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$1  Introduction

Let <X,h> be a dynamical system where X 1is the state space
and h is the mapping from X into itself. Given two such systems

h,> simulates <X, ,h > if

<X,,h,> and <X, ,h. >, we say that <X2, 2 1204

1’71 2’72

the dynamics of <X1,h > may be completely represented by a part of the

1
dynamics of <X2,h2>. That is, we assume the existence of an injective

mapping f from Xl into X2 such that the following diagram commutes:

£
X ———0u X,

&%

In this framework we can investigate the fundamental properties
of the simulation relation, for example, through its decomposition. Here
the decomposition means to express a given simulation relation as a certain
composition of simpler relations.

To illustrate our general idea on a concrete example, we will
consider the systems where the state space is a finitely generated free
monoid and the mapping is defined by a deterministic generalized sequential

machine (dgsm). [1] We also assume that the injective mapping f which

* On leave from Department of Biophysics, Kyoto University, Kyoto, Japan.




relates the two systems under consideration is realized by a dgsm.
Especially we investigate in some detail tﬁe cases where there exists
a dgsm mapping E such that E is an inverse of f.

Analysis of simulation relation as reported here started in
[2] where the mappings are restricted to be defined by monoid homomorphisms.
The results of this report generalize those in [2] and add more, establishing
the fundamental relationships between the decompositions of the systems and

the simulation relation or its decomposition.



§2 Definitions and Preliminary Results

In what follows, capital Greek letters designate finite sets.
Let I be a finite set and I* be the monoid generated by

%L under the operation of concatenation. Let Z+ = g% - {€} where ¢

is the identity element of X*. When ! is partitioned into n mutually

disjoint subsets 21,22,..~,Zn, we write I = Zl ® 22 ® ... P Zn.

Def. 1 Let G(Z,A) denote the set of all dgsm mappings h: ZI#%* - A%
such that for each a € A there exists u € it for which a appears
in h(u). H(Z,A) 1is the subset of G(I,A) composed of one state dgsm

mappings (i.e. monoid homomorphisms).

Def. 2 We say that h e G(Z,A)(H(Z,A)) has a decomposition fg iIf
h(u) = f(g(u)) for any u ¢ I* such that f ¢ G(0,A)(H(O,A)) and
g ¢ G(Z,0)(H(Z,0)) for some alphabet O.

The following lemmas are easy to prove.
Lemma 1 Let O be a binary alphabet. Any h ¢ G(Z,A) has a de-
composition fg such that f e G(0,A) is onto A* and g € G(%,0).
Lemma 2 Given h € G(Z,A), we can have a decomposition fg such that
f ¢ H(O,4) and g € G(£,0), where g is length preserving.

It is useful to note that a decomposition fg of h € H(Z,A)
signifies nothing but a way of expressing h(a)'s as elements in
{fA) / A € A}* where a ¢ Z. [2,3]

In this report, we restrict our attention to dynamical systems
<IZ*,h> where I is an arbitrary finite alphabet and h ¢ G(Z,Z). (Note

that if h ¢ H(Z,Z), then the system <ZI*,h> is but a DOL scheme [4]).

Def. 3 Given two systems <ZX*,h> and <A*,g>, we say that <I*,h>

simulates <A*,g> (or simply, h simulates g) if there exists



f ¢ G(A,Z) which is injective such that hf = fg. We write this relation
symbolically as h £ g or g —g h.

Note that it is decidable whether a given gsm mapping is
injective by Theorem 5 in [5].

Some of the basic properties of the simulation relation are listed.
The domain and the range alphabets of each mapping are assumed to be given
appropriately. In the list below, lower case Greek letters denote per-

mutations over some finite sets.
Ho-1
(r. 1) a) h+1yu hy
-1

b) h 4 g e u-lhu & T ﬂ—lg'rr.

By virtue of this, we may disregard the renaming of the alphabets

in considering the simulation relation.

£ £ £ £
(P. 2) a) hetgelikoh <2y

b) Let A be an identity mapping.

h&h-&f—gahf—g@hif—gz\g,

These properties show that the set of systems under consideration
makes a 'category' where the injective dgsm mappings are the morphisms.

(P. 3) Let n be an arbitrary positive integer.

a) h(f-ga hn<f—gn

b) When h is injective,

n

c) When g is injective,
f fg"
(P. 4) Let h e G(Z,Z) and h € G(A,A) be injective mappings.

h=fg, h=gf >h<h

09 4 1+h

This is the fundamental relationship between the decomposition

of injective systems and their simulation relation.



(P. -5) Given an injective g ¢ G(Z,Z), we have a binary alphabet 0,
h e G©,0) and f e H(50) such that h & g.
By Lemma 1, we have g = pf for some f ¢ G(£,0) and p € G(O,L).
Then fp £ pf. Put h = fp ¢ G(0,0).

(P. 4) and (P. 5) make the following definition meaningful.

Def. 4 Consider a simulation relation h £-g. If h = fp for some dgsm
mapping p, we call the simulation primitive.

Note that if h £ g and h = fp, then g = pf.



§3  Decomposition of Simulation Relation

In this section we show two ways of decomposition of simulation
relation: parallel and series. Before going into the details, we need some
definitions. Let I = El P ... ® Zn. For any x e L¥, xlZ is the longest

1 .
sparse subword of x which is entirely composed of the elements in Zi.
i { = * - *
That is, if x alb1a2b2 . e akbk where aj € Zi and bj e (X Zi) for

j=1,2,...,k, then xlZ = a,3,...a,.
i

Def. 5 Let I = 21 ®...PL, A=A & ... & An, and let T be a

n
permutation over {1,2,...,n}. Given n dgsm mappings hi € G(Zi’Aﬂ(i))
(i=1,2,...,n), we define a dgsm mapping h ¢ G(Z,A) out of hi's as follows:
(i) h(a) = hi(a) if a e Zi’ and
(ii) for any x € Z+ and any a € Zi
h(xa) = h(x)(h, (x|, ) Th, (xal, ).
i Zi i Zi
We denote h = hl ® .. ® hn(ﬂ). In case T 1is the identity mapping, we
also write h = h1 ® ... h .
n
Lemma 3 Let f = fl ® ... ® fn(ﬂ) as defined in Def. 5. Then f is
injective if and only if all the fi's (i=1,2,...,n) are injective.

Proof Let f be notinjective. There exist distinct x, x' € I* such

that f(x) = f(x') =y. When y = €, there exist some fi and x € Zi

]

such that fi(;) €, which implies fi is not injective. When y # €,
let y = Y1Yge ¥ and assume ¥, € Ai for some i. Then we can write

x =x,w and x' = x]w'
1 1

where x, and xi are the longest prefix in

I¥ of x and x', respectively. As £,(x) = £,(x]), either x; = x) or £,

is not injective. When X = xi, repeat the process using w and w'

instead of x and x'. It finally terminates and therefore some £; is

not injective. Conversely, if some fi is not injective, then clearly

f 1is not injective.



3.1. Parallel Decomposition

Theorem 1 Let Z =X & ,..@®ZI and A=A, @& ... ® A . Assume
—_—_— 1 n 1 n

h = h1 ® ... ® hn(ﬂ) and f = f1 ..., @ frI where h ¢ G(I,I) and

f € G(A,L). Then we have for g ¢ G(A,Q)

g=gl®...®g(fn)
hf =fg =y ¢ - for i=1,2
f. ﬂ(i)gi or 325400,
P f L hf = f
TOO et g, that is, (h1 ® ... ® hn)(f1 e ... 6 fn)

ﬂ(i))
1,...,n, hifi = fﬂ(i) g; must hold.

= (f1 ® ... @ fn)g. Define 8 = glﬂg, then 8 must be in G(Ai’ A

by the assumption. Also for 1

B h e o0 Y e e e = =
ecause ( 1 ® ® hn)(f1 (2] @ fn) hlf1 ® ... ® hnfn

fn(l) g ® ... ® fﬂ(n) g8, = (fl ... D fn)g, g must be g; ® ... ® g, (m).

The rest of the proof is easy.

Cor. 1.1 Under the same condition as in the Theorem 1,

fy

£
- .. h, « 2+ - ...
h < g=hv;-1., by Bt 8Vi L1y 8r(1)81
Vi
where m (i) =1 (i=1,2,...,n).

Cor. 1.2 Under the same condition as in the Theorem 1, and if 17 i1is identity,

f fi
h+ge hi — g (i=1,2,...,n).

In Def. 5, we defined a dgsm mapping h = h1 ® ... ® hn (m)
where each hi (i=1,...,n) has distinct domain and range. We here define

another composite mapping where the ranges of all the h,6's (i=1,...,n)

i

are the same.

Def. 6 Let X = Zl ® ... P Zn and assume that n dgsm mappings

hi € G(Zi,A) (i=1,2,...,n) are given. We define a dgsm mapping h ¢ G(Z,A)

as h = u(ylhl e ... 8 Ynhn) where i A~ Ai’ Ai = {a(i)]a e A},

Yi(a) = a(i) for any a e A (i=1,...,n), and ﬁ:(gAi) -+ A such that

-

We denote this composition by h = h1 ... & hn.

u@y = a.



Lemma 4. Let A = Al @ ... @ An' Assume
h e G(%,Z), £ = fl b ... P fn e G(A L), fi € G(Aiji),
g=8 ®...08 € G(A,A) and g € G(Ai’Ai) (i-1,...,n). If £ is

injective, then
f

hfgendd g, (i=1,...,n)

3.2, Series Decomposition

Given a simulation relation h £—g and a decomposition

f = flf2 (fl:injective), it is not necessarily possible to decompose the
f f

relation into h G—l k <2 g for some system k. We have a sufficient

condition for a simulation relation to be decomposed as follows.
f.f f f

Theorem 2 If h 6—l—g g and h <L k, then we have k 4—2-3.
Proof. We have flfzg = hflf2 = flkfz’ Because of the injectivity
of fl’ we get fzg = kfz. Note that f2 is injective when f1f2 is
injective.
flf2
Cor. 2.1 f.h, «—— ¢
—_— 11 f1 f2
= f h, «—=hf <—g¢g
£ tind . 1 171
piinjective
(Note that the left hand side simulation
relation is primitive.)
f15,
Cor. 2.2 h «<——g . f2
fl = g<=g
h «<—g
£ f
Cor. 2.3 h L2 g f2
fl =» h <«—g
h<—h

In view of the above Corollaries, a special type of simulation
. f . s
i.e., simulation by itself (h + h) seems to deserve attention. This
is the case where two gsm mappings become commutative (hf = fh) in

the usual sense.



84  Commutative Mappings

In this section we investigate several properties of commutative
dgsm mappings. The class of commutative dgsm mappings for a given mapping
is related not only to the simplest type of simulation but also to more

general types as shown below.

Def. 7 Two dgsm mappings h, g € G(Z,I) are said to be commutative if
hg = gh. Let C(h) denote the class of dgsm mappings which commute with
fixed dgsm h, i.e., C(h) = {g € G(%,%) |hg = gh} for h e G(Z,I).
Some of the properties of C(h) for h ¢ G(Z,Z) are listed
below.
(Pc. 1) a) f, g e C(h) = fg € C(h)
b) f ¢ C(hl), f e C(hZ) = f ¢ C(hth)
(Pc. 2) a) C(h) c C(hn) for any integer nz 1
b) C(hm) n C(hn) < C(hm—n) when h is injective and m, n
are integers such that m >n =z 1.
(Pc. 3) 1If h=fg =gf, then f, g ¢ C(h).

(Pc. 4) Let ¥ = 21 ® ... 8 Zn and let h=h ® ... ® hn (m) and

1
g =8 ®...%8 (.
Then g € C(h) © Ty = um and

hu(i) 8; = Br(i) hi (i=1,...,n)

This relates the commutative mappings with some types of
simulation relation. For example, we have for the case n =2, T

is the identity, and u = (1,2),

Cor. Let hi € G(Zi,Zi)(i=l,2), fl € G(Zl,ZZ), and f2 € G(ZZ,Zl).
Assume that Zl n 22 =¢ and fl’ f2 are both injective. Then
f2
h1 @ h2 € C(flﬂfz) @ h1 % h2

1
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§5 Simulations by Invertible Mappings

In this section, we restrict ourselves to the cases where the
simulations are realized through an invertible dgsm mappings. We first
examine properties of invertible dgsm mappings and then analyze the
gsimulation relations utilizing the obtained properties.

Def. 8 Let f ¢ G(Z,A) be a dgsm mapping. We say that f 1s invertible
if there exists a dgsm mapping ; € G(A,Z) such that Ef is the
identity mapping on I*. E is called an inverse of f, and we denote

by f—1 one of the inverses of f£.

Note that if f ¢ G(Z,A) is invertible, it must be injective
by definition. The following are elementary properties of invertible

mappings with respect to their decompositions.

Lemma 5 Let f = hg where f ¢ G(Z,A), h e G(I',A), and g € G(I,T).
Then we have

(i) If h and g are invertible, then so is f.

(ii) If f is invertible, then so is g.

Proof. (i) Put £ = g-lh_l. Then ff = g—lh-lhg = gulg = XZ*'

flh. Then gg = f thg = £ 1f = A

14

]

(ii) Put g

Lemma 6 Let f = f1 RFf, ® ... ® fn (m) as defined in Def. 5. Then

2
f is invertible if and only if all the fi's (i=1,2,...,n) are invertible.

Proof. We show the case where n = 2, (It is easy to generalize the
proof for arbitrary n.) Let I = El @ 22 and A = Al @ Az be alphabets
(i=1,2). (1) Assume f1 and
Zi) (i=1,2). 1If we put

such that f ¢ G(Z,A) and fi € G(Zi’Aﬂ(i))

-1

i € G(Aﬂ(i)’
-1 ~

® gn(2) (m 7), then we have ff = (gﬂ(l) ® gﬂ(z))(flgfz) =

1 -1
£, £,£, =)

'f2 are invertible and let gn(i) = f

~

Fh

= g1T(l)

= £

gﬂ(l)fl @ gﬂ(Z) f2 1 (2) Assume f is invertible,

Ix*
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-1,A*

-1 - .
then we have f (f18f2) = AZ* @ AZ*' It is easy to see that f T(L)

1 2
is an inverse of fi (i=1,2).

Next, we shall give a characterization of the invertible dgsm

mapping f through the properties of a dgsm Mf realizing it.

Def. 9 Let M = (Z,Q,A,A,u,qo) be a (completely specified reduced)
dgsm where A:L X Q ~Q, u:Z x Q > A*, and q, € Q. M 1is said to be

a prefix if for every q e Q, the list {u(a,q)|a € £} 1is a prefix.

(A list of strings is a prefix if there exist no two elements in the list

such that one is a (not necessarily proper) prefix of the other.)

Theorem 3 Let f ¢ G(I,A) be a mapping realized by a completely specified

reduced dgsm Mf. Then £ 1is invertible if amd omly if Mf is a prefix.

Proof. (1) Assume Mf = (Z,Q,A,X,u,qo) is not a prefix. Assume also

that f is a mapping such that ff = AZ*' Then for some state q € Q,
the list {u(é,q)[a € L} 1s not a prefix. That 1s, there exist distinct
a, b ¢ Z such that u(a,q) = u(b,q)y where y € A%, Let u € Z* be such

that A(u,q ) = q and U(u,q ) = x. Then f(xu(b,q)) = ub and f(xu(b,q)y)

= f(xu(a,q)) = ua, which shows that f does not preserve initial subwords.

~

Thus f can not be a dgsm mapping. (2) Assume that Mf is a prefix.

Then it is easy to see that f is injective. We construct a dgsm that

realizes a mapping f such that ff = AZ*' a) First, define a sequential
transducer M;l = (A,Q,Z,H,qo) where A is the input alphabet, ¥ 1is the
output alphabet, Q is the state set, q, € Q, and H 1is a finite subset

of Q x A* x T* x Q such that (qj,x,a,qi) e H if and only if A(a,qi) = qj

and u(a,qi) = x where Xx € A+ and a ¢ L. bh) Next, from Mg defined

~
—

above, we are able to obtain an (incompletely specified) dgsm Mf as follows:

i) Corresponding to each element (qj’blbz"'bk’a’qi) € H (bl’bz""’bk € A)
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define transitions

b, / b,/ b
1/e, 1 e (2 K/
@ S @ a5y )—> -+ ’@ a .

where q?i's (r=1,2,...,k-1) are new states added to Q.

ii) After the process 1), merge a pair of states q' and q" if there

exist another states q such that q goes to both q' and q" by the same

input with € output. (In the diagram, Eb/f: ° b/e o

for some ‘b € A.) Repeat this process until no such merging could be

possible. <¢) Finally, convert M;l to obtain a completely specified

-~

dgsm Mf—l by adding appropriate transitions. (One of the simplest ways
would be to add a self-loop with € output label whenever necessary.)

We shall give an example to illustrate the processes described

in the proof (2) of Theorem 3.

Example

b) - 1)



aje

ale

b) -

b/0

ii)

13

' |
(q11 and 4, are merged)
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By this theorem, we can easily determine whether a given dgsm
mapping is invertible or not, although the decidability result itself
is already implicit under more general context in [6].

As a corollary to the theorem, we also have a machine independent

characterization of invertible dgsm mappings.

Cor. Let f: I* > A* be a dgsm mapping. Then f 1is invertible
if and only if for any u ¢ I* and for any distinct pair a, b ¢ I, f(ua)

is not a prefix of f(ub).

Now we introduce a simple relation which may hold between two

(dgsm) mappings having the same range as follows.

Def. 10 For f ¢ G(I'unA) and h € G(Z,A), we say that h covers £
if h(I*) o £(T*). |

This notion of covering plays a fundamental role when we
consider the decompositions of dgsm mappings, as illustrated by the

following lemmas.

Lemma 7 Let f ¢ G(I'nA) and h ¢ G(Z,A). Assume that h is dinvertible.
Then the following three conditions are equivalent.
(1) h covers f;

(2) f = hh “f;

(3) f = hg for some dgsm mapping g.
Proof (1) > (2): h(E*) o £(T'*) and hh_llh(z*) = Ah(Z*) imply
hh-lf =f. (2) > (3): trivial. (3) > (1): Because f = hg, we have

h(Z*) 2 £(T*).

Lemma 8 Let f ¢ G(I'nA) and h e G(Z,T). Assume that fh is
invertible. Then the following three conditions are equivalent.

(1) fh covers f;
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(2) £ = fhh' for some h™;

(3) f= gh_1 for some (invertible) mapping g.

Proof. (1) > (2): Put R = (fh)"'f. Then Hh = (fh) 'fh =A,. That

1 1

is, h is an inverse of h. Let h -~ = h. Then we have fhh — =

fh(fh)-lf = f because fh covers f. (2) - (3): trivial. (3) »> (1):

We have fhh ! = gh thh™! = gh™! = £, which implies that fh covers f.

‘Now we turn to the simulation relation where the simulation gsm
mapping is invertible. When h e G(A,A) simulates g e G(Z,IZ) through
an invertible f e G(Z,A), we write h £ g 1instead of writing h f g

to emphasize the invertibility of £f. First, we note the following

fundamental properties.

Lemma 9 Let f ¢ G(Z,A) be invertible.

(1) For any h € G(A,A), there exists a unique g € G(Z,I) such that

1

h £ g, 1if and only if f covers ‘hf. (In fact, g =f hf.)

(ii) For any g € G(IZ,Z), there exists h e G(A,A) of the form fgf-1

such that h £ g. (Note that this is a primitive simulation.)

1

1hf and we have hf = ££ lhf,

Proof. (i) Let hf = fg. Then g = f
which means f covers hf by Lemma 7. If f covers hf, then there
exists g such that hf = fg by Lemma 7. The uniqueness of g 1is also

guaranteed by the fact that f covers hf. (ii) Let h = fgf-'1 for

an inverse 'f-l. Then hf = fgf-lf = fg.
As to the decomposition of simulation relation when the coding

gsm is invertible, we have the following two basic results.

£ £ .
Theorem 4 Let h L2z g for h ¢ G(Z,Z), g € G(A,Q), f1 € G(©6,Z), and
f2 € G(AO). Assume that fl is invertible. Then the simulation relation .
f f -
1 2

can be decomposed as h «— k<«=g for some k ¢ G(0,0) if and only if

f1 covers hfl‘
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Proof. By Theorem 2 and Lemma 7.

Theorem 5 Let hih, ¥ g for hy ¢ G(I,D), hy e 6D, feGW,D,

and g ¢ G(A,A). Assume that hl is invertihle and h2 is injective.
hy nle

Then the simulation can be decomposed as hlh2 <-——-h2h1 «— g

if and only if h., covers f.

1

Proof. When the decomposition is occurring, we have hzhlhIl'f-hilfg =

-1 = -1 = i ' '
h1 hthf h2f. Thus hlh1 f f which is equivalent to h1 covers f

by Lemma 7. If hl covers f, then h h_lf = f by the same lemma. Then

11
-1, _ _ _ -1 . . -1, _.-1
we have hthhlhl f = h1h2f = fg = hlhl fg, which implies hzhlhl f h1 fg.



17

§6  Concluding Remarks

In general systems theory, the principle of simulation plays
an essential role [7]. We presented some basic properties of simulation
relations of dynamical systems in the case where the dynamics and the
simulation mapping are given by dgsm's. We paid a special attention to
the cases where the simulation mapping is invertible.

Although the treatments reported here are by no means complete,
we hope the concepts and the methods introduced are useful in revealing
the fundamental dynamical structure of systems.

Some of the relevant problems we have not touched upon in this
report include:

1) For given two systems decide if there holds the simulation relation
through some simulation mapping.

2) Establish suitable complexity measure of gsm mappings and relate it
with their decomposition structures.

3) 1Investigate the properties (e.g., invertibility, decomposition
structure, etc.) of gsm mappings with endmarker [6] and generalize

the results of this report for that case.
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