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EXEGESIS OF SELF-ORGANIZING LINEAR SEARCH*

GASTON H. GONNET*, J. IAN MUNRO* axp HENDRA SUWANDAI

Abstract. We consider techniques for self-organizing linear search, examining the behavior of methods -
under arbitrary and specific probability distributions.

The notion of moving an element forward after it has been accessed k times in a row is introduced.
One implementation performs the transformation after any k identical requests. A second essentially
groups requests into batches of k, and performs the action only if all requests of a batch are the same.
Adopting as the transformation, the move to front heuristic, the second approach is shown in general to
be superior. We show that the batched approach, with k = 2, leads to an average search time no
greater than 1.21... times that.of the optimal ordering. For the more direct approach, a ratio of 1.36...

is shown under the same constraints.
The simple move to front heuristic (i.e., kK = 1) is also examined. It is shown that for a particular

distribution this scheme can lead to an average number of probes w/2 times that of the optimal order.
Within an interesting class of distributions, this is shown to be the worst average behavior.

Key words. self organizing files, linear search, move to front, transpose rule, complexity analysis.
asymptotic analysis, heuristics

1. Introduction and preliminary results. Suppose we have a file which must be
searched sequentially, and that the probabilities of accessing the various elements
are fixed and independent, but unfortunately, unknown. The obvious approach to
the problem of finding a good ordering for the list is to count requests and dynam-
ically keep the file in decreasing order by request count. Given enough time, by the
law of large numbers we will clearly arrive at the best possible ordering. The cost
of maintaining such counters is very often prohibitive, and so heuristics for rear-
ranging the file without the use of extra ordering information have been studied
(Bitner [3], Hendricks [8], Knuth [9], McCabe [10], Rivest [11], Tanenbaum [12]).
The basic approach of such methods is to consider a set of n permutations (for a
list of length n), =, ..., m,. If the element currently in position / is requested,
then =, is applied to the list. We will call such a technique a memory-free self-
organizing heuristic. The most obvious such heuristic is the transposition of the
requested element with the one in front of it. Another, more drastic approach is to
move the requested element fo the front of the list, and effectively slide the others
back one position. This method, while asymptotically not as effective as the tran-
-sposition rule, has proven more amenable to analysis.

Our contribution is, first, to continue the study of such memory-free heuristics,
comparing their behavior with that of an optimally ordered list. Secondly, but
perhaps more significantly, we show that the use of even a very small amount of
storage, to “remember” the location of records which have been requested, can lead
to expected search costs arbitrarily close to that of the optimal ordering. The pre-
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denotes (the asvaptotic value of) expected number of probes under the tran-
sposition rule, F(77) the expected number under the move to front rule, and
Oopt(p) = Eip,- the expected number under e optimal ordering, then

NG Pl

F@) =23 3 L

== pitpe;
and for all nontrivial distributions

T@) < F@) < 200:7)

(iii) While the move to front heuristic is known t¢ nroduce a system with cost no
more than twice that of the optimai o-ceeo: the greatest value of
F(P)/Opt () whick has been dermonstrateet . "1+ 1.386). This occurs under
Zipf's law. ie. p; = V/(iH,) (Where H, deaore the n " Harmonic number.
(Knuth [6]).

(iv) If any single memesy free heuristic has asyrino.o behaviour at least as good
as every other such method for every probabiliiv d'stiribution, it is the transpo-
sition rule (A. Yuo as reported by Rivest [81)

A casual glance at the results c¢ited aber . indicates that the measure of
effectiveness of a heuristic which has been used ~rimeet!y is the (asymptotic) ratio of
the expected behaviour of the heuristic to that of she ontimal ordering. This seems
appropriate in studying classes of distributions under swhich the average cost of
searching an optimally ordered list is not bounded. bv a constant as the list becomes
longer (e.g. Zipfs faw). i« not clear that this & good measure for specific distri-
butions, such as p; = %', under which the expected search time is bounded by a con-
stant. Indeed we feel. and in section 3 give "evidence”, that this latter case may be
the reason that we do not as yet have tight bounds on the behaviour of even the
move to front heuristic relative to the optimal ordering. '

Yao’s observation (that if any memory-free heuristic is better than all others
over all possible distributions, it is the transposition rule) is perhaps the most intrigu-
ing fact known about the self organization of linear files. A definition of optimality
for such a class must, however, be made carefully. Rivest [8] informally suggested
such a definition, saying that a set of permutations was an optimal heuristic if, over
all distributions and all initial orderings of the file, the expected number of probes to
perform a search under the heuristic was (asymptotically) no greater than that under
any other scheme using the same distribution and initial configuration. This wording
is, unfortunately, a bit too strong, in that the "do nothing” heuristic outperforms all
others (under most distributions) if it is fortunate enough to find its keys in decreas-
ing order of probability There is, then, under this definition, no optimal memory-
free heuristic. We prefer to make a slight modification saying: A set of permuta-
tions is an optimal memaory free heuristic if for all probability distributions the max-
imum over all initial conficurations of the asymptotic value of the average search
cost is no greater than that for any other such scheme.

A slightly weaker. but equally satisfactory, definition is obtained by insisting
that the e){pected asymptotic behaviour be independent of the initial configuration.
+aich appears to have been Rivest’s intention.
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Under either definition the theorems of Rivest and observations of Yao regard-
ing an optimal heuristic hold.

Next to the asymototic behaviour of o heuristic. its most interesting property is
the rate at which it converges to this asymptotic behaviour. Based on the work of
Bitner [3], it can be shown that while the trinsposition rule is asymptotically better
than the move ‘1o froni rule. the former can recvire Qn2) probes to converge to
within o factor ol {(14+¢€) of the asvmptotic behaviour from an arbitrary initial
configuration. With the following definition. we ¢ make a more general statement

about such methods.
Let G dencic the class of all memory-free self-organizing heuristics which
(i)  When ihe element in position 7 s requested. that element is moved to position
7 (<7 #D and 7y=1) ot clemonts in postions 7; through i —1 are moved
back one position
(i)  No oiher clevients are moved.
(i) If i <) then 7,€7;.
THEORI NV E o Fe asynipiotic beheviour of a reorganization technique in G is
independent «f the ivivial conficiration.
Proof. First we .anore ik eloinenis with probabidity 0 of being accessed since
they will eventnsily poreolsie to the end of the list and he of no concern. We note
. . . . b ) .
that anv cocficuraton iv o oononie sfter 20 most n - accesses (we simply access each
e tie sesion |oin the reverse of the desired order).

elermeni enei
The probabiiinn of 08 sequence of reguodds is non zero, consegoently given
enough timeo each conficar:-iion is reachable with probability 1. The theorem then
follows. O

Tiroresm Y20 (f Hy and Hs are heuristics in G such that H\#H, and
Ti(H ) < 7i(H>) for all i, then, for all anntrivial distributions, H | converges to its
asymptotic behaviows wmore guickly than H 5, but the expected search time under H o
is. asvmptoticallv. less thar that of H .

Procf The orost - =iar to the one in [8].

TirereM 1.3 The transpositioi rule can take Qn %) accesses to reach within
Sfactor V+e i the stead v <tate helaviour.

Prooj. To constries sach an exaenple. let n be the total number of elements, k

.. e =8 .. .-
of witich have accessing srobabilities Era and the n —k remaining have probability
o
n—k
) 1-6

Let 6 be small cnough so that —k<—k_ then the cost of the optimal
n—k

configuration is

Opt (@) = k(l\'-i‘%‘i_/‘)'(l—ﬁ)Jrn(n+|)-2—k(k+l).nik‘

The worst case (the reves:.. of the optimal) has a cost

worst case = D= —k)n—k+1) 1=6  (n—k)n—k+1) &
2 k 2 n—k
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Each access to the file either maintains the average cost, or increases or
-6 &
k n—k’
Since the stecady state cost of the transposition rule is less than twice the
optimal. the least number of accesses to reach a factor of 1+, (0<e<1) of the

decreases it by

steady state is

worst_case —2(1+e)Opt (P
1= __ 45
k n—k
S~ =l —(2t ek 0 15)
2\l 5 €l 2 1 ¥ 0

minaccesses >

. . 5 5 . 2
iff kK = an then for any « such that a—Ta->() or (i<a<? then

. .
minaccesses = Qn-) O

For the move to front rule we define the overwork as in Bitner [3] to be the
excess work. from the steady state situation. 10 be done at time 1.

We Lrow that

pi=p)

=p—p;).
pitn; =p=p)

owl(1) =

THEOREN 14 The overwvork at time ¢ in the move 1o front rude is O (n 2/1).
Proof.  Using the fuct that for the chosen summation range p;<p;, we can

rewrite the above as

n
Oow(t) < 2[7[“_17i)’("-f)~

i=1

l[l ! e !

N ooy (1—=p:) d
For a given 1, pi(1—p)' € pprn [I+I < T ind consequently
c)_'(n—l)n n-
ow(t) £ ———— = 0(—). O
wir) A +1) )

This bound is tight in the sensc that we can find a file such that for any >0,
Ow(t) = Qun'~9 for 1 = o(n'€. Consider the table with

pi = % 1<i<n/2
2n —i .
Pi 3T n/2<ign

and

with » large enough such that p>p». Then

n/2 )2
ow(t) > % _(&_P,l_

(1=pi—p;)
i=2i>n/2 pi+p_/ ' /
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t

1

(n—1(n-=2) e(n L) |1-a( - I1+€)

8

>

Fort = o(n'"¢ we derive
Ow(t) = Qn'™9.

For this example we also find that

Ow(t) _ ol
Fo (1).

2. k in a Row Heuristics. As we have noted. keep'ng a count on the number of
accesses made an cach element does enable us ¢ order a table optimally. The
objection. of course. s the storage requirement. Ir this section we proposed a class
of heuristics. closcly s to the merory-free technivees. which use (log n + log k),
(for fixed k). cxtra hits of storage rither thar the O¢a) or more bits required for
counter schemes. These techniques vicld near optimal behaviour.

The basic approach is sinple we apalv “hs iressposition (move Lo front or any
other) hocuristic only f the same Do o ccees oo & times inoa row. We first

analyze the shiaple & heuristic and later @ shight mod:fication of it.

2.1. Simple & Heuristics. Wc first unalyse the simple & heuristic with the move to
front rule. Lot A (70 denote the (asymprotic) prob:b ity that record j precedes
record 7 in the list. This value can be found by considering the Markov chain shown

in figure 1.

FIGURE 1
Markov Chain for the simple k heuristic.

ig is the initial state where record 7 arecedes record j. In this state, record j is
accessed with probability p; and causer  transition to state 7. Otherwise, with pro-
bability I—=p; we remain ‘n sioic i, 1 record j is accessed k times in a row, the
move 1o fron: rule is appied and we will arrive at state jo where record j precedes
record 7. The nrohabl v of record j preceding record 7 in the list is given by the
sum of the prob.hiiitics of states jo.fy.....Jx —1. The probabilities of the states satisfy
the following equations as can be seen from: the diagram.

k=1
pitpj =1

pi] = p_/[pi()
and
py = plrjy  0<I<k

k=1
Pig = (I_Pj)zopi[+[7if)jk_|
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k—1
(1—p,-)zop_,~,+pjpik i

The solution of this system of equations is

P = [’/"P/m
Im = k— k—1
p_,‘z ol +pf";) p
=0 =0
_ PII\P m
pim - k=1

z p /+p
as can be casilv verified. Thus we have shown the following lemma:

LEMMA 2.1.1.

O]
n/zpi
. =0
be(ii) = —7= k=1
k ¢ !
pi X rl+pkY pl
=() =()

Now let Fi(7) denote the (asymptotic) values of the expected number of
probes necessary to perform a search in a table ordered under the simple k heuristic

with the raove to front rule. Then;

/
L p,n,y, "+l ;}0/),

== l’ I’l/+l71 21’/

Fr@) =

Noting that the average scarch cost under the optimal ordering is

i

opt(P) = 2 ip; and that we would like to bound the ratio of these expressions,
i=1

consider the ratio of the m " terms of the two cxpressions which can be simplified as

F 1

—Ok—(@z) < max —I—E
t m —

pep 7= P/Zl’m"’[’mz ,D,

This term is, of course. bounded by the maximum of the terms in the summation.
In other words. it is bounded by the maximum of

prU4g+..g" Napgk 4p+.. 4pk Y
pRU+g+.. g Nrgk+p+..4pk 7Y

’

subject to 0<g <p 1.

_ 1+g +...+qk_l < pk+qu_1k
kl+p+‘..+p/"_1 pk+qkk
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@/ +p/pk _ x*tkx
(w /g +k xK+k

where x=p [q>1

The maximum of this term occurs when x satisfies the equation
(I=kxk+kxk=1+k =0
and

x = l+—l—nl\jk—+o

Ink
o |

. . g lnk . .
To prove this last result, we substitute x = 1+i/_-‘—' in the above polynomial and

\

after some routine derivations we find

=k )xh+kx* "k = k9%—aknk +k +0 ((Ink )2k 2.

For any a >1 the polynomial hecomes negative for a sufficiently large & and simi-
larly for a <1 the polvnomial becomes positive. Conscquently the root of the poly-
nomial occurs for :

‘ )

InA |

ral

X = l+%+o

THEOREM 2.1.2. The ratio of the ¢xpected number of probes required to per-
form a linear search on a table ordercd by the simple k heuristic with the move to
front rule, Fi (7). to the search cost under the opii::al ordering is bounded by

Fr.(/
_L(E_; < 140 (h_i(.)
Op:(p) k
. . i o xR4kx .
Proof. Substitute the asymptotic value of the root in - Fap In particular
X

we note that
Fa@) < (1+(1+V3)"hop () =~ 1.36602...0pt (7).
Fip) < 1.27388 . Opi (P,
and

Fa) < 1.22788..0pt (7). O

LEMMA 2.1.3. For k>1 and pi>p;

pi(l4pi+.+pkN+pi+. . 4pF™D < pil4pj+.+pE N1 +pi+..+pk ).

Proof. By induction on k. For k =2: p;(1+p;) < pi(1+p;). Assume that the
inequality holds for & i.c.

piatb—pF=Y < piba—pk=" *)

wherea = 1+p;+..+pfTand b = l+p_,-+..‘+'p_,l"_1.
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We also know that p_,l"(l —p,-k) < p,-k(l—p_,k) or
pii-ppa < pki-pjb (**)
Adding (*) and (**) we obtain
pjab=apip} < piab—bpfp;
or

pibla+pt) < pitb+pfa O

COROLLARY 2.1.4. For k>1 and p; > p; then
pil=pM(1=pf =N < pi0=p1=pfTY

THEOREM 2.1.5. For k>1. Fi () < Fi—\(p). Furthermore, the inequality is
strict for non-trivial distributions.
j- the following is valid:

(I=pH=pl =N or

Proof. For i <jand therelore p; > p
<
pl~Ipfa=pha=pf=h < plpfla—phHa-pkh

By Corollary 2.1.4. p;(l —p,/‘)(l—p_,-" -1

and hence
2%k -1 1=pf '_/’fk__'_ + pk=ipk ___l_”"k __l_”-/'k—]
! I=pi  1=p; CON =pi 1-p;
sy Lot 1=pf T + phpk-l = 1=pf~!
= I=pi  1-p; Pipi I=p;j 1=p;
or
pl\_ ]—[),‘k k=1 l—Pik_l
) 1—,17[ 7 I_pi
k A k=1 k—1
K 1-pi k 1=p; k—1 e di ypk- l—pj
P 1—p: "' N=p; / 1—p; 4 1—p;
Pi P Pi Pj

and therefore
bi(j.i) < br—1(ii)

The theorem follows from [5, Theorem 2]. 0O

2.2. Batched 4 Heuristics. A slightly d'fferent approach is to view requests as (for
purposes of veoresnizc oy beire batched into grcuns of k consecutive requests. A
reorder o pormutat on s then oaVed only o 40l & requests in a batch were for the
same cierment. The effeet of stch schemes may scem to be equivalent to the simple &
approach. However, if an elerent is wocessed and subsequently not moved forward
because of the access of some othsr firknown) element, the original element has a
lower probahil'ty of heing moved fors:»1 than in the case of the basic k in a row
scheme. TIntuitively. these heuristics are better thun their counterparts of simple k
heuristics because these heuristics perform fewer changes.



-9-

For a batched k heuristic with the move to front rule, the probability that
record j precedes record i (h'(jii)) can be derived in an analogous manner to that for
br (j.i) (in section 2.1). Indeed the following Markov chain describes this process.

FIGURF Tl
Markov Chain for Batched k algorithm.

It can be easily verified from the above Markov chain that

I‘.
bk' _ Pj
pf+pf

Intuitively, the effect of the hitched A heuristics is to raise the probability of access
of each record to the power A which after normalization makes the large probabili-
ties larger and the small probabilitics even smaller.

Definc F,\.’(ﬁ’) and 77 () for the hatched schemes in the same way that Fr(@)
and Ty (7)) were defined lor the simpic & schemes.

THIOREM 221 For k>1. F{(7) < Fx(P). The inequality is strict for all
nontrivial distributions.

Proof. Fori<jand thus p; > p;

WS L L= WS
pj zol’i +pip; zopj < pipj ZOP:‘ +pj zopi-

Thus
k—1
. pF> pl
P =0
ko Kk S TR =T
kyp! , .
PPy p_,-‘;)p/+m‘2p}
=0 =0
or

be(ii) < bi(ii) — fori<j

The theorem follows from [5. Theorem 2]. O

THEOREM 2.2.2. For k>1, Ti(7) < Tk —1(F). The inequality is strict for all
non-trivial distributions.

Proof. Similar to that of Theorem 2.2.1. O
LEMMA 223 The polvnomial (k—1)x*=kxk~'=1 has a root at

x = H‘L"'O(k =2 where a is the root of (a—1)e? = 1.

k
_qpa. b -3
Proof. Letx = l+;—+;2—+0(1\ ). Then

_ a 2b—a’ -3

Inx = k+ 52 +0(k‘ ),
and
.2

xk = eq1+ 2= Lok 7Y,

2k
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" g
xk=l = X o ey 2bzatmla -
x 2k

Substituting xKand x* ! in the original polynomial, we get

B a2
2b—a Y—e 41+ b__) /\,f’(‘}+_2_ba—2a)—l+0(k—l) =0

Qa,
ke%(1+ % Y

or
—eftae'+1+0(k ") =

Thus a solves the equation ¢“(a—1) = 1, ora = 1.27846.... 0O

THEOREM 2.2.4. The ratio of the expected number of probes required to per-
Sorm a linear search or a tah!s ovderii by the baiched k heuristic with the move to
front rule, F (). 10 the search cost under the optimal ordering is bounded by

FT( 3
k 72— 1+4 )
Opt(p) k
where a is the solution of e“a—1) = 1 ora = 1.27846....
In particular, solving the polynomial c:\(zu;lly for k =2,3 and 4 we obtain
Fi@) < '+‘/_ Opt(?) = 1.20710...0pt @),

F;(,-f) < 1.11843..0pt (p).
F4@) < 1.08302...0pt (7).

Proof.
k
" P
b (ji) = —/—.
Fpf
,,k
Fk(?) 21’1 1+ —/[’,+P:

4 :Pf"‘l’:‘/’/

i
E: "+p,‘

1y

Noting that the average search cost under the optimal ordering is

it

Opt(P) = 2 ip; and considering the ratio of the m ' terms of the two expressions,
=1

we get

F\,’(_’) m (\'+ k=1
kP < mu\{ | E PjT™Pm Pj .
m

Opt (7 m#& pkeph,

This term is bounded by the maximum of the terms in the summation. In other

words, it is bounded by the maximum of

k k—1
+ 3

E2d L 0gq<p<]
ph+q

or
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xk+x
xk+1

>1.

This ratio is maximized when x satisfies (k —1)x k_kxk=1-1 = 0. By Lemma 2.2.3,

the ratio is maximized when x .= l+»;—:_-~+0(/\ _2). Thus,
a =2
: —+0 (k™)
ky o _
xk+.\ = |42 k 1 < 1+ k -
x"+1 +1 e(1+0(k ~")+1
a
/\ -9
< ) = 9. O
) ’ )

THEOREM 2.2.5. Under the batched k heuristic with transposition rule the sta-
tionary probabilities obey
ProbIR; R~ RiR; ,+1 Rl pi_’;
Prob[R; R. ,4..R

k
' +l ’n] pij+|

Proof.
ProbiR;..R; ] =

(=ply—pl—...=plProb [R;..R; ] + E<p, Prob[R;..Ri; Rij-Ri,]
i</<n !

With the equation stated in the theorem, this implies

Prob[R;..R; | = Prob[R;,..R;]. O

COROLLARY 2.2.6.

/
Pik

P ik+1

Prob [R 1...R,'_1R,'..AR,'+/...R,,]
Prob [R ]...Rl'_lRf+]...Ri...R,1]

THEORFM 22.7. T{(7) < F, () for all distributions, furthermore the inequal-
ity is strict for nontrivial distributions.

Proof.

Prob [record | precedes record i] = X

for batched & heuristic with move to front rule. For batched k heuristic with tran-
sposition rule we have

n—-

Prob [record | precedes record i] = ;: ZProb [a]

where « is a configuration for which record j precedes record i, with exactly / items

n=2
= { 2/; Prob [13]}

between them.

1+1
rr
K
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where B is a configuration identical to o except that record j and record i are inter-
changed.

k
< p_,l\ (1—Prob [record j precedes record i))
Pi
Thus
p}
Prob [record j precedes record i] < ke K O
Pi +p.l

2.3. A brief disgression to self-organizing binary search trees. In the case of the
self-creaniz o socar s Che i tegeen doplied to the move to front rule perform
uniformly better thin the move to front heuristic. But. in the case of self-organizing
binary scarch trees [2], the batched & scheme applied to the move to root heuristic is

not always v thar the <oranie move to root heuristic. For example, if p | = 0.4,
pa2=0.3und p;i= 0.3 the eost for cacve to root is 1.88286... and the cost for the
batched 2 - cherme onticd "o move (¢ oot is 1.88306... . The intuitive explanation

for this Gict is that under the batched scheme sipplied to move to root heuristic, the
key with the largest nrohubilitn of secess s mere inclined to become the root of the
tree than in the case for the simple move to root. However, having the most fre-
quently accessed key as the root of the tree does not necesarily produce the best tree.
The trees are depicted in Figure 111

FIGURE 111
Three noceible (rees

Furthermore. although we are ab'c 1o decrease the cost of the batched k-
scheme as A increases nothe case of lincar list, the cost of the tree obtained by the
batched k schewic applied to the move 1o root heuristic will not necessarily decrease
as k increases. This occurs. for example. in the three key tree noted above and also
in the case in which n keww b o el of being accessed.  in the latter
example the inove 1o root heurist - Both with and without a batched scheme produce
a tree w.th a cost of about (21 Mlog n. We note that this is the worst possible
behaviour relitive to the optimua! solution for the simple move to root heuristic.

3. More on the Move to Front Heuristic. ' this section our attention returns to
memaory-frec Louesices oy particular to the move to front rule. We analyze the
expected behiviour of i rule for i number of disiributions and demonstrate what
is apparenily a rather tight uaper bourd on the ratio F(p)/Opt (D) for a class of dis-
tributions.  This leads o the ohservation that this ratio can be as large, and no
larger than, /2= 1.57 for an steresting ob: o of distributions. It also gives us some
intuition s o the dfTiculty of closing the gap haiween the worst known case of this
ratio. and the boest known upper bound. 2. Finally an expression for arbitrary
moments of the number of accesses required by the move to front heuristic under
any distribution is given.
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3.1. Analyses of the Cost of the Move to Front Rule under Several Distributions.

Knuth [6] analyzed the expected cost of i search under the move to front rule. We

present the results of such an analysis for this and several other interesting distribu-

. . . . . F R .

tions. The most interesting obhservatior = that the ratio F@_ for Lotka’s Law is
0'11)1(7)

%r_ (H, denotes the n™ harmon’c nunber. H,{1) denotes Zi—l). We are interested

i=1
primarily in the case in which i, the number of elements in the list, tends to « )

(1) Zipfs Law. Usder Zipfs law clements have accessing probabilities p; = o
Uty
The opiimal ordering has a cost Opi(p) = n/H,. The simple move to front rule
has a cost [6]: '

FE) = 202 —To(l)

n -

In this case we can also compute

, I l n n I
F = —+—
27 = Ty ,2=, 23 i 242
B N S B T L. YC.7) WS <R W
2 Hn .j=lA 24/.2 2’ i=n+1 i2+j2
H H . »
. -1, . n, 7 In2 n
~ — 1 + X —(————)~ |. .
»zlcoth(w) v/2=| an”'(j/n) | +O (1) H,,(4 5 ) = 1.13197 H,

(ii) For Lotka’s Law the accessing prohabilities are p; = (i *H,*) ™!, and the optimal
arrangement has cost Opt(p) = H, /H, 2

N

1

| |
FP) = 5+
- "

i)

17

]
]

Az

1 1 & e 7r<.01h( Tj) e 1
— - ,
2 Hn(z)i2=l [ 2/'2 1 i= '1+Ii2+j2

_ (2 i [w 0 h(7r/) t‘m_l;j/”)+0(n—2)]
) = .

3In n+3v+6C 2
_ 3y |__6§_g2_)+0(1nn)
™ ™ n

F@) = lnn—000206339.+0 (1011
T }

where C| = —2 In(1—e 2™y = 0.001872... and B(2) = 0.91596... is Catalan’s con-
J

stant [1].

(iii) For the exponential distribution we consider that n—o and pi = (1—a)a'~!

Consequently Opt(p) = —I-l—a.
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Using the modified Euler-Maclaurin summation formula [4] we obtain

2In2 1 Ina In‘a 5
- - - +0 (In*a).
F@) ma 2 24 2880 TO(ma)

5 .
(iv) For the wedge distribution p; = A(’;—-l-;ll—);_zll and Opt(p) = -;l—+% It is

straightforward to compute

- (- H
F@) = 4(1~In2) 31n2) n—H,+ (1 31n2) +T"+0(n_').

3.2. Upper Bounds on _E@ for a Class of Distributions. Rivest [8] has shown

Opt{p)
that the average cost of the move to front rule is at most twice that of the optimal

ordering. It has been conjectured that this bound is not tight, and indeed the worst

. . .o.om . . . .
value known for this ratio is = as seen in the preceding subsection. In this subsec-

tion we derive an upper bound for the ratio. F(p7)/Opt (77), for the class of distribu-
tions p,-~i”)\ Observing that Opt (P is bounded by a constant when A>2, we will
sec that over the distributions of the sbeve form for which the average search time is
not bounded. Lotka’s Law is the distribution which maximizes the ratio
F@)/Opt(p). Our analysis seems very good in the range 0KA<2, but weakens
above this range.

Case (i) 0<AL2

é 2': pipj
F@ _ Fi =5 0ite)
Opt 0o ’

pt (7)) _ 2 ip;

i=1

Taking the m™ term of the numerator and denominator we have

5 o PmPj
F@’) < =1 (Pm"'pj) 2 1

Opt () = mp g, m = l+pm/Pj

nt
=Ly -l Py ),
m =1 pj pPj
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Substituting (%"L) = (-n%))‘ and doing some manipulation we can show that
J

LEL i | L+ sly-u - ¢(1+“'>+¢(“‘)1 ,

1'"(x )
T'(x)

where / ranges over the integers and ¥(x) = is the Psi function [1]. Comput-

ing this limit we obtain:

THEOREM 3.1. Over the class of probability distributions of the form pi~i
Sfor 0KAK2. (Note that Opt (P is not bounded in this case).

=X

FE AT
omeh <3| ¢(2A)]

We note that in the relevant range this is « monotonic increasing function of A and

COROLILARY 3.2, For probability distributions of the form pi~i > such that

Opt (P diverges: e < 1 Equality is achieved when \ = 2.
Opt (1)
It is interesting to note a few other values for A and the upper bound on the
ratio
A Upper bound on Ratio
0 (Uniform) 1
0 4(1-1n2) = 1.2274...
1 (Zipf) 2In2 = 1.3863...
3 4
—_— 7 —
3 3 \/3 —In2) = 1.4942...
2 (Lotka) ? = 1.5708...
TABLE I

We note that these bounds are tight for A = 0,1 and 2, which are the only values in
the range for which we have a precise analysis.

Consider now the other case:

Case (i1) A>2
Our analysis is made easier if we let n—>, then it can be shown for this range
that
_
Foit

(where ¢ denotes the Riemann Zeta function). Thus

Pi =

_ %, = SQ=D
Opt (P) ’z:;]tp, O
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and

Asymptotic analysis using the Euler-Mclaurin summation formula shows that the
fourth term is negative in the range 2<A<4. hence taking the first three terms we
find an upper bound:

F) < m—n[ w | 1

7

A1 1
\0(—2;\—)—'#(5\‘)

) |sin(r/n) A

MQA+D AAZ—2)E(A+3)
48¢(N) 5760¢(N)

+

For A = 2.1 this value is roughly 1.5, It decreases monotonically to A =4
where it is about 1.1. The bound appears to be reasonably good, although we have
discarded terms and so it is definitely not tight.

For A>4 the summation that defines F(p) becomes rapidly convergent and
using simple arguments we can bound it by

2 20
+ 3
C(142% T A2
< 1.21981... for A>4

FP) < 1+

and equivalently since Opt (7) > 1,

m_ 1 2 2 32—)\
Opt (7 < +§(>\)(1+2>\)+>\—2 :

3.3. Worst cases of the Move to Front rule. From the above discussion one wonders
which is the worst possible case for the move to front rule. There are two interesting

worst cases, one given by the distribution that maximizes -Oiﬁ— and the second is
Dt
given by the one that maximizes F(p)—Opt(p). Let

2
n p,
aj = -
A,E=| Pktpj
then
THEOREM 3.3.1. The probability distribution that maximizes the ratio fol-
lows
ak=er _ _F@)
k=1 20pt (@)

Proof. By taking partial derivatives of F@) with respect to pg. O
: Opt(P)
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THEOREM 3.3.2. The probability distribution that maximizes the difference

F(P)—O0pt(p) follows

a1

k-1 2°
Proof. By taking partial derivatives of F(p)—Opt(p) with respect of pg. O
Unfortunately we do not know an explicit form for the worst cases, although

we can compute the distributions for small n. The following two graphs show the
worst ratio and the worst difference for small values of a.

FIGURE IV
Worst Ratio and Worst difference for Move to Front Rule

3.4. Arbitrary Moments of the Move to Front Rule. A closed form for the average
cost of the memory-free move to front heuristic is given by Rivest [8] and used
extensively in this paper. Also of interest are higher moments of this value and of
course the variance. which can be derived as follows.

Let B;; be the random variable defined by

1 if record i precedes record j
Bij 0 otherwise

pPi

Then let E[B;] = b(i,j) =

[ Y / pitp;
n n
E[(accesses)™ = E Epj(z B+n)™"| = ZpA,-E [(zBij+1)m].
J=1 0 0# =1 i#j
m
Let S;(m) = 2 i |- We derive
N>

E[(accesses)™ = D p; [1+S i(m)E D) Bij]+S Am)E| g: B,:,-Bkj]+...].
=i 2 i

Finally using the expression for the probability of a given permutation [S] we con-
clude

THEOREM 3.3. The m'™ moment of the distribution is given by

pPiDj
E[(accesses)™ = 1428 (m)», ——
,'E<jpi+l’j

PiPkPj
i&l<jpitpitpj

1 + 1 + 1
pjtpk  pitpj pitpk
PiPiy-Pipqy

+2r!'S,(m) I(iPir--sPinr1)s
r [1<,‘2<§,‘r<ir+lpi1+pi2+"‘+pir+1 | Ir+1

+4S5(m)

where

1 1 1
a,-|+a,~2 a,-|+a,-2+a,-3 a;|+ai2+...+ail_1

I(a.aj...a) = 2
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the summation being over all permutations i i 5 . . . ,i;—10f the integers 1../.

In particular form = 1,

PiDj
F@) = 1423 —L-,
@ 12<j pitp;j
and form = 2,
1 1 1
+ +
pjtpk pitpj Ppitpk

DiDj DiPkPj
E [(accesses *] = 1+6Y ——L—+4 g
;,' pitpj <j pitpiktpj

From this we can demostrate

COROLLARY 3.4. The variance of the move to front heuristic is
PiPKPj

<jPitPKtp;

1 + 1 + 1
pitpj pPjtpk DPktDi

var (7)) = (2—F(ﬁ’))(F(ﬁ’)—1)+4.§

The form of this value is quite different from the expression for the variance given by
McCabe [7].

4. Conclusion. We have demonstrated a technique for maintaining self-organizing
linear files in near optimal order without significant memory requirements.
Although the analysis given can probably be tightened, it is sufficient to demonstrate
the value of the approach. The behaviour of the simple move to front heuristic has
been analyzed for a class of distributions. It is shown that over all distributions in
this class the ratio of the cost of the move to front scheme to that of optimal order-
ing is at most w/2, and that this bound can be achieved. We conjecture that this is
the maximum value this ratio can achieve over any class of distributions whose
optimal search cost is unbounded. ‘
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FIGURE 1

Harkov Chain for the simple b heuristic.
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FIGURE 11

Markov Chain for Batched k algorithm.



Optimal tree The two likeliest trees of the batched
Cost = 1.7 2 applied to move to root heuristic.
FIGURE III

Three possible trees.

worst difference

worst ratio

FIGURE IV

Worst Ratio and Worst difference for Move to Front Rule.
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