CHESS-ENDGAME ADVICE: A CASE STUDY IN
COMPUTER UTILIZATION OF KNOWLEDGE

by
M.H. van Emden

Research Report CS-80-05

Computer Science Dept.
University of Waterloo
Waterloo, Ontario, Canada

January 1980

Introduction

The intended contribution of this paper is the development of tools,
in the form of a computer language, for the automatic utilization of know-
ledge. The field of study, having as objective to make such a utilization
possible, is called '"knowledge engineering'. One proposed application is
the development of a new breed of textbooks: such a textbook would have the
form of an interactively usable computer program and database. The source
code would be readable as a textbook, although more systematic, explicit,
and precise than the ones we are used to. In interactive use the compu-
terized textbook would solve problems in the application domain of the
embedded knowledge. In this mode the user can be ignorant of everything
except perhaps the broad outlines of the textbook's contents.

The program for the rook end game in chess, which is the centre-
piece of this paper, is usable in the same way: for a human familiar with
the rudiments of logic programming, a part of the source code is useful for
learning the endgame for himself; but also, a computer equipped with a
logic interpreter is able to use this knowledge to play itself the endgame
against an independent opponent.

According to Michie's strategy for research in knowledge engineer-
ing, chess is used as test domain. Why chess? 1In the first place, a great
deal of knowledge about chess has been recorded in the literature and is
being used: advanced chess players study a lot. Also, among computer
applications, chess has a relatively long history with several interesting
reversals in the attitude of its practitioners. In the late fifties, when
the programming work required to carry out the main outlines of Shannon's

original proposal [15] first became feasible, the workers involved were very

optimistic about the prospect of programs surpassing best human performance.
In the late sixties, when a considerable effort using greatly improved
processing power and programming tools had failed to yield anything even
remotely approaching human top performance, the earlier optimism had changed
to pessimism. In the late seventies, after another decade of steady improve-
ment, a change to guarded optimism could be observed.

Roughly speaking, chess performance draws upon two distinct
resources: look-aghead, that is, exploration of the game tree, and '"knowledge"
(including, or assisted by, '"intuition', "experience', etc.). Human players
rely almost exclusively on knowledge; this is probably necessary, given the
peculiar limitations of their information processor. Computer players rely
almost exclusively on look-ahead; this is probably not necessary, but caused
by the primitive state of development of knowledge engineering.

Michie has proposed to express knowledge about chess endgames as
"advice". This representation of knowledge is readable and useful to
prospective human chess players and can also drive a computer equipped with
an advice language interpreter to play in an expert fashion the endgames
covered by the advice. Michie and his coworkers have formulated advice for
several endgames [2, 3,12]; at least one interpreter has been implemented.

The purpose of the work reported in this paper is to investigate
whether logic as a programming language [8] can take the place of the advice
language proposed by Michie and perhaps, more generally, for expressing
knowledge for purposes of knowledge engineering. The strategy followed in
this paper is to introduce basic notations:of game playing and logic
programming by means of the game of Nim. These introductory sections con-

clude with a logic program for Nim. Subsequently the basic notions are

refined and extended to be applicable to subgames of the rook endgame of

chess.

We assume the reader to be familiar with the main outlines of the
clausal form of logic and the notion of a logic program. A thorough treat-
ment of logic programming is Kowalski's Logic for Problem-Solving [9] for

which neither logic nor programming is a prerequisite.

o)

2%

2. The game of Nim

A position of the game of Nim can be visualized as a set of heaps
of matches. Two players, called US and THEM, alternate making a move. As
soon as a player whose turn it is to move, is unable to make a move, the
game is over and that player has lost; the other player is said to have
won. A move consists of taking at least one match from exactly one heap.

A two-person game such as Nim can be analyzed by means of a game
tree. The nodes of a game tree are positions of the game, together with
an indication which player is to move. 1In the game tree a node x 1is a
descendant of node y if and only if y can be reached in one move from
position x., The game tree shown below contains all positions reachable

from the position where there are three heaps of matches, one with two

matches and two with one match, and where US is to move.

uUs

THEM

— - 1’
L0o,) i,1,0 10,0,t O;1,0 1' i, 0 ©0,0,4 2,0,0 us
: | : :
3 ' i
[/
- - + 4! - ¥
0,,0 1,00 9,00 0,0,0! ,0,0 0,00 THEM

P us

Fig. 2.1: Minimaxed game tree for a Nim position.
The outlined subtree is the "forcing tree'.

The nodes are also marked with their value, which is a + or a -, as
determined by "minimaxing', a process which may be described as follows. A
node 0,0 has value "+" when THEM is to move, then US has won. Similarly, a

"-" when US is to move. The values of the other nodes

node 0,0 has value
are determined as a consequence of the assumption that, when there is a
choice of move, both US and THEM will make the choice so as to be least
favourable to the other player. That is, a node where THEM (US) is to move
has as value the minimum (maximum) value of a descendant node, where "+"
is regarded to be greater than "-".

These rules make it possible to determine the value of the root
node of the tree by starting at the terminal nodes and working upwards,
and this determines the 'value of the game'", that is, it determines whether
or not US can win, starting at the root node. The rules apply to arbitrary
games trees and apply also if there are more values than just two, such as
in chess. It follows that it is in principle possible to determine the
value of the initial position of chess, but it seems that this has not been
done. Certainly the size of the game tree makes it impossible for the wvalue
to be determined by minimaxing the entire game tree.

We now state a dual pair of useful properties of game values. The
properties can be regarded as a result of rephrasing our previous description
of the minimaxing process.

Property 1: US can win starting in a position x, with US to move, (i.e. the
value of x is "+'"), if there exists a move transforming x to y

such that it is not the case that US cannot win starting in y

(i.e. the value of y is "+").

Property 2: US cannot win starting in position x, with THEM to move (i.e.
the value of x is "-"), if there exists a move transforming x
to y such that it is not the case that US can win starting in
y (i.e. the value of y is "-'"").

In these properties, "US can win" means that there is a choice of moves by

US which makes it impossible for THEM to win. '"US cannot win' means that

there is a choice of moves by THEM which makes it impossible for US to win.

These properties have been selected from other possible ones
because it is easy to see that they are true and because they are simply

expressed in logic with a result that can be used as a computer program for

computing the value of a game (provided that the game tree is small).

3. The states and moves of NIM expressed in logic

In logic, objects are represented by terms. A term is either a

constant, or an expression of the form f(t tk) where f is a function

IERERE

t, are terms. This recursive definition allows the

symbol and tyseees K

existence of terms of arbitrarily great complexity to be built up from few
and simple constants and function symbols. As our first example we represent
as terms the heaps of matches which occur in Nim positions.

An empty heap is represented by the constant 0. If a heap is
represented by a term t, then the heap with one match more is represented
by successor (t). Thus, for example, a heap with two matches is represented
by the term successor(successor(0)). For actual use we prefer a shorter
function symbol and we have chosen '"+" instead of successor (no connection
with the game value denoted by the same symbol), so that we get +(+(0)) for
the heap of two. Using postfix instead of prefix notation allows us to write
t+ for the heap with one more than the heap represented by t. So we write
0++ for the heap of two.

A position is not in general a single heap, but a set of heaps,
which we will regard for convenience as a sequence. The empty sequence is
represented by the constant nil. The sequence resulting from concatenating
a heap x onto a sequence y is represented by conc(x,y). For example, the
initial position (2,1) of the game tree shown earlier is represented by

conc (04, conc (O4,nil)).

Again we replace the function symbol conc by something more compact; in this
case a single dot. This gives

« (O+, - (O+,nil))

Using infix notation instead of prefix notation further compacts this to

O+++ (0++nil) with the understanding that plus has higher precedence than dot.
We now have the notational apparatus for positions. To be able

to express properties of moves we need atomic formulas and clauses. For

example the atomic formula Append(x,y,z) expresses the relation between

sequences Xx,y, and z where z is the result of appending y to x. In general,

an atomic formula has the form P(tl,...,tn) where P is a predicate symbol

and t t are terms. A useful property of the Move relation is

1,...,

expressed by the clause
Move(x,y) <« Append(u,vl-w,x) & Takesome(vl,vz) & Append(u,vz'w,y).

Here x,y,u, and w are positions, i.e. sequences of heaps; vy and v,
are heaps. The clause should be read as
"For all x and y,
"y is the result of a move from x if there exist UsVy5Vys and w
"such that x is the result of appending v, W to u and 2
"is a result taking some (matches) from vy and y is
"the result of appending V,'w to u.
To say that, for given x, there exist u,v, and w such that append(u,v.w,x),
can be interpreted as saying that v is an arbitrary heap occurring in
sequence x. If we accept this way of saying '"occurs in'", then we see that
the above clause says:
"For all x and vy,
"y is the result of a move from x if y differs from x only in
"a heap 2 which is the result of taking some matches from

"the corresponding heap vy in x.

We will use the following properties of the append relation.

append(nil,y,y).

This says that for all y,y is the result of appending y to the empty list.

append(u*x,y,u*z) < append(x,y,z)
This says that, for all u,x,y, and z,u°z is the result of appending y to

u+x if z is the result of appending y to x.
The "take some'" relation has the following useful properties:

Takesome (x+,x)

This says that some have been taken from a heap if the result is one less.

Takesome(x+,y) < Takesome(x,y)
This says that some have been taken from a heap if the result is the result
of taking some frcm a heap containing one less. That is, to take some,

take one, and then some.

Logic programming consists of collecting a set of clauses, each
expressing a useful property of the relation to be computed (such as Move)
and of relations auxiliary thereto (such as Append and Takesome). The

following is a PROLOG program for computing moves.

OP (+,SUFFIX,101).

APPEND (NIL,*Y,*Y).
APPEND (*U.*X,*Y,*U.*Z) <- APPEND (*X,*Y,*Z).

MOVE (*X,*Y) <- APPEND (*U,*X1.*V,*X) & TAKESOME (*X1,*X2)
& APPEND (*U,*X2.*V,*Y).

TAKESOME (*X+,*X) .
TAKESOME (*X+,*Y) <- TAKESOME (*X,*Y).

Fig. 3.1: Listing of PROLOG program for Nim moves

10

In Figure 3.1 we see a declaration for the postfix operator "+"

"e" ig built in, with precedence 100).

with precedence 101. (The operator
Variables are distinguished from constants (such as nil) by identifiers

beginning with an asterisk.

11

4. The value of a game expressed in logic

We obtain a logic program for playing a game by expressing in
logic the Properties 1 and 2 of section 2. Initially we do not stay

within the clausal form of logic.

A straightforward expression of Properties 1 and 2 is:

¥x. Uscanwin(ustomove,x) < Jdy.Move(x,y) & m Uscannotwin(themtomove,y).

¥x. Uscannotwin(themtomove,x) < dy.Move(x,y) & = Uscanwin(ustomove,y).

Apparently, we only need Uscanwin with ustomove as first argument. This
first argument is therefore superfluous: we use a one-argument predicate
S 1dinstead. A similar consideration causes us to replace Uscannotwin by
a one-argument predicate T.

The resulting formulas are

¥x. S(x) <« Jy.Move(x,y) & v T(y).

¥x. T(x) < Jy.Move(x,y) & —1S(y). ceea (4.1)

S(x) means: for a suitable choice of moves, US will win starting in
position x with US to move, whatever the choice of

moves by THEM.

T(x) means: for no choice of moves, US can win starting in position x
with THEM to move, against a choice of moves by THEM which

is least favourable to US.

12

However, S does not tell us how we can win: it could at least incor-
porate the position resulting from the first suitable move. Hence we

rrefer

¥x. S(x,y) <« Jy.Move(x,y)& =1 3z.T(y,z)
ceeo(4.2)

¥x, T(x,y) < Jdy.Move(x,y)& 1 3z.S(y,z).
S(x,y) means: $S(x), and, moreover, a first suitable choice is from
X to y.
T(x,y) means: T(x), and, moreover, a first choice least favourable to
US is from x to y.

However, in order to determine that US can win, more informa-
tion must have been obtained than just the first move, unless it
immediately ended the game. In general, for each of the countermoves
by THEM, US must have determined a suitable response. All information
required by US to win the game against any defence by THEM is contained

in a subtree of the game tree called the forcing tree. The subtree

outlined in figure 2.1 is an example of a forcing tree.
To obtain a program that also computes the forcing tree, we
first modify (4.1) to as to avoid negations. Let TT(x) mean that THEM

must lose against best play by US. Then we have

¥x. S(x) < Jdy.Move(x,y) & TT(y)

¥x, TT(x) « (¥y.Move(x,y) = S(y))

13

Only the first implication is in a form suitable for being handled by
current interpreters for logic programs. We reformulate the second

implication so as to obtain a conjunction in the condition.

¥x. S(x) <« dy.Move(x,y) & TT(y)

¥x. TT(x) <« dz.Moves(x,z) & All(z)

z 1is a list containing all moves possible (for THEM) from position x.
Al1(z) means that all positions u in list =z have the property that

S(u):

Al1(nil)

Vu,v.All(u*v) <« S(u) & All(v)

We now have to decide how to represent a forcing tree as a term. The

format for the forcing tree is as follows

ourmove * ((theirmove 'ftl) * L.. (theirmoven'ftn)) * nil

1

where each of ftl,...,ftn are themselves forcing trees.

Incorporating the forcing tree into the relations S and TT

we get

¥x,z.5(x,y*z) < Jy.Move(x,y) & TT(y,z)
¥y,u.TT(y,u) < Jz.Moves(y,z) & All(z,u)
All(nil,nil)

Vu,v,w.All(u*v,(u*w) *z) < S(u,w) & All(v,z)

14

Each of the above formulas are clauses and can be handled by PROLOG
interpreters. Additional clauses are needed to specify the Move relation,
as in figure 3.1. A valuable feature of logic programming is that one
only has to specify what the admissible moves are; it is not necessary

to program a move generator.

In current PROLOG systems there are difficulties in reconciling
this attractive way of specifying Move with a specification of the Moves
relation, where the second argument is a list of all moves. We can do it
in logic, but not in our PROLOG implementation. Therefore we do not
compute forcing trees and work from the version (4.2) which only specifies
the first move by US.

A complete PROLOG program for Nim using game trees is given in
figure 4.1. Even for less than a dozen matches the cost of running this
program can be prohibitive. This is not caused by excessive slowness of
PROLOG: in spite of its elegance the efficiency of this program is within
an order of magnitude of what is possible when exhaustively traversing
game trees.

It is well-known [1l] that, if Nim can be won then it can be won
by a simple calculation that can be done in human head for positions that
would defeat the fastest minimaxing programs on the fastest computers:
select a move such that the resulting position has the property that the
digital sum of the sizes of the heaps is zero.

It seems plausible that such a short computation of the value is
onnly possible for games of great simplicity and that the shortest possible
computation for a game like chess is considerably longer, although still
much shorter than minimaxing. Perhaps for the game of Kalah there exists
a computation for the value of the game which is not much longer than com-

puting the digital sum usable in Nim.

S(*X,*Y) <- MOVE (*X,*Y) & "T(*Y,*Z).
T(*X,*Y) <- MOVE (*X,*Y) & “S(*Y,*Z).

OP (+,SUFFIX,101).

APPEND (NIL,*Y,*Y).
APPEND (*U.*X,*Y,*U.*Z) <- APPEND (*X,*Y,*Z).

MOVE (*X,*Y) <- APPEND (*U,*X1.*V,*X) & TAKESOME (*X1,*X2)
& APPEND (*U,*X2.*V,*Y).

TAKESOME (*X+,*X) .
TAKESOME (*X+,*Y) <- TAKESOME (*X,*Y).

fig. 4.1

A Nim-playing program in PROLOG

15

16

5. An outline of advice-driven endgame programs in logic

As we saw, an all-powerful chess-playing program can, in theory,
be very simple: one just supplements the logic program for a universal

game player, namely,

S(x,y) <« Move(x,y) & TV T(y,z)

T(x,y) <« Move(x,y) & =1 S(y,z)

with a program for Move expressing the rules of chess. Such a theory,
however, would have to be unaware of complexity issues, because this
program would have to explore the entire game tree. For all of chess
this tree is so enormous that a computer of a size near the limits im-
posed by the size of the universe and operating at speeds near the limits
imposed by fundamental physical constants, would still require eons to
determine the value of the game.

Even in the rook endgame the game tree is too large to make
its minimaxing feasible: most initial positions require more than 10
moves by each side, where the number of possibilities for the rook
side often exceeds 20 (almost all of these are usually idiotic). Yet
one can teach a motivated, averagely gifted child of 9 years old how
to play the rook endgame. The explanation of this difference that
humans use 'knowledge', or have acquired certain 'skills' to play a
game such as this and rely very little on game trees. If look-ahead
is used at all, it is typically based on small, error-ridden fragments

of game trees.

17

Our basic hypothesis is that the utilization of knowledge, or
whatever it is that allows humans to play the game, is an information
processing task and as such in principle executable by computer. Analogs
of the old biological controversy of mechanism versus vitalism crop up
in several other disciplines. In each of these one's position has to
be stated anew. The above hypothesis states our position here.

Michie has proposed to express knowledge about how to play a
chess endgame in terms of "advice". An algorithm in a typical high-level
programming language is not a suitable form for expressing such knowledge,
being both extremely hard to write and to read. This judgment is based
on the one example known to us: the rook endgame program in Algol 60 by
C. Zuidema [18]. At another extreme we have treatments of endgames in
such standard texts as Fine's Basic Chess endings [7]. Although these
do contain some pieces of advice, no attempt has been made at complete-
ness or explicitness. Advice in Michie's sense lies between these two
extremes: although sufficiently complete and explicit to be followed
automatically, it is also learnable by a human for playing the game
herself. By "learnable'" we mean that a human can memorize the advice
and use it without reference to its text, something which is inconceiv-
able with Zuidema's Algol-60 program.

Michie and his co-workers have compiled advice for several
chess endgames. We use Bratko's [2] advice table for the rook endgame.

Its English form can be given as follows:

18

Look for a way to mate the black *) king in two moves, trying
checking moves first. The depthbound is 2.

If the above is not possible, then squeeze, that is, look for a
way to decrease the area of the board to which the black king is
confined by the white rook, considering rook moves only. The
depthbound is 1.

If the above is not possible, then approach, that is, look for a
way to move, preferring diagonal moves, the white king closer to
the black king so as to help the rook to squeeze in a later move.
The depthbound is 1.

If the above is not possible, then keep room, that is, look for

a way of maintaining the present achievements in the sense of 2
and 3. This can always been done with a move by the white king;
diagonal moves are to be tried first. The depthbound is 1.

If the above is not possible, then divide, that is, move the white
roak into such a position that it divides the kings either verti-
cally or horizontally. The depthbound is 3.

Each of the rules 1, 2, 3, 4, and 5 advises white to achieve

a certain goal in the game. The rules are in order of decreasing

ambitiousness. In a typical endgame we have to settle initially for

the least ambitious goal, and progress towards more ambitious omnes.

For this reason the goals are called better goals. The rook endgame

is subdivided into a sequence of subgames, each defined by a rule of

advice, and each with its own criterion of winning, namely one of the

better goals. The criterion for losing is not to achieve the

*) We assume that US has white and has the rook.

19

holding goal. . For each of the subgames the holding goal is to avoid

losing the rook and to avoid stalemate. Note that this is not a loss
according to the rules of chess, but only according to the subgame we
define for the purpose of our advice-driven endgame program.

The depthbound given with each rule is the greatest depth
to which the game tree of the subgame defined by the rule is to be
explored.

The rules typically also contain move constraints, that is,

advice about the type of move to try first, or to try at all. This
greatly reduces the number of possibilities to explore, facilitating
the task both for a human and for a computer. We formalize the ex-
istence of move constraints which exclude certain moves, by defining
the subgame to have this different set of moves.

Thus each rule of advice determines a different (sub)game.
Each subgame has been chosen in such a way that is is computationally
feesible to explore its complete game tree, and this is what an
advice-driven program for the rook endgame does.

In order to obtain a logic program for subgames we have to

generalize the two-line game player

S(x,y) <« Move(x,y) & 71 T(y,z)

T(x,y) < Move(x,y) & =1 S(y,z)

20

used up till now. It assumes identical move-sets for both players; to
accommcdate move constraints we distinguish S-moves (by US) and T-moves
(by THEM). It also assumes that the criterion for winning for one
player is that the other is to move but cannot move; to accommodate
better goals and holding goals, we introduce explicit criteria for a
win by US (Swon) and a win by THEM (Twon). Hence the following elabor-

atior of the two-line game player.

S(x,x) < Swon(x)
S(x,y) <« Smove(x,y) & ¥ T(y,z)
T(x,x) < Twon(x)

T(x,y) <« Tmove(x,y) & =1 S(y,z)

Several other elaborations are needed. Better goals often
depend not on a single position, but on the two last positions. For
example, when the better goal is to squeeze, the amounts of room for
the black king in the last two positions have to be compared, to see
if there was a decrease. Therefore Swon has to have two successive

positions as argument, as in the next version of the game player:

S(XsY) < SmOVG(X,Y) & Sl(X’Y)

Sl(x,y) < Swon(x,y)
$,(x,y) + 1 T(y,2)
T(x,y) < Tmove(x,y) & Tl(x,y)
Tl(x,y) < Twon(x,y)

T, (x,y) « T8(y,2)

21

For the sake of symmetry Twon was also given two arguments, although
in our program only one is used.

The above game player only plays one of the subgames defined
by a rule of advice. In order to avoid writing a different game player
for each rule, the predicates are given an extra parameter, taking a
rule as value. Another extra parameter is for the depthbound. These
refinements are incorporated in the following version of the game

player:

S(x,y,rule,n) < Gt(n,0) & Diff(n,1,nl) &
Moveconstr(rule,mc) & Smove(mc,x,y) &
Sl(x,y,rule,nl)

Sl(x,y,rule,n) < Swon(x,y,rule)

Sl(x,y,rule,n) <« 1 T(y,z,rule,n)

T(x,y,rule,n) < Tmove(x,y) & Tl(x,y,rule,n)
Tl(x,y,rule,n) <+ Twon(x,y,rule)

Tl(x,y,rule,n) < =1 S(y,z,rule,n)

The following additional explanations are necessary. Gt and
Diff are pre-defined relations: Gt(x,y) holds if x and y are integers
and x > y; Diff(x,y) holds if x,y, and 2z are integers and x-y=z.
Moveconstr will be defined in such a way that Moveconstr(x,y) holds if

x 1is a rule and y is the move-constraint component of x.

22

We have to formalize also the overall process of trying to
find most ambitious rule of advice that works in a given position. In
~ the overall process US first decides which rule is applicable (i.e.,
which subgame to play), determines the appropriate move, and waits for
a ccunter move. At this level a one-person game is played, where each

move is an exchange of moves at the lower level.

Win(pos) < Mated(pos)

Win(posl) < Theirmove(posl, pos2) & Ourmove(pos2,pos3) & Win(pos3)

This says that there exists a sequence of exchanges leading to a win if
THEM is Mated, or if an exchange can bring about a position (pos3) from
which such a sequence can be found.

The following clauses provide the connection with the S

defined earlier.

Ourmove (posl,pos2) ¥ Advice(rule) & Depthbound(rule,n) &

S(posl,pos2,rule,n).

Advice(mate : notrooklost : checkfirst : 2)
Advice(squeeze : notrooklost : rookmove : 1)
Advice(approach : notrooklost : Lkdmovefirst : 1)
Advice(keeproom : notrooklost : kdmovefirst : 1)
Advice(divide : notrooklost : anymove : 3)

The terms in the arguments to Advice are constants; those
in the other clauses are variables. In PROLOG source code variables

are distinguished from constants by being preceded by an asterisk.

23

Each argument to Advice encodes a rule; its components are
separated by the infix function symbol ":". The components denote
successively the better goal, the holding goal, the move constraint,
and the depth bound.

Backtracking plays an important role in the execution of a
PROLOG prcgram. For example, in the above definition of Ourmove, Advice
picks up the first rule listed as such. If S .subsequently fails to
find a winning (in the subgame sense) move, then the interpreter back-
tracks back to Advice, which then invokes its next untried definition.

Sometimes, however, backtracking would be highly undesirable,

such as in the two clauses for minmax in fig. 6.7:

minmax(x,y,x,y) < lt(x,y) & /.

minmax(x,y,v,X),

where 1t(x,y) if x 1is less than y. Minmax uses the first two argu-
ments as input and outputs them in the last two arguments in increasing
order of magnitude. Suppose this definition is used to solve
minmax (3,4,x,y), then the first clause applies and x is set to 3,
v to 4. Some later failure should never cause the system to backtrack
and use the second clause. The slash "/" in the first clause inhibits
such backtracking.

Figures 6.1,...,6.7 list the source code of the advice-driven
PROLOG program for the rook endgame. The top level of this hierarchically
structured program has been discussed so far. We hope to have made familiar

the part in figures 6.1 and 6.2. Figure 6.6 provides a definition of the moves.

24

6. An advice table for the rook endgame

The figures below shows Michie's format for an advice table
for the rook endgame. The table is from Bratko [2] with some slight
modifications. It should be noted that this advice is uncharacter-
istically simple. Moreover, advice in Michie's sense consists of

several cooperating advice tables.

I
=
2l 2
Py
& = a & ool B = a
o A = ISR} 0
S| & d 2 488 3 58| & :
=4 Ogg o 1] g A A a H Ml O 8 8
8 ¢ A H HE B 20 & ==
K 2] [n = B> H = = B
S| 3B |3 E £ 5 55 ¢ Sy 5| ¢ 2
(=1 = M § = o ﬁ aqo Mz = = A
1 MATE y - - - - - - - y CHECKFIRST 2
2 SQUEEZE - y y - y - - - y ROOKMOVE 1
3 | APPROACH | - - y 'y = y - y | v | KDMOVEFIRST | 1
4 | KEEPROOM | - - y - y - y vy |y | xDMOVEFIRST | 1
5 | DIVIDE - - vy -y - - -y | axymove 3

——— |

better-goal predicates holding
goal

Fach better goal is a conjunction of the predicates marked
with Y (yes). Fig. 6.3 displays the PROLOG clauses for the advice
rules ‘and for the definition of the better goals. The rule only con-
tains the name of a better goal, such as '"'squeeze'; below it is a
clause defining the better goals as conjunctions of predicates. These

in turn are defined and explained in figures 6.4, 6.5, and 6.7.

25

The typical format of a term denoting a board position is

theirturn
} t*tk:*ok:%or.
ourturn

The first component indicates who is to move. The remaining components
are the position of their king, our king, and the (our) rook, respectively.
Each of these positions are given as the file number (i) paired by means
of a dot to the rank number (j). With this detail included, the typical
format of a position is
theirturn
} t*itke*jtk:ioke*jok:*iore*jor
ourturn
The listing uses a tilde instead of the usual negation sign 7.
Also, we use A < B | C (read: A if (B or C)) as a shorthand for the two

separate clauses A < B and A « C.

/* THE TOP LEVEL: HERE ADVICE IS SELECTED.
WIN (*X) MEANS THAT WE CAN WIN WITH THEM STARTING IN POSITION X.

*/

WIN (*POS) <- MATED(*POS).
WIN (*POS1) <- THEIRMOVE (*POS1,*P0S2) & OURMOVE (*P0S2,*P0S3) & WIN (*P0OS3).

OURMOVE (*P0S1,*P0S2)
<- ADVICE (*RULE,*POS1) & DEPTHBOUND (*RULE,*N) & WRITE(TRYING:*RULE) &
S (*P0OS1,*P0OS2,*RULE, *N) &
WRITE ('"NEW POSITION (TURN:YOUR KING:OUR KING:OUR ROOK) IS:') &
WRITE (*P0S2).

THEIRMOVE (THEIRTURN:*ITK1.*JTK1:*OK:*OR, OURTURN: *ITK2,*JTK2:*0K:*0OR)
<{- WRITE('ENTER NEW POSITION AS I.J FOR YOUR KING:') &
READ (*ITK2.*JTK2) &
TEST (THEIRTURN:*ITK1.*JTK1l:*0OK:*OR,OURTURN: *ITK2.*JTK2:*0OK:*OR) .

TEST (*POS1,*P0S2) <- TMOVE (*P0OS1,*P0S2) & /.
TEST (*P0OS1,*P0S2) <- WRITE('NOT A VALID MOVE; TRY AGAIN') & FAIL.

fig: 6.1

26
/* THIS DEFINES A SUBGAME DETERMINED BY A PREVIOUSLY SELECTED RULE */

S (*POS1,*P0S2,*RULE, *N)
<~ GT(*N,0) & DIFF(*N,1,*N1) & MOVECONSTR (*RULE, *MC) &
SMOVE (*MC,*P0OS1,*P0S2) & S1(*POS1,*P0S2,*RULE,*N1).

S1(*P0OS1,*P0S2,*RULE,*N) <- SWON (*POS1,*P0OS2,*RULE) & /.
S1(*POS1,*P0S2,*RULE,*N) <- ~T (*P0OS2,* ,*RULE, *N).

T (*POS1,*P0OS2,*RULE, *N)

<- TMOVE (*P0OS1,*P0S2) & T1(*POS1l,*P0S2,*RULE,*N).
T1l(*P0OS1,*P0OS2,*RULE,*N) <- TWON (*POS1,*P0S2,*RULE) & /.
T1(*P0OS1,*P0OS2,*RULE,*N) <- ~S(*¥P0OS2,*,*RULE, *N).

SMOVE (*MC, OURTURN:*TK:*0OK1:*OR1, THEIRTURN:*TK:*0K2:*0R2)
<- TRIALMOVE (*MC,OURTURN:*TK:*0K1:*0OR1l, THEIRTURN: *TK: *0K2:*0R2) &
~ (*OK2=*0R2) & T“KINGRULE (*TK,*0K2) &
“STALEMATE (THEIRTURN: *TK:*0K2:*0OR2) .

TMOVE (THEIRTURN: *TK1l:*OK:*OR, OURTURN: *TK2:*0OK: *OR)
<- KINGRULE (*TK1l,*TK2) & “INCHECK(*:*TK2:*0K:*OR).

SWON (*POS1,*P0S2,*RULE) <- BETTERGOAL (*RULE,*B) & TRUE (*B,*P0S1,*P0S2).
TWON (*P0OS1,*P0OS2,*RULE) <- HOLDINGGOAL (*RULE,*H) & ~TRUE (*H,*P0OS1,*P0S2).

TRIALMOVE (CHECKFIRST, *P0S1,*P0S2)
<- TRIALMOVE (ROOKMOVE ,*P0S1,*P0OS2) & INCHECK(*P0S2).
TRIALMOVE (CHECKFIRST,*P0S1,*P0S2)
<- TRIALMOVE (ANYMOVE,*P0OS1,*P0S2).
TRIALMOVE (ROOKMOVE, OURTURN: *TK: *OK:*OR1, THEIRTURN:*TK: *OK:*0R2)
<- ROOKRANGE (OURTURN:*TK:*0K:*OR1,*RANGE) &
ROOKRULE (*OR1,*0R2,*RANGE) & ~“HOPPED (*OK,*OR1,*0OR2).
TRIALMOVE (KDMOVEFIRST, OURTURN:*TK:*0OK1l:*OR, THEIRTURN: *TK: *OK2: *0OR)
<- KINGRULE (*OK1l,*0K2).
TRIALMOVE (ANYMOVE, *P0OS1,*P0S2)
<- TRIALMOVE (ROOKMOVE, *P0OS1,*P0S2).
TRIALMOVE (ANYMOVE, *P0OS1,*P0S2)
<- TRIALMOVE (KDMOVEFIRST,*P0S1,*P0S2).

HOPPED (*I.*JK,*I.*JR1,*I.*JR2) <- BETWEEN (*JK,*JR1,*JR2).
HOPPED (*IK.*J,*IR1.*J,*IR2.*J) <- BETWEEN (*IK,*IR1,*IR2).

Fig. 6.2

27

/***

THE ADVICE TABLE;
BETTERGOAL: HOLDINGGOAL

ADVICE (MATE :NOTROOKLOST
ADVICE (SQUEEZE : NOTROOKLOST
ADVICE (APPROACH :NOTROOKLOST
ADVICE (KEEPROOM :NOTROOKLOST
ADVICE (DIVIDE :NOTROOKLOST

/* SELECTORS FOR

BETTERGOAL (*¥X:*:*:% *X),
MOVECONSTR (*:* :*X: % ,*X) ,

/* BETTER GOALS */

THE FORMAT 1IS:

¢tMOVECONSTRAINT: DEPTHBOUND

:CHECKFIRST : 2
:ROOKMOVE : 1
:KDMOVEF IRST : 1
¢:KDMOVEF IRST : 1
:ANYMOVE : 3

ADVICE COMPONENTS */

*/

*P0OS) .

HOLDINGGOAL (* :*X % % *X)
DEPTHBOUND (*:%*:% :%X *X),

MATE (* ,*P0OS) <- MATED(*POS) & WRITE('MATE').

SQUEEZE (*P0S1,*P0S2) <- NEWROOMLT (*POS1,*P0S2) & ~“REXPOSED(*P0S2) &
RDIVIDES (*POS2) & WRITE ('SQUEEZE').

APPROACH (*P0OS1,*P0S2)

<- OKCSNMDLT (*POS1,*P0S2) & “REXPOSED(*P0S2) &
RDIVIDESORLPATT (*P0S2) &

ROOMGT 20RNOTOKEDGE (*P0OS2) & WRITE ('APPROACH').

KEEPROOM (*P0OS1,*P0S2)

<- RDIVIDES (*P0S2) & “REXPOSED(*P0S2) &
OKORNDLE (*P0OS1,*P0S2) & ROOMGT20RNOTOKEDGE (*P0S2) &

WRITE ('KEEPROOM') .

DIVIDE (*POS1,*P0S2) <- “REXPOSED (*P0OS2) & RDIVIDES (*P0S2).

/* HOLDING GOAL */

NOTROOKLOST (*POS,*) <- T“ROOKLOST (*P0OS).

/* ADVICE CONDITIONS */

CLOSE (* :*TK:*0OK:*) <- MDIST(*TK,*OK,*D) & LT(*D,4) & EDGE (*TK).

/**/

Fig. 6.3

28

/* ADVICE TABLE PREDICATES */
MATED (*P0OS) <- INCHECK(*POS) & ~TMOVE (*POS,*).

/* NEW ROOM (OF THEIR KING) LESS THAN */
NEWROOMLT (*POS1,*P0S2)
<- ROOM(*POS1,*R1) & ROOM(*P0OS2,*R2) & LT(*R2,*R1).

/* ROOK EXPOSED: ROOK TOO CLOSE TO THEIR KING */
REXPOSED (THEIRTURN:*TK:*0K: *OR)
<- DIST(*TK,*OR,*TD) & DIST (*OK,*OR,*0D) & LT (*TD,*0OD).
REXPOSED (OURTURN: *TK: *OK: *OR)
<- DIST(*TK,*OR,*TD) & DIST (*OK,*OR,*0D) &
DIFF(*0OD,1,*0D1l) & LT(*TD,*0OD1).

/* OUR KING (TO) CRITICAL SQUARE (HAS) NEW MANHATTAN DISTANCE LESS THAN */
OKCSNMDLT (* :*ITK1.*JTK1:*0OK1:*IOR.*JOR,* :* :*0OK2:*IOR.*JOR)
<- DIFF(*ITK1l,*IOR,*DI) & SIGN(*DI,*SDI) & SUM(*IOR,*SDI,*ICS) &
DIFF(*JTK1,*JOR,*DJ) & SIGN(*DJ,*SDJ) & SUM(*JOR,*SDJ,*JCS) &
MDIST (*OK1,*ICS.*JCS,*DIST1) & MDIST (*OK2,*ICS.*JCS,*DIST2) &
LT (*DIST2,*DIST1).

/* ROOK DIVIDES (THE KINGS) */
RDIVIDES (*:*ITK.*JTK:*IOK.*JOK:*IOR.*JOR)
<- BETWEEN (*IOR,*ITK,*IOK) | BETWEEN (*JOR,*JTK,*JOK).
(LT (*JTK,*JOR) & LT (*JOR,*JOK)) | (GT(*JTK,*JOR) & GT(*JOR,*JOK)) .

/* ROOK DIVIDES OR L-PATTERN */
RDIVIDESORLPATT (*POS) <- RDIVIDES (*POS).
RDIVIDESORLPATT (*POS) <- LPATT (*POS).

/*¥ OUR KING (TO) OUR ROOK NEW DISTANCE LESS (OR) EQUAL */
OKORNDLE (* : *TK1:*OK1:*0OR1,* :*TK2:*0K2:*0R2)
<- DIST(*OK1l,*OR1,*DIST1) & DIST(*OK2,*OR2,*DIST2) &
LE (*DIST2,*DIST1).

/* ROOM GREATER THAN 2 OR NOT OUR KING (ON) EDGE */

ROOMGT 20RNOTOKEDGE (*POS) <- ROOMGT2 (*P0OS).

ROOMGT 20RNOTOKEDGE (*POS) <- ~OKEDGE (*POS).

STALEMATE (*POS) <- TINCHECK (*POS) & ~TMOVE (*P0OS,*).

ROOKLOST (THEIRTURN: *TK: *OK:*OR) <- KINGRULE (*TK,*OR) & ~“KINGRULE (*OK,*OR).

Fig. 6.4

29

/* PREDICATES AUXILIARY TO ADVICE TABLE PREDICATES */

INCHECK (* :*TK: *OK: *OR) <- KINGRULE (*0OK,*TK) & /.
INCHECK (* : *TK: *OK:*OR) <- 7 (*OR=*TK) & ROOKCHECK (* :*TK:*0OK:*OR) .

ROOKCHECK (* :*ITK.*JTK:*IOK.*JOK:*ITK.*JOR) <- ~(*IOK=*ITK) & /.

ROOKCHECK (* :*ITK.*JTK:*IOK.*JOK:*ITK.*JOR) <- “BETWEEN (*JOK,*JTK,*JOR) & /.
ROOKCHECK (* : *ITK.*JTK:*IOK.*JOK:*IOR.*JTK) <- ~ (*JOK=*JTK) & /.

ROOKCHECK (* :*ITK.*JTK:*IOK.*JOK:*IOR.*JTK) <- ~“BETWEEN (*IOK,*ITK,*IOR).

BETWEEN (*X, *Y,*Z)
<— (LT (*Y,*X) & LT(*X,*2)) | (LT(*Z,*X) & LT (*X,*Y)).

RDIVIDESORLPATT (*¥*P0OS) <- RDIVIDES (*¥POS) | LPATT (*P0OS).

/* L-PATTERN */
LPATT (THEIRTURN: *ITK.*JTK: *IOK.*JTK: *I0K.*JOR)
<- DIFF(*IOK,*ITK,*IDIFF) & ABS (*IDIFF,2) &
(SUCC (*JTK,*JOR) | PRED(*JTK,*JOR)).
LPATT (THEIRTURN:*ITK.*JTK:*ITK.*JOK: *IOR.*JOK)
<- DIFF(*JOK,*JTK,*JDIFF) & ABS(*JDIFF,2) &
(SUCC (*ITK,*IOR) | PRED(*ITK,*IOR)).

ROOM (* :*ITK.*JTK:*0K:*IOR.*JOR,*R)
<- SIDE (*ITK,*IOR,*I) & SIDE (*JTK,*JOR,*J) &
PROD (*I,*J,*R) & /.
ROOM (*:*:%:%,100) .

SIDE (*X,*Y,*Z) <- LT(*X,*Y) & DIFF(*Y,1,*Z) & /.
SIDE (*X,*Y,*Z) <- GT (*X,*Y) & DIFF(8,*Y,*Z).

/* MANHATTAN DISTANCE */
MDIST (*I1.*J1,*I2.*J2,*D) <- DIFF(*I2,*I1,*¥I21) & ABS(*I21,*ABSI) &
DIFF(*J2,*J1,*J21) & ABS(*J21,*ABSJ) &
SUM (*ABSI,*ABSJ,*D).
/* ANOTHER KIND OF DISTANCE */
DIST (*I1.*J1,*I2.%*J2,*D) <- DIFF(*I2,*I1,*I21) & ABS(*I21,*ABSI) &
DIFF(*J2,*J1,*J21) & ABS(*J21,*ABSJ) &
MINMAX (*ABSI,*ABSJ,* ,*D).
ROOMGT 2 (*POS) <- ROOM (*POS,*AREA) & GT (*AREA, 2).
OKEDGE (* :* : *OK:*) <- EDGE (*OK).

EDGE (1.*). EDGE(8.*). EDGE(*.8). EDGE(*.1l).

Fig. 6.5

/* RULES FOR MOVING THE PIECES */

KINGRULE (*I1.*J1,*I2.*J2) <- (SUCC(*I1,*I2)
(SUCC(*I1,*12)
(PRED (*I1,*12)
(PRED (*I1,*I12)
KINGRULE (*I1.*J1,*I1.*J2) <- (SUCC(*J1,*J2)
KINGRULE (*I1.*J1,*I2.*J1) <- (SUCC(*I1,*I2)

SUCC(*J1,*J2))
PRED (*J1,*J2))
SUCC(*J1,*J2))
PRED (*J1,*J2))
PRED (*J1,*J2))
PRED (*I1,*I2)) .

—— 22 M
¢ 0 — ——

ROOKRULE (*OR1,*0R2,*N,*S.*E., *W)
<- ROOKNORTH (*OR1,*0R2,*N) | ROOKSOUTH (*OR1,*0OR2,*S) |
ROOKEAST (*OR1,*OR2,*E) | ROOKWEST (*OR1l,*O0OR2,*W) .
ROOKNORTH (*I1.*J1,*I1.*J2,*N)
<- LT(*J1,*N) &
(*32=*N | PRED(*N,*N1) & ROOKNORTH(*I1.*J1,*I1.*J2,*N1)).
ROOKSOUTH (*I1.*J1,*I1.*J2,*S)
<- GT (*J1,*S) &
(*J2=*s | SUCC(*S,*S1) & ROOKSOUTH(*I1.*J1,*I1.*J2,%S1)).
ROOKEAST (*I1.*J1,*I2.*J1,*E)
<- LT(*I1,*E) &
(*I2=*E | PRED(*E,*E1l) & ROOKEAST(*I1.*J1,*I2.*J1,*El)).
ROOKWEST (*I1.*J1,*I2.*J1,*W)
<- GT (*I1,*W) &
(*I2=*W | SUCC(*W,*W1l) & ROOKWEST (*I1.*J1,*I2.*J1,*Wl)).

ROOKRANGE (* :*ITK.*JTK:*IOK.*JOK:* ,*N,*S, *E, *W)
<{- MINMAX (*ITK,*IOK,*W,*E) & MINMAX(*JTK,*JOK,*S,*N).

Fig. 6.6

31
/* MISCELLANEOUS AUXILIARIES */
*X=*X,

SUCC(*X,*Y) <- LT (*X,8) & SUM(*X,1,*Y).
PRED (*X,*Y) <- GT (*X,1l) & DIFF(*X,1,*Y).

MINMAX (*X,*Y,*X,*Y) <- LE(*X,*Y) & /. MINMAX (*X,*Y,*Y,*X) .
ABS (*X,*Y)<- LT (*X,0) & DIFF(0,*X,*Y) & /. ABS (*X,*X) .
SIGN (*X,1) <- GT(*X,0) & /. SIGN(0,0) <- /. SIGN (*X,*Y) <- DIFF(0,1,*Y).

TRUE (*GOAL,*P0S1,*P0S2) <- CONS (*GOAL.*P0OS1.*POS2.NIL,*ATOM) & *ATOM.

Fig. 6.7

32

7. Concluding remarks

PROLOG programs should be written, in a first approximation
at least, as true statements about the relations we want to have com-
puted automatically by computer. This method is in general referred
to as "logic programming'; PROLOG is one particular system, which
supports the method to a greater degree than any other system. Logic
rrogramming has several _.features that make it an attractive method
for knowledge engineering. Its basic unit, the clause, is a production
rule, which has emerged, independently of logic programming, as the
favorite formalism of knowledge engineering. Moreover, in logic
programming the natural way of activating clauses is by pattern matching.
Also, clauses are so general that they encompass as a special case the
relatioral data base model [6]. As a result of this, clauses can always
be regarded as specifying, explicitly or implicitly, a relational data
base. 1In this way the usual distinction between program and database
disappears, which is especially attractive for knowledge engineering.

The PROLOG system is just one experimental realization of
logic programming. Its main design consideration was speed. As a
spin-off from resolution theorem-proving, logic programming was born
under the bane of ineffectiveness; as a result speed was essential for
a feasibility demonstration. In fact, PROLOG implementations exist

which are approximately as fast as LISP [17].

33

However, the success of PROLOG should not obscure the fact that
it is not the only possible realization of logic programming. We have
taken advantage of its existence by performing the experiment reported
in this paper. Let us discuss the conclusions with a view toward the
design of future realizations of logic programming specifically suited
for applications in knowledge engineering.

According to Michie's approach, advice tables are written in
the AL/1 language and directly interpreted by a special-purpose system
written in the POP-2 language. Given the implementation of AL/1, the
remaining work is to construct the advice table and to program in POP-2
the required predicates and the move generator.

In our approach, the interpreter and the advice table are
written in the same language. (PROLOG, run on the Waterloo implementa-
tion [13].) As programs they are to some extent separated, but not as
much as they perhaps should be. TFig. 6.1 and the first half of fig. 6.2
perform some of the functions of the AL/l interpreter. We should not
lose sight of the fact that the advice table used in our example is un-
characteristically simple: in general advice tables have an entry
condition (absert in our example) and several rules (what we have called
"rules" should be referred as "subrules", as they constitute together
a single rule of AL/1). Moreover, advice in AL/l contains in general

several advice tables.

34

On the other hand, our subrules may have conditions attached
to them, which is not the case in AL/l. For example, the condition on
the "mate" subrule is essential for avoiding gross wastage of computing
effort. Without the condition, a mate would be attempted also in the
beginning stage of the game. Because of the depth bound, the "mate"
subgame is already the most expensive one. In the beginning of the
game, when many rookmoves have to be considered, the game tree is
especially large.

In our opinion the endgame program in Waterloo PROLOG [13] is,
on the whole, compact and readable, Exceptions are, for example, con-
junctions which have to replace arithmetic expressions. Arithmetic
expressions do not pose a serious problem in logic programming. Several
implementations [10,11,14,16] have in fact adequate support for this
feature.

We find that each of the distinctive features of PROLOG systems
namely being rule-based, using pattern matching, and using automatic back-
tracking, have been useful in this application. 1In connection with
backtracking we felt the lack of an additional feature in Waterloo PROLOG.
By relying on backtracking we did not have to program a move generator.
The rules for the moves are merely specified and the backtracking mech-
anism generates a new move whenever one is needed. Sometimes, however,
as when a forcing tree is required, we need all such generated moves
simultaneously in a list. In most PROLOGs this effect can be fudged
using built-in extralogical features. We preferred to build a game
player without forcing trees. IC-Prolog [5], however, has a primitive

specifically for this purpose. Our experience suggests that this is

35

quite justified. Kowalski's [9] proposal to merge metalanguage and the
object language of logic would also solve the problem encountered here.
Waterloo PROLOG is quite wasteful of storage. For example, in
the last game reported below, the stack overflowed after the 28th move.
The game was completed by restarting with the last position on an empty
stack. Again the problem is not inherent in logic programming: several

implementations [4 ,10,11,16] exist which have quite reasonable storage

utilization.
Initial position Number of moves by Average CPU time in
format: US before mate seconds per US move
turn:TK:ok:or on an IBM 4331
theirturn:4.2:8.2:5.5 9 .48
theirturn:5.4:8.6:4.2 24 .80
theirturn:7.6:1.2:5.4 29 .72

Table 7.1: Data for three randomly selected
them—-to-move initial positions
To summarize: Waterloo PROLOG is probably a good (compared to
other implemented alternatives) tool for this type of application, in
fact surprisingly gcod for an early, experimental realization of logic
programming. The three faults noted (wasteful storage management, lack
of "set of solutions", lack of arithmetic expressions) have all been

corrected in several other versions of PROLOG.

36

8. Acknowledgements

I am grateful to Donald Michie for introducing me to advice
tables in an early stage of their development. It would have been
impossible to develop this program without the use of the excellent
PROLOG system implemented by Grant Roberts. My claim to the simplicity
and naturalness of the endgame program is in spite of the fact that this
is the third attempt, which was facilitated by version II, programmed
by Helio Silva, which, in turn, was facilitated by version I, programmed
by Nancy Meisner.

The National Science and Engineering Research Council financed

supporting facilities, which I hereby gratefully acknowledge.

9.

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[8l

[91]

[10]

[11]

[12]

[13]

[14]

37

References

Claude Berge, The Theory of Graphs and its Applications; Methuen,
London and New York, 1962.

I. Bratko, Proving correctness of strategies in the ALl assertional
language; Information Processing Letters 7 (1978), pp. 223-230.

I. Bratko, D. Kopec, D. Michie, Pattern-based representation of
chess end-game knowledge; Computer Journal, 21 (1978), 149-153.

M. Bruynooghe, The memory management of PROLOG implementations;
Logic Programming, K.L. Clark and S.A. Tarnlund (eds.), (to appear).

K.L. Clark and F.G. McCabe, The Control Facilities of IC-PROLOG;
Expert Systems in the Micro-electronic Age, Donald Michie (ed.),
Edinburgh University Press, 1979.

M.H. van Emden, Computation and Deductive Information Retrieval;
E. Neuhold (ed.): TFormal Description of Programming Concepts,
North Holland, Amsterdam, 1978.

Reuben Fine, Basic Chess Endings; David MacKay Company, New York,
1949, 1969.

R.A. Kowalski, Predicate Logic as a programming language; Proc.
IFIP 74, North Holland, 1974, 556-574.

R.A. Kowalski, Logic for Problem-Solving; North Holland - Elsevier,
1979.

F.G. McCabe, Tiny Prolog; Logic Programming, K.L. Clark and
S.A. Tarnlund (eds.), to appear.

C.S. Mellish, An alternative to structure-sharing in the implementa-
tion of a PROLOG interpreter; Logic Programming, K.L. Clark and
S.A. Tarnlund (eds.), to appear.

D. Michie, King and Rook against King: in M.R.B. Clarke (ed.),
Advances in Computer Chess I; Edinburgh University Press, 1977.

G.M. Roberts: An implementation of PROLOG; M.Sc. Thesis, Dept. of
Computer Science, University of Waterloo, 1977.

J.A. Robinson and E.E. Sibert, Logic Programming in Lisp; Department
of Computer and Information Science, Syracuse University.

9.

[15]

[16]

[17]

[18]

38

References - cont'd.

Claude E. Shannon, Programming a computer for playing chess; Phil.
Mag. 41 (1950), 256-275.

D. Warren, An improved PROLOG implementation which optimizes tail
recursion; Logic Programming, K.L. Clark and S.A. Tarnlund (eds.),
to appear.

D.H.D. Warren, L.M. Pereira, F. Pereira, PROLOG - the language and
its implementation compared with LISP; SIGART/SIGPLAN Symposium on
AT and Programming Language, U. of Rochester, August 1977. SIGPLAN
Notices 12 (1977), 109-115, SIGART Newsletter 64, (1977), 109-115.

C. Zuidema, Chess; how to program the exceptions? Report IW 21/76,
Mathematical Centre, Amsterdam, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

