SELCO0LO

L A BELAUY
188 T U WATSUN o SEARUH CENTER
P30 Box 218

YORKTOAN HELGHTS NY

10858 LEA

DATA BASE INSTANCES, ABSTRACT DATA
TYPES AND DATA BASE SPECIFICATION*

by
T.S.E. Maibaum
RESEARCH REPORT CS-80-14

University of Waterloo
Computer Science Dept.
Waterloo, Ontario
CANADA N2L 3G1

March 1980

*This research was partially supported by a grant from the
Natural Sciences and Engineering Research Council of Canada.

ABSTRACT

We present in this report a method of data base specification
which overcomes a severe drawback of most data base models and specification
techniques - namely the inability to formalise the concept of data base
instance (state). The lack of formalisation of this concept in a model
results in the inability to present a uniform treatment of queries and
updates. We indicate why previous models and specification techniques are
inadequate in this respect and then develop a modelling technique to over-
come this situation. The use of algebraic specification tools in con-
junction with this technique is illustrated in the specification of an

example data base.

Keywords: Data base models, algebraic specification, abstract data types,

data base instance.

1. Introduction

There have been in recent years numerous attempts at using the
algebraic theory of abstract data types to specify data bases (as, for
example, in [15, 9,39,30,31]). The procedure adopted is to choose one of
the standard models of data bases (relational, hierarchical, network, etc.)
and formalise this model as an abstract data type. That this can be done in
principle is not in doubt here. We would just point out that none of these
specifications introduces a new modelling concept for databases. We intend
in this report to introduce a new modelling concept for data bases which
arose from the study of abstract data types.

Central to any model of data bases is the concept of data base
instance. A data base instance may be described as a set of data values
(structured in some well specified way) at some particular point in time.
The fact that a data base may contain different sets of values at different
times is of the essence in the concept of data base. It is a sad fact that
none of the conventional models of data bases contends in a straightforward
manner with the formalisation of data base instance.

For example, consider the case of the relational model ([12,13,14]).
Discussion of this model is divided into two quite distinct areas. Firstly,
there is the theory of relational algebras (and the related concept of
relational calculus) as described for example, in [13,18,39,6].

This deals with the theory of (all possible) relations (defined on some
possibly infinite set of attributes) and the operations defined on them
(such as join, division, restriction as well as the more conventional
operations of union, intersection, difference, etc.). The special set of
relations defining a particular data base plays no role in this theory.

Secondly, we have the theory of updates (through the concepts of functional

dependencies, multi-valued dependencies, normal forms, etc.) as described,
for example, in [7,17,28,41]. This deals only with the relations which
constitute the data base and ignores all other relations and how these
relate to the special data base relations. Thus the theory of queries

(on a particular data base instance) is unrelated to the theory of instances.
That this is a serious shortcoming becomes even more evident when the
algebraic specification method is applied to formally axiomatise any such
model. For example, the axiomatisations outlined in [7, 28] ignore
completely the fact that some relations are special - namely, the data base
relations. A1l relations are treated in the same way. Thus it is hard to
describe in the object specified a consistent theory of instances. (This is
because many different expressions in the algebra of relations defined by
the axioms can denote "the same" database instance. However, most of these
are based on relations which are not the data base relations. Thus one
would have to eliminate these "misleading" expressions from the algebra -
something which one is not allowed to do in the theory of data types.)

A somewhat different use of algebraic specification techniques is
made in [30,31] where the need to be able to specify data base instances is
recognised. This is done by a so-called "extension" of the algebraic theory
of data types. In order to understand the shortcomings of this attempt,
we must delve a bit more deeply into the concepts underlying the (algebraic)
theory of abstract data types. This theory was formalised in [2] although
various precursors ([44,29,22]) pointed in the appropriate direction.

A data type is a set of operations and tests (regarded as boolean
valued operations) together with a family of sets of different kinds of data
over which the operations are defined. That is, a data type is a many-

sorted algebra. A data type is said to be abstract if the operations, tests

and sets of data can be specified implicitly - without any reference to any
representation. One such implicit method is the use of equational axioms to
specify the properties of the operations of the type. This method is called
the algebraic specification method. However, the specification defines a
whole class of algebras having these properties some of which are trivial and
obviously not intended to be the representations of the type while for

other algebras, the problem of deciding whether it is a representation becomes
more difficult.

In [2], the so-called ADJ group suggested that a unique isomorphism
class of algebras can be defined to act as representations of the type.

This was done using the concept of initiality - an algebra is initial in a
class of algebras if it is in the class and if for every algebra in the
class there is a unique structure preserving mapping (homomorphism) from
the initial algebra to the given algebra. It so happens that the class of
algebras defined by a set of equational axioms always has an initial
algebra. This initial algebra has the property that those and only those
things are true of the algebra which are logical implications of the axioms.
Thus the properties of the algebra are completely specified by the axioms.
In addition to this nice property, initiality gives rise to many proof
methods which are helpful in proving that purported implementations really
are implementations. Among these proof methods are generator induction
([23]) and possible proofs of inequality.

Now, to get back to the proposals outlined in [30,31]. The authors
feel that algebraic specification techniques have great potential for
application to data base system design. However, from this observation they
proceed to note a number of shortcomings of the method which they perceive

and hope to overcome. To cope with the problem of instances, in [371] the

suggestion seems to be that some sorts of a type not be specified and that
different instances of the database can then be realised by "concretising"
([31]) the unspecified sorts in different ways. It is also noted in both
[30] and [31] (presumably due to the inability to formally encode the
concept of instance in the type) that the specification technique cannot
overcome the following problems without "extension":
(i) preconditions on certain operations - some operations require
certain conditions to be true in some previous instance(s);
(ii) coincident conditions on certain operations - some operations
require conditions or actions on data objects (in the present
instance) which are not arguments of the operation;

(iii1) postconditions on certain operations - some operations require
that they be immediately followed by other operations with
arguments which may include some which are not arguments of
the first.

To contend with these problems, these reports suggest that they can be over-

come using extra conditions on implementations.

The objection to this proposal is that the concept of "concretisation
and the use of extra conditions on implementations seems to destroy completely
the underlying principle in the now widely accepted theory of abstract data
types - axioms define a unique isomorphism class of algebras, namely the
initial algebras. "Concretisation" and extra implementation conditions
ensure that the implementation is anything but the initial algebra in the
class specified by the axioms. In fact, generally the implementation will
define an algebra which is not even in the class specified by the axioms.

Thus the mathematical characterisations, proof techniques, measures of

what is and what is not an implementation suddenly disappear. As the

authors note in [31], "... the axiomatic approach and its extensions in this
paper, while intuitively appealing, still lack a complete theoretical
foundation".

However, all this effort is based on a mistaken assumption - namely,
the concept of instance cannot be encoded in the algebraic theory of data
types as outlined in [2,22,26]. In the next section, we give a semi-formal
description of a refutation of this negative assumption. In section 3 we
outline the mathematical theory underlying the work on abstract data types
and present an axiomatisation of a relational data base for keeping university
records. In the final section we discuss the implications of this work and
outline possible future directions for developing these ideas. Throughout

the paper, we will use the relational model as the basis for our discussion.

2. Environments and Data Base Instances

It has been recognised for a long time in treatments of operational
semantics of programming Tlanguages that the concept of environment is a very
necessary part of the formalism. This is necessitated because of the
different values which the program associates with program variables at
different times during the execution of the program. For example, consider

the following fragment of program:

x = A[il; (1)

A[il:=e; (2)
y:= A[il; (3)

A is some array and we assume that i is a valid index. Associated with A at
the point (1) in the program is a function from the index set of the array
to the values "stored" in the array. Thus the "query" A[i] returns some
value which is then associated with x by (1). In (2), the value associated
with A is changed by changing the value of the function associated with A to
produce the value of e at index i. The "query" A[i] at (3) then returns
the (possibly) different value to be associated with y. The mathematical
explanation for this is simply that the function associated with A has an
implicit second argument - the current environment. Thus, although the
same "query" is being done at (1) and (3), the hidden or implicit argument
- the current environment - has been changed by (2) (as well as (1) and (3)).
We note another important feature of the above programming example.
The array A retains an identity throughout the prcgram in spite of the fact
that the value associated with A changes. This is because the name A is

associated with these different values. This is to the point in our

discussion of data bases since one of the important characteristics of any
axiomatisation will have to be this property of associating different values
with the same name - namely, that of each basic "relation" used to define
the data base.

So, let us suppose that the data base is defined in terms of
relations named R]"“’Rn where Ri is defined in terms of attributes

Ai]""’Ai n for T <1< n. Wewill use the symbolcy(c',c],cz, etc.) to
b bl -i

denote database instances. Now the relation associated with Ri depends on
the instance o in which R is to be evaluated. Thus we can formalise this
by thinking of Ri as a function from instances to relations (sets of
tuples). So the expression Ri(c) denotes the relation associated with R; in
the instance o. Consider now some basic operation of the relational
algebra, say projection. We want to evaluate, for example, project(Ri,S)
(usually written Ri[S]). Clearly something is missing since we do not know
what Ri is without specifying the instance in which it is to be evaluated.
Thus project is really a function of three arguments: an expression denoting
a relation, a set of attributes, and an instance in which the first argument
is to be evaluated. Thus we should write project(Ri,S,o). (In fact, we
can retain the flavour of the previous notation by thinking of project
(Ri,S) as denoting a function from instances to relations. Thus to
evaluate project(Ri,S) in o we would write project(Ri,S)(o). There is a
formal equivalence between these two "notations" for the same idea but we
will not state it here.)

For join, we must write join(Ri,S,S',Rj,o) to indicate the
instance in which the join is to be performed. Similar changes must be
made in the other operations. We note in passing that a user would not have

to explicitly indicate the environment o in expressions denoting relations

(or in the update operations to be discussed Shortly) just as in our
programming example, the program does not contain explicit references
to environments. It is only the formal model which has explicit references
to instances.

Consider now some update operation such as add which is intended to
add a new tuple to the specified basic relation. Thus we see add as a
function of three arguments: a relation name, an expression denoting a
tuple, and an instance. Thus, add(Ri,t,c), for example. The difference
between this operation and previous operations, however, is that whereas
above the operations denoted a relation, add(Ri,t,o) denotes a new instance.
To recover the relation denoted by Ri we must write Ri(add(Ri,t,o)) and,
presumably, but not necessarily we would have Ri(add(Ri,t,o)) i Ri(o).
Before we proceed to a formalisation of these ideas, see the appendix for an

example of an instance of our example data base (obtained from [21]).

3. Mathematical Preliminaries

Since our model is defined by means of the algebraic specification
method, we take a "time out" to quickly summarise the underlying mathe-
matical concepts. The reader is referred to [2,22,26] for details and

motivation.

A data type is viewed as a many-sorted algebra. Discussion of data
types as many-sorted algebras can be found in [2,22,26].
An a]gebra of one sort is roughly-speaking a set of objects and
a family of operators on the set. The set is called the carrier of the
algebra. Many-sorted algebras extend this notion by allowing the carrier
of the algebra to consist of many disjoint sets. Each of these sets is
said to have a sort. The operators are sorted or typed, but must be closed
with respect to the carrier. For example, if A,B,C are three sets in the

carrier of an algebra, then
+:AxB-+C

could be an operator of type <ab,c>, arity ab and sort c, where a,b

and c¢ are distinguished names (the sorts) of A, B and C respectively.
A data type is then a many-sorted algebra, while a data structure is an

element of the carrier of a data type.

Let S be a set whose elements are called sorts. An S-sorted operator

domain I s a family {Zw s} of sets of symbols, for s ¢ S and w ¢ S* where

S* is the free monoid on 8. Zw s is the set of operator symbols of type

‘<w,s>, arity « and sort s.

A I-algebra A consists of a family {A_} of sets called the

s s eS

carrier of A, and for each <w,s>¢ S* x $§ and each f ¢ Zw , a function

»S

10.

fa: A XA x ...xA -+A
"A Sy S5 Sy s

(where w = S1Sp - sn) called the operation of A named by f.

Here { xs} s eS denotes a family of objects Xg indexed by s,

such that there is exactly one object X for each s ¢ S. The subscript
s € S will be omitted when the index set S can be determined from the
context. For fe Zx S where A is the empty string, fA € AS~ (also

written fA : +'AS). These operators are called constants of A of sort s.

= {0}; Iy 5 = {succ};

Example 1: Let & be defined by: S = {i,s} and Zx,i 5

= {top}; =, = {push}. (Thus A is a constant

= {A}; zs’s = {pop}; = is,s

ZA,s S,i
of sort (stack) (denoting what we will interpet as an empty stack).)

Let Ai be the set of natural numbers and AS = A? (the set of finite
strings on Ai)‘ Then OA is the natural number zero, AA is the empty string,
succy is successor, and POPy s topA, pushA have the obvious interpretations
(using one end of a string as the "top" of the stack).

If w=s;s,... 5, then let A“ denote Ag X ... x A .

1 n
If A and A' are both z-algebras, then a f-homomorphism h: A + A

is a family of functions

{ hs: As M A'é} s eS8

such that if f ¢ Zw,s and < a],...,ah:»s AY then

ho(falays....ap)) = '&'(hsl (a]),..-,hsn(an))-

A Z-algebra A in a class { of z-aigebras is said to be initial in c

iff for every B in L there exists a unique homomorphism

h: A -~ B.

11.

THEOREM 1 The class of all r-algebras has an initial algebra called T

[

5"
(TZ is sometimes called the free Z-algebra.) This theorem, as well as the

others given in this section, is proved in [2] . Tz can be viewed

intuitively as the algebra of well formed expressions over 3I.

Variables can be included in terms in TZ in the following way. Let
=1y (n)
XS {XS [n e N}
where N is the set of natural numbers. The elements

(i) _ .
xS € XS

are symbols called variables of sort s. Suppose I 1is an S-sorted

operator domain. Let

X= X

where Xs is a family of variables ¢f sort s for each s e S. We say

that X s an S-indexed family of variables.

Then let I(X) be the 5-sorted}operator domain defined as follows:

I
3]
c

>

Z(X)A,s T *L,s s

Z(X)

"
1
.-"
o
-3
£
n
>}

W,S w,S

Thus variables are being treated as nullaries or constants. Clearly
TZ(X) is an initial I(X)-algebra. We define TZ(X) as the algebra with
the same carrier as TE(X)’ but with operations I. We say that TZ(X) is
the I-algebra freely generated by X.

For any S-sorted Z-algebra A and an S-indexed family X of variables,

12.

if
6: X > A
denotes a family of functions

{6g: XS - AS}S€S

then 6 s called an interoretation or assianment of values of sort s in

A to variables of sort s in X.

THEOREM 2 Let A be a I-algebra and 9: X > A an assignment. Then there

exists a unique homomorphism
9: TZ(X) - A

that extends © in the sense that 5;(x) = eS(X) for all s e 8S and x ¢ X. O
A I-equation is a pair e = <L,R> where L,R ¢ TZ(X),s (the carrier
of TE(X) of sort s). A I-algebra A satisfies e if -

6(L) = 8(R)

for all assignments 6: X~ A. If e is a set of I-equations, then A
satisfies ¢ {ff A satisfies each e ¢ €. Thus a set of equations ¢
can be viewed as a set of axjoms whose free variables are implicitly
universally quantified. The class of I-algebras which satisfy e is

denoted Alg, .
Example 2: Let © and S be as in example 1 and consider the following equations:

pop(push(n,st)) = st

top(push(n,st)) =n

Then AZ as defined in example 1 satisfies these equations.

13.

An equatjonal specification is a triple < S,Z,e> where I is an

S-sorted operator domain and e is a set of I-equations (called the type
axioms).
= Pe f <i<n
Let w= $150+++5) and 35y 35 € Asi or 1 <1i=<n. Then a
g-congruence = on a I-algebra A is a family ({ Es} seS of equivalence

relations Es on AS such that if f ¢ Zw,s and if a; Esi a% for
1 <1i<n, then
- ' t
fA(a],...,an) = fA(a],...,an).
If A is a I-algebra and = 1is a I-concruence on A, let A/= = {As/:—:s}S e S
be the set of Es-equivalence classes of AS. For a e AS let [a]s denote

the Es~c1ass containing a. It is possible to make A/= into a Z-algebra

by defining the operations 'FA/= as follows:

i)y If fe Zk,s then fA/s = [fA]S

(i1) If fez and [a.]c<A /
S]on- n,S 151 Si Si

for 1

IA
—
A
3

then
fA/E([a]]S-""’[an]S-) = [fA(a]""’an)]s

Then it can be shown that A/= 1is a I-algebra called the quotient of A by
=. (The property of = being a congruence ensures that Op/z is well
defined.)

A set of r-equations e ={<L,R>| L,R ¢ TZ(X)} generates a binary
relation RS A x A on any algebra A. This relation is the set of all pairs
{<8(L),8(R)> |6 1is an assignment}. (Intuitively, consider all pairs with
variables in L and R replaced by terms in TZ and the resulting expressions
then being evaluated in AZ') Now any relation R on algebra A generates

a congruence q on A which is the least congruence on A containing R.

14.

THEOREM 3 If ¢ is a set of z-equations generating a congruence q on Tz’
then T./q is initial in élgise.

0
Example 3: It can in fact be shown that Az of example 1 is initial in Al_g_Z c
(where e is defined in example 2) and so is isomorphic to Tz/q where q is the

least congruence generated by «.

In the data types, that we define in the sequel, we make a number of
assumptions. Firstly, we assume that a sort bool is always a sort of the type.
bool has constants TRUE and FALSE and the "propositional" operations =1, v and a
appropriately axiomatised. Moreover, we assume that for each sort s of the

type being defined we have an operation of type <bool s,s called if ... then

S
. else ... which takes three arguments (the first of sort bool and the other

two of sorts). Associated with this operation are the axioms

if TRUE then t else t' =t

if FALSE then t else t' = t'. =
Secondly, we assume that each sort s of a type being defined contains a dis-
tinguished constant error, (or error if the s is obvious from the context).
This value will be used to indicate the result of an operation which would
otherwise yield "undefined" or some other inappropriate value. For example,
in the case of stacks if we try to pop the empty stack, we would Tike to
return error. The introduction of this value into each sort causes us to
condition the "norma]" equations we write with the condition that none of the
variables are error. We also add so-called error equations which state that
if any argument of an operation is error, then the result is error. For a

full discussion of the role of error values see [2,19]. For discussion of

conditioned equations, see [2].

15.

Example 4: Under the above assumptions we must add the sort bool to S of
example 1 together with the following operations:
error.: - i
error.: s
bool” > bool
if then else: bool x axa +a foraeS

error

-1 : bool = bool

voa: bool x bool - bool

TRUE,FALSE: - bool.
We also condition the equations in ¢ so that the arguments are not

error values and add to ¢ conditioned versions of the following:

— TRUE = FALSE —1FALSE = TRUE

bab'=b"ab beb'=b"vb

TRUE

TRUE A b' = b' TRUE v b

if TRUE then v else v' = v
for v, v' ¢ a for each a in S.
if FALSE then v else v' = v'
We also add equations for each operation to indicate that if any
argument is an error value, then the result is an error value.
To complete the axiomatisation, we should add the following axioms
to handle "exceptional conditions" for stacks.
pop(A) = error,
top(p) = error; .

4. An Algebraic Model of Data Bases

We will now define our

will be "pairs" of a set of attributes and a set of tuples each of which is
defined over the attributes forming the first argument.
define the types set of [elements] (a so-called parameterised type which can
be made into a normal type by substituting for element some appropriate type
such as attribute or tuple), attribute, and tuple.

defining types is illustrated by the definition of the type set of [element].

type set of [element] with:

model of a relational data base.

sorts set of [element], element, bool;

syntax

EMPTY: - set of [element]

INSERT: set of [element] x element + set of [element]

DELETE: set of [element] x element > set of [element]
CONT: element x set of [element] -+ bool

SUBSET: set of [element] x set of [element] -+ bool

EQUIV: set of [element] x set of [element] + bool
ADD: set of [element] x set of [element] -~ set of [element]
SUBT: set of [element] x set of [element] + set of [element]
INT: set of [element] x set of [element] - set of [element]
CART: set of [element] x set of [element] + set of [element]

semantics with s, s': set

of [element], v, v': element

INSERT(INSERT(s,v),v') = INSERT(INSERT(s,v'),v)

CONT(v,EMPTY) = FALSE

CONT(v,INSERT(s,v')) = if E

Q(v,v') then TRUE
else CONT(v,s)

Relations

Thus we need to

The notation we use for

17.

SUBSET(EMPTY,s) = TRUE
SUBSET(INSERT(s',v),s) = if CONT(v,s) then SUBSET(s',s)
else FALSE

EQUIV(s,s') = SUBSET(s,s') A SUBSET(s',s)
ADD(s,EMPTY) = s
ADD(s,INSERT(s',v)) = ADD(INSERT(s,v),s')
SUBT(EMPTY,s) = EMPTY
SUBT(INSERT(s,v),s') = if CONT(v,s') then SUBT(s,s')

else INSERT(SUBT(s,s'),v)
INT(s,s') = SUBT(s,SUBT(s,s'))
DELETE(EMPTY,v) = error
DELETE(INSERT(s,v),v') = if EQ(v,v') then s

else INSERT(DELETE(s,v'),v)

(Here EQ is the equality defined on the sort element (presumably by some
data type which is used to define element.)

type tuple with
sorts tuple, attribute, set of [attribute], set of [tuple], value, for

each a ¢ {DEPT, COURSE#, TITLE, P-DEPT, P-COURSE#, SECTION#, INSTRUCTOR,
INSTR-STATUS, DAY, TIME, BLDG, RM}, value.

(Here each value_ is the set of allowed values for the sort defined by
a as obtained from some data type defining the set. Elements of value
can then be thought of as value-attribute pairs. See the "hidden"

operations defined below.)

syntax

NEW:
STORE:
COLUMNS:
READ:
PIECE:
CATENATE:
COMPOSE:
MATCH:

hidden

EQ:
IN_:

a

ATT:
VAL:

18.

set of [attribute] + tuple

tuple x attribute x value » tuple

tuple - set of [attribute]

tuple x attribute -» value

tuple x set of [attribute] -~ tuple

tuple x tuple - tuple

set of [tuple] x tuple - set of [tuple]

tuple x tuple x set of [attribute] - bool

{These are operations vhich are used in the axiomatisation but which
are not allowed to be "used" in manipulating the objects of the type.)

value x value = bool

value_ > value
- Q

value - attribute

value > value_ for each a
T Q

semantics with t,t: tuple; a,a': attribute; A,A': set of [attribute];

s,s': set of [tuple]; v,v': value; v, value, for each a

COLUMNS(NEW(A)) = A
COLUMNS(STORE(t,a,v)) = ifCONT(a,A) A ATT(v) =

then COLUMNS(t)

else error

STORE(STORE(t,a,v),a',v') =

iiCONT@,COLUMNS(t» ACONT@ﬂCOLUMNS(t))A ATT(v) = a A ATT(v') = a'
then if a' < a then STORE(STORE(t,a,v),a',V)

e if a < a' then STORE(STORE(t,a',v'),a,v)

STORE(t,a',v"')

else error

19.

READ(NEW(A),a) = error
READ(STORE(t,a',v),a) =

ifa=a

then if ATT(v) = a' then v else error

else READ(t,a)
PIECE(NEW(A),A') = if SUBSET(A',A) then NEW(A') else error
PIECE(STORE(t,a,v),A) =

if CONT(a,A)

then STORE(PIECE(t,A),a,v)

else PIECE(t,A)
CATENATE(NEW(A) ,NEW(A')) =

if EQUIV(INT(A,A'),EMPTY) then NEW(,ADD(_A,A'))EJ_%EQ[[‘QL
CATENATE(NEW(A), STORE(t,a,v)) = STORE(CATENATE(NEW(A),t),.a,v)
CATENATE(STORE(t,a,v), STORE(t',a',v')) =

ifa <a' ghgn_STORE(CATENATE(t,STORE(t',a',v')),a,v)

else STORE(CATENATE(STORE(t,a,v),t'),a',v")

COMPOSE (EMPTY,t) = EMPTY
COMPOSE (INSERT(s,t),t"') = INSERT(COMPOSE(s,t),CATENATE(t,t'))
MATCH(t,t',EMPTY) = TRUE
MATCH(t,t',INSERT(A,a) =

if SUBSET(INSERT(A,a),COLUMNS(t)) A SUBSET(INSERT(A,&),COLUMNS(t'))

then if READ(t,a) EQ READ(t',a)

then MATCH(t,t',A)
else FALSE

else error

VEQv' = if ATT(v) = ATT(v') A VAL(v) = ATT(V)VAL(V')
then TRUE
else FALSE

20.

(Here o is the equality defined on values of attribute a for each a used

in the example.)

ATT(INa(va)) a for each a

VAL(INa(va)) v, for each a
type attribute with

sorts attribute;

syntax
DEPT: - attribute
"COURSE#: -+ attribute
TITLE: -~ attribute
P-DEPT: -+ attribute
P-COURSE#: - attribute
SECTION#: - attribute
INSTRUCTOR: - attribute
INST-STATUS: - attribute
DAY: -+ attribute
TIME: -+ attribute
BLDG: ~+ attribute
RM: -+ attribute

= : attribute x attribute » bool

EEEQQEIE% with i,j: attribute
(i,1)
(i,3)

In the following definition of the type database we use the notation

11l
I

TRUE for all i ¢ attribute

tl

It

FALSE for all i#j in attribute

{a],...,an} as a short form forINSERTGNSERT(...(INSERT(EMPTY,a1),a2),...,),an).

type database with

21.

sorts relation, tuple, set of [tuple], attribute, set of [attribute],

relnames, dbi, restrictor

syntax

?

$:
ADDTUPLE:

DELTUPLE:

CREATE:

ATTRIBS:

TUPS:

KEYS:
CARTESIAN:
UNION:
INTERSECT:
DIFFERENCE:

+ dbi (the empty data base instance)

relnames x tuple x dbi - dbi

(an update operation to add a tuple to one of the
basic data base relations)

relnames x tuple x dbi - dbi

(an update operation to delete a tuple from one of
the basic data base relations)

set of [attribute] > relation

(creates the empty relation over some set of attributes)

relation -~ set of [attribute]

(ATTRIBS is used to obtain the set of attributes
over which a relation is defined)

relation + set of [tuple]

(TUPS is used to obtain the set of tuples constituting
a relation)

relnames ~ set of [attribute]

relation x relation - relation

relation x relation -~ relation

relation x relation - relation

relation x relation > relation

(The above four operations are the usual operations of

cartesian product, union, intersection, and difference.)

PROJECT:

RESTRICT:

JOIN:

DIVIDE:

COURSE :
COURSE:
P-REQ:
P-REQ:
SECTION:

SECTION:
SCHEDULE:

SCHEDULE:
INSTR-INFO:
INSTR-INFO:

hidden

DEL:

22.

relation x set of [attribute] - relation

(This 1is the usual projection operation.)

relation x set of [attribute] x restrictor

x set of [attribute] -~ relation

(This is the restriction operation.)

relation x set of [attribute] x relation > relation

(This 1is the usual join operation.)

relation x set of [attribute] x set of [attribute]

x prelation - relation

(This 1is the usual division operation.)

dbi » relation

- relnames

dbi -~ relation

- relnames

dbi - relation

- relname
dbi -~ relation

- relnames

dbi -~ relation

- relnames
(Each of the above is the name of one of the basic data
base relations and is also a function from data base
instances to relations. Thus the relation denoted by

say, COURSE in o is COURSE(c).)

relation x tuple - relation

(DEL is used to remove a tuple from a relation but is

not an update operation. It is just used to facilitate

23.

the axiomatisation of several operations.)

TUPMATCH: tuple x set of [attribute] x set of [tuple] ~ set of [tuple]

(Used in the definition of JOIN.)

TUPJOIN: set of [tuple] x set of [attribute] x set of [tuple]

~ set of [tuple]

(Used in the definition of JOIN.)
semantics with r,r': relation; t,t': tuple; s,s': set of [tuple];

a,a': attribute; A,A': set of [attribute]; R,R': relnames;

og,0't dbi
ATTRIBS(CREATE(A)) = A
TUPS(CREATE(A)) = EMPTY
(The empty relation with attributes A is made up of

the set of attributes A and the empty set of tuples.)

ATTRIBS(COURSE(¢)) = {DEPT, COURSE#, TITLE}

ATTRIBS(P-REQ(0))

{DEPT, COURSE#, P-DEPT, P-COURSE#}
ATTRIBS(SECTION(c)) = {DEPT, COURSE#, SECTION#, INSTRUCTOR}
ATTRIBS (SCHEDULE(s)) = {DEPT, COURSE#, SECTION#, DAY, TIME, BLDG, RM}
ATTRIBS(INSTR-INFO(o)) = {INSTRUCTOR, INSTR-STATUS}
(The above defines the attributes of the basic data
base relations.)
KEYS(COURSE) = {DEPT, COURSE#}
KEYS(P-REQ) = {DEPT, COURSE#, P-DEPT, P-COURSE#}
KEYS(SECTION) = {DEPT, COURSE#, SECTION#}
KEYS(SCHEDULE) = {DEPT, COURSE#, SECTION#, DAY}
KEYS(INSTR-INFO) = {INSTRUCTOR}
(The above defines the keys of the basic data base

relations.)

24.

ATTRIBS(CARTESIAN(r,r')) =
if EQUIV(INT(ATTRIBS(r),ATTRIBS(r')),EMPTY)
then ADD(ATTRIBS(r),ATTRIBS(r'))
else error

TUPS(CARTESIAN(r,r')) =
if EQUIV(INT(ATTRIBS(r),ATTRIBS(r')),EMPTY)
then CART(TUPS(r),TUPS(r'))
else error

ATTRIBS(UNION

(ror')) =
if EQUIV(ATTRIBS(r),ATTRIBS(r'))
then ADD(ATTRIBS(r),ATTRIBS(r'))

else error

TUPS(UNION(r,r')) =

if EQUIV(ATTRIBS(r),ATTRIBS(r'))

then ADD(TUPS(r),TUPS(r'))

else error
The axioms for INTERSECT and DIFFERENCE are analogous to the above
two for UNION.
ATTRIBS(PROJECT(r,A)) =

if SUBSET(A,ATTRIBS(r))

then SUBT(ATTRIBS(r),A)

else error
TUPS(PROJECT(r,A)) =

if SUBSET(A,ATTRIBS(r))

then if EQUIV(TUPS(r),INSERT(s,t))

then INSERT(TUPS(PROJECT(DEL(r,t),A)),PIECE(t,A))

else error

25.

ATTRIBS{JOIN(r,A,r') =
if EQUIV(INT(SUBT(ATTRIBS(r),A),SUBT(ATTRIBS(r'),A)),EMPTY)
then ADD(ATTRIBS(r),ATTRIBS(r'))
else error
TUPS(JOIN(r,A,CREATE(A')) =
if SUBSET(A,A') A SUBSET(A,ATTRIBS(r))
then CREATE(ADD(A',ATTRIBS(r))
else error
TUPS(JOIN(r,A,r')) =
if EQUIV(TUPS(r),INSERT(s,t))
then TUPJOIN(TUPS(r),A,TUPS(r'))
else TUPS(JOIN(r',A,CREATE(ATTRIBS(r))))
TUPMATCH(t,A, INSERT(s,t")) =
if SUBSET(A,COLUMNS(t)) A SUBSET(A,COLUMNS(t'))
then INSERT(TUPMATCH(t,A,s),CATENATE(PIECE(t,SUBT(COLUMNS(t),A)),t"'))
€lse error
TUPJOIN(INSERT(s,t),A,s') =
ADD(TUPJOIN(s,A,s'),TUPMATCH(t,A,s'))
We have omitted the axioms for division and restriction as these
are rather complicated and do not add to the impact of the example.
ATTRIBS(R(ADDTUPLE(R',t ,0))) =
if EQUIV(COLUMNS(t),ATTRIBS(R'(c)))
then ATTRIBS(R)

else error

ATTRIBS(R(DELTUPLE(R,t,c))) =
if EQUIV(COLUMNS(t),ATTRIBS(r(o)))
then ATTRIBS(R)

else error

26.

TUPS(R(ADDTUPLE(R',t,0))) = if = (R,R') then
if EQUIV(COLUMNS(t),ATTRIBS(R(s)))
then if CONT(PIECE(t,KEYS(R)),PROJECT(R(c),KEYS(R)))

then error

else INSERT(TUPS(R (o)),t)

else error

TUPS(R(DELTUPLE(R' ,t,5))) = if = (R,R') then
if EQUIV(COLUMNS(t),ATTRIBS(R(s)))
then if CONT(t,TUPS(R(c)))

then DELETE(TUPS(R(c)),t)
else TUPS(R())
else error

else TUPS(R(o))

27.

Notes: (1) The axiomatisation of ADDTUPLE (one of the two update operations
allowed in the data base) is such that the appropriate functional
dependencies are "obeyed". Thus, for example, in the case of
COURSE with the functional dependency {DEPT, COURSE#} - {TITLE}
the axiom for ADDTUPLE indicates that ADDTUPLE{COURSE,t, o) is
defined if and only if

(i) the attributes of t are those of the relation instance
COURSE (o) (EQUIV(COLUMNS(t) ,ATTRIBS(R(5)));
and (ii) there is no tuple in the relation COURSE(c) which has
DEPT and COURSE# values which are the same as those of
the corresponding values of t (CONT(PIECE(t,KEYS(R)),
PROJECT(R(c) ,KEYS(R)))).
Furthermore, only the basic data base relations can be undated.
(2) The usual relational algebra operations (join, division,
restriction, etc.) are defined over relations. Thus the only
way in which the basic data base relations can appear in a
relational algebraic expression is by being applied to some
particular data base instance. However, different occurrences
of basic data base relations can be applied to different data
base instances in forming some relational algebra expression.
Clearly such an expression does not make sense if one is just
using the expression to answer a query. However, such an
expression might be useful if one is trying to express
"historical" properties of data base instances (as is the case

in proofs of properties of the data base).

28.

Consistency conditions which need to be applied in some
situations can also be axiomatised. Suppose, for example,

that we have some condition such as - If relation R is updated,
then relation R' must be updated (in a well defined way).

These are the kinds of conditions which caused the authors of
[30] to abandon the algebraic theory which we use here. To
illustrate this, consider our example axiomatisation and the

following consistency condition.

The basic relation SECTION cannot be updated with an insertion
unless the INSTR-INFO relation contains an entry with the same

instructor value as that in the tuple to be inserted.

This is an example of a co-incidence condition as described
above. To take this condition into account, we could modify
the axiom with left hand side TUPS(R(ADDTUPLE(R',t,o))) by
replacing its right hand side, which we denote by X, by the

following expression:

if = (R',SECTION)
then if CONT(PIECE(t,{INSTRUCTOR}),PROJECT(TUPS(INSTR-STATUS

(6)),{INSTRUCTOR})
then X

else error

else X.

29,

An example of a post-condition is the following:

If SECTION is updated by adding a tuple with a given INSTRUCTOR
value, then the basic relation INSTR-INFO must be updated by
adding the value 10 to the INSTR-STATUS value corresponding to
the above INSTRUCTOR value.

This can be done by replacing the update axiom by:

TUPS(R(ADDTUPLE(R',t,0))) =
if = (R',SECTION)
(R,INSTR-INFO)

11

then if
then INSERT(DELETE(TUPS(R(s)), < READ(t,INSTRUCTOR),y >)
, < READ(t,INSTRUCTOR),y + 10 >)
else X

else X

where X is as above, y is a variable ranging over INSTR-STATUS

values and <w,w'> is an abbreviation for

STORE(STORE (NEW{ INSTRUCTOR, INSTR-STATUS}) , INSTRUCTOR ,w)

,INSTR-STATUS,w')

(Note that although the INSTR-STATUS component of the tuple
concerned is not known, only one value of y will satisfy the
above equation - namely that associated with the INSTRUCTOR
value in the tuple t.) Although we do not do so here, pre-

conditons can be similarly expressed as well as combinations of

30.

such conditions. If there are many such consistency conditions,
then the one axiom we have been discussing may have to be
replaced with more specific axioms concerning each basic

relation.

31.

5. Conclusions

We have proposed in this report a technique available in the
algebraic theory of abstract data types for overcoming deficiencies in earlier
attempts at modelling data bases. The formalisation of the concept of data
base instance (or environment) allowed us to treat "query" and update
operations in the same setting and thus to completely axiomatise their
expected interrelationship. We have attempted this axiomatisation for a
relational database but there is no reason why the same techniques could
not be used to treat the other normal models in current use.

Much work remains to be done in studying such models. For example,
an attempt can be made to formalise mathematically the so-called ANSI/SPARC
architecture. The conceptual schema could be an axiomatisation such as the
one provided here. The internal schema is then an implementation in the
technical sense used in the algebraic theory of abstract data types [2.,26].
(In terms of our stack example, the algebra A defined in example 1 could be
used to define an implementation for the "stack of natural numbers" axiomatised
in example 4 because it is isomorphic to the initial algebra defined by the
axioms.) The interface between the above schemas is the isomorphism defining
the relationship between the two schemas.

An external schema must be definable in terms of the conceptual
schema. In other words, the internal schema must provide an implementation
language for any external schema. Consistency conditions on external schema
could then be expressed as consistency conditions on the mappings which

define their implementations.

6.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

32.

References

ADJ - J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright: Initial
Algebra Semantics and Continuous Algebras, JACM, Vol. 24, No. 1,
pp. 68-95, 1977.

ADJ - J.A. Goguen, J.W. Thatcher, E.G. Wagner. J.B. Wright: An Initial Algebra
Approach to the Specification, Correctness, and Implementation of

Abstract Data Types in "Current Trends in Programming Methodology,

Vol. 4", ed. R.T. Yeh, Prentice Hall, 1978.

ADJ - J.W. Thatcher, E.G. Wagner, J.B. Wright: Data Type Specification:
Parameterization and the Power of Specification Techniques, Proc. of
10th SIGACT Symposium on Theory of Computing, 1978.

J.R. Abrial: Data Semantics, in "Data Base Management", J.W. Klimbie
and K.L. Koffeman (eds.), North-Holland Publishing Co., 1974, pp. 1-59.

M. Adiba, M. Leonard, C. Delobel: An Unified Approach for Modelling
Data in Logical Data Base Design, IFIP-TC-2 Working Conference on
Modelling in Data Base Management Systems, Freudenstadt, 1976,

pp. 634-665.

A.V. Aho, C. Beeri, J.D. Ullman: The Theory of Joins in Relational
Data Bases, ACM TODS, Vol. 4, No. 3, 1979.

C. Beeri, P.A. Bernstein, N. Goodman: A Sophisticate's Introduction
to Database Normalization Theory, Proc. of the 4th Int. Conf. on Very
Large Data Bases, 1978.

H. Biller, E.J. Neuhold: Semantics of Data Bases: the Semantics of
Data Models, Information Systems, Vol. 3, 1978.

M.L. Brodie, J. Schmidt: What is the Use of Abstract Data Types in
Data Bases? Proc. of the 4th Int. Conf. on Very Large Data Bases,
1978.

R.L. de Carvalho, T.S.E. Maibaum, T.H.C. Pequeno, A.A. Pereda Borquez,
P.A.S. Veloso: A Model-Theoretic Approach to the Semantics of Data
Types and Structures, Technical Report, DI-PUC/RJ, Rio de Janeiro,
Brasil, 1979.

P. P-S Chen: The Entity Relationship Model - Toward a Unified View
of Data; ACM TODS, Vol. 1, No. 1, 1976, pp. 9-36.

E.F. Codd: A Relational Model for Large Shared Data Banks, CACM,
Vol. 13, No. 6, 1970, pp. 377-387.

E.F. Codd: Relational Completeness of Data Base Sublanguages, in
"Data Base Systems", Courant Computer Science Symposia Series, Vol. 6,
Prentice-Hall, 1972.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

33.

C.J. Date, E.F. Codd: The Relational and Network Approaches:
Comparison of the Application Programming Interfaces, Proc. 1974
ACM-SIGFIDET.

H. Ehrig, H.-J. Kreowski, H. Weber: Algebraic Specification Schemes
for Database Systems, Proc. of 4th Int. Conf. on Very Large Data
Bases, 1978.

M.H. van Emden, T.S.E. Maibaum: Equations Compared with Clauses for
Specification of Abstract Data Types, submitted for publication.

R. Fagin: Relational Database Decomposition and Propositional Logic,
IBM Res. Rept. RJ-1776, Apr. 1976.

A.L. Furtado, L. Kerschberg: An Algebra of Quotient Relations, Proc.
of SIGMOD Conference, 1977.

J.A. Goguen: Abstract Errors for Abstract Data Types, Proc. of IFIP
Working Conference on Formal Description of Programming Concepts,
North Holland, 1977.

J.A. Goguen: Some Design Principles and Theory for 0BJ-0, A Language
to Express and Execute Algebraic Specifications of Programs, Proc. of
International Conference on Mathematical Studies of Information
Processing, Kyoto, pp. 429-475, 1978.

C.C. Gotlieb, L.R. Gotlieb, "Data Types and Structures", Prentice
Hall, 1978.

J.V. Guttag: Abstract Data Types and the Development of Data Struct-
ures, CACM, Vol. 20, No. 6, pp. 396-404, 1977.

J.V. Guttag, E. Horowitz, D.R. Musser! Abstract Data Types and Soft-
ware Validation, CACM, Vol. 21, No. 12, pp. 1048-1064, 1978.

C.A.R. Hoare: Proof of Correctness of Data Representations, Acta
Informatica, Vol. 1, No. 1, pp. 271-281, 1972.

M.R. Levy: Verification of Programs with Data Referencing, Proc. of
3me Colloque international sur la programmation, Dunod, pp. 411-426,
1978.

M.R. Levy: Data Types with Sharing and Circularity, Ph.D. Thesis,
Department of Computer Science, University of Waterloo, 1978 (Also
Technical Report CS-78-26.)

M.R. Levy, T.S.E. Maibaum: Continuous Data Types, to appear in SIAM
Journal on Computing.

T.-W. Ling: Improving Data Base Integrity Based on Functional
Dependencies, Ph.D. dissertation, University of Waterloo, 1978.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

34.

B.H. Liskov, S.N. Zilles: Specification Techniques for Data
Abstractions, IEEE TSE, SE-1, No. 1, pp. 7-18, 1975.

P.C. Lockemann, H.C. Mayr, W.H. Weil, W.H. Wohlleber: Data
Abstractions for Data Base Systems, ACM TODS, Vol. 4, No. 1, 1979.

P.C. Lockemann, W.H. Wohlleber: Constraints and Transactions: Ex-
tensions to the Algebraic Specification Method, Technical Report,
University of Karlsruhe, 1979.

T.S.E. Maibaum, Mathematical Semantics and a Model for Data Bases,
Proc. of IFIP Congress '77, Ed. B. Gilchrist, North Holland, 1977.

T.S.E. Maibaum: Non-termination, Implicit Definitions, and Abstract
Data Types, submitted for publication.

T.S.E. Maibaum, C.J. Lucena: Higher Order Data Types, to appear in
Int. Journal of Computer and Information Sciences, 1979.

C. Pair: Formalization of the Notions of Data, Information and
Information Structure, "Data Base Management", J.W. Klimbie and
K.L. Koffeman (eds.), North Holland Publishing Co., 1974, pp. 149-168.

M.E. Senko: DIAM as a Detailed Example of the ANSI SPARC Architecture,
IFIP-TC-2 Working Conference on Modelling in Data Base Management
Systems, Freudenstadt, 1976, pp. 170-195.

J.M. Smith, D.C.P. Smith: Data Base Abstraction, ACM Conference
on Data: Abstraction, Definition and Structure, 1976, Salt Lake City.

SPARC Interim Report: ANSI Document No. 7514TS01, Washington, D.C.,
1975.

F.W. Tompa: A Practical Example of the Specification of Abstract
Data Types, to appear in Acta Informatica, 1980.

M. Wand: Final Algebra Semantics and Data Type Extensions, Technical
Report 65, Dept. of Computer Science, Indiana University, 1978.

H. Weber: A Semantic Model of Integrity Constraints on a Relational
Data Base; IFIP-TC-2 Working Conference on Modelling 1in Data Base
Management Systems, Freudenstadt, 1976, pp. 536-606.

H. Weber: A Software EngineeringView of Data Base Systems, Proc. of
4th Int. Conf. on Very Large Data Bases, 1978.

B. Youmark: The ANSI/X3/SPARC/SGDBMS Architecture, Rand Corp., Santa
Monica, Cal.

S.N. Zilles: Algebraic Specification of Data Types, Project MAC
Progress Report II, MIT, pp. 28-52, 1974.

APPENDIX

DEPT | COURSE = TITLE
ENG 160 Creative Writing
ENG 220 Shakespeare
FRE 340 18th Cent Fiction
COURSE
DEPT | COURSE # |SECTION #| INSTRUCTOR
ENG 160 i Andrews
ENG 160 2 Thomas
ENG 220 1 Andrews
ENG 220 2 Brown
FRE 340 1 Dubois
FRE 340 2 Armand
SECTION
INSTRUCTOR | INSTR-STATUS
Thomas 67
Andrews 18
Brown 56
Dubois 40
Armand 22

INSTR-INFO

DEPT | COURSE = | P-DEPT| P-COURSE =
ENG | 160 ENG 20
ENG| 160 ENG 51
ENG | 220 ENG 120
LENG 220 ENG 121
| FRE 340 FRE 100
FRE i 340 | FRE | 240
' P-REQ
T
$ f/fff// S
/Sy
ENG|160| 1 [Mon| 10]|uci 201
ENG|160 | 1| Thu| 11|uC] 202
ENG{160 | 2 |Mon| 10|NC| 14
ENG|160 | 2 |wed!| 9 |NC| 20
ENG[220] 1 {wed| 1 [TRI 20
ENG|220| 1| Fri | 12|TR] 21
ENG|220| 2 | Tue |10 |NC] 517
ENG| 220 2 | Thu| 11|NC| 517
FRE|340| 1 | Tue| 2 |UC|202
FRE[340| 1 |Thu | 1 |uc 201
FRE|340| 2 |Monl 3 |vc|113
FRE|340| 2 {Thu, 3 IVC 1120
SCHEDULE

	

