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ABSTRACT

We frove a genemizmd de la Vallée-Poussin theorem. éwwss the cxistence

of such approximations. and provide a characterization of best approximations of

this ind. This characterizazion uses the olassical alternating set, but removes one
poi int of 4 Ezmz%z{%fﬁ; egzc% constraint.
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. Introduction
In this paper, we study rational approximations which share the properties of Pade¢ and bes

niform approximants. We require that the rational approximations be best in the C}mkyﬁ
nse. but we perform the optimization over subsets of the rational functions which have s

derivatives at one end point of the interval of approximation.
 Let w,, denote the collection of all real polynomials of degree at most m and let r,,,
he collection of all real rational functions ry, ,(x) of the form:
, Pa(®) = 45 @) pm(x).
ere py € my and g, € m,. We normalize by prescribing ¢(0) = 1 and we assume tha

¢s not vanish on the interval of approximation.
We assume that membets of mp » will be used to approximate a given function f {x'
@Wal [0b], that f(x) € c atx 0, and that f(x)E Cforx €[05]. 0<b <= . |

f(‘x)E Ef ““01,.».,]{

riher, let w4 ma %m a subset ef wmp Such thatforO € kg m + n,

In 8§ we show that a §e

‘approximations. We prove in §
conditions; and in §4 its characterization b}n an

f such approximations is suggested and ,ﬁ’,ﬂ exa

in §5.




mecn Hx)ET, Wﬂ,,,..,,,md q(:&f; = and let
bi q(x) — f(x)|. Suppose that r(x) — f(x) takes the values

(=1 "\y at the points 0 < x| <x3 < -+ <xy < b, withh >0

- +n + 1~k — min(uv). Then,
Hy > min(A. M, ..., Ay) forall g(x) € mp mn-

. Let there exist g'(x)Ewmiyn such that H. < min(A, o, . o . Ax)
=r(x) — ¢"(x) = [rx) = ()] = [§°x) = f(x)]. Clearly A(x;))#0 and Alx
nating signs on (xq, X2, ....Xy). A(x) is continuous and has, therefore, at least N —|
(x;. xy). Further, A(x) has a zero of multiplicity k + 1 at x = 0 and thus possesses 4
n + 1 — min(u.v) zeros on [0,b]. However, Alx) is a rational function of whi

ator has degree at most m + n — min(u,v), contradicting the existence of such a ¢*




Theorem 2 -
A Tmn  is  non-empty. then there
max | Flx) = f(x)] = Mg
xebh

Consider the set max | r(x) - /(x)?», rX)E Thmn
<xgh »

Since g,y is non-empty, the set is defined and im ,
'Wﬂ; re-normalize the members of ny,,, in a way s;mziar w thaz: in m pmof fm: ﬁw QE&%M&%
unconstrained case {we 1, §33] and employ the same technique, it can be shown that the 18ts

,mmergem sequence (a,c, e Bim bm, cooabin) i = 1,2,

= (aé o b{). ., b} ) and the function 7(x) = %{'; / }‘ﬂb} x is bo )

i
in {0})] Hence, after bemg reduced to its lowest terms, 7(x) will assume a form F(x)/G(x) w
ax’/, F(x) = _%b,xv’, am—y # 0, bo # 0 and §(x) does not vanish in [0,5]

mplm ,..5‘!'... 7 (FOx))| o exists for i =0,1,. .. ,k Furthermore, at this pa
these derwatwes will be continuous functions of the coefficients of wg
1,2, ... converges uniformly to 7(x), and further, — dx y (r;(x))i =

) =0.1,... kand 7(x) is in mp 0.

n fact, as in [1, §33], F(x) could be shown to attain the greatest lowcr bour
t approximation.
We shall call 7(x) the best approximation to f(x) in #x s ,. It may easily

n situations, wxm, may be empty. For instance, let f(x) be the exp
, m =0, n =1 and k = 1. Obviously, 7, , has only one member, name

proximation 1 /(}n-—x), over the interval [0,b], b < 1. For b > 1, wg




is possible first to choese b, i = 1,... .n satisfying eondition (2). These,
ith a;, i = 1, ...,k obtained next from condition (1) and a;, i =k + 1,

i o” 'q’) )/ .
k. Next. by choosing appropriate w W/g@m

i i . s 4&
arge value with a correct sign for b,, we shall get an {x)

=k + 1.... .0 say sufficiently 1
les are all away from the non-negative real axis. B

hose po

e s
moo
For k> max{mn=1}, if the linear  system  (in b;) 2(‘5 g
. je=

=m+1lL,m+2 ...,m+nis non-singular and yields b;, i =1, ... ,n satisfying a?pmdiué)}z
, then wy IS non-empty.

Obvious.

‘Hence, for any reasonably smooth f(x), low order-constrained best approximation
ys be found. The existence of high order-constrained approximations, on the other hand,
nd on the function to be approximated and its higher derivatives at the origin. = © =
The case when f(x) is the exponential function exp (—x) over the non-negative axis is of
lar interest recently because of the usefulness of rational exponential approximation in
wmerical solutions of systems of differential equations, especially to heat-conduction
roblems or to problems which are classified "stiff”. (See for example [3.4,5,6,7,9]). In [i
_awson points out some applications of order-constrained Chebyshev rational approximation |
~x). Ehle [4] establishes that each Padé¢ approximant entry Ry, ,(z) for exp(—z) on the fir
subdiagonals of the Padé table has all its poles in the open left half-plane. Saff, et.al. [8

nds this result to the first four subdiagonals, and to entries sufficiently far out Qn%any
onals. Hence, we have o

There exists an. optimal apprtgximation in Tpmn to exp(—=z) for m <n —4
+n n =0.1,2, ... over the non-negative real axis.

ark 2

For ‘any integer 7. there

=R




. rational function ¥y, —y n-»(x) is optimal in Flmo 0 the )thgféy@hw
exists a set of points 0 <x1 <x3< - <xy &£ b N =mty +1—k -

1 constant \ for which
Boiun—sa) — )= (N i =12,.. N

That the existence of an alternating set of N or more points is a sufficient condition
ptimal is an immediate consequence of Theorem 1.
» establish the necessity, we assume that Tl —p n-vlx) is optimal in g, o
form. but that it possesses an alternating set of N’ < N points. That is,
{?k,m ““,ﬂ””(xf} "f(xl')} = (""’Uixr: - ]lzl s yN chp’ > 6-
We divide [0,b] into N’ partial intervals [0, 5] [£,8]. ... . [En'—1.b], such that in
nterval the following inequalities hold alternately:

A erix)-fx)<A o
N ta<rlx) - fx) <\

Define &(x) = f‘[(x -~ &). Since the numerator p(x) and denominator g (x) of #(

=

mmon factors, we may find ¢(x) and Y(x) of degrees at most n and m respectively su
A B(x) = [ (e Wlx) ~ p(x)ex)].

let
r (x) = 2—— M
g q(x) + wglx)

er, (omitting argument x),
%
P fmr—f 4 | 2
q q
_P_Pp4 —pg
q

#

99
- 9@ t o) 2 (g + wg)

%

99

, the wbmmvais, an appropriate chom of sign for @ msums @% r
L .




+ the construction of an algorithm fo
re puided by two considerations:

e
1} The approximations are characterized by an alternating set af m +n + 1 — k points,
assuming no degeneracy: ,

The constraints may be represented by a set of k +1 linear equations linking)thef
coefficients of the numerator and denominator of the approximating rational function.

One of the best current algorithms for the construction of Chebyshev rational approximations
s mven as an ALGOL procedure by Cody, Fraser and Hart [2]. This algorithm proceeds "iw
iven approximation to the alternating set of critical points using the equations:

: Pm ) = Gxf ) — (~1YNgul) = 0.0 =12, . ... m +HaF 2, G.D

se equations are linear in the m + n + 1 coefficients (ag.ay, . .. .Gy) 20d (Bpby.. . b))

. #i

here py, (x) = ix! and g, (x) = x! + 1. The algorithm is: ‘
Pmix) i%l gnlx) l?}‘ 4

i} Solve (5.1) for {a;}, {b;} and A, using an interation on A,
i) Search for the critical points of the rational approximation thus produced;

i} Repeat with these new critical points until convergence or choose a new startmg a
mation if the process diverges.

1t is a relatively straightforward procedure to replace equations (5.1) in the algorithm by

%b“_},_,i =0, j=01,....k:
§m
P (1) = @GO} — (=D Mgy (x) =0, i = L2.....m +n + 1~k

The resulting scheme has proven to be effective on a number of test problems. In 50
however, there was either no convergence or cycling in the iterations even for very good ini
approximations to the critical points.
As an example of the use of this scheme, we consider the approximation of
J=expl-x/(1-x)], x € {0 1) f(1) = 0. This problem arose from an attempt to generalize
¢ uniform approximations of ¢ ™ on [0, ®), considered in [3], to approximations having specified
rder at x = 0. .
A single-precision ALGOL code was prepared by imbedding equations (5.2) in the proced
eiven in [2]. Fork =m =n, k =2, 3.4, 5, approximations were computed, with convergenc
1l cases from the initial approximations to the critical points given by:
x;= 0.7, x40 = (14+x)/2.0 = 1,2,

The resulting approximation for k = 2, for example, was

E 0 2.2284800x + 1.2342096x°

) T T 2284800x + 0.5057296x %
’Thc @mﬁmi pomts were 0.6612573, 0.9039874 and 0.9985108 with assocmted errors 001§6S
0 61967 and 0. 01936 .

, Note that thg/ first set of equations of (5 2) prescribing the order are exactly szmsﬁed so that
zwﬁhmg) would be g¢1ned by double precmon c:ompumtsons‘ a more precise levelling of the error

apprommatmﬂs For
the unconstrained
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