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Abstract

The addition of redundancy to data structures can be used to
improve a software system's ability to detect and correct
errors, and to ~continue to operate according to its
specifications. This paper discusses some of the
foundations of the study of redundancy, particularly its use
in making data structures robust. The paper includes
discussion of two appropriate error models, the Dbasic
assumptions required for a mathematical framework, and
several definitions. It also gives a brief indication of
some theoretical and empirical results which have been

obtained.



1. INTRODUCTION

One approach to increasing the overall reliability and
fault tolerance of a computer system makes use of redundant
information 1in the system's data structures. However,
current techniques for adding and exploiting such redundancy
are not well developed, and are largely ad hoc. Our purpose
in this paper 1is to present a formalism for discussing
redundancy in data structures, its effectiveness and costs,
and to discuss briefly some theoretical and practical
results which have been obtained in our research.

Section 2 contains a very general discussion of
redundancy in software systems, as well as an overview of
related and previous work. Section 3 introduces our
formalism for "robust" data structures. This is followed in
Section 4 by a presentation of the theoretical framework
underlying our research. Section 5 discusses the
complementary experimental basis, and Section 6 provides
references to more advanced work, conclusions, and

directions for further study.

2. REDUNDANCY AND ITS USES

Any fault tolerant system, whether hardware or
software, relies on some form of redundancy to improve

reliability. Examples of software redundancy are system
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checkpoints, and the rollback and recovery programs which
use them; redundant programs not required for normal system
operation, such as audit programs; redundant pointers,
identifier fields, and node counts stored in data
structures; and information about correct or expected system
operation. Given appropriate redundancy, a fault tolerant
software system uses it to detect and perhaps correct errors
in the system.

As defined by Randell [1], the action taken by the
system upon detecting an error may be classified as either
backward error recovery or forward error recovery. Backward
error recovery attempts to restore the system to some
previous correct state, while forward error recovery
attempts to modify or correct the erroneous system state and
place the system 1in a new correct state The following
discussion will make these terms more precise.

The classic example of backward error recovery is the
checkpoint, rollback, and recovery method which has been
used 1in transaction processing systems for many years. In
this case, the redundancy consists of the checkpoint,
transaction log, and the program for the recovery process.
The method is quite general as it assumes nothing about the
transaction in error, assumes only that the checkpoint file
represents a correct system state, and that it is ©possible
to decide whether or not a completing transaction leaves

behind a correct system state.
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A more structured technique along the same lines is
that of the recovery block [l]. A recovery block consists
of an acceptance test and a set of alternate blocks of code.
At the end of the primary alternate, the acceptance test 1is
applied to determine whether execution was successful. If
it was, the recovery block terminates. 1If it was not, the
system state 1is reset to its value on entry to the block,
and the second alternate is attempted. Successive failures
of the acceptance test cause successive alternates to be
attempted, until the list is exhausted, in which case the
recovery block returns an error indication, possibly to an
enclosing recovery block. Recovery blocks can be
efficiently implemented by a recovery cache which stores the
previous value of each memory word modified inside the block
[47]. Meaningful acceptance tests for recovery blocks must
rely on some form of redundancy in order to determine
whether an alternate has succeeded. Thus, while a massive
checkpoint can be avoided by use of the recovery cache,
applying a strong acceptance test may involve a significant
execution time and/or storage overhead.

In some systems, backward error recovery 1is not
acceptable, and so the 1less well wunderstood approach of
forward error recovery 1is used. The classic example is
electronic telephone switching systems, where calls in
progress cannot be cleared because of an error. This has

led Bell Telephones to use "audit programs" whose purpose is
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to detect and correct errors in the system's data structures
without unnecessarily aborting existing calls unaffected by
the error [2]. Waldbaum [11] has also proposed audit
programs as a means of increasing operating system fault
tolerance. In the case of audit programs, we consider the
redundancy to be the programs themselves, the "knowledge"
they embody about correct system states, as well as
redundant information contained in the data structures being
audited.

Compared to backward error recovery, forward error
recovery can have the advantage of less system degradation
or unavailability during recovery. On the other hand, it
would seem to require a more detailed knowledge of the
application and its data structures than backward error

recovery.

3. ROBUST DATA STRUCTURES

A robust data structure 1is one which <contains
sufficient redundancy to permit the detection of errors in
stored instances of the data structure. (Strictly speaking,
this is an abuse of the terminology: given a data
structure, such as a binary tree, we are interested in

finding a storage structure or implementation of a binary

tree which is robust in the face of errors. This
terminology is due to Tompa [10].) Some robust data

structures contain sufficient redundancy to allow correction
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of errors. This detection and correction is performed by
routines which operate only on the erroneous instance of the
storage structure. Thus we are not cohcerned with detection
and correction schemes which make use of, for example, a
backup copy of the data structure. The error detection
methods we consider are applicable to both forward and
backward error recovery. The correction methods use forward
error recovery to restore the system to a correct state.

There are two terms which are used to characterise the
correctness of a data structure: semantic integrity and
structural integrity. Semantic integrity [5] concerns the
meaning of the information contained in the data structure:
does it accurately represent a possible configuration of
those real entities which it 1is supposed to model?
Structural integrity [12] refers to the more general
characteristics of the way in which the data are organised:
Do pointers have the proper values, are all nodes properly
linked into the structure?

Because of the difficulty of making generalisations
about the semantic integrity of data structures, our work to
date has concentrated on the structural integrity or
correctness of an instance of a data structure. That is, we
are concerned with the effects of errors on the overall
structural characteristics of the data. We consider the
following types of information in an instance as being

structural: pointers, fields containing counts of the
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number of nodes in the instance, and identifier fields. An
identifier field in a correct instance contains a value
which is unique over all node types and all instances of the
same or different storage structures in the system. Thus,
given an arbitrary node containing an identifier field, one
can determine to which particular instance in the system the
node belongs.

We consider storage structures whose instances each
consist of a set of nodes with a distinguished "header".
The nodes and header are assumed to be connected by
pointers, with all nodes accessible by following some
sequence of pointers from the header. (In graph-theoretic
terms, our instances are rooted, directed graphs.) Relative
to a particular instance, all nodes in the system are either
inside or outside the instance, depending on whether or not
they are accessible from its header. We assume that the
data structure is subject to a source of errors, and we seek
to make precise statements about the number and kinds of
errors which may be detected or corrected.

Our research is concerned with the effect on data
structure robustness of the addition of redundant structural
information. In order to make precise statements about the
robustness of a given structure, it is necessary to state
our assumptions about the errors occurring in the structure.
We consider two types of error source: an "intelligent

adversary" source, and a random source, both introducing

Black, Taylor, Morgan -7 - FTCS (17/12/79)



errors into the structural information contained in an
instance.

Our theoretical results assume that the errors are due
to an intelligent adversary attempting to do a maximum
amount of damage with a minimum of effort. For instance, we
wish to answer a question such as the following for a given
data structure: what is the minimum, over all possible
instances, of the number of structural changes required to
transform one correct instance into another? Or
equivalently, what is the maximum number of changes, made to
a correct instance, which may be guaranteed to produce an
incorrect 1instance? (In order not to obscure this
presentation, we will postpone strict definitions of these
terms until the next section.) This intelligent adversary
model permits us to make strong statements about the
robustness of given structures, but it deals only with worst
case results.

In order to obtain an estimate of the "average" or
"offective" robustness of a data structure, we assume a
(pseudo-) random error source, and perform experiments in
which errors are introduced into data structures by a
"mangler". As explained more fully below, we have shown the
effective robustness to be significantly greater than the
worst case results indicate.

Thus, we make very few assumptions regarding the causes

of errors 1in data structures. They may be due to
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misbehaving programs; programs which are forced to abort in
the midst of an operation due, for example, to an operating
system crash; errors in the supporting hardware; or mistakes
by users.

The next section expands on the above intuitive ideas
by giving a more precise overview of the theoretical

framework required to study robust data structures.

4. A THEORETICAL FRAMEWORK FOR ROBUST DATA STRUCTURES

As indicated above, we are seeking storage structures
which are robust in that some number of (erroneous) changes
applied to an instance of the structure may be detected as
producing an incorrect instance. A further goal is to use
forward error recovery to modify the changed instance so
that it is once again correct. This motivates our use of
two types of procedure: detection procedures and correction
procedures.

A detection procedure, when applied to a storage
structure instance, either accepts or rejects the instance
as being (structurally) correct. Thus, we are using the
text of the procedure as an implicit definition of what
constitutes a correct instance. Once an instance has been
found incorrect by a detection procedure, one may wish to
use a correction procedure to modify the instance so that it

becomes acceptable to the detection procedure. Trivially,

an "empty" instance satisfies this requirement, but this is
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clearly not what we want. Rather, the correction procedure
should modify the instance so that it is "almost the same
as" the original instance, while also being correct.

In order to quantify the detection and correction
capabilities of storage structures, we need to be able to
quantify modifications to them, whether erroneous or not.
For this purpose, the term change 1is defined to be the
alteration in type and/or value of a single elementary
memory item. This definition may be adjusted to suit a
particular application, but would normally be taken to be
any modification resulting from the execution of a single
store instruction. Examples of single changes to the
structural information in an instance are replacing a
pointer by null or by a pointer to a different node,
incrementing a count of the number of nodes in an instance,
or placing a new value in an identifier field.

During normal system operation, update routines
introduce changes into structural information to produce
new, correct instances from old ones. However, such
routines may periodically introduce erroneous changes due to
the presence of a bug, or may fail because of an operating
system crash, in which case the partially updated instance
is left some number of changes away from both the initial
configuration and the desired final configuration.

Given this definition of <change, quantifying the

robustness of a storage structure is straightforward. If a
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single change can transform one correct instance into
another, the storage structure has no detection
capabilities. In general, 1if at least n + 1 changes are
required to transform one correct instance into another, n
change detection 1is possible, and such a storage structure

is called n-detectable. (Strictly speaking, the

n-detectability 1is a property of a particular detection
procedure; the procedure rejects all correct instances
modified by n or fewer changes.) Similarly, if n changes
applied to a well-formed instance may be corrected (by some
correction procedure), the storage structure is said to be
n-correctable.

Before stating the kinds of results which may be
obtained with these definitions as a starting point, we need
to discuss an important assumption which is required for a
rigorous mathematical framework. The "valid state
hypothesis" (VSH) has two parts: one for identifier fields,
and one for pointers. For identifier fields in a wvalid
system state, the hypothesis is: for each identifier field
in each kind of node in each storage structure instance,
there 1is a unique identifier field value which is stored in
that field; this value is not stored in any other location
which could be wused to store that identifier field.
Secondly, for pointers, the only pointers to a node are
found in other nodes which belong to the storage structure

instance containing that node.

Black, Taylor, Morgan - 11 - FTCS (17/12/79)



The wvalid state hypothesis is quite restrictive as it
requires, in particular, that the system memory outside an
instance be "clean", that is, it contains neither pointers
pointing back into the instance, nor identifier field values
belonging to the instance. It 1is possible to relax the
hypothesis by taking into consideration the amount of
"invalidity" in the system [7]. However, the complication
which this introduces would obscure our presentation here.

This completes the basic framework on which our
theoretical results rest. In order to make the ideas
presented more clear, to introduce some additional concepts
related to detectability, and to indicate the type of
analysis possible, we present a simple example: the linear
list.

Figure 1 shows a common implementation of a linear
list: the header contains a pointer to the first node in
the 1list, each node contains a pointer to the next, and the
final node contains a pointer back to the header. This
storage structure has no detection capabilities (is
O-detectable): changing a single pointer can shorten the
list and still leave a correct instance.

Figure 2 shows a slightly more robust storage structure
for 1linear 1lists: the header now also contains a count of
the number of nodes in the instance, and each node contains
an identifier field. This structure 1is 1-detectable,

although still O-correctable. Intuitively, the count field
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permits detection of pointer changes which shorten or
lengthen the apparent 1list, while the identifier fields
permit detection of pointer changes which cause foreign
nodes to appear as part of the changed instance. In fact,
it can be shown that any storage structure which fits our
model and which contains only one pointer to every node can
be made l-detectable by the addition of count and identifier
fields.

Figure 3 shows a double 1linked list implementation
which is not only 2-detectable, but also 1l-correctable.
This storage structure differs from that of Figure 2 by the
addition of a redundant set of back pointers. Although we
could demonstrate the 2-detectability by an exhaustive case
analysis of all pairs of changes, there are at least two
better approaches. We will discuss one here, which involves
determining the minimum number of changes required to
transform one correct instance into another by evaluating
the three quantities ch-same, ch-repl, and ch-diff.

Ch-same is the minimum number of changes required to
transform one correct instance over a set of nodes into a
different correct instance over the same set of nodes. Any
such rearrangement for the double 1linked 1list requires
changing at 1least two forward and two back pointers, as is
easily verified, giving ch-same = 4.

Similarly, ch-repl is the minimum number of changes to

form a new correct instance by replacing one or more nodes
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with the same number of foreign nodes. Assuming a
fortuitously correct structuring of these foreign nodes, at
least two 1incoming and two outgoing pointers need to be
changed, as there can be no pointers already present from
the foreign nodes into the instance under VSH. Furthermore,

proper identifier fields must also be created for the

foreign nodes, giving a minimum of ch-repl 5, in the case
of one foreign node.

Thirdly, ch-diff 1is defined as the minimum number of
changes required to change one instance into another with a
different number of nodes. As identifier field values must
be supplied for foreign nodes, the minimum clearly occurs
for deletion. Deleting any node requires changing two
pointers and the count, yielding ch-diff = 3.

Taken together, ch-same, ch-repl, and ch-diff exhaust
the ways of changing one correct instance into another, and
as the detectability is defined to be one less than this
value, we have shown that a double 1linked 1linear 1list 1is
2-detectable (i.e., min(4,5,3)-1).

It is possible to increase the detectability of a
double 1linked 1list to three by restructuring the back
pointers. Figure 4 shows a linear 1list where each back
pointer points to the second preceding node. A second
"header" node has also been added. This 1is called a
modified(2) double linked 1list. (It belongs to the class of

modified (k) double linked lists, where the back pointer 1in
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each node points to the kth preceding node. The
detectability of such a 1list with k =3 1is four, but
increasing k further has no effect on the detectability.)
In order to show the 3-detectability, we will use the
concepts "k-determined" and "k-count-determined" to bound
ch-same, ch-repl, and ch-diff from below, although we could
use a similar argument to the one used above.

We say a set of pointers in a storage structure
determines the structure if all count fields, identifier
fields, and other pointers can be reconstructed given only

the determining set. A structure is then k-determined if

there exist k disjoint sets of pointers, each of which
determines the structure. Similarly, a storage structure is

k-count-determined if there exist k disjoint sets of

pointers, each of which can be used to determine the number
of nodes in the structure. A modified(2) double linked 1list
is 2-determined since either forward or back pointers can be
used to reconstruct an instance, and it is 3-count-
determined as the forward pointers or either of the two sets
of interleaved back pointers may be used to <calculate the
number of nodes.

Now, for a k-determined storage structure, ch-same > 2k
since a single change in any one of the k sets cannot
rearrange the nodes in that set. If m of the k sets must
have an equal number of pointers entering and leaving a

node, and there are n identifier fields, ch-repl >k +n+m
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under VSH. These give ch-same > 4 and ch-repl > 5 for a
modified(2) double linked list. Neither of these bounds is
tight in this case, but they are sufficient, since the bound
on ch-diff is smaller and tight: if a k-count-determined
implementation contains Jj stored counts, ch-diff > k + 3,
which gives ch-diff > 4. In particular, the bound is
obtained when an arbitrary list is changed into the empty
list, in which case the count, a forward pointer, and two
back pointers must be changed in the header nodes.
Together, these show that the modified(2) double linked list
is 3-detectable. (The proofs of these results may be found
in [91]).

Returning to the ordinary double linked list, we now
wish to show that this storage structure is also
l-correctable. Again, this <could be done by exhaustive
analysis; 1indeed, the reader 1is encouraged to do so.
'However, we prefer to apply a more general result, called
the General Correction Theorem [6]. The theorem states that
a storage structure which 1is 2r-detectable and has r + 1
edge-disjoint paths to each node 1is r-correctable. The
requirement for r + 1 edge-disjoint paths to each node
precludes the disconnection (and loss) of any node by r or
fewer changes. (This result is proven in [6].)

Applying the theorem to double linked lists with r = 1,
we find they are 1l-correctable. Note that the theorem

applies equally to modified(2) double 1linked 1lists; while
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they have higher detectability, their correctability is
still one. Although not presented here, a 1l-correction
routine has been developed for this structure whose
execution time is linear in the size of the 1list. This
routine can be adapted for modified(2) double linked lists.
We have also developed a storage structure for binary trees
which is 2-detectable and l-correctable.

Other theoretical results provide bounds on
detectability, ch-same, ch-repl, and ch-diff , and discuss a
restricted class of "compound" storage structures [9]. As
mentioned, the results have also been extended to cases

where the valid state hypothesis cannot be used.

5. EXPERIMENTAL EVALUATION OF ROBUST DATA STRUCTURES

The theoretical results provide only a partial view of
data structure robustness, as they are concerned with the
worst case results which an intelligent adversary could
produce. A more complete view can be obtained by
investigating the "effective" robustness in the face of a
random error source. This section discusses the types of
experiments we have performed which indicate that the
effective robustness is much higher than the theory
suggests.

All of the experiments make use of a "mangler" to
inject pseudo-random errors into data structures as they are

written to external storage. One of the mangler's
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parameters is the ©probability that any one record will be
changed when written. If the mangler decides to mangle a
record, it wuses some probabiltiy distribution to determine
which word in the record to change. Finally, a small
integer (positive or negative) is added to the chosen word.
A small integer is used rather than an arbitrary wvalue in
order to make the changes more subtle; an arbitrary value is
often too easy to detect. Thus the experiments consist of
executing a program which uses a data structure on external
storage, injecting errors into the structure with the
mangler, and observing the program's reaction. Needless to
say, the program expects errors to occur, and contains some
logic for error detection and correction.

One set of experiments was performed on storage
structures whose detectability could be determined from the
theoretical analysis. The experiments were designed to
investigate the detectability as well as the probability of
node disconnection. The experiments compared three
different storage structures for 1linear 1lists. The
experiments showed that when the detectability was greater
than one, no undetected errors occurred, even though up to
twenty errors were injected by the mangler into a fifty-node
structure. Modified(2) double linked lists were
significantly more resistant to random disconnection than
double linked lists: for five injected errors, the observed

probability of disconnection was 65% for double linked lists
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compared to 8% for modified(2), even though they have the
same number (2) of edge-disjoint paths to each node.

The second set of experiments was concerned with a
sample data base system of moderate complexity. This
"example system" provides random retrieval by key through an
externally chained hash table, and a query facility based on
inverted 1lists. The theoretical results suggested the use
of a l-correctable double linked 1list for each hash chain,
but were 1less helpful for the inverted lists and their
implementation. We thus added redundant count and
identifier fields to the "index file", which contained the
dynamic set of inverted lists, on an ad hoc basis. 1In order
to provide error detection and recovery, a complete set of
audit routines was written, including the 1linear time
l-correction algorithm mentioned above for the hash chains.

A set of experiments was performed using a standard
script of commands, and different seeds for the mangler's
random number generator. In order to make the
experimentation feasible, both the mangling probability and
the frequency of audit execution were set wunrealistically
high. Our results confirmed that it was possible to achieve
high 1levels of system reliability with an acceptable
overhead cost: over 92% of errors to fields used in normal
program operation were corrected, and 94% of errors to
redundant fields were corrected. We estimate that reducing

the audit execution frequency in view of a reasonable error
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rate would allow this level of reliability to be achieved

with 7% I/0 overhead, and 16% execution time overhead.

6. SUMMARY, CONCLUSIONS, AND FURTHER WORK

Our purpose has been to present some of the concepts
underlying our research into robust data structures. As the
subject is still in the developmental phase, we welcome all
comments on the 1ideas we have presented here. More
information on the theoretical and practical results
obtained to date may be found in [3, 7, 8, 9].

Section 2 situated our research in the larger area of
software fault tolerance. Section 3 provided an
introduction to our concept of redundancy and robust data
structures. In Section 4, we gave a broad outline of the
theoretical basis for our research, which was complemented
in the following section by a brief description of some
experimental results.

Much further work 1is easily identified. An obvious
extension is to introduce semantic correctness into the
framework. While this appears very challenging in general,
it should be possible to obtain limited results for common
semantic notions such as keys. Formal specification of what
constitutes a correct instance appears to offer some aid to
determining the robustness of a storage structure as well as
to constructing special purpose detection and correction

routines. We have as yet no results for "parts" of
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instances, nor for discussing the robustness of a structure
such as "list of trees", given that the robustness of "list"
and "tree" are known. It would be quite interesting to
apply the techniques mentioned here to a large software
system in production use, in order to gain a better idea of
the costs and effectiveness of robust data structures.

The major goal of our research is to find where and how
to apply redundancy to yield cost-effective fault tolerant

systems.
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