1

SOLUTION OF SPARSE LINEAR LEAST
SQUARES PROBLEMS USING
GIVENS ROTATIONS*

by
Alan George1
and
Michael T. Heath2
Research Report CS-80-13
March 1980

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3GI

Mathematics and Statistics Research Department
Computer Sciences Division

Union Carbide Corporation, Nuclear Division
Oak Ridge, Tennessee, U.S.A. 37830

Research sponsored by the Applied Mathematical Sciences Research
Program, Office of Energy Research, U.S. Department of Energy under
contract W-7405-eng-26 with the Union Carbide Corporation. Research
of the first author also supported in part by Canadian Natural Science
and Engineering Research Council grant A8111.

ABSTRACT

We describe a direct method for solving sparse linear least
squares problems. The storage required for the method is no more than
that needed for the conventional normal equations approach. However,
the normal equations are not computed; orthogonal transformations are
applied to the coefficient matrix, thus avoiding the potential numerical
instabi]ity associated with computing the normal equations. Our
approach allows full exploitation of sparsity, and permits the use of
a fixed (static) data structure during the numerical computation.
Finally, the method processes the coefficient matrix one row at a time,

allowing for the convenient use of auxiliary storage and updating

operations.

§1. Introduction

In this article we present a numerically stable method for
solving the Tlinear least squares problem

(1.1) min lIAx—b|I2 >
X

where A is mby n, m >n, and is assumed to have full column rank.
Our method has been designed to deal effectively with (1.1) when m
and n are large and ATA is sparse.

The classical approach to solving this problem, and one which

is still used in many contexts today, is via the system of normal

equations

(1.2) Bx = b ,

where

(1.3) B=AA and b=Ab .

The n by n symmetric positive definite matrix B s

T

factored using Cholesky's method into R'R, where R 1is upper

triangular, and then x s computed by solving the two triangular

systems RTy =b and Rx = y.
The following features make the normal equations approach

attractive:

i. The Cholesky algorithm does not require pivoting for stability
so that the ordering for B (i.e. 'co1umn ordering of A)
can be chosen based on sparsity considerations alone. Further-
more, there exists well developed software for exploiting
sparsity in such linear systems. A good ordering can be
determined in advance of any numerical computation, allowing

use of a static data structure.

ii. The row ordering of A 1is irrelevant so that the rows of A
can be processed sequentially from an auxiliary input file in
arbitrary order. Thus only one row of A need be represented
in fast storage at any given time.

iii. Explicit computation of the Cholesky factor R provides con-
venient access to the important statistical information
contained in the unscaled covariance matrix (ATA)'] = (RT)'].

Unfortunately, the normal equations method also has several drawbacks:
i. Unless extended precision is employed, which would be costly
both in space and time, there may be a serious loss of informa-

Ty,

tion in explicitly forming and processing ATA and A
ii. The condition number of B s the sqmare of the condition
number of A. so that the accuracy of the computed solution
to the system (1.2) may be questionable, especially if A
itself is already poorly conditioned.
iii. The sparsity of A does not necessarily imply that B will
be comparably sparse. Indeed, if A has a full row then B
is full.
Our aim is to provide a method which retains the advantages of the
normal equations approach without having its disadvantages. Of course,
this is not accomplished without some cest, and in this case the method
we propose requires more arithmetic operations than the normal
equations.
Perhaps the best known stable alternative to the normal
equations 1is the orthogonal factorization approach (see, for example,

[10]). An orthogonal matrix Q is computed which reduces A to

upper trapezoidal form, so |[[Ax-b[[, {s transformed to

(1.4) I

G- ()

X -

0 z

where

(1.5) QA =<R> Qb =<y> ’
0 ’ z

and R 1is upper trdangular. The application of Q does not change
the two-norm, so the solution to (1.1) is obtained by solving the
triangular system Rx = y. The matrix Q is usually obtained as a

product of Householder or Givens transformations or by Gram-Schmidt

orthogonalization.
There has been a_reluctance to use this method for sparse

problems, due in part to the generally accepted belief that orthogonal
transformations cause an unacceptable amount of fill-in. For example,
the application of Householder transformations or Gram-Schmidt
orthogonalization can cause severe "intermediate" fill-in. Eventually
this transient fill-in is itself reduced to zeros, but the phenomenon
can cause minimum storage requirements to gxceed greatly that which is
ultimately required for R. In additiong the conventional use of
Householder transformations or Gram-Schmidt orthogonalization requires
access to all columns of the unreduced part of A during the computation.

The use of Givens rotations is much more attractive. The
rows of A can be processed one by one, gradually creating R. Thus,
no "intermediate swell" outside the working row need occur, and A can
be accessed in the manner that it usually arises naturally or any other
convenient or desirable order.

Although these advantages have been recognized, the use of

Givens transformations for sparse linear least squares problems has not

gained wide acceptance. We conjecture that the main reason is that
effective methods for permuting A so that R remains sparse have not
been available. The method we propose in this paper provides a
mechanism for solving this problem.

Several other methods for sparse least squares problems are
surveyed in Bjérck [1], Duff and Reid [3], and Gill and Murray [8].
These include the elimination method of Peters and Wilkinson [16] and
the augmented matrix method of Hachtel [11]. Although they can be quite
effective in exploiting sparsity in many contexts, both of these methods
require access to the whole matrix A at some stage of the computation.
Moreover, both methods involve row and column pivoting for stability and
therefore require dynamic data structures. Finally, neither method
provides the Cholesky factor R explicitly and therefore they are not

directly compatible with existing normal equations methodology.

§2. The Proposed Method

We begin our description by noting that the unique Cholesky
factor of B in (1.3) and the R in (1.5) are the same, apart from
possible sign differences in the rows. This is made apparent by the

following.
ATQTQA

(R 0)(R) - RR (from 1.5)
0

-Alp =38 . (from 1.3)

(2.1)

Recall that R 1is independent of the ordering of the rows of A. This
is obvious from (2.1) since Q could be simply a permutation matrix.
With these observations, we present the basic steps of our

method, upon which we then elaborate.

T

1. Determine the structure (not the numerical values) of B = A'A.

2. Apply an ordering algorithm to B, yielding a permutation
matrix P such that B = PTBP has a sparse Cholesky factor

R. Note that B = PIATAP = &'

A.

3. Apply a "symbolic factorization" algorithm to B, generating
a row-oriented data structure for R [6].

4. Compute R by processing the rows of R one by one, using
Givens rotations. Apply the same transformations to b. Thus,

we have

%= (g)and ab- (;Z) .
5. Solve Rx = y.
In Steps 1 through 3 we are exploiting well developed techniques
for solving sparse positive definite systems. In Step 1, we determine
the structure of ATA, which of course need not involve any floating

point operations and hence no rounding errors. We then apply an ordering

algorithm to the output of Step 1, providing a symmetric reordering of
ATA, which corresponds to a column permutation of A. We then apply
an algorithm to B which determines the structure of its Cholesky
factor R, and sets up a data structure in which to store it.

These first three steps correspond exactly to what would be
done in solving (1.2) using current sparse matrix techniques. The next
step would then be to place the numerical values of B in the data
structure for R and compute R in place using Cholesky's method.
However, we wish to avoid the explicit computation of §, SO0 our
method diverges from the normal equations approach at this point.

Steps 1-3 will have provided us with a good column ordering for A, so
that R will be sparse, along with an efficient data structure which
exploits that sparsity. Our Step 4 involves the application of Givens
rotations to the rows of A = AP, one at a time, gradually building up

R. These rotations are applied simultaneously to b, and when all rows of

=1

have been processed ("rotated into R"), Step 5 is executed to obtain

The advantages of our method are as follows:
1. Unlike the normal equations approach, we avoid the potential
instability due to the explicit computation of B.
2. Storage requirements are essentially the same as that for the
normal equations approach. Any sparsity exploitation gvailable
to the normal equations approach may also be used with our approach.
3. The use of row operations facilitates updating operations

and the use of auxiliary storage.

4. The numerical computation is performed using a fiﬁgg_(static)
data structure; dynamic storage allocation to accommodate
fill-in (transient or otherwise) is not necessary. The
importance of this property of our method is difficult to
overemphasize. It allows the use of a very efficient data
structure for R and efficient numerical computation.

5. Since the order in which the rows of A are processed in
step 4 does not affect numerical stability or the ultimate
sparsity of R, this order can be exploited, if desired, to
reduce the total arithmetic operation count for the a]gorithm.
Such strategies will be discussed in Section 4.

As was remarked earlier B, and hence R, may be quite full
if A has one or more relatively full rows. In order to avoid this
severe fill-in, such rows may be skipped in the initial processing and
then be incorporated into the solution later by means of the updating

procedure outlined in Section 5.

Our exploitation of sparsity in R and its analysis in Section
3 is in a sense pessimistic, because the structure of R obtained from

step 3 of our algorithm results from a simulation of Cholesky's method

T

assuming no cancellation occurs. Thus, R' + R is assumed to be at least

as full as B. When R 4s computed this way, such an assumption is
entirely sensible since it is difficult to anticipate when such cancellation
would occur. However, when R 1is computed using Givens rotations, some
such cancellation may be automatically identified.'because the numbers

which cancel during the application of the Cholesky algorithm to B are

never computed when using the orthogonal reduction method. See the

example provided by Bjorck [1, p.181].

§3. Implementation Details

Steps 1-3 of our method involve standard sparse matrix
techniques for solving sparse positive definite systems of equations,
about which there is abundant literature and high quality software
[5,17]. We have borrowed the majority of our implementation of Steps
1, 2, 3 and 5 from the software package SPARSPAK; a description of the
algorithms and data structures used in the package can be found in [5].
Thus, our main purpose here is to describe and justify the implementation
of Step 4 of our method.

For completeness, we include a brief description of the data
structure chosen for R, an example of which is given in Figure 3.1.

The storage scheme has an array RNZ which contains the nonzero off-
diagonal entries of R, row by row, along with a pointer array XRNZ
of length n which indicates where the elements of each row begin in
RNZ. The diagonal elements of R are stored in a separate array DIAG.

The column subscripts of the elements of R in RNZ are
stored in the array NZSUB, and the beginning position in NZSUB where
the subscripts of row i of R reside is given by XNZSUB(i). Note
that NZSUB s not in general as long as RNZ; it has been "telescoped"
in those cases where the leading column subscripts of a row form a
final subsequence of those of a previous row. This clever storage

scheme is due to Sherman [17].

o

Figure 3.1

I — b
byy by byy T M2 "4
bsy r22 ra4
bss bys bsg r33 '35 36
bgr Bys R Y44 Tas
symmetric b55 b57 "s5 "s6 's7
bes D7 <::) 66 67
b7 r77
A 7 by 7 matrix B and its factor R.
DIAG "1 T2 33 Taa Tss Tes 77
RNZ 2 T4 | T4 (T3 "36 | Ta5 | 's6 T57 | V67
e s
|} r
XRNZ 1 3 4 6 7 9 1o
NZSUB 2 4 5 6 5 6 7
h { A f
XNZSUB . 1 2 3 5 6 6 PR

Ah.example of the storage scheme used for R.

10

We assumé that the rows of A and the corresponding elements
of b are available on an external file, and can be read one at a time.
The device need only provide serial access, and the order in which the
rows of A appear on the file is immaterial. The row by row processing

of A and b tu create R is depicted in Figure 3.2.

R (being computed)

- right hapd side

y (being computed)
Givens
rotations >

Working storage — o 3T by
for the row and
right hand side
being processed.

L

a <a'p

row a and right hand element b
read from file

Figure 3.2 Diagram depicting the computatiopal flow
of the reduction of [APib] to [Riy].

11

The following is intended to "justify" the scheme just out-
lined. Specifically, we want to verify that the data structure for R
will indeed always have space to accommodate the fill-in created by the
rotations. We begin with two observations, followed by a Lemma due to
Parter [15].
Remark 1. Suppose a rotation is applied to the sparse vector pair
(x,y), yielding (%,¥). Then in general (unless the rotation is a
multiple of 90°) X, # 0 and 91 7 0 whenever x. #0 or y.#0
(or both) (See Gentleman [4] for a thorough discussion of Givens
rotations.)

Remark 2. Bij #0 e 3k > Aki # 0 and Akj # 0

Lemma 1. (Parter) ﬁij £0e Eij #0 or

3k <min {i,j} > R; # 0 and ﬁkj #0 .
Lemma 2. There is space in the data structure of R for any
incoming row al.

Proof: Let a have nonzeros in positions c],cz,...,cp. By Remark 2,

Bc1c£ #0,2=1,2,...,p. By Lemma 1, Rc1c2 #0, 2#1,2,...,p.

So there is space in row ¢ of the data structure for 5T.

Except near the beginning of the computation, row <y of the
data structure for R will already be occupied by numerical values, so

that row 4 of R will be used to reduce EC to zero, using a
1

rotation. This will cause fill in &, according to Remark 1, so
that the transformed a, which we denote by &, will in general be
nonzero in all positions which are nonzero to the right of the diagonal

in row ¢, of R. That is, for 2 > cqs

12

Rc],k 70-= az #0 .

Let D = {d]’dZ""’dq} be the subscripts of the nonzeros in &, with

c < d] < d2 < ... < dq.

Lemma 3. There is space for & in row d] of the data structure for
R.

Proof: We need to verify that ﬁd d # 0 for dl e D. This follows
2

1
immediately from Lemma 1 by setting k = Cy> i= d] and j = dg,

L =2,3,...,q.

0f course row d] of the data structure for R may already
have numerical values in it, so it would be used to reduce 3d] to
zero, yielding a transformed &, and so on. Repeated application of
Lemma 3 shows that eventually an empty row of the data structure will
be encountered, or all elements of the incoming row will be annihilated.

In our implementation we have found it convenient to handle
the intermediate fill in the working row by using a working vector of
length n. The working vector is initialized to zero, and the nonzeros
of the incoming row are inserted into the appropriate locations. New
nonzeros generated by successive rotations can then be inserted into
the working vector very efficiently without the need for a dynamic
data structure. A table of subscripts of nonzeros in the working vector
is maintained in order to avoid scanning through the entire n-vector.
Arithmetic operations with zero operands may also be avoided.

A basic assumption of our method is that R can be stored
in core, but there is room for 1little more. In particular, the Givens

rotations are not stored; they are simply discarded after use. However,

13

if we wish to solve additional problems having the same matrix A but
different right hand sides b, then the new right hand sides must be
transformed by the same sequence of Givens rotations as were used in
reducing the matrix. In this case the rotations could be written out

on an external file for later use. Auxiliary storage could be economized
by using the technique of Stewart [18] in representing each rotation

by a single floating-point number. An alternative possibility for
handling multiple right hand sides would be to solve the system

R'Rx = Ab

using the R already on hand, so that only the original matrix, which
is already stored on an external file, is needed to transform subsequent
right hand sides. This latter approach is intermediate in numerical

stability between the normal equations and orthogonalization [3].

14

§4. Numerical Experiments

Although the method presented in this paper is suitable for
most sparse linear least squares problems, we have had a particular
class of problems in mind in designing and testing the algorithm. Our
paradigm is the class of network or grid problems having a collection
of nodes which are interconnected by observations (equations). Each
node is connected to only a few other nodes, usually nearest neighbors,
and there may be considerably more observations than nodes. Such
problems arise, for example, in geodetic surveying and in finite
element analysis, and may reach truly spectacular size [9].

We have used two network problems in our numerical testing.
One is a real geodetic network having 892 observation equations and
261 unknowns, with about five nonzeros per row, supplied to us by the
U.S. National Geodetic Survey. This problem is a tiny portion of the
North American datum to be readjusted in 1983 [13]. Our second example
is characteristic of problems arising in the natural factor formulation
of the finite element method. There is a k by k square grid of nodes
and each observation equation involves the four nodes corresponding to
one of the (k—])2 smallest subsquares at the grid. With k = 20 and
with each observation equation replicated four times using randomly
chosen coefficients, a problem was generated having 1444 rows and 400
columns. For both of these problems we compare the new algorithm
with the normal equations method.

A few more remarks are in order concerning the details of our
computer implementation. Steps 1 through 3, which are the same for
both the normal equations approach and the new algorithm, are

carried out using existing modules from SPARSPAK. We have found it

15

most convenient to determine the structure of ATA in Step 1 by simply
making a preliminary pass through the problem data stored on an external
file, noting the column subscripts but not the values of nonzero
elements of A. It is possible that the structure of ATA

could be determined a priori in some contexts, thus not requiring that
the data be read twice. The ordering used in Step 2 for both methods

is the quotient minimum degree ordering option of SPARSPAK. Other

orderings are available in SPARSPAK but we have not tried these for

our test problems. In Step 4 we have used standard Givens rotations
(four multiplications, two additions, one square root) rather than the

modified or "fast" Givens rotations (two multiplications, two additions,
no square root) [4]. The modified Givens rotations could certainly be
used in this context, but we have chosen not to do so in order to simplify
the coding and to obtain maximum accuracy and stability. Moreover, in
practice the modified scheme yields a far smaller reduction in actual
running time than the reduction in operation count would imply, particularly
since rescaling is often necessary to ensure stability [12].

The order in which thé rows of A are processed in Step 4
is immaterial to the numerical stability of the algorithm and to the
ultimate sparsity of R. Thus, while the natural order in which the
rows are stored will be most convenient, any other row ordering is also
permissible. We have found that this freedom can be exploited to limit
the amount of intermediate fill in the working row and thereby reduce
substantially the overall operation count for the orthogonal factori-
zation phase. An extreme instance of this behaviou is shown by the
contrived example depicted in Figure 4.1. For the row order shown in
Fig. 4.1(a) the cost of using Givens rotations to reduce A to upper

triangular form is O(nz). For the row order in Fig. 4.1(b) the cost

16

is O(mn2). Finding an optimal row ordering with respect to operation
count in the orthogonal reduction is an obvious topic for further
research. A suboptimal heuristic we have employed in our numerical
experiments is simply to sort the data file into increasing order with
respect to the maximum column subscript (in the permuted column order

of K). For both of our example problems this is the "good" row ordering
reported in Table 4.1. For the geodetic network problem the "bad" row
ordering is the natural order in which the physical problem was orig-
inally presented. For the square grid problem the "bad" ordering is

the reverse of the "good" ordering. Both test problems were sufficiently
well conditioned that the answers from all methods agreed to essentially

full machine precision.

(a) (b)
Figure 4.1

Number of rows
Number of columns
Nonzeros in A
Nonzeros in ATA

Nonzeros in R

Maximum storage used]

Time for ordem’ng2

Normal equations
Time for factor/solve

Operations for factor/so]ve3

Givens with "good" row order
Time for factor/solve
Operations for factor/solve

Givens with "bad" row order
Time for factor/solve
Operations for factor/solve

Notes: 1. Maximum storage used

Table 4.1

Geodetic problem

892

261
4342
2785
5033
7531
1.17

0.69
83086

1.90
1673586

3.96
3133877

as well as space for nonzeros.

17

Grid problem

1444

400
5776
1882

6229
9369
0.17

0.78
92539

2.62
2218705

6.83
5760666

includes pointers and other overhead

2. A1l times are in seconds for an IBM 3033 using Fortran

double precision.

the data.

3. Operation count unit is a multiply-add pair.

Factor/solve times include reading in

18

§5. Addition of Rows

The processing of rows in the algorithm described in Section
2 is open ended in the sense that additional rows may be rotated into
R at any time and the resulting new solution computed, provided the
new rows fit into the existing data structure (i.e., the new row should
add nothing to the structure of ATA). If the new rows do not fit into the
existing data structure, as will be the case, for example, with full
rows which have been held out of initial processing in order to avoid
catastrophic fill1-in, then an updating procedure may be used to incor-
porate the effect of the new rows into the solution. Note that we do
not update the factorization, but merely the solution. Such updating
procedures are common in least squares applications [14]; we include
details here for completeness.

We wish to solve the augmented problem

min (bl) - (A1>x
X b A
2 2 9
Let r](x) = b] - A]x and r2(x) = b2 - A2x. Let y be the solution

to the original problem

min IIr](x)ll
X 2

as determined by an algorithm such as that of Section 2 using the
orthogonal factorization
- nI/R
A] - Q (0) .
Letting x be the solution to the augmented problem, we wish to
determine z = x - y. Now

r(x) = by = Ax = by - Ay - Az = r(y) - Az

1 1

19

and similarly rz(x) = rz(y) - Ayz. Since AIr](y) = A$(b]-A]y) =0,

minimizing llr1(x)]|§ is equivalent to minimizing IIA]zllg .

Thus, the augmented problem can be recast as

Az QTRZ u
min = min

1 = min
) . Rz

2

1 ,

rz(y)-AzR rz(y)-AZR u

2

with u = Rz. Now letting v = rz(y) - AZR']u, d = rz(y), W = (3),

and C = [AZR'] I] we arrive at the problem

min ||w||2 subject to Cw = d
w

which is simply the problem of finding the minimum length solution to
an underdetermined 1inear system. The row dimension of C s the same
as that of A2 so that the problem is presumably small and we can
afford to ignore sparsity here. To solve this last problem we use

another orthogonal factorization
T T

T_ L L
c ‘U[o -[U1U2][0}

where U is orthogonal and L Tlower triangular, so that Cx = d becomes

0
[L 0] 7%= d.
u

2
4 T
1y Y

Using the change of variable v)T T X i.e. x = U]y] + U2y2,

2 U

r

1
2

Yy
the constraint equation becomes [L 0] y = d.

We may now determine 2 by solving Ly] = d, Tleaving Yo free to
be chosen so as to minimize llx||2. The choice Yo = 0 yields the

desired result.

20

21

§6. Concluding Summary

We have developed a stable numerical method for solving
sparse linear least squares problems using no more space than the
traditional, but potentially unstable, normal equations method. As the
figures in Table 4.1 show, our method requires more computer time than
the normal equations, but the ratio is no worse than in dense problems
of comparable m and n. Such a storage/time trade-off is quite acceptable,
for example, on a small dedicated computer where space is at a premium
but processing time is essentially free. Moreover, in fairness it
should be noted that our implementation of the normal equations method
is extremely efficient, using the most up-to-date sparse matrix
technology.

Our method has several other interesting features. It does
not need to see the whole matrix at any one time, and it can process
pieces of the matrix in arbitrary order. This leads to the possibility
of solving very large scale sparse problems by using auxiliary storage.
Indeed, one of the most important uses we see for the algorithm is as

the in-core module for an out-of-core sparse least squares solver {71

Our method does require storage for ATA during the ordering
phase, and storage for R during the numerical computation. For sparse
problems where m >> n, these quentities are usually much less than the
space required for A.

In sparse least squares, as in many sparse matrix problems,
there is a delicate and complicated interplay among considerations of
sparsity, stability and efficiency. In the algorithm we have proposed
these complex issues are isolated to a large extent. The use of
orthogonal transformations rather than elimination assures stability

and allows pivoting, if any, to be done based on sparsity and efficiency

22

alone. Similarly, the column and row orderings are based solely on
sparsity and efficiency, resbective]y.

There are numerous areas for further research. We have tried
only one column ordering scheme, based on the minimum degree algorithm.
For other classes of problems, a different ordering strategy may be more
appropriate. In particular, a column ordering which can be computed more
quickly but yields a somewhat less sparse Cholesky factor might be
preferable for some problems. The question of row ordering is not so

well understodd and much research remains to be done.

23

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

A. Bjorck, "Methods for sparse linear least squares problems",
in Sparse Matrix Computations, ed. by J.R. Bunch and D.J. Rose,
Academic Press, New York, 1976, pp. 177-199.

A. Bjorck and I.S. Duff, "A direct method for solving sparse
Tinear Teast square problems", Linear Algebra and its Applications,
(to appear in this issue).

[.S. Duff and J.K. Reid, "A comparison of some methods for the
solution of sparse overdetermined systems of linear equations",
J. Inst. Maths. Applics. 17, (1976), pp. 267-280.

W.M. Gentleman, "Least squares computations by Givens trans-
formations without square roots", J. Inst. Math. Appl. 12 (1973),
pp. 329-336.

A. George and J.W.H. Liu, Compuger Solution of Large Sparse
Positive Definite Systems, to be published by Prentice Hall, Inc.

A. George and J.W.H. Liu, "An optimal algorithm for symbolic
factorization of symmetric matrices", SIAM J. on Comput., (to
appear).

A. George, M.T. Heath and R.J. Plemmons, "Solution of large
scale sparse least squares problems using auxiliary storage",
in preparation.

P.E. Gill and W. Murray, "The orthogonal factorization of a
large sparse matrix", in Sparse Matrix Computations, ed. by
J.R. Bunch and D.J. Rose, Academic Press, New York, 1976,
pp. 201-212.

G.H. Golub and R.J. Plemmons, "Large scale geodetic least
squares adjustment by dissection and orthogonal decomposition",
Linear Algebra and its Applications, (to appear in this issue).

G.H. Golub, "Numerical methods for solving linear least squares
problems", Numer. Math. 7, (1965), pp. 206-216.

G.D. Hachtel, "Extended application of the sparse tableau approach -
finite elements and least squares", Technical Report, Elec. Sci,
and Eng. Dept. and Computer Sci. Dept., UCLA, 1974.

R.J. Hanson, "Is the fast Givens transformation really fast",
ACM SIGNUM Newsletter, 8, No. 4, (1973), p.7.

G.B. Kolata, "Geodesy: dealing with an enormous computer task",
Science 200, (1978), pp. 421-422.

[14]

[15]

[16]

[17]

[18]

24

C.L. Lawson and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974.

S.V. Parter, "The use of Tlinear graphs in Gaussian elimination",
SIAM Review, 3 (1961), pp. 364-369.

G. Peters and J.H. Wilkinson, "The least squares problem and
pseudo-inverses", Comput. J. 13 (1970), pp. 309-316.

A.H. Sherman, "On the efficient solution of sparse systems of
linear and nonlinear equations", Research Report #46, Dept. of
Computer Science, Yale University, 1975.

G.W. Stewart, "The economical storage of plane rotations",
Numer. Math. 25 (1976), pp. 137-138.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

