A UNIFORM LOGICAL TREATMENT
OF QUERIES AND UPDATES!

by

T.S.E. Maibaum?, C.S. dos SantosS3
and
A.L. Furtado"

RESEARCH REPORT CS-80-11

University of Waterloo
Computer Science Dept.
Waterloo, Ontario
Canada N2L 3Gl

FEBRUARY 1980

lSupport from the Conselho Nacional de Desenvolvimento Cientifico e
Technologico and the Financiadora de Estudos e Projetos of Brasil as
well as support from the Canadian International Development Agency and
the Natural Sciences and Engineering Research Council of Canada is
gratefully acknowledged.

2University of Waterloo
Computer Science Dept.
Waterloo, Ontario, Canada.

3Universidade Federal do Rio Grande do Sul - Brasil.

“Pontificia Universidade Catdlica do Rio de Janeiro - Brasil.

1. Introduction

In this paper, a formal approach to data bases providing a uniform
treatment of queries and updates is discussed. The formalism is defined as a
many sorted first order predicate calculus incorporating a formalized notion
of data base state ([MAI]). The entity relationship model is assumed ([CHE]).

In this formalism, data bases are defined through an axiom set
specifying:

a. how states can be transformed by the application of update

operations;

b. the valid states and state transitions allowed by the adopted

integrity constraints.

A user's request for an update contains no direct references to
update operations and is expressed as a forrula, using predicates defined in
the formalism, whose truth-value the user wishes to be (or to become) true.

A theorem prover would then synthesize a sequence of update operations

([SAN]) able to move the data base from whatever is its current state to an

adequate target state. This sequence is empty if the user's formula is

already true in the current state; on the other hand, the system fails to
produce such a sequence if the request is incompatible with the axiom set
(data base specification).

Conversely, the data base being in some current state, a user may
place a request, again expressed as a formula, for querying the data base
in the sense of:

a. simply asking if the formula is true or false, or, in additon

b. finding for each existentially quantified variable (other

than the state variable) some constant, if any, for which the

formula is true.

Updates and queries are uniformly handled as theorems to be proved
with respect to the data base specification. The proof process may result in
the synthesis of a sequence of operations (updates) or in the analysis of the
current state (queries). A state in our formalism is also denoted by a
sequence of operations which builds it from an initial empty state.

With the formalism defined in this paper, the behaviour of a data
base may be specified at a conceptual schema level ([ANS]), with no regard
to implementation details, so that the implementors are not constrained in
their search for efficient options. It also provides a convenient interface

to non-professional users, by removing the burden of learning how the data

base is operated.

2. Mathematical Preliminaries

2.1 Many-sorted logic

We introduce in this section the necessary definitions and results
for defining our modelling technique for data bases. The language used is
that of many sorted structures and logic - a simple generalisation of normal
logic and model theory.

Let S be a set of sorts (names of different kinds of objects). Let
S* be the set of strings defined on S with A the empty string. An S-sorted
structure D is an object defined by <D,B,G,R> where

(i) p = {DS}SES is a family of non-empty sets called the carrier

or underlying set of D. DS is the carrier of sort s;

(ii) B = {BS}S€ is a family of sets of constants. Each B, =D

S s

(iii) G is a set of operations so that for each geG,

g: D X eee X DS > DS for some <s

eeeS_,8> € S*XS,
s n
1 n

1

.<Sl

(iv) R is a set of relations so that for each reR,

"'Sn’S> is called the type of g, s its sort.

rcD x ,,., X% DS for some s ...sneS*. The string s

ee.S
1 n 1 n

1

is called the type of r;

A many-sorted language L is a quadruple (S,C,<F,o0>,<P,B>) with:

(i) S a non-empty set of sorts;

(ii) ¢ = {Cs}seS a family of non-empty sets of constant symbols;

(iii) F a (possibly empty) set of function symbols and a map

a: F > S*%xS assigning to each feF its type a(f) = <§j+..8 8>

€ S*xS;

(iv) P a (possibly empty) set of predicate symbols and a map
B: P > S* assigning to each reP its type B(r) = sl...snes*.
We will often write L = (S,C,F,P) and leave o and B implicit.
The above are non-logical symbols and we also assume the familiar
logical symbols—, +, V¥, ... and for each sort seS:

(i) an infinite set VS of variables of sort s with

\ n v =¢ if s, # s.;
s1 32 1 2

(ii) the equality predicate symbol g of type ss.

The definition of terms and formulas of L are similar to the normal
(one sorted) definitions except that each term has a sort associated with it
and the types of function or predicate symbols and the sorts of their argu-
ments must match. Also we must interpret the use of variables in formulae,
as in Vv with veVS, to be restricted so that they may be replaced only by
values of the appropriate sort.

A structure DL = (D,,C_,F PL) for L is a structure so that DL is

L’
a family of non-empty sets sorted by S, CL=={CL,s}seS so that for each ceCS
there is CLGCL,s’ for each feF of type <Sl"'Sn’S> there is fLeFL such that

fL: DSl X .. X DSn - Ds’ and for each reP of type Spee8 there is rLePL

such that r. < D X ... XD .
L—"s s
1 n

The definitions of such concepts as satisfaction, truth, etc. follow
the usual one-sorted pattern. We can define a deductive calculus similar to
the one-sorted case and prove the usual completeness theorem. Also other
basic results (such as compactness, the Lowenheim-Skolem theorem, etc.) still
hold for the many-sorted case. In fact, one-sorted logic can be generalised

straightforwardly and without loss of any results to the many-sorted case.

2.2 Theorem-proving

The many sorted first order predicate calculus formalism presented
and used in this paper as a data base specification language has, among
others, the advantage of being suitable for the automatization of certain
important functions in data base management, namely, query answering and
update transaction synthesis ([SAN]), based directly on the data base
specification.

In our formalism, a data base is specified as a set s of axioms
which defines all the states (configurations) that are valid in the evolution
of the data base. In this context, updates and queries can be performed as
a theorem-proving process, in which a theorem t (expressing a query or an
update) is proved with respect to s.

For example, if the theorem

ty: (ds) exs(a,A,s)
is proved, then there exists a valid state in which an entity a exists in
the entity set A and the system determines such a state, which implements
the desired update.

On the other hand, if the theorem

ty: isr(a,b,R,cs),
where cs denotes the current data base state, is proved, then the answer to
the query

"Are entities a and b related via relationship R?"
is affirmative.

As we are using an extension of the first order predicate calculus

which preserves properties like validity and satisfiability of WFFs, proof

procedures are available for our formalism ([NIL]). 1In particular, the

resolution method ([ROB]) is the most popular proof procedure for the first
order predicate calculus, having many implementations available.

In order to apply the resolution method, the axioms and the
negation of the theorem must be converted into clause form, i.e. a con-
junction of a set of disjunctive clauses, with all existential and universal
quantifiers removed. Fach one of the disjunctive clauses has the form

PlVPZVP3V...VP

n’
where each Pi is a (possibly negated) predicate symbol with zero or more
arguments, which may or may not be instantiated.

In each step of the application of the resolution method (an
iterative method), two clauses (A V p) and (B V q), where q (or one of its
instances) is a negation of the predicate symbol p, or vice-versa, are
resolved, giving rise to a derived clause (A vV B) which is inserted in the
set of clauses (A and B being the remaining terms of the resolved clauses.)

If the set of clauses is unsatisfiable (the theorem is wvalid), then
the empty clause is eventually derived and the process stops.

Consider, for example, the following set s of clauses

cl) MQ(x) Vv P(x)
c2) R(x) Vv T(x) v Q(x)
c3) —P(a)
c4) —T(a)
and a theorem t: R(a) to be proved with respect to s. The following is a

refutation tree for this example, starting with the negation of the theorem:

R(x) V T(x) V Q(x)

T(a) v g(a) —1%§xg vV P(x)

O (empty clause)

So, R(a) is a logical consequence of s.

3. Database Axiomatisation

We present in this section the axiomatisation of a simple data base
based on the entity-relationshipmodel ([CHE]). To begin, we specify the
many-sorted language used in our example. We will specify the constant,
function and relation symbols by adapting the specification method used
for specifying abstract data types ([ADJ]). Constants will be presented as
in

c: > 8
where s is the sort of c. Function symbols will be presented as in

f: s, X ... X8 -+ 8
1 n

where <sl...sn,s> is the type of f. Relation symbols will be presented as

in

where Spee+S, is the type of r.

Sorts: states, entity-names, relation-names, attribute-names, value,

set—-names.

Syntax:

+ state (empty state)

=

cr: entity-names x set-names x state -» state

(to create a new entity)

del: entity-names X state -> state

(to delete an entity)

lk: entity-names X entity-names X relation—-names X state - state

(to link two entities via a given relation)

ulk: entity-names X entity-names x relation-names X state - state

(to unlink two entities in a given relation)

mod: entity-names X attribute-names X value X value X state - state

(to modify the value of an attribute of a given entity from
some value to a new one)

exs: entity-names X set-names X state

(to affirm the existence of a given entity)

isr: entity-names X entity-names X relation names X state

(to affirm the relationship of two entities via a given
relation)

hv: entity-names X attribute-names X value X state

(to affirm the value of a given attribute of an entity)
*: > value
(a "don't care" or unspecified value)

IS state X state

(the equality relation on states)

The variables used in our axioms are as follows:

variables x,y,z,w: entity-names

S: state

r,rl: relation-names

u,ul: attribute-names

v,vo,vl,v2,v3: value

t,tl: set-names

We now present our axioms by first of all relating each of our
predicates to the update operations and then relating each update operation
to the other update operations. For example, the following axioms determine

the behaviour of the predicate exs by defining the effect of each update

operation (including the constant operation ¢).

—exs(x,t,¢)

— exs(x,t,del(x,s))

exs(x,t,cr(x,t,s))

exs(x,t,s) avexs(x,t,cr(y,tl,s))

x#y A—exs(x,t,s) = exs(x,t,cr(y,tl,s))
exs(x,t,s) < exs(x,t,lk(y,w,r,s))
exs(x,t,s) « exs(x,t,ulk(y,w,r,s))

exs(x,t,s) ® exs(x,t,mod(y,u,v,vl,s))
The following are the axioms for isr:

—isr(x,y,r,¢)
isr(x,y,r,1k(x,y,r,s))
—isr(x,y,r,ulk(x,y,r,s))
isr(x,y,r,s) = isr(x,y,r,cr(w,t,s))
w#x AN wty A isr(x,y,r,s) e isr(x,y,r,del(w,s))
(x#z V y#w V r#rl) A isr(x,y,r,s)
e isr(x,y,r,ulk(z,w,rl,s))
isr(x,y,r,s) = isr(x,y,r,lk(z,w,rl,s))
(x#z V y#w V r#rl) A— isr(x,y,r,s) = —isr(x,y,r,lk(z,w,rl,s))

isr(x,y,r,s) « isr(x,y,r,mod(z,u,v,vl,s))

The following are the axioms for hv:

ﬂhV(Xsu3V’¢)
hv(x,u,*,cr(x,t,s))

vl # v A hv(x,u,v,s) = —hv(x,u,vl,s)

10.

11.

— hv(x,u,v,del(x,s))

x#y A hv(x,u,v,s) hv(x,u,v,cr(y,t,s))
x#y A hv(x,u,v,s) e hv(x,u,v,del(y,s))
hv(x,u,v,s) © hv(x,u,v,1k(y,z,r,s))
hv(x,u,v,s) «® hv(x,u,v,ulk(y,z,r,s))
hv(x,u,v,mod(x,u,vl,v,s))

(x#y V u#ul) A hv(x,u,v,s)

& hv(x,u,v,mod(y,ul,vo,vl,s))

The following axioms define x (equivalence among states). This is done by
taking each update operation in turn and relating it to each of the update
operations:

del(x,cr(x,t,s)) ~ s

Xty = del(x,del(y,s)) ~ del(y,del(x,s))

xty A x#z = del(x,lk(y,z,r,s)) = 1lk(y,z,r,del(x,s))

x#y A x#z = del(x,ulk(y,z,r,s)) = ulk(y,z,r,del(x,s))

x#y = del(x,mod(y,u,v,vl,s)) = mod(y,u,v,vl,del(x,s))

cr(x,t,er(x,t,s)) = cr(x,t,s)

x#y = cr(x,t,cr(y,tl,s)) = cr(y,tl,cr(x,t,s))

x#y = cr(x,t,del(y,s)) = del(y,cr(x,t,s))

X#y A x#z = cr(x,t,lk(y,z,r,s)) = 1lk(y,z,r,cr(x,t,s))

x#¥y A x#z = cr(x,t,ulk(y,z,r,s)) = ulk(y,z,r,cr(x,t,s))

x#y = cr(x,t,mod(y,u,v,vl,s)) = mod(y,u,v,vl,cr(x,t,s))

ulk(x,y,r,1k(x,y,r,s)) = s

x#z V y#w V r#rl = 1k(x,y,r,lk(z,w,rl,s))

x 1k(z,w,rl,1lk(x,y,r,s))

12.

x#z V yfw V r#rl = 1k(x,y,r,ulk(z,w,rl,s))
& ulk(z,w,rl,1lk(x,y,r,s))
1k(x,y,r,mod(z,u,v,vl,s)) =~
mod(z,u,v,vl,1k(x,y,r,s))
x#z V y#w V r#rl = ulk(x,y,r,ulk(z,w,rl,s))
& ulk(z,w,rl,ulk(x,y,r,s))
ulk(x,y,r,mod(z,u,v,vl,s))
& mod(z,u,v,vl,ulk(x,y,r,s))
x#y V u#ul = mod(x,u,v,vl,mod(y,ul,v2,v3,s))

&~ mod(y,ul,v2,v3,mod(x,u,v,vl,s))

(Note that, although we have not made the attempt here, the axioms could
probably be stated as Horn clauses and an efficient language such as
Prolog could be used to implement our theorem prover. See [VAN] for more
details. Moreover, a unique minimal model exists for a given set of Horn
clauses (again see [VAN]) and so such a set of axiom could describe a
unique object (up to isomorphism) to be implemented. This is very much in

the spirit of abstract data types as described in [ADJ].)

13.

4. Updates and queries

In this section, the important notions of update and query are

analysed in the context of the formalism described in the previous sections.
As we shall show, in our formalism queries and updates afe treated uni-
formly in the sense that they are expressed in the same way and that the
prbcess of answering a query is the same as that of determining a transaction
which implements an update; i.e., a theorem proving process.

In the examples of updates included in this section, we will con-
sider a slightly modified version of the axioms given in the previous
sections. The reason for the modified axioms is to impose elementary
integrity constraints on updates. Note, however, that queries can still be
processed using the original axioms since constraints apply only to updates.
This may be desirable since the original axioms are simpler (and so more
efficiently processed) and it is possible to do so since we assume updates
are obtained only via the stated axioms. Thus no "error" states can be
generated. (At this point we might also point out that we do not need
"error axioms" ([ADJ]) since we never allow the generation of error states

in data bases.)

The modified axioms are:

~—jexs(x,t,s) = exs(x,t,cr(x,t,s));

exs(x,t,s) = — exs(x,t,del(x,s));

exs(x,tl,s) A exs(w,tz,s)=%’isr(x,w,r,lk(x,w,r,s));

where the underlined part of the axioms are the original axioms being
modified.

Now, with these new axioms we may formulate some update and query
requests, starting with the empty state and incrementally updating and
querying the data base. The resolution method will be used in the examples

and we assume that the theorem prover incorporates some knowledge about

14.

this specific problem, and that clauses instantiated to the current state
will have higher priority to be resolved in each step.

In order to obtain some answer (negative or affirmative), the system
may try to prove, in parallel, the theorem and its negation until one of the
proofs terminates, thus giving the answer. Since we know in advance the

answer to each one of our example requests, we will prove only the theorem

or its negation, according to the known answer.

Example 1 (update)

"Bring into existence an entity a from entity set A"

t: (ds) exs(a,A,s) cs = ¢
answer(s) V— exs(a,A,s) exs(x,t,s) V exs(x,t,cr(x,t,s))
answer (cr(a,A,s)) V exs(a,A,s) — exs(x,t,cs)

R

answer (cr(a,A,cs))

The desired state is s = cr(a,A,¢).

Also: exs(a,A,cr(a,A,d)).

Example 2 (query)

"Does an entity b from entity set B exist?"

: exs(b,B,cs) cs = cr(a,A,d)
answer (no) Vv exs(b,B,cr(a,A,¢)) x =y V exs(x,t,s) V—exs(x,t,cr(y,tl,s))
answer(no) V b = a v exs(b,B,¢) b # a
answer (no) V exé(b,B,¢) —exs(x,t,9)
answer (no)

~ exs(b,B,cs)

15.

Example 3 (update)

""Make entities a and b related via relationship R"
(3ds) isr(a,b,R,s) cs = cr(a,A,¢)

answer(s) V-—isr(a,b,R,s) exs(x,A,s) Vv—exs(w,B,s) V
isr(X,W,R,lk(X,W,R,S)) (*)

/ |

answer (1k(a,b,R,s)) V-—exs(a,A,s) V—exs(b,B,s)

exs(x,t,s) V exs(x,t,cr(x,t,s))

,/f””””””

answer (1k(a,b,R,cr(b,B,s)) v— exs(a,A,cr(b,B,s)) V exs(b,B,s)

x =w V—exs(x,t ,s) V exs(x,tl,cr(w,t2,s))

answer (1k(a,b,R,cr(b,B,s))) vV a = b Vv-—exs(a,A,s) V— exs(b,B,s)

a#b

answer(lk(a,b,R,cr(b,B,s))) v— exs(a,A,s) Vv —exs(b,B,s)
exs(a,A,cs) [Example 1]
answer (lk(a,b,R,cr(b,B,cs))) Vv exs(b,.B,cs)

— exs(b,B,cs) [Example 2]

answer (1k(a,b,R,cr(b,B,cs)))

s = 1k(a,b,R,cr(b,B,cr(a,A,¢))))

(*) This axiom was explicitly formulated for the relationship set R, which
is defined between the entity sets A and B.

16.

Example 4 (query)

"Does an entity b from entity set B exist?"

exs(b,B,cs) cs = 1lk(a,b,R,cr(b,B,cr(a,A,$)))

answer (yes) V— exs(b,B,1lk(a,b,R,cr(b,B,cr(b,B,$))))

— exs(x,t,s) V exs(x,t,lk(y,w,r,s))

answer (yes) V— exs(b,B,cr(b,B,cr(a,A,$)))

exs(x,t,cr(x,t,s))

P

answer (yes)

exs(b,B,cs)

Example 5 (query)

"Which is the entity (or one of the entities) related to b via R?"

(3x) isr(x,b,R,cs) cs = 1k(a,b,R,cr(b,B,cr(a,A,d)))

answer (x) V— isr(x,b,R,1k(a,b,R,cr(b,B,cr(a,A,¢))))

isr(x,y,r,1k(x,y,r,s))

L e

answer (a)

isr(a,b,R,cs)

17.

5. Conclusions

In the present paper, a many sorted first order predicate calculus
was used as a data base specification language and it was shown how this
allows a formal uniform treatment of data base queries and updates. Such a
treatment can be summarized as follows. Consider initially a user's request
as an open formula, where the state variable s is left free. To transform
the request into a closed formula we may either:

a. substitute a state constant for s, in which case the

request will be treated as a query;
or b. make s an existentially quantified variable, in which
case the request will be treated as an update.

In both cases the request is handled by the system, which applies
the theorem prover to the request (theorem) using the axiom set. For
queries the system works like an acceptor whereas it works like a generator
for updates [BOO].

At present the formalism is being used at the conceptual schema
level. Future work may consider its extension for studying the mapping
[ANS] between the conceptuzl schema and some internal schema capable of
implementing the former, and between the conceptual schema and the external
schemata of the various users. This would correspond to using the system
like a transducer [BOO], translating objects at one level into corresponding

objects at other levels.

18.

6. References

[ADJ]

[ANS]

[BOO]

[CHE]

[MAT]

[NIL]

[ROB]

[SAN]

[VAN]

J.A. Goguen, J.W. Thatcher, E.G. Wagner - An Initial Algebra Approach
to the Specification, Correctness, and Implementation of Abstract
Data Types, in "Current Trends in Programming Methodology, Vol. IV",
ed. R.T. Yeh, Prentice-Hall, 1978.

ANST/X3/SPARC Study Group on Data Base Management Systems: Interim
Report, FDT (Bulletin of ACM SIGMOD) 7, No. 2, 1975.

T.L. Booth - "Sequential Machines and Automata Theory', John Wiley,
1967.

P. Chen - The Entity-Relationship Model - Toward a Unified View of
Data, ACM-TODS, Vol. 1, No. 1, 1976.

T.S.E. Maibaum - Abstract Data Types, Database Instances and Database
Modeling, submitted for publication.

N.J. Nilsson - "Problem-solving Methods in Artificial Intelligence',
McGraw-Hill, 1971.

J.A. Robinson - A Machine Oriented Logic Based on the Resolution
Principle, JACM, Vol. 12, No. 1, 1965.

C.S. Santos, A.L. Furtado - Synthesis of Update Transactions,
Technical Report TR DB107901, Depto. de Informatica, PUC/RJ, 1979.

M.H. van Emden, R.A. Kowalski - The Semantics of Predicate Logic as a
Programming Language, JACM, Vol. 23, pp. 733-742, 1976.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

