CONTRIBUTIONS TO THE
THEORY OF LOGIC PROGRAMMING

by
Krzysztof R. Apt%
M.H. van Emden

RESEARCH REPORT CS-80-12

University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

February 1980

1 Vakgroep Informatica, Faculteit Economische Wetenschappen,
Erasmus Universiteit, Rotterdam, Holland.

2 University of Waterloo, Department of Computer Science,
Waterloo, Ontario N2L 3Gl, Canada.

1. Introduction

This paper is a continuation of the investigation begun in [SPL],
where various approaches to the semantics of predicate logic regarded as a
programming language were discussed. Using the analogies provided by logic
programming [LPS,GDM,PLPL], the model-theoretic semantics of Horn sentences
of first-order predicate logic was formulated in terms of a fixpoint sem-
antics. In the present paper we exploit further the application of fixpoints
of transformations to the semantics of Horn sentences by relating it to
various properties of what we call SLD-resolution (first described in
[PLPL]). Among other results we prove by fixpoint techniques the soundness
and completeness of SLD-resolution; the latter result is shown to be a con-
sequence of the continuity of the transformation.

In programming semantics extensive use has been made of least fix-

points. The dual notion of greatest fixpoint has been used only indirectly

for the characterization of program behaviour: for example, in [BGFI] an
induction rule is proposed which is dual to the one proposed by Scott; the
latter is based on least fixpoints. The present paper shows that in the
framework of Horn clause logic with SLD-resolution as computational mech-
anism, greatest fixpoints yield useful results in characterizing program
behaviour. Admittedly, these programs are logic programs, but they have
simple relationships with conventional models of programs or data bases
[VCP,CDI]. These results are based on the fixpoint and semantical charact-
erizations of finite failure of SLD-resolution; these characterizations
are significant independently of the particular applications given here.
The interest of greatest fixpoints lies in the fact that they are

not in all respects dual to least fixpoints. A transformation T, as

typically associated with a Horn sentence or with a program, has a least
fixpoint which is equal to the union of the finite powers of T applied to
the least element of the universe; this property may be referred to as
union-continuity. The T's used in program semantics typically are union-
continuous, and ours are no exception. The dual property of intersection-
continuity, which is the equality of the greatest fixpoint of T to the
intersection of all finite powers of T applied to the greatest element

of the universe, is typically not satisfied. We prove intersection-
continuity for the T associated with a set of clauses which represents a
flowchart schema of bounded indeterminacy. Together with our theorem
(7.14) which shows that finite failure of SLD-resolution computes the
complement of the above-mentioned intersection,this result can be applied
to obtain a semantic characterization of nontermination and blocking of

flowchart schemas of bounded indeterminacy.

The paper is organized as follows. In section 2 and 3 we gather the
basic results and definitions concerning fixpoints and logic in clausal

form. The semantics of logic and the transformation T associated with Horn

sentences is introduced in section 4. In section 5 SLD-refutations are
introduced and soundness and completeness of the method is proved. SLD-
resolution is discussed in section 6 where its completeness is proved.
Finite failure of the SLD-resolution and its characterization using the
greatest fixpoint of the transformation T is considered in section 7.
Section 8 is devoted to a semantical characterization of finite failure.
Finally in section 9 we apply our results to a semantic characterization of

some aspects of the behaviour of nondeterministic flowchart schemas (see

[vce]).

2. Basic Results on Fixpoints

Let L be a complete lattice with set B, order relation ¢, greatest
lower bound operationn, and least upper bound operation u. A function
T: B -+ B is said to be monotone if x for any

1 S % implies that Txl E_sz,

Xy and X, in B.
Although, by the completeness of L, any subset S of B has a glb and
a lub in B, S does not necessarily contain either of them. Subsets that do

are of special interest. For example, H = {x : x ¢ Tx}, where T is mono-

tone, contains h = UH because

h > x for any x € H = (monotonicity of T)
Th > Tx for any x ¢ H = (definition of H)
Th > x for any x € H = (definition of u)

Th> i = Th> h=he H.

Likewise, for monotone T, G = {x : x o Tx}, and g = nG, we have g € G.

Theorem ... (2.1)
(The Knaster/Tarski fixpoint theorem)
A monotone function T has a greatest and a least fixpoint:

ulx : x = Tx}

h' = Th' where h'

Tg' where g' = n{x : x = Tx}

g'

Proof: We shall show that h = Th, where h = u{x : x ¢ Tx}. We prove
that h = h'. We already showed that h ¢ Th. It remains to show that
h> Th: hcTh=ThcT(Th) = Th e H=Thch. Th=h=hch', by

definition of h'. h' c h because {x : x = Tx} < {x : xc Tx}. The

existence of the least fixpoint may be shown in a similar way W

The diagram may help to visualize the situation. F = {x : x = Tx}.

uB

nB

We will need unions and intersections of powers of T. Because the exponents
in those powers may have to go beyond the natural numbers, we define the

following ordinal powers of T:

T+0 = nB

T4n = T(T4(n-1)) if n is 4 successor ordinal
= U{T+k : k<n} if n is a limit ordinal

T+0 = uB

T+n = T(T¥(n-1)) if n is a successor ordinal

= n{T+k : k<n} if n is a limit ordinal

Theorem (2.2)

For any ordinal n
T4n c 1fp(T) and T¥n > gfp(T)

There exists ordinals n1 and n2 such that

T4n, = 1fp(T) and T¢n, = gfp(T) N

1 2

This theorem is well known in various areas of mathematics. Within theo-

retical computer science it has been popularized in [IRTP].

3. Syntax and Informal Semantics for Logic in Clausal Form

A sentence is a possibly infinite set of clauses. A clause is a

pair of sets of atomic formulas written as
Al""’Am < Bl,...,Bn, m=0, n=0.

The set {A Am} is the conclusion of the clause; {Bl,...,Bn} is the

1,...,

premiss of the clause. An atomic formula (or atom, for short) is

P(tl,...,tk) where P is a k-place predicate symbol and where tl,...,tk are

terms. A term is a variable or f(t ,...,tj) where f is a j-place functor¥*)

1
and where tl""’tj are terms and j20. A O-place functor is called a
constant. We write a = b to denote that a and b are the same sequence of
symbols.,

Substitution is an operation, say 6, which replaces throughout an

expression e all occurrences of a variable by a term. The result is denoted

by e6 and is called an instance of e; e is said to be more general than ef

(even when e = ef). If there exists for given expressions €yseese 2

substitution 6 such that e = ele = ... = ene, then 6 is said to be a unifier
of el,...,en.
According to the informal semantics of logic in clausal form, a

sentence is to be understood as the conjunction of its clauses. A clause

Al,...,A < Bl,...,B

m n

is to be understood as

or ... or A if B, and ... and B
m n

for all xl,...,xk, A 1

1

where XpseeerXy are the variables in the clause and where

m>0, n=0.

#) or function symbol

A definite clause is one where m = 1,

A sentence containing definite clauses only is called a definite sentence.

A negative clause is one where m=0 and n>0. It is to be understood as: for

all XyseeesXp s it is not the case that B. and ... and Bn' The "Horn clauses'

1

often used in the literature are clauses which are definite or negative.

An empty clause is one where n=0 and m=0. Such a clause is to be understood

as a contradiction. It is written as [.
This informal semantics will be defined formally in the next

section.

4, Semantics of logic in clausal form

We define the Herbrand base U of a sentence S to be the set of
variable-free atoms containing no predicate symbols or functors other than

those occurring in S. Any subset of U is an interpretation (for S). With a

definite sentence P we associate a function TP from dinterpretations to

interpretations. Let I be an interpretation. We define TP with

A € TP(I) iff there exists in P a clause
B0 < Bl,...,Bn (n=0) such that

A = Boe and {Ble,...,Bne} cI

for some substitution 6.

We apply the basic results on fixpoints by making the set of the
lattice equal to the powerset of the Herbrand base and by making the partial
order of the lattice equal to inclusion among subsets of the Herbrand base.
Note that TP is monotone with respect to this order.

Definition: vee (4.1)

Let I be an interpretation.

+ A sentence is true in I iff each of its clauses is true in I.

+ A clause is true in I iff each of its variable-free instances

is true in I.
+ A variable-free clause
Al,...,Am <+ Bl,...,B

n

A

is true in I iff at least one of A ,...,
—_— 1 m

is true in I or at least one of B.,...,B
1 n
is not true in I,

A variable-free atom F is true in I iff F ¢ I

An interpretation I such that a sentence S is true in I is called
a model*)of S. We denote the set of models of S by M(S). S is unsatis-—

fiable (also inconsistent) means that S has no model. When, for sentences

Sl and SZ’

and we write Sl = SZ' An example of this relationship between sentences is

when S2 is a set of instances of clauses in Sl. Hence the

M(Sl) E_M(Sz), we say that S, is a semantic implication of S

2 1

Proposition eo. (4.1
If a set of instances of clauses in a sentence S is unsatisfiable,
then S is unsatisfiablell
Sl E 82 implies that ﬂM(Sl) g_ﬂM(Sz). Another interesting special

case occurs when 82 = {A}, where A is a variable-free atom. Now NMM({A}) =

{A}, so that ﬂM(Sl) {A}. Apparently we have the

|U

Proposition oo (4.2)

MM(S) is the set of all variable-free atoms such that S E A B

Theorem ce. (4.3)
I> T(I) iff I is a model of P where P is a definite sentence, T is

the associated transformation, and I is an interpretation.

Proof: see [SPL] N

Corollary ’ e, (4.5)

For a definite sentence P we have

#) A'Herbrand model' in more general treatments of logic. We only consider
such models.

NM(P) e M(P)

(the "model-intersection property" for definite sentences).

Proof: From section 2 we recall that for monotone T
N{x : x> Tx} e {x : x> Tx}
Theorem (4.3) translates this directly to
MM(P) e M(P)

In [SPL] this corollary is proved directly, without recourse to T N

Theorem oo (4.6)
Let T be the transformation associated with a definite sentence P.

Then we have

1fp(T) = Ttw

Proof: see [SPL] R

Apparently, for this type of domain and this T, the N in T4N = 1fp(T)
(Theorem (2.2)) may always be taken equal to w. It may, however, happen
that

gfp(T) # Tyw

the following example of such a T is due in part to K.Clark and in part to
H.Andreka and I.Nemeti.
S = {(P(a) « P(x), Q(x)), P(s(x)) < P(x)
» Q(b), Q(s(x)) <« Q(x)
}

10.

Let U be the Herbrand base for S generated by the predicate symbols P and Q,

by the functor g, and by the constants a and b. For all finite n we have

™(U) = 1\ Q(a),...,Q(s" T (a))
,B(b),...,P(s" T (b))

}

Hence Tvy = {P(s™(a)): n<w } u {Q(Sn(b): n<w}. Now, P(a) ¢ T(Tw);
hence TYvw # gfp(T). In fact, Tn(T+w) = T+w\{P(si(a)): i<n}, for finite n.
We have T¥(wtw) = {Q(s™(b)): n<w} = gfp(T) = 1fp(T).

However, definite sentences representing flowgraphs of bounded non-
determinacy lead to a T such that TYw is the greatest fixpoint (see section
9). A slightly different condition is given in the following theorem, which

has a proof very similar to the one of lemma 9.5.

Theorem , eee (4.7)
If each SLD-tree with root < A, where A is variable-free, is of
bounded degree and there are finitely many variable-free terms in the
Herbrand universe, then Tvw = gfp(T) |§
So, for example, if P is finite and there are no function symbols

in P then TP+w = gfp(TP). (SLD trees are introduced in section 6.)

11.

5. SLD tefutations and their semantics

A refutation of a sentence is a syntactic object which is intended
to demonstrate the sentence's unsatisfiability. A refutation is not to be
confused with a refutation procedure, which is a symbol-manipulation pro-
cedure for finding a refutation.

Numerous refutation procedures have been based on J.A. Robinson's
resolution principle; first by Robinson himself [MOL,LFF] and subsequently
by many others [see MIP,ATP]. For our purpose the SL-resolution procedure
[LRS] is most important and especially a variant [SPL,PLPL,LPS] intended for
use with sentences containing, apart from one negative clause, only
definite clauses. Because of this restriction we will refer to this
resolution refutation procedure as SLD-resolution: SL-resolution for
Definite clauses. This section is concerned with SLD refutations. The
corresponding refutation procedure is discussed in the next section.

Let P be a definite sentence and N a negative clause. An SLD-
derivation of P u {N} consists of a finite or infinite sequence
NO’Nl’NZ"" of negative clauses, a sequence dl’d2”" of clauses in P (the

input clauses of the derivation), and a sequence 61,62,... of substitutions.

Each nonempty Ni contains one atom, which is the selected atom of Ni' The

clause N, is said to be derived from N, and d, with substitution 0..
i+l - i i i
The relationship of being derived is defined as follows.

Let Ni = <« Al""’Ak""’Am’ m>1

with Ak as selected atom.
Let di = A< Bl""’Bq’ q=0
be any clause in P such that A and Ak are unifiable, that is, such that

A = Aie for some substitution 6.

12.

Then Ni+l is

<~ (Al,...,Ak_l,Bl,...,Bq,Ak+l,...,Am)6
and ei+l is 6. Each atom Aje of Ni+l is said to be a derived atom of Ni+l
(derived from Aj in Ni)' Each atom Bje in Ni+l is said to be an introduced

atom of Ni+1 (introduced by di)'
Apparently, if a derivation contains the empty clause, it must be

its last clause. Such a derivation is called an SLD-refutation. The

success set of a definite sentence P is the set of all A in the Herbrand base
of P such that P u {<A} has an SLD-refutation. SLD-refutations are said to be
sound if the success set is contained in the least model of P (or, by
Corollary (4.5), is contained in every model of P); the opposite inclusion
(Lemma (5.4)) is a form of completeness.

Let [A] denote the set of all variable-free instances of an atom A.

Theorem ... (5.1

We assume that an SLD-refutation exists of a sentence P u {G},
where P is a definite sentence and G is a negative clause, and that
61,...,6n is the sequence of substitutions of the refutation. We assert that
for every atom A in Gel...en, [A] ¢ Tn(¢).

Proof: Let G ..,Gn be the successive negative clauses of the refutation.

0"

G0 =G . Gn = [J. We show by induction on i that for every atom A in
i
Gn—ien—i+l .o en, [A] < T7(9).

If 1 = 1 then Gn—i consists of a single atom matching a clause,
say with conclusion C, without a premiss. Gn 16n = ¢cp . [C]l cT($); a
- n

fortiori [Gn_len] < T(¢). This takes care of the induction basis i = 1.

13.

Suppose now, as induction assumption, that [A] < Tl(¢) for any atom

A in G “ee en. Let X be an atom of Gn—' Suppose first that X

i-1°

is an atom of Gn T The induction

n—ien—i+l

is not the selected atom. Then Xen .

assumption assures that [(xen) en—i+l v en]E_Tl(¢). The monotonicity of

1

-i
(¢). Thus, X being an atom, but not the selected
1

T implies that Tl(¢) E_Tl+

implies that [Xen ;e en] E_Tl+ (¢).

-1

atom, of Gn—i—l

Suppose that X is the selected atom of Gn—i—l' Let A <« Bl""’Bm
be the (n-i)-th input clause of the refutation. Xen_i is an instance of A,

Case m=0: [A] < T(¢), by definition of T. Also: [Xen—i .o en] E-[Xen—i]
l(q>). Hence [XGn 01 E_T1+l(¢)-

< [A]; also T(¢) E_Ti+ -i n

Case m>0: B.6 _.,...,B 6 ., are atoms of G ,. By the induction hypothesis,
—_— 1 n-1i m n-i n-i

[Bjen—i]-s T1(¢) for j = 1,...,m. Hence, by the definition of T,
i+l .. i+1
[xen_i] < T° “(¢). A fortiori, [Xen_i en] < T ()N
Corollary ee. (5.2)

(Soundness of SLD-refutations)
Let P be a definite sentence and let N be a negative clause such that there

exists an SLD refutationof P u {N}. Then P u {N} is unsatisfiable.

Proof: By theorem (5.1) there exists a substitution 6 such that for all
atoms A in N, A8 ¢ 1fp(T) = NMM(P). This implies that NO is not true in
MM(P), so it is not true in any model of P; a fortiori, the same holds for

N. Therefore P u {N} is unsatisfiablell

Corollary .. (5.25)

The success set of a definite sentence is contaimed in its least

modell

14.

Corollaries (5.2) and (5.25) can be proved from the soundness of
resolution in general, which has a simpler proof than Theorem (5.1). The
value of this theorem lies elsewhere; namely in the way it justifies the
constructive use of SLD-refutations. What we mean by this is illustrated
by the following example.

Let P = {app(nil,y,y)

»app(u-x,y,u-z) <+ app(x,y,z)
}

"e" ig used as infix operator: for example u*x stands for - (u,x).

The functor
This term stands for a list with u as first element; X stands for the rest
of the list. The constant "nil" stands for the empty list. The clauses of
P state theorems about the "append" relation between three lists, where the
third list is the result of appending the second list to the end of the
first.

Let A = app(xl,3-yl,2-3'4'zl). Now P U {«A} has an SLD-refutation
with substitutions, say, el,...,en. By itself, the soundness of resolution
only guarantees the existence of unspecified X sy e and zq such that
2-3-4-zl is the result of appending v, to %;. But theorem (5.1) allows us
to use resolution logic as a computational formalism: Ael oo Gn is
app(2°nil,3+4-w,2+3+4°w), thereby stating that the X 5Yqs and zq that must
exist by the soundness of resolution, are 2+nil, 4+w, and w respectively,
where w can be any variable-~free term.

To prove the completeness of SLD-refutations we establish some

lemmas first.

15.

Lemma ... (5.3)
Let P be a definite sentence, N = <« Al,...,Ak a negative clause,

and 6 a substitution. If there exists arefutationof P u {N6} with A6 as

first selected atom, then there exists a refutation of P u {N} with Ai as

the first selected atom.

Proof: We can assume that © does not act on any of the variables in P.
Suppose now that a refutation of Py {N8} exists where Aie (in N6) is the
first selected atom. Suppose the first input clause of the refutation is
BO < Bl,...,Bm. It follows that Aie; = BOQ for some substitution .

By the assumption there exists a refutation of

P U {«(A8,..0,A; 10,B1,.. 0B LA 6, . A B)C].

But Bi Bie for i=0,...,n since 6 does not act on any of the variables of
P. So Aie; = BOGC and by the above there exists a refuation of P u {N} with
Ai as the first selected atom, 6z as the first substitution and the same

input clause W

Lemma ... (5.4)

The least model of a definite sentence is contained in its success

set.

Proof: Assume that A is in the least model of a definite sentence P. By
Corollary (4.5), the least model of P is NM(P). By Theorem (2.1), NM(P) =
1fp(T). By Theorem (4.6) A ¢ 1fp(T) = A ¢ Tk(¢) for some finite k. We now
prove by induction k that A ¢ Tk(¢) implies that an SLD-refutation exists of

P u {<A}.

If k = 1, then A ¢ Tk(¢) implies that A is a variable-free instance

16.

of the conclusion of a clause in P with an empty premiss. Hence there is an
SLD-refutation of P u {+A} (of length 1).
k+1 e . .

If AeT (¢), then by definition of T there exists a variable-
free instance of a clause BO <« Bl s eee s Bm in P such that A = Boe and
{Ble,...,Bme} E_Tk(¢), for some 6. By the induction hypothesis, there
exists arefutationof P u {+Bie} for i = 1,...,m. Because of the absence
of variables in B;6,...,B 6, there exists arefutationof P U {+Ble,...,Bme}.

Hence, there exists arefutation<«A, <(B Bm)e,...,D of P u{<A}

10000
Theorem ee. (5.5)
(Completeness of SLD refutations)

Let P be a definite sentence and let N be a negative clause such
that P u {N} is unsatisfiable. For each atom Ak of N there exists an SLD

refutation of P u {N} with Ak as first selected atom.

Proof: Suppose N =<« A, , ..., An' If P u {N} is unsatisfiable, then N

is not true in NM(P), then there exists a variable-free instance N6 of N
which is not true in NM(P); then {Ale,...,Ane} < MM(P). By Lemma (5.4)
there exists an SLD-refutationof P U {+Aie} fori=1,...,n. As all Aie are
variable-free, there also exists an SLD refutation of P u {N6}, whatever the
first selected atom. By Lemma (5.3) there exists an SLD-refutation of

P u {N}, whatever the first selected atom [

Corollary ee.(5.6)

The least model of a definite sentence P is the success of P B

17.

6. SLD refutation procedures

Let us now consider symbol manipulation procedures that find an
SLD-refutation whenever one exists. Such a procedure would be in some
sense an "'automatic theorem-prover'". We are more interested in the use of
such procedures for automatic computation; the interpreter for the program-—
ming language PROLOG can be regarded as an SLD-refutation procedure.

According to the definition of an SLD-derivation the following
choices have to be made in each step of constructing a refutation:

(a) choice of selected atom;

(b) choice of input clause, if two or more clauses have a

conclusion unifying with the selected atom;

(c) choice of substitution.

In searching for a refutation, derivations are constructed with the goal of
encountering an empty clause. The totality of derivations to be constructed

by an SLD-refutation procedure we call the search space. Any necessity to

consider alternatives to the choices (a), (b), or (c) contributes to the
size of the search space. In fact, in the search space we consider, the
SLD-tree, only alternatives to choice (b) exist. We define the SLD tree
and we prove that alternatives (a) and (c) need not be considered.

In the first place, it is easy to see that (from Lemma 5.3) if a
refutation of P u {N} exists, then there also exists one where every sub-
stitution is the most general unifier of the selected atom and the con-
clusion of the input clause. In fact, in most treatments of resolution,
for this reason, and because (as\far as we know) most general unifiers are
no harder to compute than other unifiers, only most general unifiers are
considered. We showed that according to our less stringent definition,

refutations also refute and we introduce the condition of unifications

18.

being most general only to reduce the search space for the refutation pro-
cedure. All results of section 5 remain valid when this modified definition
of refutation is adopted.

We call a search space for the SLD refutation procedure an SLD-tree,
and define it as follows. Let P be a definite sentence and let N be a
negative or empty clause. An SLD-tree for P U {N} has N as root. All its
nodes are negative or empty clauses. A non-empty node has one atom which is
the selected atom. A node

<« Al s e s Ak y see Am s, 1 <k<mm=21
with selected atom Ak has a descendant for every clause

A<B, ... ,B ,q20

such that A and Ak is unifiable, say, with most general unifier 6. The

descendant is

S s e s A) s Br s e B Ay, e, ADE.

Note that every path in an SLD-tree is an SLD-derivation and that
every path to an empty clause is a refutation. Also, for every refutation
of P U {N}, there exists an SLD-tree for P u {N} of which a path is the most
general version of this refutation. In general, a given P U {N} has diff-
erent SLD-trees depending on which atoms are the selected atoms. Often

there are very many SLD-trees, of vastly differing size.

Example (6.1)

Q Q ()
P = {(Q(X,Z) < A(XsY)’ Q(Y,Z)), Q(X:X), A(b,C)}

In P x,y, and z are variables; b and c are constants. A possible meaning is

as follows. Objects are nodes of a graph: A(x,y) if there is an arc from

19.

x to y. Q(x,y) if there is a path from x to y. Clauses (:) and (:) define
the path relation. Clause (:) gives an arc of the graph. The clause
<Q(x,c) negates that a path to c exists. One SLD-tree for P u {<Q(x,c)} is

as follows:

“Q(x,c)
X:=c
0
“A(x;y),Q(y,c) {path in graph
to ¢ of length
0 0}
*A(Xs.V) ’A(y’u) ,Q(u,c) <A(x,c)
o Q- o wen
{infinite “A(x,y),A(y,0) 0 {path in graph from b to c}
sub tree}

C) y:=b
<A(x,b)

{no descendant}

The selected atoms are underlined.

20.

Another SLD-tree for P U {<Q(x,c)} is finite:

Lemma

~A(x,y),Q(y,c) {path of length 0 to c}

®
X:=
yi=c

“Q(c,c)
@
x:i=c

f

{path of length 1 from b to c}

(6.2)

If arefutation exists of P u {<A

yeee A} with A, as first selected
1 k i

atom, then a refutation exists also with A.j as first selected atom, for

i,3=1,..

Proof:

If a refutation exists, then by theorem (5,2), P u {<A

., k.

l,...,An} is

unsatisfiable. By theorem (5.5) arefutationof P u {+Al,...,Ak} exists,

with A.j as selected atom N

21.

Theorem cee (6.3)
("Strong completeness of SLD-resolution')
If P u {N} is unsatisfiable, then any SLD-tree for P u {N} contains

the empty clause, where P is a definite sentence and N a negative clause.

Proof: If P u {N} is unsatisfiable, then a refutation exists, according to
weak completeness, say with Ai as first selected atom. We are now going to
prove by induction on the length of the refutation that the existence of a
refutation of P u {N} implies that any SLD-tree for P U {N} contains the
empty clause.

This is obviously true for refutations of length 1. For the
induction step, assume it is true for refutations of length n-1. Let
P u {N} have a refutation R of length n, with first selected atom Ai?)" By
lemma (6.2) there exists a refutation R' with Aj as first selected atom.
The second clause C of R' is the root of one of the subtrees S' of S. There
exists a refutation of P u {C} of length n-1. By the induction hypothesis,
S' contains [J, hence also S R

The strong completeness theorem shows that alternatives in choice
(a) (namely, of the selected atom) need not be considered by an SLD-
refutation procedure; any one SLD-tree is a complete search space for such a
procedure. Whether the procedure will actually find a refutation in an SLD-
tree containing the empty clause, depends on the tree—search algorithm. A
breadth-first algorithm is guaranteed to find an empty clause if one exists,
provided that the degree of the SLD-tree is bounded, which may not be the
case with an infinite set of clauses. A depth-first algorithm, which is
preferable for efficiency of implementation, can fail to find an existing

refutation if the SLD-tree is infinite.

*) Let S be an arbitrary SLD-tree with first selected atom Aj~

22.

The choice of the selected atom can make an enormous difference in
the size of the SLD-tree, as example (6.1) showed. For example, with a choice
that makes the SLD-tree finite, a depth-first algorithm is guaranteed to
succeed, whereas with another choice, leading to an infinite SLD-tree, the

same algorithm may fail to find a refutation.

N
(%)
.

7. The Fixpoint Semantics of Finite Failure

Consider a definite sentence P with Herbrand base U. The success
set of P is the subset of U consisting of all variable-free atoms A such
that the SLD-trees for P with <A as root contain an empty clause. One way
of expressing the soundness and the weak completeness of SLD-refutations is
to say that the success set equals the least model of P and therefore equals
also the least fix-point of the associated T, and therefore equals Ttw also.

A finitely failed SLD-tree is one which is finite and contains no

empty clause. The finite-failure set of a definite sentence P is the subset

in U of all variable-free atoms A such that there exists a finitely failed

SLC-tree with <A as réot. In this section we show that the finite-failure
set is equal to the complement in U of T4w. Because Tww > gfp(T), with
equality not necessarily being true, we can only conclude in general that
the finite-failure set is included in the complement of gfp(T). Because

of this result we are especially interested in classes of definite sentences
for which Tvw = gfp(T) also holds. After this section we give an intuitive

and semantic interpretation of gfp(T).

Theorem veo (7.1)

The finite-failure set of a definite sentence P is included in the

complement in U of TYw.

Proof: Assume that for a variable-free atomAA; <A -is the root .of a finitely failed
SLD-tree of depth < k. We prove by induction over finite values of k that
A ¢ W),

If k = 1, then A is not an instance of the conclusion of any clause

in P, so A ¢ T(U).

24,

Assume now that k>1. Suppose also that A ¢ Tk(U); we show that

this leads to a contradiction. There exists a clause BO < Bl,...,Bn in P
k:
T

_1(U) for some variable-free sub-

such that A = B0 and {B, 6,...,B 68} ¢
1 n

0

stitution 6. For some most general unifier A, AX = BOA and 6 = An for some

substitution n. Hence <(B Bn)k is a direct descendant of the root <A

IERERD
in the SLD-tree, which is therefore the root of a finitely-failed SLD-tree

of depth < k-1. By lemma (7.2), «(B Bn)S is also the root of a finitely

l,.oo,
failed SLD-tree of depth < k-1. Now, by lemma (7.3), for some i=1l,...,n,
+Bie is the root of a finitely failed SLD-tree of depth < k-1. By the

induction hypothesis, BiO ¢ Tk_l(U) which contradicts the supposition that

A ¢ TN B

We now state the two lemmas used:

Lemma e (7.2)
Let A by a substitution and N a negative clause. Assume that N is
the root of a finitely failed SLD-tree of depth < k. Then NA is the root of

a finitely failed SLD-tree of depth < k also N

Lemma vee (7.3)

Let A

A.n be variable-free atomic formulas such that <A ,...,A.n

1000
is the root of a finitely failed SLD-tree of depth < k. Then, for some
i=1l,...,n, <A, is the root of a finitely failed SLD-tree of depth < k alsoll
The proofs of both lemmas proceed by induction on k and are
straightforward.
If we view the construction of a finitely failed SLD-tree as a

method of computing complements in U of TVw, then theorem (7.1) states the

correctness of the method. We prepare the completeness proof by introducing

25.
some definitions and lemmas.

Definition e (7.8
A negative clause N is called infinite (with respect to a definite
sentence P) iff every SLD-tree for P with N as root is infinite and has

bounded degree N

Lemma e (7.5

For no atom A in an infinite negative clause N can <A be the root

of a finitely failed SLD-tree.

Proof: 1If a finitely failed SLD-tree F with A as root would exist, then a
finitely failed SLD-tree could be constructed with N as root by initially

selecting A and then selecting the same atoms as in F N

Lemma oo (7.6)
Let N be an infinite negative clause. 1In every SLD-tree with N as
root, there is a direct descendent of N which is infinite W

An obvious proof by contradiction exists.

Definition e (7.7)
Let M and N be negative clauses. N contains the atom A, and 6 is a

M to denote the fact that there exists an SLD-

substitution. We write N Sii

derivation with GO,...,Gk as sequence of clauses such that
i) G0 = N and Gk =M

ii) 0 = nl,...,nk is the composition of the successive sub-

stitutions of the derivation

26.

iii) A is the selected atom of N

iv) The selected atoms of the clauses Gl""’Gk—l are
introduced atoms (in the sense of the definition of section 5).
This implies that M is of the form +(Al,...,Ai_l,N',

A Ah)e, for some list N' of atoms, if N is

i+12° 0
“ApseesA GAAL LA

Lemma eo. (7.8)

Suppose that <A ,...,An is infinite and that +Ai is not infinite.
0;A,
. . i
Then for some substitution 9,+Al,...,Ah =3 <(A ""’Ai—l’Ai+l""’An)e’

[Aie] < TYw, and +(Al,..., An)e is infinite.

S AL S ERELE
Proof: By lemma (7.5), +Ai cannot be the root of a finitely failed SLD-tree.
As <—Ai is not infinite, it must be the root of a finite SLD-tree F containing
the empty clause. By theorem (5.1) for some 6 [Aie]_g 1fp(T); also,

1fp(T) < TYvw. By the definition of "==" the first part of the lemma is
proved. We now show that, if <«(A ""’Ai—l’Ai+l""’Ah)e would not be

infinite, then <A ""’Ah would not be infinite either.

1
Consider a tree F', isomorphic to F, obtained by performing the

same resolutions on the same selected atoms, but with <A ,...,A.n as root

rather than +Ai. F' is itself not necessarily an SLD-tree, but only the

initial part of one. We complete F' to an SLD-tree by constructing SLD-trees

with the terminal nodes of F' as roots. In a terminal node of F', corres-—

ponding to a nonempty terminal node of F, we select the same atom as in F.

As a result, the node in F' has no descendant. In a terminal node

<(A,,...,A

A Ah)e of F' corresponding to an empty (terminal) node

1-1°74+1% 0

of F, we select an arbitrary atom. There is only a finite number of this

27.

kind of nodes. If none of them would be infinite, then a finite SLD-tree,

with <A An as root, could be constructedll

LRRRE
Lemma ee. (7.9)
For each k =z 1, if +Ai is infinite, then for every infinite

clause <N containing Ai there exists a substitution 6 and an infinite

clause <M such that

054, K
< N ==" <M and [A 6] < T (U).
1

Proof: Let «A, and N = < A_,...,A ,...,A both be infinite clauses. By
— i 1 i n

lemma (7.6) there exists an SLD-tree with N as root having as direct des—
cendant the infinite clause

“(Apseeeshy 15Br, 0 B LA A O

> i+1% % .o €7.10)

We prove the lemma by induction on k. Clearly, [Aie]'g T(U), which provides
the induction basis. For the induction step assume that the lemma holds
for k-1.
Case I: +Ble is infinite.
By the induction hypothesis there exists an infinite clause Nl and

a substitution 0, such that [Bl661] E_Tk_l(U),

Ol;Ble
(7.10) =ty Nl’ eee (7.11)

where,by the definition of '"__g ”’Nl is of the form

<A_06 A 66.,M ,B 06 B 06

RS R % Rt R R At R e 4,00

l,Ai+1661,..., . (7.12)

1 e

28.

Case II: +Bl6 is not infinite.

By lemma (7.8) there exists a substitution 61 such that

[Bleel] < Ty E_Tk"l(U),

6,;B.06 .
(7.10) 1 l=> Nl’ where Nl is
“(Apseeshy 15ByseeesB LA, LA)00

Thus in both cases, there exists an infinite clause N1 and a substitution 6,
such that [Bleel] E_Tk_l(U), (7.11) holds, and Nl is of the form (7.12). We
proceed now in the same way with Bjeel...ej_l, for j=2,...,m, successively.

Each time we obtain a substitution ej and an infinite clause Nj such that

6,.3;B.606....0,
i’i 1 j-1 k-1
N. . N, and [B,66_...0, c T U).
j-1 5 N [1901 J—l]-— ()
By the definition of "—-u" we have
661...6 ;3 A,
N = S SN .

ej_l] 3_[Bj66 r..em] for j=1,...,m, so that we can conclude

Note that [Bjﬁel... 1
[B.66,...06_] c Tk_l(U) for j=f,...,m. Thus, by the definition of T,
j1 m —
[A.66....0] c Tk(U), which completes the induction step Wl
i1 m —
Corollary oo (7.13)
If A is a variable-free atom such that <A is infinite, then
Ae TVy B

By Corollary (5.6) we have that the success set of a definite

sentence P is T4w. We are now in a position to state its dual:

29.

Theorem oo (7.14)
The finite-failure set of a definite sentence P is the complement in

U of Tiw.

Proof: Theorem (7.1) states that the finite-failure set is not too large.
To show that it is not too small, let A be in the complement in U of Tiw.

<A is not infinite. If <A were the root of an SLD-tree containing the empty
clause, then, by corollary (5.6), A ¢ 1fp(T) c T¥w. Hence A is in the

finite-failure set of PH

30.

8. Negation iInferred from finite failure

We have discussed an extremely specialized kind of inference
system: the applicability of SLD-resolution is restricted to sentences in
clausal form, which, moreover, have to consist of definite clauses and
exactly one negative clause. Clausal form is, in principle, no restriction
in expressiveness. But the restriction to definite clauses does limit what
one can say.

For example,

E = {Element(Fire) ,Element (Air) ,Element(Water)
,Element (Earth),Stuff (Mud)
}
says what some of the elements are. But it does not express the
fact that these are the only elements.

If we want to establish that Air is an Element, then we can use
SLD-resolution to refute E u {<Element(Air)}. But how can we use SLD
resolution to show that Mud is not an Element? We cannot expect to be able
to do so by constructing a refutation with input clauses from E alone,
because <Element (Mud) is not a semantic implication of E; Element(Mud) is
not false in all models of E. In fact, in general, for any definite
sentence P we can say that P F <A holds for no A in the Herbrand base U of
P; as U ditself is a model of P, none of its elements is false in all models
of P, With respect to a definite clause, some things are necessarily true,
but nothing is necessarily false.

In the traditional syntax of predicate logic, E can be expressed
as

Stuff (Mud) A

Vx.Element(x) < x = Air V x = Fire V x = Water V x = Earth ... (8.1)

31.

If we want to add the information that the things said to be Elements are
the only such, we can simply change the implication to an equivalence. 1In
clausal form this information can, of course, also be expressed. But the
resulting clausal sentence is not definite, hence SLD-resolution does not
apply.

Yet, is it a coincidence that a finitely failed SLD-tree exists for
E with <Element(Mud) as root? It is not: we shall show that this implies
that —Element (Mud) is a semantic implication of the if-and-only-if version
of (8.1). This use of finite failure is due to Clark [NAF], who justified
it by showing that the finitely-failed SLD-tree is isomorphic to a first-—
order deduction using the if-and-only-if version of the clauses together
with axiom schemas for equality. In this section we give a justification
on the basis of theorem (7.14).

We associate with each definite clausal sentence first-order
formulas in the traditional syntax of predicate logic. One is called the
IF-definition of the clause. It is equivalent to the clausal sentence. The
other is called the IFF-definition. It differs from the IF-definition only
in that all implications are replaced by the equivaience connective. We
then show that whenever a finitely failed SLD tree exists for P u {<A},
with A a variable-free atomic formula, the negation of A is semantically
implied by the IFF-definition associated with P.

The IF-definition associated with a finite definite sentence P is
obtained by applying each of the following rules, in the order given. We

assume that P has no occurrence of the two-place infix predicate symbol "=".

Rule e (8 . 5)

Change each clause

32.

A n=1,m=0

R(sl,...,sn) <+ Al,..., -

of P to the universally quantified formula

Vxl,...,xn. R(Xl,...,xn) < Hyl,...,yk.

X, = Ao oA X = A AoeoA
1 51 n °n A1 Am
where xl,...,xn are different from the clause's variables and where

YyseeesVg are the variables occurring in S1seees8 s Al""’%m.

Note that the clause is true in I (according to definition (4.1))
iff the resulting formula is true in I (according to the usual definition
of truth at (8.5)).

For the sake of simplicity we prefer not to add a rule for the
case n=0. The requirement that predicates have to have at least one

argument is no loss of expressiveness and hardly an inconvenience.

Rule ... (8.3)
Change each set {Vxll,...,xlm,P+Ql ""’Vxnl""’xnmﬁ(P+Q]} of
implications, obtained by the above rule and having the same ﬁredicate
symbol in the conclusion, to Vxl,...,xm,P<—(Ql VooV Qn)ﬁ) As a result of
this rule, the original clausal sentence has been transformed to a set of
universally quantified implications, no two of which have the same predicate
symbol in the conclusion, and a disjunction of existentially quantified
conjunctions as premiss [
We now apply the following
Rule ... (8.4)
Change this set to the conjunction of its elements. This con-

junction is the IF-definition associated with the original definite clausal

sentence i

*) where X, (i=1, ...} m) are all variables mentioned in the above formulas

33.

The last rule is the following one.
Rule oo (8.45)
For any (say, n-place) predicate symbol Q which occurs in a premiss

but in no conclusion of a clause, add the implication Vxl,...,xn.

Q(xl,...,xn) + Q(xl,...,xn). Note that dropping the original clause that
contains such a Q does not affect the least model. Since we are interested
in other models as well, we have to consider the case when such clauses are

present. The added clause affects only the transformation T_ whose fixpoints

P

we shall consider g

Example

(Vx [Element(x) < x = Air V x = Fire vV x = Water V x = Earth])
A (Vx [Stuff(x) <« x = Mud])

is the IF-definition associated with E R

Example

Yu,v,w.[App(u,v,w) <« (Qy.u =nil Av=yAaw=y)V

(3ul,x,y,z.ﬁ1= WX AVS=yAw=uczA App(x,y,z))]

1
is the IF-definition associated with

{App(nil,y,y)

,App(u+x,y,u-z) < App(x,y,z)

I |

As was mentioned before, the IFF-definition associated with a
definite clause is the IF-definition with each implication changed to the
equivalence connective.

We now define when a certain class of non-clausal first-order

fomulas is true in an interpretation I. As before, interpretations are

subsets of a certain Herbrand base.

34.

Definition ... (8.5)

* A universally quantified implication is true in I iff for each variable-
free instantiation of the implication which makes the premiss true in I,
the conclusion is true in I also

* An existentially quantified conjunction with no free variables is true in
I iff at least one variable-free instance of the conjunction is true in I

* A variable-free conjunction is true in I iff each conjunct is true in I

+ A variable-free disjunction is true in I iff at least one disjunct is true
in I

* A variable-free atomic formula A is true in I iff A € I or, independently

1 t2 with tl and t2 the same variable-free term W

of I, A is t

Lemma .e. (8.6)
Let R be an n-place predicate symbol in a conclusion of an
implication of an IF-definition associated with a finite definite clausal
sentence P. R(tl,...,tn) € TP(I) iff the substitution (tl/xl,...,tn/xn) =)
makes the implication's premiss true in I, where X.,...,X_ are the free
1 n

variables of the universally quantified implication.

Proof: R(tl,...,tn) € TP(I) iff there exists in P a clause

l,...,Bm such that R(t

{Bie ,...,Bme } €I, for some 6 iff the substitution) makes the premiss

R(sl,...,sn) < B 21) = R(sl,...,sn)e and

1,.-.,

of the implication true in IR

35.

Lemma ... (8.7)
For all interpretations I, the IFF-definition associated with a

finite definite sentence P is true in I iff I = TP(I).

Proof: (If) We should first verify that P and its IF-definition have the
same set of models. This is immediate in the case where every predicate
symbol occurs in a conclusion. In the other case, it is obvious that

an IF-definition containing an implication of the form Vxl,...,xn.

Q(xl,...,xn) <« Q(xl,...,xn) which has no counterpart in P (see rule (8.45)),

also has the same set of models as P. Hence theorem (4.3) can be used to

conclude that for all interpretations I, I 3_TP(I) iff the IF-definition is

true in I.

Assume now that I E.TP(I) and that R(tl,...,tn) is true in I, with

R the predicate symbol in a left-hand side and tl,...,tn are variable-free.

By the assumption I c TP(I), R(tl,...,tn) is true in TP(I). By lemma (8.6),

the corresponding instance of the right-hand side is true in I. We conclude

that T = T(I) implies that the IFF-definition is true in I.

(only if)

We assume the IFF-definition is true in I. We have to show 1 c TP(I),
R(tl,...,tn) e I = |
because of rule 5 there exists an equivalence having R(xl,...,xnﬁ
in its conclusiop and the substitution (tl/xl,...,tn/xn) makes its

premiss true in I = (lemma 8.6) R(tl""’tn) € Tp(I).

36.

Theorem ... (8.8)
Let P be a finite definite clausal sentence. If A is in the finite
failure set of P then —A is semantically implied by the IFF-definition

associated with P.

Proof: Suppose A is the root of a finitely failed SLD-tree. By theorem

(7.14), A ¢ TP+w. Also, we have T_+w g_gfp(TP). Hence A ¢ gfp(TP); hence

P
by Theorem (2.1) A ¢ T for any I such that I = T(I); hence, by lemma 8.7,

A is false in all models of the IFF-definition

Theorem ... (8.9)
Let P be a finite definite sentence such that TP¢d = gfp(TP) and

let A be a variable-free atom. If-1A is semantically implied by the

IFF-definition associated with P, then A is in the finite-failure set of

P.

Proof: The argument of the proof of theorem (8.8) can be reversed provided

that TP+w = gfp(TP)'

37.

9. Applications

The fixpoint semantics of finite failure has at least two interest-
ing applications. The first is to the semantics of the '"closed world
assumption", various aspects of which are discussed in [CWDB,CDI,NAF]. The
second application is to the semantic characterization of the behaviour of
nondeterministic programs. This application has not, as far as we know,
been published.

At this point we need a brief description of flowgraph programs,
their computations, and their representation in logic. For examples and
comparisons with other models of computation the reader is referred to [VCP].

A flowgraph is a possibly infinite directed graph where the arcs
are labelled by commands. There is one node called the start node S;
it has no incoming arc. There is one node called the halt node H; it has
no outgoing arc. Each command is a binary relation over states of a machine.

The transition relation holds between two (node, state)-pairs (Ni—l’xi—l)

and N,,x.) iff there is an arc from N, to N, and (x. ,,x.,) € C., the
i’7i i-1 i i-1°71 i

command labelling that arc. A computation is a possibly infinite sequence

of (node,state) pairs such that every element (Nj’xj) has a successor

(Nj+1’xj+l) in the sequence if (Nj,xj) is in the tramsition relation with

some (node,state)-pair and (N) must be one such pair. Also, the

4L T3+
node of the first pair in a computation must be the start node S. It follows
that whenever the halt node H occurs in a computation, it must be a finite
computation and H must occur in the last pair. Such a computation is called
successful. A finite computation which is not successful, is called blocked.
Flowgraphs also admit infinite computations.

For a given (node,state)-pair (N,x) there may be several such pairs

(N',x") such that (N,x) and (N',x') are in the successor relation. It is

38.

this feature that makes the epithet '"nondeterministiac" applicable to flow-

graphs. A flowgraph is said to be of bounded nondeterminacy if the number

of such successors is bounded.

With a flowgraph and a machine we associate a definite clausal
sentence P. For each distinct node or command there is a distinct two-place
predicate symbol. For each arc from V to W labelled with C there is a
clause in P:

V(x,z) < C(x,y), W(y,z).
In addition to these clauses there is the clause
H(x,x).

We also add to P all clauses C(a,b) such that "C" is the name of a command
and (a,b) € C.
With a computation we associate a sequence of negative clauses as

follows: For i=1,2,..., if (Ni,si), (N) are the i-th and (i+l)-st

4175141
pairs of the computation, then +Ni(si,z), (+C(si,y), Ni+1(y,z)), and
+Ni+l(si+l,z) are the (2i-1)-st, 2i-th, and (2i+l)-st negative clauses.
Lemma cee (9.1

The sequence of clauses associated with a computation is a deri-—
vation in which always the leftmost atom is selected. The computation is
successful iff the associated derivation can be made into a refutation by
appending the empty clause to it W

This correspondence between computations and derivations is the

basis for our characterizations of certain behaviours of flowgraphs. Note

that computations form a tree, just as derivations form an SLD-tree.

39.

An interpreter for a flowgraph is a procedure to be used with the purpose
of constructing a successful computation. An interpreter is analogous to an
SED-refutation procedure for the clauses associated with the flowgraph.
Conventionally, only interpreters are considered that perform a depth-
first search of the tree of computations.

In the case of a possibility of nondeterminacy, such an interpreter
will, after having constructed a blocked computation, backtrack to the most
recent point where a choice in successor remained untried. It will then
continue, using that previously untried choice.

For the behaviour of such an interpreter when starting a state a,
we distinguish the following mutually exclusive contingencies.

(A) for some choice of successors, a successful computation is found, with
final state b

(B) for no choice of successors, the interpreter terminates

(C) for any choice of successors, the interpreter terminates and no
successful computation is found.

Let P be the clausal sentence associated with the flowgraph. In [VCP] one

may find an equivalent of the following

Theorem e (9.2)

We have contingency A iff P k S(a,b).

Proof: (only if) Successful computation exists = by-lemma 9.1, the corres-
ponding derivation <S(a,x),...,< H(b,x) exists = refutation <S(a,x),...,H(b,x),
[0 exists, in which b is substituted for x = S(a,b) € 1fp(TP), by theorem

5.1 = P E S(a,b).

40.

(if)

P F S(a,b) = P u {«S(a,b)} unsatisfiable = (lemma 5.4)) refutation
<S(a,b),...,[] exists = because H(x,x) is the only clause without a
premiss, refutation <S(a,b),..., H(t,b), [exists with t some term; by the
strong completeness (theorem (6.3)) such a refutation exists where the left-
most atom is the selected atom = by the form of P, t must equal b in the
above refutation = (lemma (5.3)) <S(a,x),...,«H(b,x), [is a refutation =

(lemma (9.1)) (S,a),...,(H,b) is a successful computation N

Theorem (9.3)
Assuming that the nondeterminacy of a finite flowgraph is bounded,
we have contingency C iff P' k—S(a,0) for all states o, where P' is the

IFF-definition associated with P.

Proof: (only if) Contingency C = (lemma (9.1)) <«S(a,x) is the root of a
finitely failed SLD-tree = (lemma (7.2)) for all states ¢ <S(a,o0) is the
root of a finitely failed SLD-tree = (Theorem (8.8)) for all states o,
P' —1S(a,0).
(if)
For all states o, P' F—S(a,0) = (Lemma (8.7) and Theorem (2.1))for all
states o, $(a,0) ¢ gfp(Tp)
= (Lemma (9.5)) for all states g, S(a,o) ¢ Tp ¥
= (Corollary (7.13)) for all states O, there exists a finitely failed SLD-
tree with «S(a,og) as root
= (by the form of P) for all states O there exists a finitely failed SLD
tree with «S(a,0) as root, where the leftmost atom is always the selected atom
= (Lemma (9.1)) all computations starting in state a are blocked; that is,

we have contingency C .

41.

Corollary oo (9.4)

Let P be the definite sentence representing a finite flowgraph of
bounded nondeterminacy. We have contingency B iff
S(a,0) € gfp(TP) for at least one state ¢ and

S(a,0) € lfp(TP) for no state o B

Lemma ... (9.5)

If P represents a finite flowgraph of bounded nondeterminacy, then

Tp¥w = gfp(TP).

Proof: As we already have TP+w g‘gfp(TP), it suffices to show that

TP+w E.T(TP¢w). Q(a,c) € TP¢w = for all n, Q(a,c) ¢ Tn(U)

= there exists a clause Q(x,z) + C(x,y), R(y,z) in P such that for infinitely
many n, C(a,on) and R(On,c) both in Tn_l(U); this is because only
finitely many clauses resolve with «Q(a,c)

= there exists a o and an N such that C(a,c) and R(o,c) both in Tn—l(U) for
infinitely many n; this because, be bounded nondeterminacy, only finitely
many O exist:such that é(a,cn)

= C(a,0) and R(o,c) both in TP¢m

= Q(a,c) € T(TP+m), by the definition of T

42,

10. Acknowledgements

The initial impetus of this work was given by discussions with
Robert Kowalski. Further discussions with Hajnal Andreka, Keith Clark,
and Istvan Nemeti have provided valuable insights. The National Science

and Engineering Research Council has contributed supporting facilities.

43.

11. Literature References

[ATP]

[BGF]

[cD1]

[CWDB]

[GDM]

[IRTP]

[LDB]

[LFF]

[LPS]

[LUSH]

[MOL]

[MTP]

[NAF]

[PLPL]

[SPL]

[vcp]

D.W. Loveland: Automated Theorem Proving; North Holland, Amsterdam,
etc., 1978.

W.P. de Roever: On backtracking and greatest fixpoints; in:
Formal Description of Programming Concepts, E. Neuhold (ed.),
North Holland, Amsterdam, etc., 1978.

M.H. van Emden: Computation and deductive information retrieval;
in: Formal Description of Programming Concepts, E. Neuhold (ed.),
North Holland, Amsterdam, etc., 1978.

R. Reiter: On closed-world data bases; in: [LDB].

A. Colmerauer: Grammaires de métamorphose; 'Natural Language
Communication with Computers", L. Bolc (ed.), Springer Lecture Notes
in Computer Science, 1978.

P. Hitchcock and D. Park: Induction rules and termination proofs;
in: Automata, Languages, and Programming, M. Nivat (ed.), North
Holland, Amsterdam, etc., 1973.

H. Gallaire and J. Minker (eds.): Logic and Data Bases; Plenum,
New York, 1978.

J.A. Robinson: Logic: Function and Form; Edinburgh University
Press, 1979.

R.A. Kowalski: Logic for Problem-Solving; North-~Holland-Elsevier,
New York, 1979.

Robert Hill: LUSH-resolution and its completeness; DCL Memo 78,
Department of Computational Logic, University of Edinburgh, 1974.

J.A. Robinson: A machine-oriented logic based on the resolution
principle; J.ACM 12 (1965), 23-44.

C.L. Chang and R.C.T. Lee: Symbolic Logic and Mechanical Theorem-
Proving; New York, Academic Press, 1973.

K.L. Clark: Negation as Failure, see [LDB].

R.A. Kowalski: Predicate logic as a programming language;
Proc. IFIP 1974, 556-574,

M.H. van Emden and R.A. Kowalski: The semantics of predicate logic
as a programming language; J.ACM 23 (1976), 733-742.

M.H. van Emden: Verification conditions as programs; in: Automata,
Languages, and Programming, S. Michaelson and R. Milner (eds.),
Edinburgh University Press, 1976.

1. Introduction

This paper is a continuation of the investigation begun in [SPL],
where various approaches to the semantics of predicate logic regarded as a
programming language were discussed. Using the analogies provided by logic
programming [LPS,GDM,PLPL], the model-theoretic semantics of Horn sentences

of first-order predicate logic was formulated in terms of a fixpoint sem-

antics. In the present paper we exploit further the application of fixpoints

of transformations to the semantics of Horn sentences by relating it to
various properties of what we call SLD-resolution (first described in
[PLPL]). Among other results we prove by fixpoint techniques the soundness
and completeness of SLD-resolution; the latter result is shown to be a con-
sequence of the continuity of the transformation.

In programming semantics extensive use has been made of least fix-

points. The dual notion of greatest fixpoint has been used only indirectly

for the characterization of program behaviour: for example, in [BGF] an
induction rule is proposed which is dual to the one proposed by Scott; the
latter is based on least fixpoints. The present paper shows that in the
framework of Horn clause logic with SLD-resolution as computational mech-
anism, greatest fixpoints yield useful results in characterizing program
behaviour. Admittedly, these programs are logic programs, but they have
simple relationships with conventional models of programs or data bases
[vCP,CDI]. These results are based on the fixpoint and semantical charact-
erizations of finite failure of SLD-resolution; these characterizations
are significant independently of the particular applications given here.
The interest of greatest fixpoints lies in the fact that they are

not in all respects dual to least fixpoints. A transformation T, as

typically associated with a Horn sentence or with a program, has a least
fixpoint which is equal to the union of the finite powers of T applied to
the least element of the universe; this property may be referred to as
union-continuity. The T's used in program semantics typically are union-
continuous, and ours are no exception. The dual property of intersection-
continuity, which is the equality of the greatest fixpoint of T to the
intersection of all finite powers of T applied to the greatest element

of the universe, is typically not satisfied. We prove intersection-
continuity for the T associated with a set of clauses which represents a
flowchart schema of bounded indeterminacy. Together with our theorem
(7.14) which shows that finite failure of SLD-resoclution computes the
complement of the above-mentioned intersection,this result can be applied
to obtain a semantic characterization of nontermination and blocking of

flowchart schemas of bounded indeterminacy.

The paper is organized as follows. In section 2 and 3 we gather the
basic results and definitions concerning fixpoints and logic in clausal

form. The semantics of logic and the transformation T associated with Horn

sentences is introduced in section 4. In section 5 SLD-refutations are
introduced and soundness and completeness of the method is proved. SLD-
resolution is discussed in section 6 where its completeness is proved.
Finite failure of the SLD-resolution and its characterization using the
greatest fixpoint of the transformation T is considered in section 7.
Section 8 is devoted to a semantical characterization of finite failure.
Finally in section 9 we apply our results to a sematitic characterization of

some aspects of the behaviour of nondeterministic flowchart schemas (see

[VCP]).

33.

The last rule is the following one.
Rule ee. (8.45)
For any (say, n-place) predicate symbol Q which occurs in a premiss

but in no conclusion of a clause, add the implication Vxl,...,xn.

Q(Xl""’xn) <« Q(xl,...,xn). Note that dropping the original clause that
contains such a Q does not affect the least model. Since we are interested
in other models as well, we have to consider the case when such clauses are

present. The added clause affects only the transformation T. whose fixpoints

P

we shall consider g

Example

(Vx [Element(x) < x = Air V x = Fire V x = Water V x = Earth])
A (Vx [Stuff(x) < x = Mud])

is the IF-definition associated with E IR

Example

Vu,v,w.[App(u,v,w) « (y.u =nil A v=y Aw=y)V
(Hul,x,y,z.01= WX AV =Y AWS Uz A App (x,y,2))]
is the IF-definition associated with
{App(nil,y,y)
»App(u-x,y,uz) < App(x,y,2)

i |

As was mentioned before, the IFF-definition associated with a
definite clause is the IF-definition with each implication changed to the

equivalence connective.

We now define wher a certain class of non-clausal first—order
fomulas is true in an interpretation I. As before, interpretations are

subsets of a certain Herbrand base.

34.

Definition ... (8.5)

* A universally quantified implication is true in I iff for each variable-
free instantiation of the implication which makes the premiss true in I,
the conclusion is true in I also

* An existentially quantified conjunction with no free variables is true in
I iff at least one variable-free instance of the conjunction is true in I

* A variable-free conjunction is true in I iff each conjunct is true in T

* A variable-free disjunction is true in I iff at least one disjunct is true
in I

e A variable-free atomic formula A is tvue in I iff A ¢ T or, independently
of I, A is t1 = t2 with t1 and t2 the same variable-free term W

Lemma ... (8.6)

Let R be an n-place predicate symbol in a conclusion of an

implication of an IF-definition associated with a finite definite clausal

sentence P. R(tl,...,tn) € TP(I) iff the substitution (tl/xl""’tn/xn)'= A

makes the implication's premiss true in I, where KpseeesX are the free

variables of the universally quantified implication.

Proof: R(tl,...,tn) € TP(I) iff there exists in P a clause

R(Sl"'°’sn) <« B Bm such that R(tl""’E1) = R(sl,...,sn)e and

1,...,
5

{B o se0e5B 8 F c T, for some & iff the substitution)\ makes the premiss

of the implication true in Ik

35.

Lemma o0 (8.7)
For all interpretations I, the IFF-definition associated with a

finite definite sentence P is true in I iff I = TP(I).

Proof: (If) We should first verify that P and its IF-definition have the
same set of models. This is immediate in the case where every predicate
symbol occurs in a conclusion. In the other case, it is c¢bvious that

an IF-definition containing an implication of the form Vxl,...,xn.

Q(xl,...,xn) < Q(Xl,...,xn) which has no counterpart in P (see rule (8.45)),

also has the same set of models as P. Hence theorem (4.3) can be used to

conclude that for all interpretations I, I 3_TP(I) iff the IF-definition is

true in I.

Assume now that I E.TP(I) and that R(tl""’tn) is true in I, with

R the predicate symbol in a left-hand side and tl,...,tn are variable-free.

By the assumption I E.TP(I)’ R(tl,...,tn) is true in TP(I). By lemma (8.6),

the corresponding instance of the right-hand side is true in I. We conclude

that T = T(I) implies that the IFF-definition is true in TI.

(only if)

We assume the IFF-definition is true in I. We have to show ; & TP(I),
R(tl,...,tn) eI = »
because of rule 5 there exists an equivalence having R(xl,...,xﬁD
in its conclusiop and the substitution (tl/xl"“’tn/xn) makes its

premiss true in I » (lemma 8.6) “tl'”"tn) € TP(I).

36.

Theorem ... (8.8)
Let P be a finite definite clausal sentence. If A is in the finite
failure set of P then —A is semantically implied by the IFF-definition

associated with P.

Proof: Suppose A is the root of a finitely failed SLD-tree. By theorem
(7.14), A ¢ TP+w. Also, we have TP+w g_gfp(TP). Hence A ¢ gfp(TP); hence
by Theorem (2.1) A ¢ T for any I such that I = T(I); hence, by lemma 8.7,

A is false in all models of the IFF-definition

Theorem ... (8.9)
Let P be a finite definite sentence such that TPé& = gfp(TP) and

let A be a variable-free atom. If-1A is semantically implied by the

IFF-definition associated with P, then A is in the finite-failure set of

P.

Proof: The argument of the proof of theorem (8.8) can be reversed provided

that TP+w = gfp(TP)'

40.

(if)

P E S(a,b) = P u {«<S(a,b)} unsatisfiable = (lemma 5.4)) refutation
<S(a,b),...,[] exists = because H(x,x) is the only clause without a
premiss, refutation <+S(a,b),..., H(t,b), 0 exists with t some term; by the
strong completeness (theorem (6.3)) such a refutation exists where the left-
most atom is the selected atom = by the form of P, t must equal b in the
above refutation = (lemma (5.3)) <S(a,x),...,«H(b,x), [is a refutation =

(lemma (9.1)) (S,a),...,(H,b) is a successful computation N

Theorem (9.3)
Assuming that the nondeterminacy of a finite flowgraph is bounded,
we have contingency C iff P' E—S(a,o) for all states ¢, where P' is the

IFF-definition associated with P.

Proof: (only if) Contingency C = (lemma (9.1)) <S(a,x) is the root of a
finitely failed SLD-tree = (lemma (7.2)) for all states ¢ <S(a,o0) is the
root of a finitely failed SLD-tree = (Theorem (8.8)) for all states o,
P' E—1S(a,0).
(if)
For all states o, P' F—S(a,0) = (Lemma (8.7) and Theorem (2.1))for all
states o, 8(a,0) ¢ gfp(Tp)
= (Lemma (9.5)) for all states g, S(a,og) ¢ Twa
= (Corollary (7.13)) for all states 0, there exists a finitely failed SLD-
tree with «S(a,s) as root
= (by the form of P) for all states O there exists a finitely failed SLD
tree with «S(a,0) as root, where the leftmost atom is always the selected atom
= (Lemma (9.1)) all computations starting in state a are blocked; that is,

we have contingency C .

41.

Corollary cee (9.4)

Let P be the definite sentence representing a finite flowgraph of
bounded nondeterminacy. We have contingency B iff
S(a,0) € gfp(TP) for at least one state o and

S(a,0) € lfp(TP) for no state o NI

Lemma ... (9.5

If P represents a finite flowgraph of bounded nondeterminacy, then

TP+W = gfp(TP).

Proof: As we already have TP¢w 3_gfp(TP), it suffices to show that

T 4w < T(TP+w). Q(a,c) € T_+Yw = for all n, Q(a,c) € Tn(U)

P P

= there exists a clause Q(x,z) « C(x,y), R(y,z) in P such that for infinitely

many n, G(a,cn) and R(On,c) both in Tn_l(U); this is because only
finitely many clauses resolve with <Q(a,c)

= there exists a ¢ and an N such that C(a,o) and R(c,c) both in Tn—l(U) for
infinitely many n; this because, be bounded nondeterminacy, only finitely
many o existssuch that‘é(a,an)

= C(a,o0) and R(o,c) both in T_‘w

P
= Q(a,c) € T(TP+m), by the definition of T N

43.

11. Literature References

[ATP]

[BGF]

[cDI]

[CWDB]

[GDM]

[IRTP]

[LDB]

[LFF]

[LPS]

[LUSH]

[MOL]

[MTP]

[NAF]

[PLPL]

[SPL]

[VCP]

D.W. Loveland: Automated Theorem Proving; North Holland, Amsterdam,
etc., 1978.

W.P. de Roever: On backtracking and greatest fixpoints; in:
Formal Description of Programming Concepts, E. Neuhold (ed.),
North Holland, Amsterdam, etc., 1978.

M.H. van Emden: Computation and deductive information retrieval;
in: Formal Description of Programming Concepts, E. Neuhold (ed.),
North Holland, Amsterdam, etc., 1978.

R. Reiter: On closed-world data bases; in: [LDB].

A. Colmerauer: Grammaires de métamorphose; ''Natural Language
Communication with Computers", L. Bolc (ed.), Springer Lecture Notes
in Computer Science, 1978.

P. Hitchcock and D. Park: Induction rules and termination proofs;
in: Automata, Languages, and Programming, M. Nivat (ed.), North
Holland, Amsterdam, etc., 1973.

H. Gallaire and J. Minker (eds.): Logic and Data Bases; Plenum,
New York, 1978.

J.A. Robinson: Logic: Function and Form; Edinburgh University
Press, 1979.

R.A. Kowalski: Logic for Problem-Solving; North-Holland-Elsevier,
New York, 1979.

Robert Hill: LUSH-resolution and its completeness; DCL Memo 78,
Department of Computational Logic, University of Edinburgh, 1974.

J.A. Robinson: A machine-oriented logic based on the resolution
principle; J.ACM 12 (1965), 23-44.

C.L. Chang and R.C.T. Lee: Symbolic Logic and Mechanical Theorem-
Proving; New York, Academic Press, 1973.

K.L. Clark: Negation as Failure, see [LDB].

R.A. Kowalski: Predicate logic as a programming language;
Proc. IFIP 1974, 556-574.

M.H. van Emden and R.A. Kowalski: The semantics of predicate logic
as a programming language; J.ACM 23 (1976), 733-742.

M.H. van Emden: Verification conditions as programs; in: Automata,
Languages, and Programming, S. Michaelson and R. Milner (eds.),
Edinburgh University Press, 1976.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

