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ABSTRACT

There is a rapidly growing interdisciplinary interest in the
application of location models to real life problems. Unfortunately,
the current methods used o solve the most popular minisum and
minimax location problems are computationally inadequate. A
more unified and numerically stable approuch for solving these
problems is proposed. Detailed analysis is done for the linearly
constrained Fuclidean distance  minisum  problem for facilitics
located in a plane. Preliminary computational experience suggests
that this approach compares favourably with other methods.
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1. INTRODUCTION

Facility location problems are generally concerned with finding the optimal
location of a set of new facilities in a network of existing facilities. Over the past
few decades various forms of the problem have been developed and addressed in
the literature (see Francis and Goldstein [11]). In this paper we present a stable
method for solving the multifacility location problem involving Euclidean
distances.  We assume that the feasible region is connected and that the
parameters arc static with respect to time (for a discussion of the dynamic aspect
of these problems see Wesolowsky and Truscott [17]). In addition, we assume
that the problem is well formulated (Francis and Cabot [10] formally describe this
and many other properties of the problem).

Various approaches have been used in an attempt to efficiently solve this
location problem. One such method involves the use of a heuristic algorithm
described by Vergin and Rogers [14]. Unlike their approach, most solution
techniques  quarantee  optimality.  Included among these are the convex
programming approach described by Love [13]. the hyperbolic approximation
method used by Eyster, White and Wierwille [9], the pseudo-gradient technique
described by Culamai and Charalambous [3] and the subgradient algorithm
presented by Chatelon, Hearn and Lowe [5].

One property of this problems objective function that causes considerable
difficulty is the fact that it is not everywhere differentiable. This non-
differentiability occurs whenever any new facility coincides with any other new
facility or with an existing facility.  As a result, standard minimization techniques
cannot be directly applied. We overcome this difficulty by projecting onto a
particular affine space in which the current near zero terms stay unchanged and
the remaining well-defined terms can be decreased. Then, when we think we arc
optimal, we perform a linear refinement step that makes the near zero terms
exactly zero. Under mild and suitable conditions we show that this technique
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2 P.H. CALAMAI & A.R. CONN

converges to the solution of our problem.

Another significant property of this technique is that it can be used for the
linearly constrained problem. Here we replace the constrained problem by a
sequence of unconstrained problems by using a penalty function due to
Pietrzykowski [I5] and Zangwill [18]. Using this method we are able to obtain a
sequence of points (optimal to the unconstrained penalty function) which converge
to the desired constrained optimum.

2. PROBLEM STATEMENT AND DEFINITIONS

The multifacility minisum problem involving costs associated with Euclidean
distances between facilities in RY can be stated as: Find the point

T . L
X' = fXTT. -+ x, }in R to minimize
n m
Sy = E vik [xp =l + 2 2 wiillxj—pil (2.1
1<y <k gn Jj=ti=1
where

n A number of new facilities (NFs) to be located.

m A number of existing facilities (EFs).

x/-T = (xj - - x/q)A vector location of NF; inRY j =1, .. . n
pil =, - p,vq)A vector location of EF; inRY { =1, ..., m.

Vik A nonnegative constant of proportionality relating the /5 distance
between NF; and NFy to the cost incurred, 1/ <k <n.

Wi A nonnegative constant of proportionality relating the /5 distance
between NVF; and EF; to the cost incurred, 1<jgn, 1<i<m.

q
I xj=xill = | xje =xke| A 1, distance between NF;
=1

and NFy, 1€j<k gn.

g
lx;=pill =) | xje —picl H'/2A 1, distance between NF,
=

and EF;, 1€jgn, I<ig<m.

In order to simplify the remainder of the discussion we set ¢ = 2 (j.e. all facilities

are in R?). Now if we let n = " and 7 = n+mn and if we define the

constants

faeg, ..., ard = {y ), VY2 Y eV — WL e W e Wt - Wam )
v — ey — S Ny — S
n—1 n—2 1 m m

B84 = {1, .1 2 ,2, n—1 1 1 no...on)
n—1 n—72 1 m m

e, ..oy = 2.3 n, 3.4, ....n ﬂ
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and the index set M = {1, ..., 7} then (2.1) can be restated more conveniently as
minimize f(v) = 3 | Adx = by (2.2
eM
, 0y a;f 0y —a;l 05 i=1....7
where 4; = [0y ;I 04 i=ag+l -
[0- i=1....7n
hi = J ; .
| aipe i=n+1 ..., T

I 1s a 2 by 2 identity matrix,

0y. 05. 03, 04 and 05 are zero matrices of dimension 2 by 2(3, — 1), 2
by 2(vi—8;—1).2 by 2(n—x;), 2 by 2(n—8;) and 2 by |1
respectively,

e = (i —nm)ymod mand py = p,.

In a manner analogous to that of Bartels. Conn and Sinclair [2], define for
. . b .
any point v in R-": the residual vectors

rix)=Alx -b;  VieM,

the index set

T =tieM| | rch <aed=1ti. ..., iy €>0,
the corresponding matrix and vector
A=A =14, A, ] and reeMT = [ (BT r[-[k(.xk)r], (2.3)
and the vector
V= 3 Vb= 3 aneh ) neh)
i€ MKy €M I xR

{Note that for € = 0 the index set 16(,\'/‘) corresponds to those terms which are
exactly active (binding) at the point x*. Conn [7] gives an account of the necessity
for considering . as we do, “‘near-active” terms )

Finally define P, as the orthogonal projector onto St where S} 18 the space
spanned by the columns of A(x*). For the present it will be assumed that A(x %)
has full rank .

3. OPTIMALITY CONDITIONS
For all points v close enough to x* in R¥ we have

£ > /llr,-(.\')!!+ > ol (3.0

PEM xR TET (xF)

It

hfx )+ ha(x)
Assume Py Vi (x?) # 0 (e PA{H’/\ # 0). then for d¥=—P, if/\ we have
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Bk + Md@H TR (R + 0N
hixR = N Pe VSl + 0ed)
and since Adek = 0 Vi Elf(x’")
ha(ek 4+ M) = ho(x )
Combining equations (3.2a) and (3.2b) yields the result:
FERENRY = (xR = = PV fell +0A),

hy(xk+ad®

(3.2a)

(3.2b)

(3.3)

Therefore for d* = —PyV [ # 0 there exists >0 such that f{x + M) < f(x) for
all 0<A<$. Alternatively, if PV, = 0 then (under the linear independence
assumption) the corresponding point xk is called a (nondegenerate) dead point.
In this case Vf} can be expressed (uniquely) as a linear combination of the

columns of A(x “,

Vi = Au = 2 Aup uT=[u1T---u,€]‘
PE1(xF)
Then,
Bk 4+ AdR) = Bk + MEDTY S + 00D
=hihen Y wlalak+ond
€1 (x k)
and

Bk +Nd*) = hy(x®)+\

> laldhy

i€1g(x k)

+ ; VI rix Bk [+ o)
(€T (x MM\ o(x k)

= haxM+N| D | 4ldX

(€1 gx k)

KNT 4 Tk
r(xNT414
) LGRS TR U
(€1 (¥ v)\[()(xl") H ri(x )“
Combining equations (3.5a) and (3.5b) yields the result;

fektady = faety =n] Y @laldk+ ) afak))
i€lg(xk)

T 4 Tk
- orid{xH'A4d

+ (u,TA ,'TdA+ SEAEE Ll kl
I'Elf(.x‘;)\l()(xk) | ritx Ol

Now, if there exists an index / € I (x*) such that || u]] > 1 then take

(3.4)

(3.5a)

(3.5b)

(3.6)

NEZLLS)
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dh = =Py A (3.7)

where Py is the orthogonal projector onto Sy and Sy 4 is the space spanned by
the columns of A(xv*) with columns Ay deleted. Then. since A7d* = 0 for all
i€l (vF) — {1} and _4/7211‘ = —A4 /TP/\ uA = —puy where p> 0 (see Appendix).
we have. for small A >0,

'/ T

‘ 5 ri(x ) uy :

o gl + b | <O [ELMTox ) (3.8a)
Tk +ndky = f(xky = T "

\

=l ug () = D <0 [E€1o(xH) (3.8h)

\
Thus. if there exists /€1 (x*) such that || i]| > 1 then, for d = — Py /1A uy, there

exists 4 6> 0 such that f(x +Xd) < f(x) for all 0 <X < 6. What happens if x X is a
dead point and || u;]| <1 Vi€l (xky

CASE I T.(xM\Iyx5 = &

Under these circumstances we have

SRRy = fehy=n 3 wlAaTdb + | 4dkF ) +0ord) (3.9
ielply /‘)

which is nonnegative for all 4% in R* . Thus x* is at least a weak Jocal minimum
and hence a global minimum of the convex function f(x).

CASE 111 T (x"\Io(x%y # &

For any /€] (x*)\Io(x%) take d* = —P, //A/r/(x/‘). For this choice we have
Ald" =0 Viel (x*)—{/} and expression (3.6) becomes

FEFRHRY = £ = = Mol r(x By + || 1B ) + 0N (3.10)
r/(.xk)
which is nonpositive (strictly negative unless u; = —H—W).The next section
rix

explains a method for avoiding this case.

4. THE LINEAR REFINEMENT

If we are at the point xX and | Po V fi]l is “small”, then we may be
approaching a dead point, say x. We can then obtain estimates {u;} of the “dual”
variables {u;} by finding the least-squares solution to

V=Y A .0

PET(xK)

Then if ||| <1 Vi€l x* we may be near a local minimum (note that if
[e(.\"l‘)\l,,(,x%) = & this is especially clear). We therefore wish to satisfy the near-
active terms exactly. In [8]. Conn and Pietrzykowski define a vertical component,
based on linearizations. in an attempt to satisfy their “near-activities” exactly.
Here we wish to find the solution to the already linear system of equations;
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ATxk=vky—p; =0 Vielxh. 4.2)
This is best accomplished by evaluating the least-squares solution to the following,

AGHTVE = r(x by (4.3)
which is given, algebraically at least, by

vE = (AR Tr(xh) (4.4)

where A(x %)t is the generalized (Moore-Penrose) inverse of A(x k.

Note that once a refinement step is taken the set 7 (x *)\I o(x ¥) is nullified and thus
case IT above need not be considered.

5. THE RESTRICTED GRADIENT
Either x* is optimal or there exists a direction d ¥ such that, for small A >0,

Fxk+ Mk = F(xF) = AdDHTg with (dHTg <. (5.1
We take
g =Vf andd* = —P,g (5.2)
if x* is not a dead point, and
g =V = A/l wll and dF = =Py A (5.3)
(where [ €1 (x*) is an index giving [ ]l > 1) when x¥is a dead point.

As in reference [2] the vector g will be referred to as the restricted gradient
of the function.

6. THE STEPSIZE

Suppose we are at a point x € R2" and a direction d has been chosen as
described. Further. suppose our function is of the form

2x)= 3 |¢,(x)| 6.1)

=37

where the functions ¢;(x) are all linear. Clearly the minimum of & , in the
direction d , must be at a point X on d where, for at least one i EM\I (x ky . we
have ¢,(¥) = 0. The points X are called “breakpoints”. Therefore we determine
the stepsize A to the breakpoint that gives the minimum function value along d.
In other words, as long as the function is decreasing (i.e. d Tg (¥)<0) we continue
to move along d through successive breakpoints.

To extend this idea to the case where the functions ¢,(x) are nonlinear is not
difficult as long as we are: 1) content with estimating the location of breakpoints
and. 2) willing to use a linear approximation in evaluating d 'g (¥).

In the first instance we wish to find the values of A; satisfying

AT x +Xd) = b; =0, Vi € M\I(x). (6.2)
A good approximation to use. in the /> sense, comes from the equations:
—(Ad) ri(x)

P = —— Vi € M\ (x). 6.3
i I Al]d”] l \ (x) (6.3)
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In the second instance we wish to find an expression for dTg (x +\d) which
is linear in X\. Using the first-order Taylor series approximation about the point x,
we get
( T2 TNT, 2
hATd) " A d) reor |

dTe(v +Ad) = dTg(x) + A J _ (6.4)
iEMZ;I((,\ y o] frcold

With these ideas. the following stepsize algorithm (similar in concept to the
one given in [4]) can be formulated:

1) Set

—(ATd) ri(x)
Ee

Ji<{i eEMNI{x) | A >0}

ald) el eo?

Vi € M\I(x)

i

A« 9 3

e | Aol Hr] * |
s _d'g)
A« \

yve1 [, <0 X\, <0

2 IF,= @) THEN o to 5.
ELSE:

3) Determine /, € J, such that Ay <A vVies,

4 IF (O, > A, THEN go 10 5.
FISE setJ, 41 <J, — {1,)
v<v+1 and goto 2.

3)  Sely <« +)\/V7|d

6)  TF (f(x) < f(x)— 8 THEN set x < X and return,
FL.SE use x and v in cubic interpolation
routine 1o get g new ., and return.

NOTES:
1) § is some preassigned positive constant,
i) the cubic line scarch used in step 6) need not be (and in our present

implementation is not) exact,
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7. THE MINIMIZATION ALGORITHM
1) Choose any x' € R and set k < 1. Initialize excT. €7p. €vs and € .

2) Evaluate all residuals.  Identify all index sets, the vector r(x /‘) and the
matrix A(x%). Evaluate V /i and construct Py.

3)  Set DEL <« .FALSE.andd* <« —P, V/,.
4)  Consider retaining same eo¢7 - active set:

IF(|d* > ezp | V/k]) THEN go to 8.
ELSE:

5) Determine the ““duals”. Find the least-squares solution wto

Au = 6}”1‘
6) Decide whether or not to drop an activity:

IF (] <1 Vi€leacx®) THEN goto 11,
ELSE;

7) Drop an activity:

Choose / € 1(‘,\(‘T(X/‘) with || L;/ I > 1 and set dk = —-P; //A/L;/
Set DELL = -TRUE.

8) Use the line search algorithm above to find LRSS
9) Decide whether or not to do a linear refinement:
IF (]| d*] > evs .OR. DEL) THEN set x# ! « gk */
k < k +1 and go to 2.
ELSE;

10) Perform the linear refinement:

Solve, in the least-squares sense. the system
ATVE = r{x /‘)
F(fGE T = vk < f@F ) THEN set @ e X8 1=k
k <k + 1 and go to 2.
ELSE set x k!« gkl
EACT < €aCT/10
k < k + 1 and go to 2.
11) ]F(Hd/\" > €) THEN go to 8
ELSE IF (5, > ¢) THEN set ';k +1 « xk
and go to 10.
ELSE STOP!
NOTE: ;& = maximum(]| r;(x")])
iel (x k)

£
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8. LINEAR CONSTRAINTS AND THE PENALTY FUNCTION

Consider the following constrained form of the problem,

minimize  f(x) = E [ Alx —bil
1EM
such that r;(x) = a,-T:\' —bh; >0 i=7+1,....7 (8.1)
rity = alx —b; =0 =T+t

We can transform this problem into the penalty function of Pietrzykowski [15]
and solve the sequence of unconstrained problems,

minimize p(x. ) = pf(x) — 2 min [0.r,())] + ) | rix)] (8.2)
=3y FELE
where p is a positive parameter, LI = {7+1. .. .. 'y and LE = {7'+1, ... 7"}

[t has been shown [15] that under mild and suitable conditions, an exact minimum
of (8.2) coincides with an exact minimum of (8.1) for all values of u sufficiently
small. This suggests the following outer algorithm:

1) Choose u > 0

2) Minimize p(x, u) over x

3) IF (we are optimal) THEN STOP!
ELSE;

4) Set p < p/10 and go to 2.

The minimization in step 2 can be performed using obvious extensions of the
techniques already described (see [1]). Some of the details of these extensions will
be given below.

For any x* in R* define the index sets

1M =4 € L | | n(0 M) < e =i v1o i)
IYMy =€ LT (xR < —é, (8.3)
and 1M (x" ={i € LF | | r[(.\‘/")l <€ = ’i,’/\+[ ..... /',w/\i,
and the vector ﬁp,\ = p.%_f',\ - E a; + E sgn [ri(x A')]a,».
ier Vi iELENTAE (k)
Redefine the matrix A(x"), the vector r(x /‘) and the scalar r,~ as
Ay —
AR =4 A,—{k ,a,-,/\H, R a,-[,k ,(1,',,/‘ PETIPN afz”,‘,]
rixM7T = [r; ](.\‘1‘)7-, o r,l/\ (xMT, r,{A ¥ ky oo r,-r,k(,x'/‘),r,-[,k +‘()r oo r,-[,,A (x A)].

and r~ = mzixlimu’m(H r,/,(xA)H ).
j=1,..1"

Now if we replace Y}f;x by ‘ip/‘ and f(-) by p (-, g) then our algorithm can be used
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to minimize p (x, u) over x if we make the following changes to steps 6 and 7 ;

6) Decide whether or not to drop an activity:
IF (] <1 Vi€l oxH AND.

lui] <1 Vielrh  AND.
>

0 VieIM(x%) ) THEN go to 1.
ELSE;

uj

7) Drop an activity:
Choose [E€1, (M) with | ;|| > Tand set d¥ = =Py 44

OR. Choose /€1 M(x*) with u; <0 andsetdk= P, /14y
Set DEL < .TRUE.

(It can be shown that if there exists an index 1€1 M(x*) with 4, > 1 or an index
1e1M(x*) with urf > 1 then the direction d = —sgn(u;)Py ya; is a descent
direction. However, as pointed out by Bartels and Conn [1], constraint ri, will be

violated at x* + Ad* and. rather than do this, we take an alternative descent
direction if one exists. Otherwise, we reduce p in order to give more emphasis to
the constraints.)

9. IMPLEMENTATION

Throughout this derivation it was assumed that the matrix A(x) was full
rank in order to uniquely define the solution to various equations. This can no
longer be accomplished when A(x) is rank deficient because of the inherent
degeneracies encountered. Fortunately, this difficulty can be resolved in a
straightforward manner computationally by using a method similar to Bartels et
al. [2]. This involves treating all degeneracies as if they occurred due to the error
introduced through the storage of data on a finite machine. Then the machine
accuracy can be artificially reduced and the problem perturbed so that the
degeneracies are resolved. Finally, after the perturbation, a unique solution can be
attained which satisfies the original problem,

The full rank matrix A(x*) can be factored. by forming a product of Givens
transformations, into the form

k
0

R/\

0 (9.1)

Axhy = 0t = [0 05)

where Ql‘ is an orthonormal matrix and R* is a nonsingular upper-triangular
matrix. This numerically stable decomposition can easily be modified to
accommodate the necessary additions and deletions of column vectors to the
matrix A when it is updated (see [12]).

Since the columns of Q4 form an orthogonal basis for the space Skt the
projection matrix Py can be computed as

P = (05 (05T 9.2)

In addition, the vector u required in step 5) of the minimization algorithm (with
Vpy replacing V. f; ) can be obtained efficiently by solving
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Rk = (0HTVpy 9.3)
whereas. the vector v required in step 10) can easily be obtained by first solving
(RMTTF = r(xh) (9.4)
and then forming
vk = ofvt (9.5)

10. PRELIMINARY COMPUTATIONAL EXPERIENCE

Six small problems were run on a Honeywell 6060 computer to compare the
performance of this projection technique with other approaches. The problems
used were chosen because of the availability of comparison data. The other
solution methods considered are as follows:

1) Hyperbolic Approximation Procedure (HAP)
i)  Modified HAP (MHAP)
i) The program of Calamai and Charalambous (MFLPVI).

A description of these methods and references to the data used in the six problems
are given in [3]. A summary of the results is given below. The column labelled
“NEW?” refers to the projection algorithm.,

¢ = 1oV 0 = 1074
4 MFLPVI NEW
HAP | MHAP | HAP | MHAP
I 564 1661 1381 2027 1407 42
2 148 647 546 4641 2281 23
3 63 87 70 770 197 10
4 31 45 45 45 45 17
5 223 142 114 1763 975 59
6 63 242 164 3743 1869 11
TOTAL 1092 2824 2320 12989 6744 162

TABLE I: COMPARATIVE TEST RESULTS

Remarks:
a) The numbers in the table refer to the number of function evaluations.

by  No attempt was made to choose ideal parameters. For the results
shown the choice was € = 745 E—=9. eacT = 0.01, ey = 0.1 and
ezp = 0.5.

¢)  The results and the theory suggest that the new technique will work
well with larger and/or more difficult problems.
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11. CONCLUSIONS AND RECOMMENDATIONS

(a)

(b)

(c)

(e)

The purpose of this paper is to provide a simple stable method for solving
the multifacility location problem involving Euclidean distances; however,
the same ideas can be, and perhaps should be, applied to location problems
that use other distance measures (/| and /& for example). This would
provide a more unified approach to solving this class of problems.

The method derived for handling linear constraints can be modified to
handle any continuous functions mapping R*—>R' by considering local
linearizations of those functions.

Instead of this method that essentially uses steepest descent in a subspace, a
more sophisticated approach would involve the use of second-order
information to derive quasi-Newton steps in a subspace. Such a technique
would undoubtedly lead to an improvement in the rate of convergence. See
[6].

For large problems the sparsity and structure of the matrix A(x) would have
to be given attention. This would suggest the use of decomposition
techniques as well as the use of methods that maintain sparsity in updating
these decompositions whenever columns were added to or deleted from A.

The stepsize algorithm outlined in this paper is not necessarily optimal.

Many alternative schemes are available, including:

1y the reordering of breakpoints based on the magnitude of the least-
squares error in their estimation,

2) the use of a more exact cubic line search either with or without the
breakpoint analysis,
3)  the use of a more sophisticated steplength algorithm. See [14].

Step 7 of our algorithm results in the release of an index, associated with an
“out-of-kilter” dual, from the activity set. In our implementation we drop
the index (and thus the corresponding activity) associated with the first
“out-of-kilter”” dual encountered. This choice may not result in the optimal
descent direction.

All of these ideas are currently being investigated.

ACKNOWLEDGEMENTS

The splendid typesetting was accomplished by Anne Trip-de-Roche and

Brian Finch using the Photon typesetter and Troff.

12. BIBLIOGRAPHY

[1]

Bartels, R.H. and Conn, A.R., Linearly constrained discrete [| problems,
ACM TOMS, to appear.



[14]

MULTIFACILITY LOCATION PROBLEM 13

Bartels., R.H.. Conn. A.R. and Sinclair. J.W.. Minimization techniques for
piecewise differentiable  functions: The [ solution 1o an overdetermined
linear systeni. SIAM J. Numer. Anal. 15, no. 2, 1978, 224-241.

Calamai. P.H. and  Charalambous. C.. Solving multifacility  location
problems involving Euclidean distances. Naval Res. Log. Quart. (to appear).
Charalambous. C. and Conn. A.R.. An efficient method 1o solve the
minimax problent directly, STAM J. Numer. Anal. 15, No. 1, 1978, 162-187.

Chatelon, JJA., Hearn, D.W. and Lowe. T.J.. 4 subgradient algorithm for
certain minimax and minisum problems, Math. Prog. 15, 1978, 130-145,

Coleman. T.F. and Conn, A.R.. Nonlinear programming via an exact
penalty function method: A global nmiethod, Comp. Sci. Tech. Rep..
University of Waterloo, Waterloo, Ontario, 1979,

Conn. A.R.. Constrained optimization using a nondifferentiable penalty

function, STAM J. Numer. Anal. 16. no. 4, 1973, 760-784.

Conn. A.R. and Pietrzykowski, T.. A penalty function niethod converging
directlv to a constrained optimuni, SIAM J. Numer. Anal. 14, 1977, 348-
37s.

Eyster, JJW., White, J.A. and Wierwille. W.W.. On solving multifacility
location problems using a hyperboloid approximation procedure, AIE
Trans. 5, 1973, 1-6.

Francis, R.L. and Cuabot, A.V., Properties of a multifacility location

problem involving Euclidean distances, Naval Res. Log. Quart. 19, 1972,
335-353.

Francis, R.L. and Goldstein, J.M.. Location theory: A selective
bibliography, Opns. Res. 22, 1974, 400-410.

Gill, P.E.., Golub., G.H., Murray, W. and Saunders, M., Methods for
modifving matrix factorizations, Math. Comp. 28, no. 126, 1974, 505-535.
Love. R.F.. Locating facilities in three-dimensional space by convex
programming. Naval Res. Log. Quart. 16, 1969, 503-516.

Murray, W. and Overton, M., Steplength algorithms for minimizing a class
of non-differentiable functions, Stanford University Technical Report CS-
78-679, 1978.

Pictrzykowski, T.. An exact potential method for constrained maxima,
SIAM J. Numer. Anal. 6, 1969. 299-304,

Vergin, R.C. und Rogers. J.D.. An algorithm and computational procedure

for locating economic facilities, Management Sci. 13, no. 6, 1967, 240-254.

Wesolowsky. G.O. and Truscott, W.G., Dynamic location of multiple
Jacilities for a class of continuous problems, AIIE Trans. 8, no. 1. 1976. 76-
83.

Zangwill, W.1.. Nonlinear programming via penalty functions. Management
Sci. 13, 1962, 344-350.



14 P.H. CALAMAI & A.R. CONN

APPENDIX
Prove:
AfPL A = pl. p>0
where
Py, is the orthogonal projector onto SE71 where Sk is the space
spanned by the columns of A, (A is formed by deleting the columns of
Ay from the full rank matrix A.)

Proof: First we prove that b "wp = £>0 where b is any n-vector outside the span
of B. B is any n Xt full rank matrix and W is the n Xn orthogonal projector onto
B+ Since B is full rank. there exists an n Xn orthogonal matrix Q and a X1
nonsingular upper-triangular matrix R such that

(R
B = [QIQZ][O = QIR
where Q| denotes the first ¢ columns and Q > denotes the remaining # —¢ columns
of O. 1t can then be shown that W = 0-0{. Thus
bTwh = (0110 1h) = £>0
NOTE: p/Wh =0 => 04b =0 => thereexistsaz€R' s1. b = Q2
=> b = BY where: = R Iz

=> bhe span(B)

=> contradiction.

Now define the transformation T:R¥XY — R#¥X2¥ 45 follows:

B 514 CERVAREEE Blu]l
T o= .
Lﬁpl T ﬁqu 6;}]1 o IBpV[
where 8;; € R for i=1, ... wand j=1 .., v and I represents the standard 2X2

identity matrix. _ Obviously there exists a vector » and a matrix B such that
A; = Th)yand A = T(B).

Finally, if we note that whenever the product XY is defined then
T(XY)=T(X)T(Y) and similiarly, whenever the sum X +VY is defined then
TX+Y)=T(X)+T(Y).

Furthermore, if there is an upper-triangular matrix U then 7(U) is also
upper-triangular and 7(7) = /. Thus, if we apply this transformation to the
foregoing proof we obtain

APy yA; = pl with p>0.
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A STABLE ALGORITHM FOR SOLVING THE MULTIFACILITY LOCATION
PROBLEM INVOLVING EUCLIDEAN DISTANCES®

P. H. CALAMAIt AND A. R. CONN}

Abstract. There is a rapidly growing interdisciplinary interest in the application of location models to
real life problems. Unfortunately, the current methods used to solve the most popular minisum and
minimax location problems are computationally inadequate. A more unified and numerically stable
approach for solving these problems is proposed. Detailed analysis is done for the linearly constrained
Euclidean distance minisum problem for facilities located in a plane. Preliminary computational experience
suggests that this approach compares favourably with other methods.

Key words. continuous location problems, nonsmooth optimization, numerical linear algebra

1. Introduction. Facility location problems are generally concerned with finding
the optimal location of a set of new facilities in a network of existing facilities. Over
the past few decades various forms of the problem have been developed and
addressed in the literature (see Francis and Goldstein [11]). In this paper we present
a stable method for solving the multifacility location problem involving Euclidean
distances. We assume that the feasible region is connected and that the parameters
are static with respect to time (for a discussion of the dynamic aspect of these
problerns see Wesolowsky and Truscott [17]). In addition, we assume that the
problers is well formulated (Francis and Cabot [10] formally describe this and many
other properties of the problem).

Various approaches have been used in an attempt to efficiently solve this
location problem. One such method involves the use of a heuristic algorithm
described by Vergin and Rogers [14]. Unlike their approach, most solution
techniques guarantee optimality. Included among these are the convex programming
approach described by Love [13], the hyperbolic approximation method used by
Eyster, White and Wierwille [9], the pseudo-gradient technique described by Calamai
and Charalambous [3] and the subgradient algorithm presented by Chatelon, Hearn
" and Lowe [5].

One property of this problem that causes considerable difficulty is the fact that
the objective function is not everywhere differentiable. This nondifferentiability
occurs whenever any new facility coincides with any other new facility or with an
existing facility. As a result, standard minimization techniques cannot be directly
applied. We overcome this difficulty by projecting onto a particular affine space in
which the current near zero terms stay unchanged and the remaining well-defined
terms can be decreased. Then, when we think we are optimal, we perform a lincar
refinement step that makes the near zero terms exactly zero. Under mild and
suitable conditions we indicate that this technique converges to the solution of our
problem.

Another significant property of this technique is that it can be used for the
linearly constrained problem. Here we replace the constrained problem by a
sequence of unconstrained problems by using a penalty function due to Pietraykowski

*Received by the editors March 24, 1980. This work was supported in part by NSERC Grant No.
AB639. This paper was typeset at the University of Waterloo using the Troff software developed for the
Unix operating system. Final copy was produced on a Photon Econosstter.
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[15] and Zangwill [18]. Using this method we are able to obtain a sequence of points
(optimal to the unconstrained penalty function) which converge to the desired
constrained optimum.

2. Problem statement and definitions. The multifacility minisum problem
involving costs associated with Iuchdean distances between facilities in RY can be

. . T, . ..
stated as: Find the point x " T {xl ..... x, }in R9" to minimize
1) r@= 3 wily=xl + 2 Hwilx-nl.
I<j<kgn J=li=1
where

n A number of new facilities (NF’s) to be located.

m & number of existing facilities (EF’s).

Ty - xjg) A vector location of NF;inRY, j=1,..., n
ol =i - p,-q)_é_ vector location of EF; inRY, i =1,..., 6 m.

Vi A nonnegative constant of proportionality relating the /5 distance
between NF; and NF to the cost incurred, 1<j <k £n.

wj; & nonnegative constant of proportionality relating the /5 distance
between NF; and EF; to the cost incurred, 1<j<n, 1<i<m.

| % = x| = (i | xje ~xxc] D2 A1, distance between NF;
and NFy, 1<j<k<n.

| x; —pif| = (é | Xje = Pic| 312 A 1, distance between NF;
and EF;, 1€j<n, 1<t<m

In order to simplify the remainder of the discussion we set ¢ = 2 (i.e., all facilities
are in R%). Now if we let 7= (n’-n )/2 and 7 = 1;+mn, and if we define the
constants

{ar, o) =y ViV o V2 V=1 Wi W e Wil oo o Wam),
R S e’ ¥ o y .
n-1 n-2 1 m m
BL...8= (1,1, 2.2, ...on—=1, 1.1, ..., n..nl
LN —— sz, s e s Nt g’ N
n—1 n-2 1 m m
= {2,3,....n, 3,4, ....n ..., nj,
riovd = 23,..m 3 )
n -1 n =2 1
and the index set M = {1, .. ., 7} then (2.1) can be restated more conveniently as

(2.2) minimize f(x) = 2, | A7x —b;]|,
ieM
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where the 2X2n matrix A;7 and the 2X1 vector b; are defined by

01 o 0 —oyf 03], =1, . ., "
AT
{01 ail 04], P=qg4+1, ..., T,
0s, i=1 ..., 1,
b,‘ = 5
| @ipe, i=qg+1, ..., T,

and

I is a 2X2 identity matrix,

01,0, 05,04 and 05 are zero matrices of dimension 2X2(8;—1),

2X2(v; = B — 1), 2X2n - ;) 2X2(n — B;) and 2X1 respectively,

e =( —nymod mand po & p,,.

In a manner analogous to that of Bartels, Conn and Sinclair [2], define for any
point x in R?" : the residual vectors

r,-(x) = A,~Tx "b,‘ VieM,
the index set
I =i e M| | neh) <X Y =tin ... i), €20

the corresponding matrix and vector
23) A=ANH=1[4;, ..., A ] and rcHT = [T i, 6971

and the vector
Vo= X Vnehh = X AraH) )

i €M\ (xk) i €M\ (xk

(Note that for € = 0 the index set J{x*) corresponds to those terms which are
exactly active (binding) at the point xX. Conn [7] gives an account of the necessity

for considering, as we do, “near-active” terms.)
Finally, define Py as the orthogonal projector onto Sit, where Sy is the space
spanned by the columns of A(x¥). For the present it will be assumed that A{x%)

has full rank.
3. Optimality conditions. For all points x close enough to x* in R2” we have
T{x) = I{x k). Furthermore,

fey= 2 jrol+ X 1nml

3.1) IEM\ (xk i€ (xk)
= hx)+hox).
Assume P Vh(x%) # 0 (i.e., Py €7fk # 0); then for d* = —-Pkefk we have
Bk +ad®y = hi(x® + MdHTVR D+ 0D
= k&%) = N PV 2+ 009,
and since A;7d* = 0 for all i €1 (x5,

(3.2a)
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(3.2b) Bolx*+Ad5) = hoxh).
Combining equations (3.2a) and (3.2b) yields the following result:
(3.3) SOk +adk) = £(xBy = =X PV S 2+ 0D

Therefore for d¥ = =P,V fi # 0 there exists §>0 such that f(x + N ) < f(x) for all

0<A<6. Alternatively, if PV fy =0 then (under the linear independence

assumption) the corresponding point x* is called a (nondegenerate) dead point. In

this case Vfx can be expressed (uniguely) as a linear combination of the columns of

A(xh,

(3.4) Vi =Au= 2 Aw, ul=[uf - ull
i€l ok

Then, for any dk,

Bk + Ad%) = bR + MdHTV S + 00D

(3.5a)
=hxh+n 3 wlaldk+ond,
i€1(xk)
and
By +0dky = hyxfy+n | D | AaTd¥)
i€lgxk)
+ g v bk | +0 Y
€I (x FN o(x k)
(3.5b) = hz(xk)'f‘h 2 ||A,'Tdk"
ielyxk)

T 4 Tk
\ : 414
ooy M2 Loy
i€l (x kN g(x k) I it O

Combining equations (3.5a) and (3.5b) yields the following result:
fokendhy - rey =al F @faldk+ | AldN))

ielgxky
(3.6 T4 Tk
riix©'A4/d
+ ; (u ,'T ,'Td kg —"I'S%“‘ﬁ‘“f""“‘*“““‘ +0 (hz)
PE€1 o N g k) I rix Bl
Now, if there exists an index | € I (x¥) such that || 4;] > 1, then take
(3.7) dk = -—Pk/,A,yu;,

where Py is the orthogonal projector onte Sk"7, and Sy is the space spanned by
the columns of A(x")'with columns A; deleted. Then, since Afdk =0 for all
i€l (%) ~ {1} and A/d% = -—AITPk/;A,uI = —pu; where p >0 (see Appendix), we
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have, for sufficiently small A >0,

kT,
Mo ) %+ ,rl(x %ﬂ <0, I\ oxh) (3.82)
Tk +adh) = £k = I GO -
(el (ud -~ 1 <0, 1e1gx b (3.8b)

Thus, if there exists /€I {x%) such that || u;|| > 1 then, for d = -Py /1A, there
exists a >0 such that f(x +Ad) < f(x) for all 0 <X <é. What happens if x" is a
dead point and || u;]] <1 Vi€l {x*y? '

Case 1. I{x"\Iox% = &.

Under these circumstances we have
(3.9 feFenby - ref=a Y @FaFdk+ ) Afdk) ) + o,

ielgxk)

which is nonnegative for all % in R?" . Thus xk is at least a weak local minimum
and hence a global minimum of the convex function f(x).

Case 1. I (x"\Iox%) # &.

For any IEI((x")\Io(xk) take d% = =Py A r(x k). For this choice we have
ATd* =0 Viel (x*) —{l} and (3.6) becomes

(3.10) Sk ndR = £ = =Nl [rx )+ | e HID +ORD),
which is nonpositive (strictly negative unless u; = —r/(x /1 r,(x*)" ). The next
section explains a method for avoiding this case.

4. The linear refinement. If we are at the point x, and || Py vV fi | is “small”,
then we may be approaching a dead point, say x. We can then obtain estimates {u;}
of the “dual” variables {u;} by finding the least-squares solution to

@.1) Vfe= X A

i €1,(xk)

Then if |u] <1 Viel {x¥) we may be near a local minimum (note that if
TN, (x %) = & this is especially clear). We therefore wish to satisfy the
near-active terms exactly. In [8], Conn and Pietrzykowski define a vertical
component, based on linearizations, in an attempt to satisfy their “‘near-activities”
exactly. Here we wish to find the solution to the already linear system of equations

4.2) ATxk—vky—p; =0 Vielxh.

This is best accomplished by evaluating the least-squares solution of minimal norm to
(4.3) A TVE = r(xh),

which is given, algebraically at least, by

@.4) vE = (A HTr(ch,

where A(x ")Jr is the generalized (Moore-Penrose) inverse of A(x k) Note that once a
refinement step is taken the set 7 (x k)1 o{x %y is nullified and thus Case II above need

not be considered.
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S. Remarks on convergence. The optimality conditions (§3) along with the linear
refinement (§4) show that either the point x¥ is optimal or there exists a descent
direction d* such that, for small A> 0,

(5.1 S +adh — fxF = MdHTg  with @H g <.
We take
(5.2) d¥ = —PyVfi and g = Y/}

if x* is not a dead point, and

ca gk ; Vi = Ap/|wll.  1€Igxb,
(5.3) = ~PyAjy and g = Vi + Am/lnll, 1€ oxh),

(where [€F (x*) is an index giving lu] > 1) when x¥ is a dead point. (As in [2],
the vector g will be referred to as the restricted gradient of the function.)

Given a descent direction one is then able to determine a “sufficient” decrease in
S as in [§ Prop. 1] (In practice we use the line search outlined in the next section.)
One may thus analogously ([8, Thm. 3]) prove convergence. It is beyond the scope
of this paper to give the theoretical details of these proofs. Furthermore, we are
ultimately more interested in a second-order version and the subsequent convergence
proofs,

6. The stepsize. Suppose we are at a point x € R and a direction d has beer
chosen as described. Further, suppose our function is of the form

(6.1) B(x) = E | &:00.

where the functions ¢;(x) are all linear. Clearly a minimum of &, in the direction &,
must be at a point ¥ on d where, for at least one i &M \I (x %), we have ¢:(¥%) = 0.
The points X are called “breakpoints”. Therefore we determine the stepsize M to the
breakpoint that gives the minimum funciion value along 4. In other words, as long
as the function is decreasing past the breakpoint we continue to move along d
through successive breakpoints.

To extend this idea to the case where the functions ¢;(x) are nonlincar is not
difficult as long as we are: 1) content with estimating t}‘e location of breakpoints and,
2) willing to use a linear approximation in evaluating a7 g ().

In the first instance we wish to find the valves of h; satisfying

(6.2) AT(x +Nd) ~ b; =0 Vi e M\ (x).

A good approximation to use, in the /5 sense, comes from the equations:
~(Ad) ri(x) .

6.3 A= bt LS Y @ MAT(x).

€2 B VTR

In the second instance we wish to find an expression for 4 Tg(x + M) which is
linear in A. Using the first-order Taylor series approximation about the point x, we
get

6.4 T )t = T )‘ :
@8 dTg M) =dTg@I+x B T Tl

PEM N (x)

{ [47d) > (4 ’"d)’n(x)iz }
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With these ideas, the following stepsize algorithm (similar in concept to the one
given in [4]) can be formulated:
1) Set:

;- —_vm\]m;ﬁi_‘lﬁl;z'm Vi € M\ {x).

Jy =i EM\I{x) ] A\ >0},

A< {‘lA,-Td 17 ald) e

- 2l

e ) | el | 700 }
je-dlex)
L),

vel [g<0, )xo"‘;\, 5""‘50dTg(x)'

2)IF (J, = &) THEN go to 5.
3) Determine /, € J, such that A;, < N Vied,
4)IF (A, > \) THEN go to 5.

ELSEsetJ, 41+ J, — ”,,}
y<+p+1 and go to 2.

5)Setx < x +X;,_d.

6) IF (f(x) < f(x)—As,_8) THEN set x < x and return.
ELSE use x and x in a successive cubic
interpolation routine to get a
new x, and return.

Notes:
8¢ is some preassigned positive constant.

The cubic line search used in step 6 need not be (and in our present
implementation is not) exact.

7. The minimization algorithm.

1) Choose any x! & R?" and set k < 1. Initialize €5c. €7py €zpp and €. Set
RSOL<« FALSE.

2) Evaluate all résidu~als. Identify all index sets, the vector r(x*) and the matrix
A(x ky. Evaluate V fj and construct Py.

3) Set dk « —Py Vi, and g < V.
4) Consider retaining same € ¢ - active set:
IF (|| d%| > ;) THEN go to 10.

5) Determine the “duals™. Find the least-squares solution # to:

Ay = €7fk

6) Decide whether or not to drop an activity:
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IF(J &) <1 Vi €lepeq{x®) THEN go to 8.

7) Drop an activity:

Choose | € e p(x®) with [ 4] > 1.and set 4% < — Py jA .
Set
.

Vi = A/l gl 1€ Tofxh

e + A/l 1€ ("N oxb.

t

€ACT

Go to 10.
8) Consider checking for optimality:

IF (| d*] > 8 THEN go to 10.

9) Determine optimality or perform the linear refinement;
IF (RSOL .OR. r° <€) THEN STOP!
ELSE Solve, in the least-squares sense, the system
ATV = r{x k)‘
IF (f(x* = vk < f(x%) THEN set x*+!exk— ¥
RSOL <« TRUE.
k< k+1 and go to 2.

10) Use the line search algorithm to find x**!. Set RSOL <« .FALSE. ,
k =k +1, and go to 2.

Notes:
ri. = maximum (|| r,.(xk)” ).
i€ [e x k)
ACT

_ szpr(xk)/f, [‘ACTxk) =,

o= ezpill gl otherwise.
ky —

5 = lezpf &N /r ey = 2.
2" ezpall g1 otherwise.

8. Linear constraints and the penslty function. Consider the following
constrained form of the minisum multifacility location problem:

minimize f(x) = §MI| AiTx - b
i€

8.1

such that r;(x) = a,-Tx ~b; 20, i

rix) = alx —b; =0, i

r+1,...,7,
i o DU oA

i
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We can transform this problem into the penalty function of Pietrzykowski [15] and
solve the sequence of unconstrained problems,

(8.2) minimize p (x, ) = f(x) — 2 min [0,76)] + 2y | ri@0)I,
ierl i€LE
where  is a positive parameter, LI = {r+1,..., 7'} and LE = fr+1, o It

has been shown [15] that under mild and suitable conditions, an exact minimum of
(8.2) coincides with an exact minimum of (8.1) for all values of g sufficiently small.
This suggests the following outer algorithm:

1)} Choose g > 0.

2) Minimize p (x, ) over x.

3) IF (we are optimal) THEN STOP!
4) Set g <- p/10 and go to 2.

The minimization in step 2 can be performed using obvious extemsions of the
techniques already described (see [1]). Some of the details of these extensions are

now given.
For any x¥ in R?" define the index sets

141Gk = {i € LT [[riGcMI < = a0 i)
(8.3) 1Y% = {i € LI |ri(x") < —¢} and
I4E(xk) = {i € LE |lri(xk)|< e = lig, 41 ... iryghs

and the vector

Vo =uVfi - X a+ % sealnxDle

ierYlxk ieLENTAE (x k)
Redefine the matrix A(x k), the vector r(xk) and the scalar g~ as
A(X I’ = [A ,‘1...,A ,-tk,'a ,-tkH...,a ,-t,k,a it'k+l Lo, a it"g'

T KT T
rx®" = I D ritk(xk) , r,-tkﬂ(xk), r,-t,k(xk),r,-t,kﬂ(xk), r,-t,,k(x M),

ri gﬁg;ﬂmy,gj(ll ri G-

,,,,,

Now, if we replace v fr by \~7pk and f(-) by p(, m), then our algorithm can be used
to minimize p (x, p) over x if we make the following changes to steps 6 and 7:

6) Decide whether or not to drop an activity:
IF (| d]| €1 Vi€lopx") -AND.
0<s <1 VielA(xh) ) THEN go to 8.
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7) Drop an activity:
Choose /€1, ~{x ky with [ ;] > 1 and set dk = —p; J1A 1y

OR. Choose €I A (x*) with i; < 0 and set d¥ = Py jja).

Vi = A/l il e Tdxh,
Set g <« Yfk'{'Alrl/”rl"' IEItACT(xk)\Idxk):
Vfk. el Al

go to 10.

(It can be shown that if there exists an index /€/ f‘l(x k) with #; > 1 or an index
IEIGAE(x") with |u;] > 1 then the direction d = —sgn{u;)Py /a1 is a descent
direction for the penalty function. However, as pointed out by Bartels and Conn [1],
constraint r; will be violated at x* + Ak and, rather than do this, we take an

alternative descent direction if one exists. Otherwise, we reduce g in order to give
more emphasis to the constraints.) :

9. Implementstion. Throughout this derivation it was assumed that the matrix
A(x) was full rank in order to uniquely define the solution to various equations. This
can no longer be accomplished when A(x) is rank deficient because of the inherent
degeneracies encountered. Fortunately, this difficulty can be resolved in a
straightforward manner computationally by using a method similar to Bartels et al.
{2]. This involves treating all degeneracies as if they occurred due to the error
introduced through the storage of data on a finite machine, Then the machine
accuracy can be artificially reduced and the problem perturbed so that the
degeneracies are resolved. Finally, after the perturbation, a unique solution can be
attained which satisfies the original problem.

In particular, we do the following. After identifying the current active set, we
randomly perturb all residuals associated with degenerate members of this set in such
a way that those terms are no longer considered active. We then adjust the restricted
gradient appropriately and proceed with the original algorithm. In this way, we
either leave this degenerate neighbourhood, identify a solution among these perturbed
vertices or enter a new degenerate neighbourhood. It should be noted that cycling
cannot occur.

The full rank matrix A(x¥) can be factored, by forming a product of Givens
transformations, into the form

R* : Rk
©.1) A(x")=Q"[0 ] = (ot 04) [0 ]

where @ k is an orthonormal matrix and R* is a nonsingular upper-triangular matrix,
This numerically stable decomposition can easily be modified to accommodate the
necessary additions and deletions of column vectors to the matrix A when it is
updated (see [12]).

Since the columns of Q¥ form an orthogonal basis for the space Syt the
projection matrix Py can be coniputed as
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9.2) Py = (@5 ©HT

In addition, the vector u required in step 5 of the minimization algorithm can be
obtained efficiently by solving

©.3) RY = @1V fi,

whereas the vector v required in step 10 can easily be obtained by first solving
(9.4) (RYTTH = r(xk

and then forming

9.5) vk = glwk

10. Prelimainary computational experiemce. Six small problems were run on a
Honeywell 66/60 computer to compare the performance of this projection technique
with other approaches. The problems used were chosen because of the availahility of
comparison data. The other solution methods considered are as follows:

i} Hyperbolic Approximation Procedure (HAP)
i) Modified HAP (MHAP)
iii) The program of Calamai and Charalambous (MFLPVI)
A description of these methods and references to the data used in the six problems

are given in [3]. A summary of the results is given below. The column labeled
“NEW?” refers to the projection algorithm.

Table 1
Comparative test results
¢® = 10° ¢® =107

# MFLPVI : NEW

HAP | MHAP HAP MHAP
i 77+487 1661 1381 2027 1407 64
2 34+114 647 546 4641 2281 17
3 16+47 87 70 770 197 8§
4 15416 45 45 45 45 17
5 40+183 142 114 1763 975 26
6 7456 242 164 3743 1869 18
TOTAL 1092 2824 2320 12989 6774 150
OPS 112248 | 386592 | 318426 | 1647886 | 922390 | 77194

Remarks.
(a) Except for the last row, the figures in the table refer to the number of

iterations required to reach the solution. Under the column heading MFLPVI, the
first figure refers to the number of successful iterations whereas the second figure
refers to the number of unsuccessful iterations.

(b) For our algorithm no attempt was made to choose ideal parameiers. The

choice, for the results shown, was e o = 0.1, €zp; = 0.2, €zp, = 0.05 and
¢ = 7T.45E-9,
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(c) The last row in the table gives an estimate of the total number of addition
operations required by each of the techniques in solving the six problems. With the
exception of the MFLPV] approach approximately the same number of
multiplications would be required. There are usually more addition than
multiplication operations in MFLPV! due to combinatorial situations which
sometimes arise. (For these six problems there are approximately 17 percent more
addition than multiplication operations in MFLPVL))

(d) The following are formulas for evaluating the number of addition operations
per iteration for the four techniques (with insignificant terms neglected).

HAP and MHAP { 67 + 2n;

v if unsuccessful,
MFLPVI v + 37 4+ 4n + 2m if successful;

w if §7 step 4 satisfied,
NEW <w + 212t +1) + 8nt if §7 step 6 satisfied,
w+tQt+1)+8n(n—1t)+ 4t +1) if §7 step 6 not satisfied;

where
w=73r+4r — 1)+ 16(n — t)* + 82 + 2n,

a2 Tx()+ ZxC)
[€z k=2 =2

V= 0r 4+ 50 + 3m otherwise;

for combinatorial case,

and (see [3]):
Z A set containing cardinalities of all clusters unsuccessfully tested,
z' A cardinality of cluster successfully tested,

z'" A cardinality of subset moved (z"' <z’ € n—1).

(¢) The results and the theory suggest that the new techniques will work well
with larger and/or more difficult problems,

11. Conclusions and recommendations.

(a) The purpose of this paper is to provide a simple stable method for solving the
multifacility location problem involving Euclidean distances; however, the same ideas
can be, and perhaps should be, applied to location problems that use other distance
measures (/| and / o for example). This would provide a more unified approach to
solving this class of problems.

(b) The method derived for handling linear constraints can be modified to handle
any continucus functions mapping R+ 1! by considering local linearizations of
those functions. '

(c) Instead of this method that essentially uses steepest descent in a subapace, a
more sophisticated approach would involve the use of second-order information to
derive quasi-Newton steps in a subspace. Such a technique would undoubtedly lead
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to an improvement in the rate of convergence. See [6).

(d) For large problems the sparsity and structure of the matrix A{x) would have
to be given attention. This would suggest the use of decomposition techniques as
well as the use of methods that maintain sparsity in updating these decompositions
whenever columns were added to or deleted from A.

(e) The stepsize algorithm outlined in this paper is not necessarily optimal.

Many alternative schemes are available, including:
1) the reordering of breakpoints based on the magnitude of the least-squares

error in their estimation,
2) the use of a more exact cubic line search either with or without the

breakpoint analysis,
3) the use of a more sophisticated steplength algorithm. See [14].

(f) Step 7 of our algorithm results in the release of an index, associated with an
“out-of-kilter” dual, from the activity set. In our implementation we drop the index
(and thus the corresponding activity) associated with the first “out-of-kilter” dual
encountered. This choice may not result in the optimal descent direction.

All these ideas are currently being investigated.
Appendix. Prove:
A[TPk/[AI = pl, p>0,

where Py is the orthogonal projector onto Sk'l'/l where Sy 1 is the space spanned by
the columns of A. (A is formed by deleting the columns of 4; from the full rank

matrix A.)

Proof. First we prove that 5 TWh = £> 0, where b is any n-vector outside the
span of B, B is any nX¢ full rank matrix and W is the n Xn orthogonal projector
onto B+. Since B is full rank, there exists an n Xn orthogonal matrix Q and a ¢ Xt
nonsingular upper-triangular matrix R such that

B =[0.07] [g} = Q1R
where Q| denotes the first ¢ columns and Q; denotes the remaining n —t columns of
Q. It can then be shown that W = Q 207, Thus
bTwb = (16T 1b) = £>0.

Note that 57Wbh =0 => QJb =0 => thereexistsazER’ s.t. b = Oz
=> b = B wherez =R
=> pE span(B) '
=> contradiction.

Now define the transformation T:RFX* —» R#X2 45 follows:

Buu - Bu Bl - Bid

il

T : . : .
ﬁyl te ﬁuv ﬁull e ﬂuV[
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where B;; € R for i=1, ..., 4 and j=1, .., v and I represents the standard 2X2
identity matrix. Obviously there exists a vector & and a matrix B such that
A= T(b)and A = T(B).

Finally, we note that whenever the product XY is defined then
T(XY)=T(X)T(Y) and similiarly, whenecver the sum X+Y is defined then
T(X+Y)=T(X)+ T(Y) Furthermore, if U is an upper-triangular matrix then
T(U) is also upper-triangular and T(J) = I. Thus, if we apply this transformation
to the foregoing proof we obtain

A[TPk//A1 = pl with p>0.
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