .49 .58 .67
unary ch. .29 .29 0 .56 .65
bin. tree .47 .47 .65 0 .46
thr. tree .35 .35 .53 .12 0

Table IV.3 Conversion costs for attribute 1

(time is in seconds)



- 118 -

From To 1lin. add. cont. st. unary ch. bin.tree thr. tree

lin. add. 0 .11 .17 .21 .24
cont. st. .10 0 .16 .20 .22
unary ch. .10 .19 0 .19 .22
bin. tree .19 .19 .28 0 .15
thr. tree .12 .12 .18 .04 0

Table IV.4 Conversion costs for attribute 2.

(time is in seconds)

From To 1lin. add. <cont. st. unary ch. bin. tree thr. tree

lin. add. 0 .01 .02 .02 .02
cont. st. .01 0 .02 .02 .02
unary ch. .01 .01 0 .02 .02
bin. tree .02 .02 .03 0 .02
thr. tree .01 .01 .02 .01 0

Table IV.5 Conversion costs for attribute 3.

(time is in seconds)

In order to apply the algorithms suggested in Section
IV.4, it is necessary to create an evaluation matrix of sigze
3*25, by pairing each implementation for each substructure
in the initial phase with all the implementations for that
substructure in the final phase. As mentioned in that sec-
tion, each matrix is a five tuple that identifies the pair-

ing of implementations for that substructure.

The total number of possible selections in this example
is (5**3)**2 = 15625, making manual calculation and analysis
virtually impossible. The cost formula assumed for this

example is given by:



- 119 -

( z:spaces * Z: times) in phase 1 +
MAX ( E: spaces in phase 1, z: spaces in phase 2)
* Z: conversion times) +

( Y spaces * ), times) in phase 2

The first step of the algorithm consists of applying
the boundary condition 1IV.16, 1i.e., compute the optimal
value function for a problem of size one. This optimal
value function 1is characterized by a vector of size 25 for
this example, i.e., one entry for each possible sequence of

representations for substructure 1.

A problem of size two can now be solved by applying the
recursive relationship IV.15, producing a vector of size at
most 625. The phenomenon of several implementations col-
lapsing as described in Chapter II will also occur for this
procedure. Finally, using the previous vector and the same

recursive relationship, the complete problem is solved.

If no restrictions are imposed on the total amount of
space or time at each phase, and the total conversion cost
is only the sum of the individual costs (i.e., not charging
for the space consumed by the conversion algorithms), the
algorithm will select the linearly addressed store for all
three substructures 1in both phases with a total cost of

13.65 kiloword—-seconds. This is because the linearly
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addressed store is very efficient in time and the extensive
use of space it requires is not heavily penalized by the

cost formula.

However, if the total conversion cost is given by the
product of the sum of the times and the sum of the spaces
(as suggested in the above cost formula) and space and time
bounds are imposed at each of the phases, interesting alter-
natives arise. For example, it may be required that the
accumulated response from the directories be bounded by 60
seconds and that 6 kilowords and 10 kilowords are available
for the 1initial and the final phase respectively. As a
result the algorithm selects unary chains for phase 1 and
contiguous store for phase 2 to be used for both attributes
1 and 3, whereas for attribute 2 threaded tree should be
used in phase 1in phase 1 and this should be converted to
linearly addressed store for phase 2. The total cost of
this selection is 388.507 kiloword-seconds and the solution

is within the required bounds.

IV.6 Some remarks,

In this chapter two approaches for selecting a sequence

of composite storage structures were presented. The former
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is based on enumerating the possible selections for each one
of the phases, and then solving a shortest route problem
among the phases. The latter is based on transforming a P-
phase selection problem into a 1l-phase problem. Both
approaches lead to algorithms whose running time and/or
required space 1is exponential, in the first case in the
number of substructures for which a selection 1is required
and the second in the number of phases in the problem. Con-
sequently, when both of these variables grow, the applica-

bility of these algorithms is questionable.

However, for applications in which the conversion costs
between phases is relatively small compared with the cost of
the phases, each phase can be solved independently by using
one of the algorithms presented in Chapter II, i.e., a set
of independent composite storage structures selection prob-
lems. Conversely, when the cost of the phases is relatively
small compared with the conversion costs, each substructure
can be solved independently using one of the algorithms
presented in Chapter III, i.e., a set of independent reor-
ganization points problems. Therefore, if one of the above
characteristics hold, one can in practice obtain approximate

solutions to problems of large size.
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The algorithms presented in this chapter assumed that
no bounds on space and/or time are present when the conver-
sion algorithms are executed between the phases. One possi-
ble extension will be to constrain the conversion algorithms
to specified bounds between phases. Another extension will
be to incorporate the possibility that at each phase there
are a different number of substructures or implementations

than in the previous.
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CHAPTER V

V. Conclusions.

V.1l Thesis contributions.

The objective of this thesis has been to motivate and
solve several related problems concerning the selection of

storage structures.

Although, other researchers have presented solutions
for a simple version of the problem, the methods previously
proposed have had exponential worst case running time (in
the number of substructures and implementations) and/or they
have not guaranteed an optimal selection. Consequently, the
thrust of this thesis was to extend previously known algo-
rithms for solving this type of problem to incorporate
bounds on the available resources as well as being pseudo-
polynomial in their running time. Moreover, given that
there exist natural bounds for these resources (e.g., the
size of the primary of secondary storage and bounded
response time), the algorithms in practice, run in polyno-
mial time. 1In this sense, the efficient selection of compo-
site storage structures can be considered as a well-solved

combinatorial optimization problem.
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The re-selection of storage structures problem is
applicable to situations in which the future behaviour of an
application is uncertain (or not know a priori), and infor-
mation regarding the next phase can be known (or predicted)
only when a phase is near completion. Under this framework,
it is not ©possible to make an overall optimal selection;
only a local optimization can be applied at the boundaries
of each phase. This re-selection algorithm also incor-
porates bounds on the amount of resources available, as well
as having a pseudo-polynomial running time. To our
knowledge, no previous research has been reported for this
problem. Given that there exist applications currently
using sub-optimal assignments, this algorithm represents a

desirable tool for re-assignment of implementations.

Another contribution of this research 1is the algo-
rithmic approach to solve the optimal selection of reorgani-
zation points for storage structures that deteriorate with
time, or for selecting implementations for a storage struc-
ture in an application consisting of several phases. There
exist some closed form solutions, but only for applications
restricted to linear deterioration and reorganization costs.
The approach presented in this thesis removes this restric-
tions by allowing arbitrary cost functions and solving the

problem in strictly polynomial time. Moreover, it is
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demonstrated that the algorithm itself is optimal. Further-
more, from a pragmatic viewpoint the problem can be also

considered well-solved.

Finally, the selection of sequences of composite
Storage structures represents a total optimization problem,
since all the information regarding each phase (i.e., full
characterization of the lifetime) must be known before any
selection can be made. Although the algorithms presented in
this thesis are exponential (in the number of substructures,
or in the number of phases), they constitute a first step
towards designing efficient storage structures for applica-
tions with predictable phase-oriented lifetimes. Given that
it is expected that the number of phases be bounded by a
small integer, the described algorithms can again be used in

a practical framework.

V.2. Applicability of results.

From a global point of view, the .application of the
algorithms presented in this thesis should ©provide a
designer of data structures with a set of tools to be part

of a general data structure design methodology.
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The core of the difficulties 1in selecting composite
storage structures for a given application results from the
combinatorial explosion of alternatives. This makes the
manual consideration and evaluation of every library imple-
mentation for each of the data substructures defined at the
abstract structure 1level a very labor intensive and error
prone task. Furthermore, even if a manual selection of
implementations 1is counter-intuitive, a hand re-evaluation
is often impractical. Therefore, an algorithmic procedure
for selection composite storage structures is a more viable
and reliable approach. When the application under con-
sideration can be ©partitioned 1into distinct phases, each
being sufficiently important to warrant its own selection,

the algorithmic approach is even more desirable.

The algorithms presented in this thesis assumed the
existence of techniques for partitioning of data type
occurrences into homogeneous collections (substructures),
and for generating of the required evaluation and conversion
cost matrices. Consequently, in order for these algorithms
to be successful, it 1is necessary to substantiate such

assumptions.

It should be mentioned that neither problem is trivial.

However, it 1is fortunate that for the former problem some
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work has already been reported and is currently under way,
principally by the SETL group [Schwartz75, Dewar79,
Schwartz79]. With respect to the 1latter problem, several
alternatives had been proposed, see for example [Tompa74,
Gotlieb74, Cohen74, Wichman72, Low76]. In fact, the whole
field concerning the analysis of algorithms (see, for exam-
pPle [Aho74]) can be interpreted as a search for suitable
values to be used in the parametric formulas. An integra-
tion of the algorithms contained in this thesis with these
techniques will constitute a powerful and desirable general-

ized procedure for selecting composite storage structures.

V.3. Further research.

This section presents some ideas regarding possible
research extensions to the problems and algorithms in this

thesis.

Throughout this thesis the algorithms presented to
solve a particular problem have been characterized by their
worst case behaviour. An interesting research extension may
attempt to characterize their average behaviour and to com-
pare it with other known approaches, e.g., for the case of

selection of composite storage structures, compare the
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dynamic programming approach suggested here to branch-and-

bound as suggested by Tompa, and to hill-climbing by Low.

Given that the algorithms presented here heavily depend
on the granularity of available resources, a possible exten-
sion to this work will be to tune the algorithms according
to a practical framework, i.e., decide the dimensions of the
state variables for practical situations. Since the algo-
rithms made no assumptions with respect to the difference of
two successive values for a state variable, it 1is possible
to study the effects of dynamic granularity (intervals of
different size). Such dynamic granularity could be used to
model the different 1levels of a hierarchical store (e.g.,

caches, cores, bubble memories, drums etc.)

Another alternative is to study approximate solutions.
Given that the selection of composite storage structures
problem is related to the knapsack problem, and since there
exist polynomial approximations to the knapsack, one could
study approximate solutions for this problem as well.
Lagrange multipliers 1is another alternative, commonly used
to reduce the dimensionality of a given problem by combining
some of the constraints with the objective function. Since
one drawback of dynamic programming is the exponential

growth of the required computation as the number of state
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variables increases, reducing the number of state wvariables
is an attractive alternative. Unfortunately when this
approach is employed, there is no guarantee that the optimal

solution will be found.

Other possible research extensions are mentioned by
Tompa and by Low. Among these are the creation of a suit-
able library of implementations for real situations and
extending the approach to several 1levels of secondary
memory. Developing a system for the fully automatic selec-
tion of storage structures is obviously the ultimate exten-

sion and research goal.
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