A ROBUST B-TREE IMPLEMENTATION

J.P. Black
D.J. Taylor
D.E. Morgan

Computer Communications Networks Group
and
Department of Computer Science
University of Waterloo
March, 1980

Cs-80-15

(c) COPYRIGHT: Computer Science Department
University of Waterloo
Waterloo, Ontario, Canada

Abstract

A storage structure for B-trees is presented which is robust
in that any pair of changes to structural fields of an
instance of the structure can be detected, as well as many
sets of larger numbers of changes. 1Included in the paper
are a motivation for robustness as a design criterion, cost
and performance implications of the B-tree implementation,
and a solution to the subproblem of a robust implementation

for each node's contiguous list of pointers and keys.

Key Words and Phrases: Software fault tolerance, robust

data structures, computer system reliability, data base
reliability, data base management system, redundancy, error

detection, error correction, B-trees, B*-trees, CTB-trees.

1. INTRODUCTION

As the size and complexity of data base systems, and
society's reliance on them, 1increase, their reliability
becomes an increasingly important consideration. One way of
improving reliability is by incorporating redundant
information in a system's data structures, and using this
information to detect and correct errors before they cause
system failure. Such data structures, which incorporate
redundant information allowing error detection and possibly
correction are termed robust. This paper presents a robust
storage structure for B-trees, and demonstrates that a
significant degree of robustness <can be achieved at
reasonable cost. Files structured as B-trees are often one
of the basic building blocks of data bases.

Our approach to increasing software system reliability

is fault tolerance, using Avizienis' terminology [2], and

complements the more well known fault intolerant [2]

techniques applied during system development to increase the
reliability of the final product. Examples of fault
intolerant techniques are ©proofs of program correctness,
structured design and programming methodologies, and
development aids for systematic testing and debugging.
Fault tolerant techniques, on the other hand, attempt to
cope with the vunexpected events which occur during normal
system use: the sudden appearance of residual bugs or

design flaws, hardware malfunctions, user mistakes, and

Black, Taylor, Morgan - 2 - CTB-trees

events unrelated to a given program, such as an operating
system crash. The fault tolerant approach attempts to
prevent such events and the errors they produce from causing
system failure. This involves error detection and
correction, and when system failure does occur, recovery.

The key to error detection, correction, and recovery is
redundancy, which may be of four types: redundant hardware,
redundant software, redundant data, and redundant
information about the system's behaviour. This paper is
concerned with adding redundant data to storage structures,
and exploiting and maintaining this redundancy through
(redundant) software.

More detailed discussions of fault tolerance and
intolerance, and computing systems reliability may be found
in [1, 2, 4, 5]. For the general framework of our research,
see [6, 7].

After this brief introduction, Section 2 introduces
some of the general terminology and concepts of robust data
structures. Section 3 develops a sequence of increasingly
robust B-tree implementations, although they all suffer from
a local "vulnerability" to errors at each node. This
subproblem is solved in Section 4, and its solution leads to
the final proposal of Section 5 for a robust implementation
of B-trees, called the CTB-tree. In Section 6, the cost and
performance implications of wusing CTB-trees are examined,

and Section 7 presents our conclusions and some ideas for

Black, Taylor, Morgan -3 - CTB-trees

further work.

2. ROBUST DATA STRUCTURES

Following Tompa [10], we define a data structure to be

a logical organisation of data. The data structure is

represented by a storage structure, which has a particular

encoding for a given storage medium. For example, "binary
tree" 1s a data structure; one possible storage structure
for it contains pointers from each node to its 1left and
right sons; if we further specify that pointers are stored
as absolute addresses of 32 bits, that is an encoding of a

binary tree. Furthermore, a data structure instance is a

particular occurrence of a data structure. When the context
makes the meaning clear, we will also use "data structure
instance" to refer to the storage structure for the
instance, or its encoded form.

In general, the synthesis of robust data structures
involves adding redundancy to storage structures in order to
allow the detection and correction of errors. On the one
hand, we seek conditions under which the robustness of an
arbitrary storage structure may be quantified; on the other
hand, given a data structure, we wish to find an
implementation (storage structure) for it which has at least
some degree of robustness. The former approach is
documented in [7, 8, 9]. Here, we wish to ©present an

informal analysis for a particular data structure, the

Black, Taylor, Morgan - 4 - CTB-trees

B-tree [3], while at the same time introducing some more
general concepts.
In order to quantify robustness, we use the terms

correct, change, detectability, and correctability. Before

defining them, however, we will give the assumptions
underlying our approach.

An instance of a storage structure consists of a header
and a (possibly empty) set of nodes connected by pointers.
Because of the difficulty of making general comments

regarding the data content or semantic integrity of a data

structure, we are concerneed only with the correctness of

structural information (structural integrity). In addition

to pointers, the structural information 1in an instance
consists of identifier fields, count fields containing the
number of nodes 1in an instance or pointers in a node, and
key fields. An identifier field 1in a <correct instance
contains a wvalue which 1is unique to the type of node and
particular instance in the system under consideration. In
order to simplify our presentation, we make the Valid State
Hypothesis (VSH): the only pointers to nodes of an instance
appear inside the instance itself, and no identifier field
values for any one instance appear in nodes external to the
instance.

For the purposes of this paper, an instance of a
storage structure is correct if a "detection procedure"

applied to the instance returns the value "correct". In

Black, Taylor, Morgan - 5 - CTB-trees

some sense, then, the detection procedure defines the
storage structure. Any of the procedures we discuss must be

reasonable, that 1is, they may only locate or examine nodes

by following pointers from the header of an instance: this
precludes exhaustive memory searches.

Detection properties of storage structures are stated
in terms of changes. A change is an elementary modification
to the encoded form of a data structure instance. (The
meaning of "elementary modification" can be altered to suit
the environment; here it will mean the change of of a single
word.) We assume that a single change to the encoding is
reflected as a single change in the storage structure
instance.

If a single change can transform one correct instance
into another, then the encoding has no detection
capabilities. If at least N+1 changes are required to
transform one correct instance into another, then the
encoding 1s N-detectable. Equivalently, the detection
procedure rejects any instance which differs from a correct
instance by N or fewer (structural) changes. Similarly, a

storage structure 1is N-correctable 1if there exists a

procedure which, for all sets of N or fewer changes, can
take a <correct instance modified by that number of changes
and recreate the correct instance.

We will <clarify and make use of these definitions in

the next section, whose purpose is to analyse the robustness

Black, Taylor, Morgan - 6 - CTB-trees

of normal B-trees, and suggest appropriate forms of
redundancy which will result in a 2-detectable,
l-correctable storage structure <called a CTB-tree. A
compromise between the cost of failures and the cost of the
facilities necessary to cope with errors without failure
determines the amount and type of redundancy which should be
used to improve reliability. A 2-detectable and
l-correctable structure is often adequately robust; indeed,
empirical results indicate the effective robustness of many

such structures to be significantly higher [6].

3. THE ROAD TO THE CTB-TREE
We define a B-tree of order n as follows.

l. A B-tree of height h consists of a header which
contains a null pointer, or a pointer to either a
leaf node containing 1 < k < 2n keys, or to a root
node with 2 < k < 2n + 1 sons, each of which 1is an
interior B-tree of height h-1.

2. A leaf node with n < k < 2n keys 1is an interior
B-tree of height 0.

3. An interior node with n + 1 < k < 2n + 1 pointers to
interior B-trees of height h - 1 1is an interior
B-tree of height h.

4. For an interior node or root node of k sons, all

keys in the i'th interior B-tree are 1less than or

Black, Taylor, Morgan -7 - CTB-trees

equal to key(i) (1 < i < k), and the keys in the
i'th interior B-tree are greater than key(i-1), for
1 < i< k.

5. For any node having k keys, key(i) < key(i+l),

We assume all data is kept in leaf nodes.

This standard storage structure is not at all robust;
specifically, it 1is O-detectable and O-correctable. There
are in general many pointers which can be changed to null,
resulting in the deletion of an entire subtree, leaving a
correct B-tree. In fact, changing to null the pointer from
the header to the root deletes the entire tree. 1In this
section, we are concerned only with changes to 1identifier,
pointer, and (global) count fields; Section 4 discusses
robustness in the face of changes to keys.

A well known way to improve the robustness of storage
structures is to add to the header a count of the number of
nodes 1in the instance, and to add identifier fields to each
node of the structure. This introduces little overhead, and
such redundancy is easily maintained. The addition of these
fields makes the storage structure 1l-detectable, although
still O-correctable. A single change to the count can be
detected by traversing the tree to find the apparent number
of nodes. A change to an identifier field can be detected
in like manner, as can the change of some pointer to null.

The change of a pointer to point to a foreign node can be

Black, Taylor, Morgan - 8 - CTB-trees

detected, as the foreign node cannot have a valid identifier
field under the Valid State Hypothesis.

The remaining case is the change of a pointer to point
to some other node already part of the instance. This may
be detected by flagging nodes during traversal of the tree,
or, if space for this is unavailable, by the more expensive
method of storing node addresses in a table with 0(log N)
search and insertion times for an N-node tree.

Two independent reasons for the O-correctability are
worth mentioning. A single pointer change may sever one or
more nodes from the tree, making them inaccessible to a
reasonable correction procedure. Additionally, while it may
be detected that the count does not match the number of
nodes in the instance, it is undecidable whether this is due
to a count change or a pointer change.

To demonstrate that the detectability of this structure
is exactly one, we point out that deletion of certain nodes
or subtrees requires only one pointer change and one count
change to transform one correct instance into another.

One form of redundancy often added to B-trees is a set
of pointers, each connecting a leaf to its successor. These
pointers, which we will call chain pointers, improves the
efficiency of sequential retrieval by obviating the need for
indexing through the interior nodes. An additional benefit
of these pointers is that they increase the detectability of

the storage structure to two, although the correctability is

Black, Taylor, Morgan -9 - CTB-trees

still zero: an interior node can still become inaccessible
as a result of a single pointer change.

This time, we will show the 2-detectability by
demonstrating that any two correct instances are at 1least
three <changes distant from each other. The three cases we
consider involve changing the number of nodes, replacing one
or more nodes by the same number of foreign nodes, and
rearranging the same set of nodes.

1. Change in number. Deletion 1is clearly cheaper than
insertion, as valid identifier fields must be supplied
for the inserted nodes under VSH. Deleting a subtree
now requires changing the count, a pointer coming into
the subtree from above, and a change to one chain
pointer to "jump over" the deleted subtree, for a
minimum of three changes.

2. Replacement. Again, because of the need to place valid
identifier fields 1in the foreign node(s), the minimum
occurs for one node. If this node replaces a leaf,
incoming and outgoing chain pointers must be changed,
as well as an incoming tree pointer, for four changes.
If the node is to replace an interior node, the minimum
occurs when replacing a root node which has exactly two
sons, in which case the incoming header pointer must be
changed, and the proper son pointers placed 1in the
foreign node. Counting the 1identifier field, the

minimum is again four.

Black, Taylor, Morgan - 10 - CTB-trees

3. Rearrangement. Given the constraint on key ordering,
this type of modification is quite expensive in terms

of changes, and will not be considered further.

We have shown that the chained B-tree is 2-detectable,
al though still O-correctable. We would like to increase the
latter so that single errors can be corrected.

In order to ensure that no node can be disconnected
from an instance with a single change (this is clearly
necessary if a reasonable procedure is to be used), we
require at least two edge-disjoint paths to any node. This
condition is already satisfied for leaf nodes, which can be
found by following either tree pointers or chain pointers
from the header. What is required 1is a second path to
interior nodes.

By analogy with binary search trees, we consider adding
a thread pointer from each leaf node to its in-order
successor. This indeed provides two edge-disjoint paths to
each interior node: one by chain and thread pointers, and
one by the normal tree pointers. In fact, each interior
node containing k keys (k + 1 sons) has k threads pointing
to it. As shown by the General Correction Theorem of ([8],
Section 4.3, we have now guaranteed the l-correctability of
the chained and threaded B-tree. The theorem, which we
state without ©proof, says that a storage structure using
identifier fields which is 2r-detectable and has r + 1 edge-

disjoint paths to each node is r-correctable.

Black, Taylor, Morgan - 11 - CTB-trees

As a final refinement, we note that putting a thread in
every leaf node provides more redundancy than needed to
guarantee the 1l-correctability, as well as having serious
performance implications: when an interior node is split
due to an insertion, n thread pointers must be updated, and
these pointers are potentially quite distant from each
other. In order to 1improve performance and increase the
possibilities for concurrency, we will reduce the number of
threads pointing to an interior node to one, which will be
in the last in-order leaf of the leftmost subtree of each

node.

An instance of this storage structure, which we call a
chained and threaded B-tree (CTB-tree) is shown in Figure 1.
Note that the order of the tree is two, and that the final
chain and thread pointers both point back to the header.

There is, however, an important problem which we have
left unsolved in the CTB-tree: each node of the tree is
still O-detectable and O-correctable with respect to the key
fields; entire data items in leaf nodes may be lost by a
single change to the count field in the leaf. This problem

is addressed in the next section.

4, ROBUST CONTIGUOUS LIST STORAGE: A SUBPROBLEM

In this section we discuss a slightly more general
problem: that of finding a robust storage structure for a

contiguous 1list of up to m elements. That is, the list

Black, Taylor, Morgan - 12 - CTB-trees

*Z ISPIO JO 9813-gLD ¥ °T oInbIa

e

589 ‘49 £9'09's5 eses’ Tk ‘oh %€ ‘¥€ og ‘¢r ey 0-sT $T ‘27

\H.,\\H \

t\

7?55 8¢

CTB-trees

Ha

13

Black, Taylor, Morgan

consists of a fixed size contiguous area of storage capable
of containing m or fewer list elements. We assume that each
element contains a key field, and that the elements are to
be stored left-justified in the storage area or node. We
seek a storage structure which is 2-detectable and
l-correctable with respect to changes to key fields, and to
the count of the number of elements in the list.

The storage structure for the nodes of the CTB-tree
given in the 1last section 1is not at all robust. Even
constraining the key values to be ordered 1is only "fuzzy"
redundancy: if keys are not dense in a given instance, a
small change may not cause the order constraint to be
violated. Thus, we need to "protect" two types of
information in a contiguous list: the key field values, and
the number of nodes in the list.

The approach is quite straightforward. We associate

with each key, k(i), a difference field, d(i), which

contains the value k(i + 1) - k(i). For the count, we fill
empty element slots with some £fill wvalue, permitting a
redundant determination of the number of elements in the
list. However, a certain degree of care is required to
ensure that the desired robustness is maintained in boundary
cases such as the beginning and end of the list, a one-
element list, or a full list.

Considering first the key and difference fields, one

needs to decide upon the value of the difference field of

Black, Taylor, Morgan - 14 - CTB-trees

the 1last 1list element. Possibilities which come to mind
include zero, or the difference to the first key in the
list. In both cases, however, the detectability remains
zero, since a change to the key of a one-element 1list
produces another correct list. A better idea is to create a
dummy "header element" consisting of a key and a difference
field, and to specify that the 1last difference field
contains the difference between the last and header keys.
We assume that the header key for a given list cannot be
known a priori, i.e., that it is not a fixed value for all
nodes. One possibility would be to place a random value in
the field when the node is created. Finally, we assume that
the header difference field of a correct but empty list
contains the header key value. This protects the value of
the header key of an empty list.

This raises the detectability to 1, but not further:
one may change the header key and first key of a single
element list by the same amount, and still obtain a correct
list. This motivates our use of the random header key as
fill value for empty list element slots. This solves the
previous problem, as fill values and the header key must now
agree (and also makes it unnecessary to treat the difference
field of an empty 1list as a special case), but does not
solve the following problem.

Consider a contiguous 1list where the fill value is

equal to the header key, k(0), and which contains i

Black, Taylor, Morgan - 15 - CTB-trees

elements. Then k(i+l)=k(0), and d(i)=k(0)-k(i)=k(i+1l)-k(i).
Changing d(i + 1) to =zero, and adding 1 to the count
produces anew a correct list of i + 1 elements. As a final
adjustment, we make the fill wvalue a simple function of
k(0), say k(0) + 1, which solves this problem of adding one
element to the end of the list with two changes, as well as
the previous one of changing the header and first keys of a
single element list by the same amount.

Before giving a more formal argument of the
2-detectability, we will summarise our definition of a
robust contiguous list. Figure 2 shows an instance of such
a structure,

A robust contiguous list of m (m > 1) or fewer elements
is described as follows. The key fields are denoted by
k(0), k(l), . . . k(m); the difference fields by d(0),
d(l), . . . d(m); and the count field by c.

1. k(0) contains an arbitrary value, R.

2. For 0 < j<c, d(j) =k(j +1) - k(3). (Addition

modulo c+1)

3. Fill values: for c < j <m, d(j) = k(j) = R + 1.

In order to prove that this storage structure is
2-detectable, we show that any two correct instances are at
least 3 changes distant from each other.

l. Element insertion. Even ignoring elements to the

right, the count must be changed, and two difference

fields calculated.

Black, Taylor, Morgan - 16 - CTB-trees

‘sjusweTe Mmzmw JI0 QT JO 3STT snonbTauo) 3Isnqoy ¥ g 2aInbrd

(T+°4)

M
SIMYA zw— m..é%ﬁ@
I N :
i N |
L€ velbelbe | vel beloe|be|oeloe don-|og | selspleb|sr] 2 |51 9 Libr-1851 §
PP AT AP P T
e

CTB-~trees

17

Black, Taylor, Morgan

2, Element deletion. Similar.

3. Change of key. 1In addition to changing the key, the
two neighbouring difference fields must be changed
by the same amount.

Note that since the wvalue of the key is not relevant for
element insertion or deletion, the argument holds even for
"fortuitous™ wvalues of the key such as R, R + 1, etc. As
pointed out above, changing two keys by the same amount
cannot produce a correct 1list either, as some difference
field will be incorrect unless ¢ = 1. But in this case, the
fill values and the changed k(0) no longer agree.

Given that this storage structure is 2-detectable, it
follows immediately that it is l-correctable. A detection
procedure is easily written to check whether a node is
correct or not. Given a correct node modified by a single
change, a correction procedure could, in the worst case,
guess at possible corrections to single fields until the
"corrected" node was accepted by the detection procedure.
As at most two changes would be applied at any one time (the
change we are trying to correct and the guess attempted by
the <correction procedure), the only node accepted by the
detection procedure would be the (corrected) original
version. A linear-time 1l-correction procedure for robust
contiguous lists is still a subject for current research.

After this digression to discuss the robustness of

isolated nodes in the B-tree, we return to the CTB-tree 1in

Black, Taylor, Morgan - 18 - CTB-trees

Section 5. After recalling 1its structure, we present a

linear-time 2-detection procedure for it.

5. THE CTB-TREE

We are now able to give a more precise definition of a
CTB-tree, which we have shown to be 2-detectable and
l-correctable.

1. A CTB-tree consists of a header and a possibly empty
set of leaf nodes and interior nodes. The header
contains an identifier field; a count field, whose
value is the number of nodes connected to the
header; a chain pointer; and a root pointer.

2. A CTB-tree is a B-tree, as defined above.

3. Interior nodes consist of an identifier field and a
robust contiguous list whose data elements are the
B-tree pointers.

4. Leaf nodes consist of an identifier field, a chain
pointer, a thread pointer, and a robust contiguous
list whose data elements are the data elements of
the B-tree.

5. The leaf nodes are connected in in-order by the
chain pointers, beginning with the chain pointer in
the header, and ending in the final leaf with a
chain pointer back to the header.

6. The thread pointer in a leaf is non-null if and only

if that 1leaf is the rightmost leaf in the leftmost

Black, Taylor, Morgan - 19 - CTB-trees

subtree of a node X, in which case the thread points
to X.

Figure 3 shows a sketch of a 2-detection procedure for
CTB-trees which requires O(N) execution time for an N node
CTB-tree, and space proportional to the height of the tree.
The procedure relies on a procedure ‘“"check contig list" to
check the robust contiguous list at each node. It can be
shown that the procedure terminates without error if the
header points to a proper CTB-tree, and otherwise terminates
indicating an error.

As for a correction procedure, the General Correction
Theorem mentioned above is constructive, in that it gives an
algorithm for performing the correction. As 1indicated
above, a similar correction procedure could be used for each
contiguous list. The execution time for the general
algorithm is expressed in terms of an unfortunately large
polynomial in the size of the instance. Finding a special
purpose, efficient l-correction routine for CTB-trees 1is a

subject of currect research.

6. PERFORMANCE IMPLICATIONS

Obviously, the robustness of CTB-trees (or any other
robust data structure) is achieved at the expense of extra
storage to store the redundancy, and extra execution time to
maintain and exploit it for error detection and/or

correction. Only the cost of system failure or

Black, Taylor, Morgan - 20 - CTB-trees

procedure check ctb(header, N, h)
/* Check the CTB-tree of order N and height h
* purportedly attached to "header". */

begin

procedure ch ctb(h, i, top, ch, th, highkey)

/* Check the interior CTB-tree pointed to by top.

* Verify that ch is the leftmost leaf, and update it
* to the expected leftmost leaf in the next subtree.
* Update th to the thread coming out of the tree, and
* highkey to the highest key in the tree.

* 1 is a count of the number of nodes seen. */

begin

if i > count(header) then error endif ;

if
if

if
i

id(top) incorrect then error endif ;

count(top) < N then

if top "= root(header) or count(top) < 0 then
error endif ;

endif ;

key[l] (top) < highkey then error endif ;

=1+ 1 ;

check contig list(top, 2 * N) ; /* Check this node.

if

h = 0 then /* Leaf node */

if ch "= top then error endif ; /* Bad chain */
ch := chain(top) ;

th := thread(top) ;

highkey := key[count(top)] (top) ;

else /* Interior node */

for j from 0 to count(top) - 1 do
ch ctb(h-1, i, ptr[]j] (top), ch, th, highkey)
if j = 0 then

if th "= top then error endif ;
else if th "= null then error endif ;
endif ;

if highkey > key[j + 1] (top) then error endif
highkey := key[j + 1] (top) ;
endfor ;

ch ctb(h-1, i, ptricount(top)] (top), ch, th, highkey)

/* Note th and highkey set for caller. */
endif ;

end ch ctb ;
/* Body of detection procedure. */

ch :=

chain(header) ;

highkey := 0 ; /* Assume all keys > 0 */

1 =

-
[

ch ctb(h, i, root(header), ch, th, highkey) ;

if i
if ch
if th

~“= count(header) then error endif ;

~

= header then error endif ;
~“= header then error endif ;

return("correct") ;
end check ctb ;

Black,

Figure 3. CTB-tree Detection Procedure.

.
I

*/

I

Taylor, Morgan - 21 - CTB-trees

14

unavailability can determine whether an investment in
robustness is justified, but we wish to show in this section
that the costs associated with CTB-trees are not
prohibitive.

The main extra storage cost for CTB-trees is for the
difference fields in interior (index) nodes. Assuming that
identifier, count, key, difference, and pointer fields all
require the same amount of storage, the index space required
for a CTB-tree is roughly 1.5 times that required for a
B-tree. However, if, as wusual 1in files organized as
B-trees, leaf node sizes are significantly larger than
interior node sizes, or if the order of the tree 1is large
(say greater than 10), this is a small space overhead. The
addition of three words of storage to each leaf node for the
identifier field, chain pointer, and thread pointer, and of
a difference field for each data element, results in a
negligible space overhead for reasonable data element sizes.

Although the actual increase in storage required for a
CTB-tree as compared to a corresponding B-tree is not large,
it may have an effect on the height of the tree, and hence
on the cost of search and update operations. If we assume
that the optimum interior node size is fixed by external
considerations (device characteristics), and if a B-tree has
optimal order n, the corresponding CTB-tree will have order
2n/3. This is due to the difference fields added in the

robust contiguous list in each node, which add an extra word

Black, Taylor, Morgan - 22 - CTB-trees

of storage for each key/pointer pair. For a B-tree of k
nodes and order n, its height, h, is bounded by:
[log2n k] < h < [log, K]

([X] indicates the ceiling function; logb the logarithm to
the base b.) For a CTB-tree with the same number of nodes,
and same interior node size, we have:

[log4n/3 k] < h < [10<_:]2n/3 k]
Ignoring errors due to the integer ceiling function, the
minimum height is multiplied by a factor (log2n 4n/3)**-1 or
(1 + log2n 2/3)**-1, and the maximum by (1 + logn 2/3)**-1,
A simple evaluation of the minimum and maximum heights for
the two types of tree and various values of n and k shows
that the difference 1is very rarely greater than one. For
many pairs (n, k), the minimum (maximum) heights of the
B-tree and CTB-tree are equal.

Another cost imposed by the CTB-tree is in the number
of 1I/0 operations required for node splits and underflows.
For leaf splits (underflows), none are required. For splits
(underflows) above the leaves, extra operations are required
to update thread pointers. Each split or underflow requires
following a path down to the appropriate leaf (read
operations), and updating its thread pointer (write
operation). Considering the relative frequency of splits
above leaf level, this overhead is negligible as well.

We consider one further cost associated with CTB-trees:

the cost of error detection. A detection routine may be run

Black, Taylor, Morgan - 23 - CTB-trees

periodically, as well as when trouble is suspected. By
making the period longer, the cost may be made as small as
desired. However, this must be weighed against the
increasing risk of multiple errors being introduced, or
existing errors being propagated. Again, the expected error
rate and the cost of system failure are important factors to

consider.

7. CONCLUSIONS, AND FURTHER WORK

One interesting aspect of the robustness of CTB-trees
is that each node is individually 2—-detectable and
l-correctable with respect to count, key, and difference
fields. This suggests that the effective robustness may be
much higher, since any number of key/count/difference errors
in different nodes may be detected/corrected. On the other
hand, the structural (identifier field, global count, and
pointer field) robustness of the CTB-tree 1is a global
property. Still, the effective robustness should be much
higher, as the 2-detectability and 1l-correctability 1is a
worst case result: there 1is at 1least one set of three
changes which is undetectable. For an error source which is
not "malicious", one would expect such fortuitous
conjunctions of errors to be extremely rare. Experimental
results along these 1lines have been obtained for other
robust data structures; see [6].

Many areas for further work can be identified. It was

Black, Taylor, Morgan - 24 - CTB-trees

mentioned above that linear time l-correction routines for
CTB-trees and robust contiguous 1lists have yet to be
developed. It would be interesting to examine the
robustness of B-trees or CTB-trees which have secondary
indices. More generally, our research attempts to develop a
theory of robustness in data structures, and to find
specific robust data structures providing adequate
robustness at acceptable cost.

In this paper, we have presented a new storage
structure for B-trees, the CTB-tree, and examined its
robustness. We have shown that it 1is 2-detectable and
l-correctable, and that this degree of robustness can be
achieved at an acceptable cost. We also discussed the
problem of finding a robust implementation of a contiguous
list, which was necessary at each node of the CTB-tree. We
believe that the CTB-tree is a useful tool for increasing
the reliability and fault tolerance of data base systems,

and that this is achieved at acceptable cost.

Black, Taylor, Morgan - 25 - CTB-trees

10.

Black,

BIBLIOGRAPHY

Anderson, T., and B. Randell (eds.). Computing
Systems Reliability. Cambridge University Press,

1979.

Avizienis, Algirdas. Fault-tolerance: The
survival attribute of digital systems. Proceedings of
the IEEE, vol. 66, no. 10 (October 1978).

ppll109-1125.

Bayer, R., and C. McCreight. Organisation and
maintenance of large ordered indexes. Acta
Informatica, vol.l, no. 3, 1972. ppl73-189.

Melliar-Smith, P. M. and B. Randell. Software
reliability: the role of programmed exception
handling. Proceedings of an ACM Conference on
Language Design for Reliable Software, Raleigh, North

Carolina, March 28-30, 1977. (Published as SIGPLAN
Notices, vol. 12, no. 3, March 1977.) pp925-100.

Randell, Brian. Operating systems: The problems
of performance and reliability. Information
Processing 71, Proceedings of IFIP Congress 71,
Ljubljana, Yugoslavia, August 23-28, 1971. pp281-290.

Taylor, D. J., D. E. Morgan, and J. P. Black.
Redundancy 1in data structures: Improving software
fault tolerance. Accepted for publication 1in IEEE
Transactions on Software Engineering.

Taylor, D. J., D. E. Morgan, and J. P. Black.
Redundancy 1in data structures: Some theoretical
results. Accepted for publication in IEEE
Transactions on Software Engineering.

Tavylor, David J. Robust data structure
implementations for software reliability. Ph.D.
Thesis, Department of Computer Science, University of
Waterloo, Ontario, 1977.

Taylor, David J. Theoretical foundations for
robust data structure implementations. Computer
Science Research Report, C€S-78-52, University of
Waterloo, Waterloo, Ontario, Canada.

Tompa, Frank W. Data structure design. Data
Structures, Computer Graphics, and Pattern

Recognition, edited by A. Klinger, et al. New York,

Academic Press, 1977. pp3-30.

Taylor, Morgan - 26 - CTB-trees

	

