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1. Introduction

In a recent paper, Lawson and Morris [5] described second
order algorithms for solving parabolic partial differential equations
in several space variables. The essential motivation there was to derive
Lo—stab1e methods of second order which would remove constraints on the
discrete time step which are present in A-stable methods 1ike, for
example, the Crank Nicolson method. These constraints occur essentially
because the parabolic differential equation gives rise to a system of
ordinary differential equations which are stiff (see Lambert [4]).
In all the cases considered in [5], the basic algorithm used was the
first order Backward Euler method. To obtain second order accuracy, a
combination»of»resu]ts obtained by applications of the Backward Euler
method using time step 1engthsrof different size was proposed so that
the LO-stabi1ity property of the Backwafg'Eu]er method is retained by
the resulting second order method.

In the current paper, the authors consider generalizations
of this approach to achieve higher order methods which retain the
property of Lo-stability. The approach adopted is essentially one of
extrapolation where a low order method (the first oruer Backward Euler
method or ©-method) is apolied on a sequence of different sized time
steps and a linear combination of the results used to match the required
number of terms in the Taylor expansion of the theoretical solution
(of the system of ordinary differential equations arising from the
spatial discretization). The idea of extrapolation for increased order
is, of course, not new. Richardson extrapolation 8] is now classic as
is its generalizations to Ordinary Differential Equations (see [41).

Recent alternative approaches to increasing the accuracy of the time



integration associated with Galerkin methods for solving narabolic

© differential equations include the defect corrections method of

Zadunaisky [10] and Stetter [9], Frank [2]; the deferred correction of
Fox [1] has received attention in Pereyra [67and recently Saylor [7]
has made a comprehensive study of all these for linear parabolic
problems.

The present approach differs in detail, not principle, in the
manner in which the increased accuracy is achievedf. However, one
essential requirement that is imposed is that the resulting high order
methods be g;stab1e, a feature not oresent inAthe previously described
applications.

We restrict our attention to the parabolic equation in one
space variab]é.although in principle the idea carries over to many
space variables provided an efficient algorithm exists for solving the
sparse matrix system which arises, e.g. [3] George. A further
assuriotion made in this paper is that the coefficient of diffusion is
constant. If it depends on the space variable(s) no change to the
given algorithm is necessary. Time dependent (and nonlinear)

coefficients will be considered at a later date.

T We further believe there are applications in the area of stiff methods
for ordinary differential equations and applications to systems of
hyperbolic equations; these applications will form the basis of
future papers.



2. Second Order LO-Stab]e Methods

Consider the constant coefficient homogeneous parabolic

differential equation

(2.1) g—%= Lu  (x,t) eI x[0 <t <T]

and I =r0,1], say. Equation (2.1) is subject to the initial condi-
tion .
u(x,p@ = f(x) xel, f given,

and boundary conditions

H
o

u(x,t) X € 81, the end points of I.

In the usual manner introduce a uniform discretization h of I

1]

and denote X ih, i a nonnegative integer. Replace t by mt where
T 1is a constant time step and m 1is a nonnegative integer.

On the resulting set of points we replace in the usual way,
the spatial derivatives in L by divided differences. So, if L = fﬁé
we might replace L by §ﬁ;— where §&6x is the usual central differgﬁce

operator. Applying the resulting difference scheme at each spatial
grid point, equation (2.1) is then replaced by a system of ordinary
differential equations. For example, with the above replacement of L.
assuming there are N grid point interior to I, then the system of

ordinary differential equations would be
(2.2) - = Ay

u = u(t) an N-vector of unknowns (the approximations to u(t) at each

of the grid points) and
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(has dimension N).
The theoretical solution of (2.2) is of course

p(t+t) = exp(tA)u(t)

p(0) = £ - the vector of initial values.
The first ordér accurate Backward Euler method then defines an approxi-
mation w(t+t) to wu(t+t) by
(2.3) (I-tA)u(t+t) = w(t)
v(0) = £f.
In constrast, the 6-method can be used to approximate

p(t+t) and is given by
(2.4) [I-t(1-8)Alv(t+7)

rI+10Alv(t)
which reproduces (2.3) when 2 = 0. Equation (2.4) is again first
order accurate for all 6(#]/2) and attains second order accuracy when
6 = 1/2, namely for the Crank Nicolson method.

If we apoly en. (2.4) overtwo steps, we can write (at least)

two possible approximations to p(t+21), namely

(2.5) t1-2c(1-8)AT V) (t20) = r1+270ATN(t)
or
(2.6) r1-t(1-8)a1% (%) (t+21) = r1+v0a1%0(t)

both of which are first order accurate.

(2)

and v'7°,

(1)

[f we now propose a linear combination of v



namely

(2~7) 2(t+2T) = u2(2)+(]—q)2(])

then the parameters o and © can be chosen to achieve second order
accuracy. To obtain the appropriate expressions for o and 6 we
progress as follows:
Rewriting eq. (2.5) as
v (te20) = 1-20(1-0)A77 [1+206AT9(t)

we can expand the matrix inverse so that

(2.8) (MW (eear)

"

[1+21A+4(1-6) (tA) 2+8(1-8)Z (A) P+ Ty(t).

Similarly

[1+2uA+(3-26) (tA)2+2(1-6) (2-8) (TA) > Tu(t).

1l

(2.9) v (reon)
substituting expressions (2.8) and (2.9) we obtain
(2.10)  y(t+2t) = [1+27A+{(3-26)a+4(1-a) (1-6) }r2AZ
, 27.3,3
+ {20(1-6)(2-0)+8(1-c) (1-6) "}t A +-1u(t)

A comparison with the expansion of exp(2tA) in

u(t+21) = exn(2tA)u(t)
indicates second order accuracy is achieved if
a(3-28)+4(1-a)(1-08) = 2
Namely if (a-2)(26-1) = 0.
So second order accuracy is achieved

(1) for all o if 9= 172

(2) for all 6 if o = 2.

I

Note: 6 172 produces a linear combination of Crank Nicolson schemes.

=0 a=2 reoroduces the Lawson-Morris scheme [5].



It is interesting to consider the third order terms in the
expansion in eq. (2.10). It is seen that third order accuracy is
possible if

o=1/2 and o= Y/3.
(It is theoretically possible to achieve third order accuracy with

2 _ g + ]/3 = 0, but this involves complex arithmetic

a=2 and 6
which is of 1ittie interest.)

In 6 =172, o =4/3, the reader will recognize the familiar
generalization of Simnson's rule from the Trapezoidal rule for numerical
integration.

In addition to achieving second and higher order accuracy it
is necessary that the resulting schemas be stable. Furthermore, for
reasons expounded in [5] the stability sought is LO-stabi]ity.

To consider stability of the second order 6-method (2.5, 2.6,

2.7) consider the symbol of the algorithm

1-02 P 1-207
st2) = opititdyz) + 0o [rethy]
where z = 1A, X an eigenvalue of A. For positive definite A,

z > 0 and hence for Lo-stability we reauire that

max
750 IS(z)1 <1

and T1im S(z) = 0

Now, 1im s(z) = 8(6ta-1)

Combining the requirement that this tends to 0 as z +« with (i) and
(ii) above we have
(a) For 6 =172, 1im S(z) = 24 -1 = 0 if o = 1/2

and
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(b) For a =2

in this case there are two possibie LO—stab1e members :

namely; a =23 6 =0 - the Lawson-Morris scheme [5]
and
a=2; 8=-1 - (a novel algorithm).

To ensure that S(z)l =1V z >0 we gravhed the symbol for increasing
z. The respective symbols are depicted in fiqure 1.
The three methods are indeed Lo-staQ]e as can be verified
from the graphs.
An analysis of the symbol for 6 = /2 and a = 43 (the
third order.accur%;e method) indicates conditional stability. For
d

example if L = N and the second order derivative is replaced by
oX

central differences then the resulting algorithm is stable if
(2.11) T/h2 < 3.23205.
Although this is not A-stable, for some apnlications the restriction
imposed by (2.11) méy not be serious in practice. However, see sections
3 and 4.
For numerical experiments for the homogeneous problem in this
paper we will restrict our attention to solving the one-space dimensional

heat equation

2
qu _ 9 u
(2.]2) a*,t-—;—z— (OSXSZ)XtZO
X
subject to u(x,0) = 1
and u(0,t) = u(1,t) = 0.

This problem was used in [5]1. The theoretical solution is given by
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u(x,t) = nE][1-(-1) ]H%s1n( 5 Yexp( 1 )

This simple problem represents a situation where A-stable methods tend
to do rather poorly, especially for large values of the mesh ratio
r = "/h? (see [51). The interval [0,2] was divided into 40 subintervals
thereby defining a value of h = 0:05. We tested the three algorithms
(a=]/2,6=]/2; a=2,0=0; 0=2,0=-1) for mesh ratios = 10 and 40 computing
the solution at t=1'2. The maximum error found in each case is given
in table 1. 1In figures 2 and 3 the computed solutions are given
together with the theoretical solution.

From the table 1 of results and the figures it would appear
that the a1gqrithm e=0;a=2 performs more accurately than either of

the other algorithms; the disparity being more marked for r = 40,

r 0=030=2 0=-1;0=2 o=1/2;0=1/2

10.0 0-48E-03 0.23E-02 0-31E-02
40.0 0-45E-02 0-20E-01 0-12E-02

Table 1 - maximum error at t=1-2 (second order methods)

The Lawson-Morris algorithm appears to perform best in that
the maximum error anpears to be somewhat smaller than either of the
other two LO—stab]e members. This behaviour is, of course, dependent
on the error constant which in turn will depend upon the narticular
problem being solved. An additional advantage of the case 6=0;a=2 is
that the number of operations required to advance the solution over a

time step of length 2t is smaller than either of the other two cases.
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Figure 2 - Solution for problem (2-12) at t=1:2; h=0-05, 1=0-025 (r=10)
Fourier sum (1). 6=03a=2 (+). 6=1/230=1/2 (*¥). 6=-13a=2 (¢).
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Figure 3 - Solutions for problem (2-11) at t=1-2; h=0-05, =0-1 (r=40)

Fourier sum (1). 6=030=2 (+). 0=1/250=1/2 (*). 0=-1;0=2 (o).
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It should be pointed out that 'efficient' versions exist in a manner

- similar to that described in Lawson and Morris [5], but such reorgani-

zation does lead to an increased complexity unnecessary in the Lawson-

Morris method (6=0;0=2).

Additionally it should be noted that for a time step of size
2t three tridiagonal systems have'to be solved, two of which have the
same coefficient matrix which avoids the need for refactoring. In
constrast the Crank Nicolson method requires two tridiagonal solutions
with the same coefficient matrix for the constant coefficient (in time)
partial differential equation. However, the Crank Nicolson method is
not Lo—stab1e, and to ensure damping of errors requires the time step

to be chosen so that
%'s %- , aporoximately.
This restriction, consequently, makes the Crank Nicolson method con-

siderably less efficient than any of the members of the Lsstable family

described here. (See [5] for further details.)
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3. Third order L-stable algorithms

One of the parametrizations in the previous section produced
a third order accurate algorithm which (unfortunately) was not Lo-stable.
In this section we address this question of higher order LO—stable
methods.
Define LT , a difference operator, as
L, = (1-t(1-8)AT7 [I+6A]

][I+216A], etc.

Then, L2T = [I-2t(1-6)A]
Consider the sequence of vectors defined by

3.0 M) = 13 y(e)

(3.2) P (e30) = L, Lu(e)
(3.3) '3:;!(3)(t+3r) = Ly v(t)

and then

2)

(3.0) 30 = ey 4 5@ 4 (1amp) O

o, B, & are to be chosen so that eq. (3.4) produces an expansion which

agrees with terms up to, at least, 0(t3) i

exp(3tA) = 1 + 37A + gxz 2

n
A™ + %T3A3 + ...

After tedious manipulation it may be shown that ((3.1), (3.2), (3.3)
and (3.4)) possesses third order accuracy if
a=-g=9/2V 6.
In addition to the order conditions Lo-stability will impose constraints

on the parameters. The symbol for scheme (3.4) is given by

) 1-6z 3 1- 1-2
5(z) = “(1+(1-§)z) ¥ B(1+(1?g)z)(1+2(1?g)z)

1-36z

+ (]-G-B)(jjiﬂjfggyg).
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For o= -8 =9/2

pm S(2) = gy (2+0)(041/2)

so that for Lo-stabi1ity we require one of
(3.5) 6=0;06=-1/2;6=-2.

The symbols for the parameters defined by (3.5) are shown in
figure 4. As can be seen from the figure each of the algorithms has a
symbol whose absolute value is bounded by 1 and by construction has a
limit =0 as z » «. Hence, each of these algorithms is Lo-stable.

It is easy to show that 6 = 1/2 produces a fourth order
“three-stage" algorithm which is Lo—stable when a = 3/4 and B = 1/2.
The associated symbol is also plotted in figure 4. It is interesting
to note thaf this latter algorithm produces a symbol with very different
characteristics to the third order Lo—stab]e algorithms. Although it
is not clear that this behaviour of the symbol is significant, the
behaviour-of this algorithm appears somewhat less satisfactory than the
third order Lo-stable variant 6 = 0, o = -8B = 9/2 when used to compute
the solution of eq. (2.12). The graphs of the computed results are
given in figures 5 and 6" and a summary of the maximum errors is given
in table 2. We note in passing that it is here possible to choose «
or B to reduce the number of stages in the algorithm. For example if
B = 0 then fourth order accuracy is still retained with 6 = 1/2 if
a = 9/8. It is a simple matter to show that this is Ao—stable. This
two stage method in fact requires four systems of linear equations to

be solved, three of which comprise the same coefficient matrix, for

each step of size 3t. In contrast, the two stage method a = 0,

T We omit the theoretical solution from figures 5 and 6 for reasons of
clarity; to the scale used it is essentially the curve corresponding
to 6 = 0.
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Figure 4 -

Symbols for third order schemes:

(1) 8=030=-8="/2

(2) 0=-1/2;0=-8=9/2
(3) 6=-2;0=-=7/2

(4) o=1/2;0=3/4;8=1/2
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0=-2;0=-8=4-5 (1); 0=-1/2;0=-B=4+5 (*); 6=0;a=-B=4-5 (+);

Solution for problem (2.11) at t=1-2; h=0°05; 7=0-025 (r=10)
6=1/2;0=3/438=1/2 (¢)
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Figure 6 - Solution for problem (2.11) at t=1-2; h=0-05; 1=0"] (r=40)
6=-2505-=0-5 (1); 0=-1/2;0=-B=4-5 (*); 08=0;0=-p=4-5 (+); 6=1/2;0=3/4;8=1/2 (¢)
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B =3/2, 8 =1/2 1is fourth order accurate but only conditionally
stable with a condition on r given by r|A| <6 2/3, x| the maximum

moaulus eigenvalue of A.

a=-g=9/2 a=3/4;8=1/2
r 0=0; =-172; g=-2 =12
10.0 0-13E-03 0-54E-02 0-17E-01 0-10E-02
40.0 0-17E-02 0-18E-01 0-40E-01 0-24E-02
Table 2 - Maximum errors at t=1-2 (third order methods)

/

The most accurate member of the family appears to be the
algorithm defined by e=0,a=9/2,5=-9/2 although the method defined by

6=1/2,0=3/4,8=1/2 is close behind. The L -stability of this Jatter

0
method proves to be important in the context of third order accuracy
algorithms when time dependent source terms are introduced to the
partial differential equation.

A comparison between the entries of tables 1 and 2 indicate

that the third order method 6=0 1is indeed more accurate than the

second order scheme 6=0.
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4. Fourth order L-stable algorithms

4
=4

In this section we seek to generalize the multistage concept
introduced in section 3 to produce alternative Lo-stable methods of fourth order.
To achieve this, introduce the difference operators L_, L, , Lo, L, ,
T T2t T3t Tht
in a similar manner to that defined in the previous section. Then,
consider the sequence of vectors defined by

@) yMiean) = L i)

(a.2) P (eran) = Ly Lu(t)

(a.3)  yBenan) =1, ()

(a.8)  Peran) = 1, 2() /
(4.5) .y (trae) = Ly u(t)

and then the 5 stage algorithm is defined by
(4.6) v(t+dt) = ax(]) + 3!(2) + Y!(3) + 61(4) + (]-a—B—Y-é)x(s).

The parameters «,B,y,8 and 6 ‘are to be chosen to produce fourth order
accuracy and Lo-stability.

The order conditions are obtained by considering the expansion
of the matrix inverses contained in (4.6) and comparing this expansion
with that for exp(4tA). After considerable manipulation the following
conditions are obtained.

For fourth order accuracy either

(4.7) o=1/2 and 100+68+8v+95 = 32/3.
or

8-60%-4y-56=0 and 2a+3= 1°/3

(4.8)
W2 3040-156)0%- (32-68)0°=0.

and (16/3+a-3p)-4('6/3+0-38) 6+
To these conditions must also be added those arising from the reauirement

of Lo—stability. The five stage method oproduces a symbol given by



_ 4 2
_ 1-8 1-36 1-6 1
o Sz) = el ez 0 z] ' B[(1+3(1-§)z] [H(l—g)Z] ' Y[HZ( ~é52] '

- 2
1-262 1-6z 1-46z2
* 5L)+2(1-e)z] [1+(1-e)z] + (1-0-8-v-9) [1+4(1-§7§]

Hence for Ln-stability it is necessary that

; 4 2 2 3
(4.10) VMg, - 08" B8 Y6 56

2> (1-0)  (1-0)2  (1-0)2  (1-0)°

o _
- (1-a-B-y-8) T = 0-

Hence we require to choose a,RB,Y,8 and 6 so that (4.10) and (4.7)

or (4.8) are satisfied.

Imposing these conditions we find the following possibilities.

6 o, B Y §
.0, 8 40/9 0 -32/3
o 0 16/9 -6 16/3

0o  -16/3 0 -10 16

0 8/3 8/3 -4 0

0 -20 -44/9 -21 136/3

172 0 1/2 0 23/27
172 0 -40/12  23/6 0
12 2312 -12/12 0 0
1/2 0 0 1/2 20/27
1/2 1/2 0 0 17/27

The associated symbols are depicted in figures 7-16. By construction
each scheme has a symbol whose 1imit as z»~ is 0. As can be seen
the schemes are all LO—stab1e. However, it is noted that the family
of schemes with ©=1/2 has a distinctly different behaviour to the

algorithms with ©6=0. It would be surmised that such algorithms with

e=]/2 produce considerably less damping, particularly for components
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in the solution such that the product of the eigenvalue and time steps
lies on the symbol which is substantially different from zero (for
example z = 6 in figure 12). For this reason we suspect that
solutions obtained from the 6=1/2 - family are inferior, particularly
for problems in which discontinuous initial/boundary values occur.

To test the behaviour of these algorithms we computed the
solution of problem (2.11) for r=10 and r=40 1in a similar manner to
previous sections. The numerical results obtained are depicted in
figures 17-20. In figure 17 the computed results, to the thickness of
the curve, are identical for r=10. When r increases to 40 there
is now some discernible difference between thé various parameterizations
as shown in figure 18. For 6=1/2 the behaviour of the family is much
less satisfacfory, and much more unpredictable. For example the results
obtained from the algorithms with parameter values given by _

(a,8,v,6) = (0,-10/3,23/6,0) and (23/12,-17/12,0,0)
are really quite unacceptable. A summary of the respective accuracies
is given in table 3 where the maximum absolute errors are shown. From
both the table and figures it is seen that the algorithms given by 6=0
are very accurate, with little to choose between them when r=10 and
with the algorithm (a,B,v,8) = (8,20/9,0,-32/3) being marginally
superior for r=40. The most inaccurate member of the 6=0 - family
appears to be that given by (a,B,y,3) = (-20,-%44/9,-21,136/3). A com-
parison of the entries in table 3 for €=0 («,B,Y,8) = (8,%0/9,0,-32/3)
with the corresponding entries in tables 1 and 2 indicate that the
fourth order algorithm is, indeed, more accurate.

Four of the algorithms, with &=0 possess one coefficient = 0,
consequently the number of stages present in these cases is four.

However, the organization of these stages is such that some four stage
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of the 6=0 - family are more efficient tha) others.
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r a B8 Y s (1-a-8-1-6) max. error # factorization # solves

10 8 40 0 32 1 0.18 E-04 4 7

40 3 3 3 0.39 £-03

10 0 16 -6 16 B 0.13 E-05 4 7

40 9 3 9 0.84 E-03
< 1w 1 0 -10 16 3] 0.13 E-04 3 8
8=0 - 31

40 0.16 E-02

10 8 8 -4 0 1 0.69 E-05 4 8

3 3 3

40 0.44 E-03

10 -20 44 -21 13 14 0.42 E-04 4 9

40 s 3 9 0.36 E-02

10 0 1 0 23 19 0.37 E-03 4 5

40 2 e7 34 0.89 E-02

10 0 10 23 0 1 0.14 £-01 4 5

40 3 2 H 0.79 E-01

10 23 17 0 0 1 0.15 E-01 3 6
p=172 2 - LS

40 12 2 ¢ 0.91 E-01

10 0 0 1 20 13 0.15 E-02 3 6

40 2 27 >4 0.55 E-02

10 1 0 0 17 1 0.12 E-02 3 6

40 Z el 24 0.31 E-02

Table 3 - Errors for the fourth order algorithms

The number of factorizations of the tridiagonal matrices required for

the complete computation (the constant coefficient partial differential

equation necessitates a single factorization; time dependent coefficients

would require this factorization to be performed each cycle) and the

number of forward-backward solutions required each interval of time 4t

are also summarized in table 3.

‘costs' for the O=]/2 family. We have not taken into account any

difference in costs associated with the fact that 8=0 produces a

ve have also included the associated
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right hand side without matrix/vector multiplication whereas for 6=1/2,
as formulated in this paper, there is a matrix/vector multiplication
for each constituent part of the algorithm. We omit this since there
is a simple means of avoiding this matrix/vector multiplication in a
manner similar to that conventionally used fof the Crank Nicolson method.
Assuming constant coefficients and hence assuming matrix
factorizations are of no consequence, it can be seen from table 3 that
for ©=0 the two algorithms (o,8,v,8) = (8,%0/9,0,732/3) and
(0,16/9,—6,]6/3) are equally efficient. Moreover both methods pro-
duce similar accuracies so either would appear an excellent choice.
(The former method has a marginally superior performance for larger r
so perhaps i; is the favourite.)
for 6=]/2, all members require fe@?so]ves and hence are
more efficient. As we have seen each member of this class has sub-
stantially larger error for the same values of r. However, because
of the increased efficiency we can take a smaller r, perform more
steps and still obtain the solution with the same effective cost. This

was investigated but the numerical results are still inferior to the

schemes based on 6=0. For brevity we omit the numerical details.
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Solution of problem (2.11) at t=1.2; h=0.05; 1=0.025 (r=10)
(5 coincident curves)

a=8,  8=40/9, =0, §="32/3
a=0, B=16/9, y=-6, ¢=16/3
a=-16/3, g=0, v=-10, 6=16
a=8/3, =872, y=-4, §=0
a=-20, p="%4/9, y=-21, 6=136/3
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Figure 18 - Solution of problem (2.11) at t=1.2; h=0.05; 1=0.01 (r=40)

6=0: 0=8, 8=40/9, y=0, 6="32/3 curve (+)
a=0, 8=16/9  y=-6, 6=19/3 curve (*
a="16/3, =0, v=-10, 6=16 curve (8)
a=8/3, 8=8/3, y=-4, &=0 curve (-)
a=-20, p="%479, y=-21, 6=136/3  curve (1)
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Figure 19 -

o=0,

=0,

a=0,
a=1/2,

=172,

v=0,

A
S

§=23727

B=']O/3, Y=23/6a 5=0
a=23/12, g=-17/12, y=0,

=0,
=0,

v=1/2,
v=0,

§=0
§=20/27
6=17/27

curve
curve

Solution of problem (2.11) at t=1.2; h=0.05; 1=0.025 (r=10)
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Figure 20 - Solution of problem (2.11) at t=1.2, h=0.05, 1=0.1 (r=40)
e=1/2: a=0, B=1/2,  v=0,  §=23/27 curve (+)

o=0, B=‘]0/3, Y=23/6, §=0 curve (*)
a=23/12, g="17/12, v=0, §=0 curve (6)
a=0, B=0, v=172, 6=20/27  curve (+)

a=]/2, p=0, v=0, §=17727  curve (1)
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6. Conclusions

We have extended the Lo-stable results of Lawson and Morris
[5] to higher orders of accuracy. In the case of accuracies of the
orders three and four, thgﬁe appear to be attractive, simple methods
which are Lo-stable and which produce satisfactory results for problems
in which high frequency components are known to propogate when using
conventional Ao-stab1e methods 1ike the Crank Nicolson method.

The structure of the extrapolated algorithms we have intro-
duced gives use, in an ;bvious manner, to higher order methods. For
example, fifth order would be achieved by choosing the parameters
suitably in

2412,

R S 2ThT

- y(t45r) = ol + Bl Lo+ L

o

atty T Yharhpp *oSLgL

+ gLy L3 (1-0-B-v-8-0)Lg Ju(t)
However, we refrain from persuing generalizations along these lines
believing, for partial differential equations, that fourth order accuracy
in time is sufficient for most (all?) applications.

A more important extension to the present work is the condi-
tion of time dependent coefficients and equations with inhomogeneous
source times. This work will be reported in part III of this paper.

The algorithms here apply naturally to problems in many space variables
when sparse matrix algorithms are available. The question of applying

the generalized methods in a splitting context is as yet an open one.
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