IMPLICIT DATA STRUCTURES
FOR THE DICTIONARY PROBLEM

by
Hendra Suwanda
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-80-04

January 1980

IMPLICIT DATA STRUCTURES FOR THE DICTIONARY PROBLEM

ABSTRACT

This thesis explores dynamic data structures that can
be implemented without pointers. Such implicit structures
keep the storage requirement minimal and therefore, they are

of practical interest.

Some implicit and "semi-implicit" structures for
representing a dictionary are suggested and analyzed. For
implicit structures using a fixed partial order as the
underlying scheme, a lower bound on the product of the
search cost and the cost for deletion/insertion is given.
For structures not using a fixed partial order, it is shown

that the product of these costs can be reduced.

Tight lower and upper bounds for forming a new implicit
structure, the beap, are given. Also, an efficient al-
gorithm for selecting the k-th smallest element on a beap is
proposed. Under a parallel environment, it is shown that
beaps allow a reasonable speed-up in performing the basic

operations.

ACKNOWLEDGEMENTS

I have been very fortunate to have Professor Ian Munro
as my thesis supervisor. He is responsible for my interest
in Data Structures. Foremost, I am deeply grateful for his
friendship, enthusiasm, encouragement, and guidance. As
quoted in this thesis, several results were obtained jointly
with him. He read the very first draft of this thesis and

improved very much on its presentation.

I also thank the other members of the examining commit-
tee, Professors Kelly Booth, Gaston Gonnet, Larry Snyder,
Frank Tompa, and Dan Younger, for their numerous helpful
comments and criticism. I particular, I wish to thank
Professor Kelly Booth for his encouragement during my

graduate studies.

I appreciate very much the typing done by Virginia Her-
ridge and Kandry Mutheardy. Kandry also implemented the
program for Tables 4.1.1 and 4.1.2. I also wish to acknow-
ledge the assistance of Kandry and Teresa in the final

preparation of this thesis.

TABLE OF CONTENTS

CHAPTER INTRODUCTION

.1 Motivation

.2 A Brief Survey of Related Work
3

Thesis Outline

CHAPTER 2 : IMPLICIT DATA STRUCTURES FOR REPRESENTING
A DICTIONARY

2.1 The Model of Computation

2.2 The Beap, an Implicit Structure Based on a
Partial Ordering

2.3 Lower Bounds

2.4 Structures Not Using a Fixed

Partial Order
Improving Insertion Time with Extra Storage
A Beap of Rotated Lists

NN
L]
[e) ¥,

: FORMATION OF A BEAP AND SELECTION
.1 A Lower Bound on Beap Formation
.2 Forming a Beap
.3 Selecting the k-th Smallest Element

CHAPTER

wWwww

: PARALLELISM ON BEAPS
.1 A Divide and Conquer Technique for Searching
2 Parallel Algorithms for Beaps

CHAPTER

B S

CHAPTER 5 : SUMMARY, CONCLUSION, AND FUTURE RESEARCH

REFERENCES

CHAPTER 1

INTRODUCTION

l.1. Motivation

Good design of data structures, and the algorithms
acting upon them, is fundamental in solving set manipulation
problems which have a wide range of applications [Aho74]. A
particularly important set manipulation problem 1is the

dictionary problem: maintaining a dynamic structure that

can be used to ©process a sequence of search, insert, and

delete operations over a set of linearly ordered items. The
performance of a data structure is usually measured by the
time required to process each allowed operation, the time to
construct the data structure, and the storage needed to

maintain the data structure.

Many solutions have been given for the dictionary
problem [Aho74, Knuth73b]. Most of them are based on tree
structures with explicit pointers representing the orderings
among the keys. While the use of pointers is often crucial
to the flexibility and efficiency of the algorithms to
process the operations, their explicit representation often
contributes heavily to the space requirement. Usually,
these structures are designed to ©process the operations

quickly rather than minimize the storage requirement.

In this thesis, we explore a class of data structures
for representing a dictionary in which structural informa-
tion 1is implicit in the way the data is stored, rather than
explicit in pointers. Thus, only a simple array is needed
for storing data and no extra storage is wasted for our
model of computation as described in Chapter 2. Informally,

we say such a data structure is implicit.

The classic example of an implicit data structure is
the heap [Williams64]. A heap, containing N elements from
some linearly ordered set, is stored as a one dimensional

array which satisfies the heap property: A[i] < A[2i] and

A[i] < A[2i+1] (see Fig. 1.1.1). This implicit representa-
tion of a tree permits the minimum element to be found im-
mediately and a new element to be inserted in O(log N)
stepst. Similarly, an element in a specified position may
be deleted in 0(log N) steps. The low costs for insertion
and deletion suggest that heaps are suitable for
representing dynamic structures. Furthermore, a heap of size
N can be built in O(N) steps [Floyd64]. Unfortunately, the
heap is a very bad representation if searches are to be per-
formed; 1indeed, it is well-known that the average query re-
quires of 6(N) comparisons as there are about N/2 incom-

parable elements which reside at the leaves.

+ All logarithms are to base 2 unless otherwise stated.

Figure 1.1.1 : A Heap as an Implicit Structure

Another example of an implicit structure 1is a sorted
. list (of =size N). We can view a sorted list as being con-
structed by storing the median of the elements in the middle
of the array, partitioning the elements into two groups (one
containing elements smaller than the median and one con-
taining elements larger than the median), repeating the same
process with the smaller elements in the left part of the
array and the larger ones on the right. The implicit infor-

mation in this array is a binary tree corresponding to the

process of binary search (see Fig. 1.1.2). In contrast to
the heap, a search can be performed in O0(log N) steps.
However, the construction of a sorted 1list requires
O(N log N) steps, an insertion or a deletion may need ©(N)

steps (moves) to restructure the array.

B ettt U —
— - - o e - .-

e am e e e e e an m e e W e e o b e e e e e

.
)
]
i
]
1
i
H
!
|
I
1
!
\
i
|
1
1
1
1
!
'
|
[
1
1

P I T P E——
B T T T I Siepap—p——
— e . - e e -
- e = e e e o= e e e - A o= = e

Figure 1.1.2 : A Sorted List viewed as an Implicit Structure
for Performing Binary Search.

1.2 A Brief Survey of Related Work

Snyder [Snyder77] has investigated a class of data

structures called generalized search-tree structures which

includes most tree-like structures such as lists, binary
trees, AVL-trees, and 2-3 trees. Informally, a data struc-
ture 1is called "unique" if the shape of the underlying tree
structure (e.g. complete binary tree in a heap) depends only
on the size of the structure. It 1is shown that if a
generalized search-tree structure is unique, then at least

one of the operations insert, delete, or search requires

Q(VN) comparisons or changes (either of pointers or data).
Most implementations of these structures use explicit

pointers.

Bentley et al. [Bentley78, Saxe79] suggest a data

structure without explicit pointers called a binomial list.

The N data elements are stored in a simple array, which |is
divided into sorted sequences called "runs". The number of
elements in each of the runs is a power of two. The set of
log N run sizes provides the "binary decomposition" of the
number N. For example, if the array contains 23 elements,
the binomial list contains 4 runs of lengths 16, 4, 2, 1. A
search can be performed by doing a binary search on each
run. Insertion of a new element can be done by appending a
run of length one at position N+1 followed by repeatedly

merging the last 2 runs if they are of equal length. It is

shown that inserting N elements into an initially empty
binomial list requires N log N - N + 1 comparisons and a
search requires (log N)2/2 comparisons in the worst-case.
It can be shown that if N is a power of 2, then the total
cost of performing an unsuccessful search on each of a se-
quence of structures of size 1, 2, .., N-1, 1is about
(N (log N)2)/4. This means that O(N (log N)2) comparisons
are sufficient to perform any sequence of N insertions and
searches on a binomial 1list containing O(N) elements, so
that on average 0((log N)2) comparisons are sufficient to
perform an insertion or search. It is also shown that the
bounds are within a constant factor of being optimal for
these problems, provided that the only reordering used is
the merging of runs, and that the cost of performing such a
merge is equal to the sum of the length of the runs being
merged. A method of deleting elements is also demonstrated,
but this is at the cost of an extra bit of storage per data
element and a small increase in the run time. Although this
structure has a bad worst-case behaviour, it is very attrac-
tive for applications requiring minimum storage, good

average behaviour, and few or no deletions.

Another data structure without explicit pointers has
been devised by Melville and Gries [Melville78]. Unlike the
structures suggested by Bentley et al. or those suggested in
this thesis, gaps are introduced at regular intervals in the

array. Nevertheless, the size of the array is bounded by 2N

where N 1is the number of elements in the structure. A new
element is inserted into an appropriate gap following a
search operation. It can be shown that a sequence of N

insert, delete, min and search operations can be done in at

most O(N1+l1/d) steps for any d > 2. However, the practical
utility of the algorithms for d > 2 is questionable, and the
use of this structure is not recommended when some bounded
"response time" is required, due to bad worst-case behaviour
of insert and delete operation. It should be noted that a

search can be performed in O(log N) steps.

In a general strdcture, elements can be ©preprocessed
into a partial order so that the subsequent searches can be
performed efficiently. The trade-off between the processing
cost and each search cost has been examined by Borodin et
al. [Borodin79]. They show that if P(N) is the number of
comparisons used to preprocess N elements such that the
search can be performed in S(N) comparisons, then P(N) +
N log S(N) > (1 + o(l)) N log N, for any comparison-based

algorithm.

1.3 Thesis Outline

Our major objective in this thesis 1is to develop
pointer free data structures with minimal storage where data
is stored contiguously, so that the basic operations insert,
delete, and search of a dictionary can be performed ef-
ficiently. It 1is our goal to provide practical data struc-
tures for application where storage is restrictive and al-

gorithms that can be coded easily.

Chapter 2 and part of Chapter 3 of this thesis reflect

the work done jointly with Professor Ian Munro.

In Chapter 2, implicit data structures for representing
a dictionary are introduced. It is shown that the product
of the search cost and the deletion/insertion cost is at
least N (the number of the elements) for implicit structures
which are based on a fixed partial order. One of the struc-
tures introduced, the biparental heap (beap)*, is shown to
essentially achieve this lower bound. Indeed, O(/N) steps
is sufficient to perform a search, an insertion or a dele-
tion on a beap. Further improvement of the performance can

be achieved if implicit and "semi-implicit" structures based

* The name shortened to bpheap and finally to beap by E.L.
Robertson.

on other than a fixed partial order are used. 1Indeed, each

of the operations insert, delete and search can be performed

in O(N1/3 log N) steps on an implicit structure suggested in

Section 2.6.

In Chapter 3, we give lower and upper bounds on forming
a beap. We show that the number of comparisons required to
form a beap are 1/2 N log N minus lower order terms, while
1/2 N log N plus lower order terms are sufficient. We also
show how to select the kth smallest element on a beap in

O(min(k log k, ¢yN log N)) steps.

Chapter 4 contains a description of methods for per-
forming 1insertion, deletion and search operations on beaps
in a parallel processing environment. The algorithm for the
parallel search is based on a divide and conquer technique.
It is shown that a reasonable "speed up" can be achieved for

the above operations.

- 10 -
CHAPTER 2

IMPLICIT DATA STRUCTURES FOR REPRESENTING A DICTIONARY

In this chapter, implicit and "semi-implicit" struc-
tures for representing a dictionary are discussed. A model
of computation appropriate for this problem is defined and
the notions of implicit and semi-implicit structures are

made precise.

In order to search quickly in a structure some rela-
tions among the elements have to be maintained. The use of
a partial order to keep this information seems rather
natural and handy. The Figures 1.1.1 and 1.1.2, for ex-
ample, indicate the Hasse diagrams of the partial order as-
sociated with a heap and a sorted list. More precisely, we
define a partial ordering on the array locations such that
the data elements occupying the locations are consistent
with the partial order; that is element K1 < element K2 if

location(Kl) < location(K2) in the partial order.

The term "implicit" comes from the fact that the
pointers implied by the Hasse diagram do not have to be ex-
plicitly stored in the data structure if they can be easily
computed. For the data structures defined in this chapter

these calculations are easy.

- 11 -

An implicit structure based on a partial order is ex-
plored in Section 2.2. It has a much better worst-case
behaviour than a heap, sorted list, or binomial list. The
product of the cost of a search and of an insertion/deletion
is within a constant factor of being optimal for such a
class of implicit structures. A lower bound on this a
product is given in Section 2.3. This product of costs can
be lowered if some scheme other than a partial ordering is
used, as 1is demonstrated in Section 2.4. The more in-
teresting measure, the maximum of the search and modifica-
tion costs, 1is 1lowered 1in section 2.6, by a scheme not

solely based on partial orders.

- 12 -

2.1. The Model of Computation

Our model 1is a (potentially infinite) one dimensional
array in which data are always stored contiguously, even
after deletions occur. We will draw no formal distinction
between a pointer and an index (an integer 1in the range
[0,N] where N is the number of elements currently in the ar-
ray). A data structure 1is implicit if only a constant
number of such 1integers need to be retained. 1In term of
bits, a structure is implicit if only O(log N) bits are
used. Most, although not all, of our attention will deal
with structures in which N is the only such value required.
We will also suggest two structures which are "semi-
implicit", in that more than a constant number but o(N)
pointers (indices) are kept. Our basic operations on data
elements consist of making comparisons between pair of ele-
ments (with three possible outcomes <, =, and >) and
swapping pairs of elements. Integer arithmetic 1is allowed

only for manipulating indices.

Our measure of complexity is the maximum number of com-
parisons and swaps required to perform operations on the
data structure. This worst-case analysis is in contrast with
a closely related problem considered by Bentley et al.
[Bentley78]. Their main concern is a good average behaviour

rather than our concentration on worst-case.

- 13 -

2.2 The Beap, an Implicit Structure Based on a Partial

Ordering

The ordering scheme presented by Bentley et al.
[Bentley78] is, 1like the heap and the sorted list, a fixed
partial order (for each N) imposed on the locations of the
array. The elements occupying the locations must be consis-
tent with the partial order. In general, the more restric-
tive .the partial order is, the easier it will be to perform
searches but the harder it will be to make <changes to the
structure, because of the many relations that must be main-
tained. The heap and the sorted list are the two rather ex-
treme examples demonstrating the imbalance between the cost
for searching and the cost for modification. 1In this sec-

tion we present an ordering scheme which balances these

costs.

As we have noted, the heap is a very poor structure
upon which to perform searches. The reason for this
difficulty is that as a result of each internal node having
two sons, there are too many incomparable elements in the
system (the N/2 leaves). At the other extreme is a sorted
list, which is difficult to update because of the long chain
that has to be maintained in the ordering. Our first com-
promise between the costs of searching and updating is to
create a structure with the same parent-child relationship

as a heap, in which most nodes have two children. Unlike a

- 14 -

however, most nodes will have two parents. We called

of

heap,

this structure a biparental heap, a name in obvious need

shortening. We will, therefore, refer to it as a beap.

Figure 2.2.1 : A Beap.

To form the beap, the array is partitioned into roughly

/2N blocks. The ith block consists of the i elements stored

from position (i(i-1)/2 + 1) through position 1i(i+1l)/2.

This enables us to increase or decrease by 1 the size of the

entire structure while changing the number of elements in

only one block. (Indeed, this and similar blocking methods

- 15 -

are used in all of the structures we present.) The ordering
imposed on this structure is that the kth element of the
jth block is 1less than or equal to both the kth and the
k+1st elements of the block Jj+1st block. This ordering
(the beap property) 1is illustrated in Figure 2.2.1. The
numbers in the figure denote the indices of the array and an
arrow may be viewed both as a pointer and as a < relation.
The structure is then analogous to a heap except that an
element in our structure will typically have two parents

and the height of the structure is about v 2N.

Taking a slightly different point of view, one can
interpret this structure as the upper left triangle of a
matrix (or grid) in which locations 1, 2, 4, 7 ... form the
first column and 1, 3, 6, 10 ... the first row. Further-

more, each row and each column 1is maintained in sorted

order. Under this interpretation, the element in position
(i,j) of the beap 1is actually stored in location
P(i,j) = 1/2 ((i+j-2)2 +i+3j-2) of the array. This is, in

fact, the well-known diagonal pairing function. In the 1in-
terest of brevity we will present several of our algorithms
in terms of traversing rows and columns. Note that these
manipulations can easily be performed on the structure
without the awkward repeated computation of the inverses of
P(i,j), and 1in general without the explicit evaluation of

P(i,j) at each node visited.

- 16 -

A practical way to create the beap is by sorting the
entire 1list. It will be shown in Chapter 3 that
(N/2) log N (minus 1lower order terms) comparisons are
necessary for its creation, and that (N/2) log N plus lower
order terms are sufficient. Obviously a good sorting al-
gorithm requires a number of comparisons within a factor of
2 of these bounds. Sorting has the practical advantage of
simplicity and in fact of lower total cost than the scheme

outlined in Chapter 3.

We now describe methods for performing a few basic

operations on this structure.

1. Finding the minimum:
This element is in the first location.

2. Finding the maximum:
The maximum is in one of the last V2N locations, all of
which must be examined.

3. Insertion:
Insertion 1is performed in a manner analogous to inser-
tion into a heap. A new element is inserted into 1loca-
tion (N+l1]) of the array. If this element is smaller
than either of its parents, it is interchanged with the
larger ©parent. This sifting-up process, analogous to
the heap sifting, is continued until the element is in a
position such that it is larger than both of its
parents. Since the height of the structure 1is roughly

YN, one sees that at most 2V2N comparisons and V2N

- 17 -

swaps are performed. Furthermore, we note that if we
are to insert a new element into the structure, and this
element 1is smaller than all elements currently stored,
then every element on some "parent-child" path from
location 1 to one of the last /2N locations must be
moved. This condition holds regardless of the insertion
scheme employed. Hence the scheme outlined minimizes
the maximum number of moves performed in making an
insertion into a beap.
Deletion:
Once we have determined the location of the element to
be removed, simply move the element in position N of the
array to that location. This element then filters up or
down in essentially the manner used for insertions.
Thus, the cost for a deletion 1is at most 2y2N com-
parisons and V2N swaps.
Search:
For this operation, it is convenient to view the struc-
ture as an "upper-left" triangular matrix (see Figure
2.2.2). We start searching for an element, say x, at
the top right corner of the matrix. After comparing x
with the element under consideration, we will do one of
the following depending wupon the outcome of the com-
parison.

(i) If the -element is too large, move left one

position along the row.

- 18 -

(ii) If the element 1is too small, either move
down one position along the column or, if this 1is
not possible because we are on the diagonal, then

move diagonally left and down one position.

(iii) If the element 1is equal to X, stop

searching.

Repeating the above process, the search path will even-

tually terminate successfully or meet with the left side of

the triangle and be unable to move. The latter condition

indicates

search is

an unsuccessful search. Thus, the cost for a

at most 2 Vv2N-1 comparisons.
e

The Search Path

Figure 2.2.2 : A Search Path through a Beap.

- 19 -

The following lemma shows that this is the best search

technique on beap.

Lemma 2.2.1:

In the worst-case 2v2N-1 comparisons are necessary to

search for an element in a beap.

Consider the right most diagonal and super-diagonal of
the structure (Figure 2.2.3). Suppose the diagonal contains
the largest elements in the structure and the super-diagonal
contains elements smaller than those on the diagonal but
larger than any others in the rest of the structure. Note
that no other information about the relative values of these
elements need be known. Suppose that we are searching for
an element known to be smaller than all (except perhaps one)
of the elements on the diagonal, but larger than all (except
perhaps one) on the superdiagonal. There is no choice but

to inspect all elements in both of these blocks. O

X~€ . X—€ X—€

xte #he _xte *te xte

Figure 2.2.3 : Diagonal and Superdiagonal Containing Ele-
ments Near X.

- 20 -
In summary, we have demonstrated the following:

Theorem 2.2.2:

By storing N data elements in an array of 1length N
ordered as a beap, retaining no additional information other
than the value N, it is possible to maintain a data struc-
ture under which insertions and deletions can be performed
in 2V2N comparisons and V2N swaps, and searches in 2V 2N-1

comparisons,

- 21 -

2.3 Lower Bounds

Compared to the effort which has been devoted to
developing good algorithms, little has been done on proving
lower bounds for the complexity of set manipulation
problems. Under certain restrictive models, however, some
results have been obtained [Knuth73b, Snyder77, Tarjan77,
Yao78]. A lower bound for the dictionary problem, if the
dictionary 1is represented as a unique generalized search-
tree structure, has been explored by Snyder. He shows that

at least one of the operations insert, delete, or search

requires Q(yN) comparisons or changes to pointers or data.
Snyder's model differs somewhat from ours in that he assumes
the use of explicit pointers in his representation. This
implies, for example, that if the maximum element in a
sorted list is to be replaced by one smaller than any of the
elements 1in the 1list, only two pointer changes have to be
made to restore the ordering. Under an implicit ordering,
every element would have to be moved to preserve this
property. In this sense, Snyder's lower bound can be con-
strued as somewhat stronger than necessary for our purposes.
On the other hand, he assumes the structure 1is effectively
stored as a tree of bounded degree, and in that sense his
lower bounds are too weak. We can however demonstrate the
same lower bound as Snyder Q(/N) for the class of implicit

data structures which are based solely on storing data 1in

- 22 -

some fixed partial order. This result is related to but
incomparable with his. (Observe that the structures
discussed in the preceding sections are based on a fixed

partial order and thus are subject to this bound.)

For simplicity let us assume that we are to perform the
basic operations of search and modification (a deletion fol-
lowed by an insertion). We insist on pairing a deletion
with an insertion only to eliminate the problem of the

structure changing its size.

Theorem 2.3.1:

If the only information retained about an implicit data
structure, other than N, the number of elements it contains,
is a fixed partial order on the locations of the array.
Then, the product of the maximum number of comparisons
necessary to search for an element and the number of 1loca-
tions from which data must be moved (swapped) to perform a

modification is at least N.

Consider the directed acyclic graph (Hasse diagram)
representing the partial order underlying the storage
scheme. Let S be the largest independent set in this graph.
Since the only information on which we can rely is that the
elements are stored according to known partial order, it is
quite possible that the values stored in the locations cor-

responding to S are of consecutive ranks among the values

- 23 -

stored in the structure. Hence in searching for a value in
this range, no comparisons with any elements outside S can
remove from consideration any in S. Therefore, the number
of elements in S is a lower bound for the number of com-
parisons necessary to perform a search on the structure.

Now suppose the elements of the longest chain, C, are
as small relative to the other elements in the structure as
is consistent with the partial order. This means that 1if
there are k elements anywhere in the structure which must be
smaller than a given element in the chain, then the par-
ticular element is the k+1St smallest in the structure. Now
suppose we are to replace the smallest element in C (which
is the smallest element in the structure) with one greater
than the largest element in C. This implies that each ele-
ment 1in the chain is in a position requiring more specific
locations be occupied by elements smaller than the given
element than there exist in the entire structure. Hence,
every element on the given chain must be moved (including
the minimum element). Indeed, |C| swaps are required. The
theorem now follows since the product of the length of the
longest chain and the size of the largest independent set

must be at least N (see for example, [Bondy76]). a

Corollary 2.3.2

8 (YN) swaps or comparisons are necessary and sufficient

to perform the operations insert, delete, and search on an

implicit data structure in which the only information known

about the structure 1is a fixed partial order on the array

locations and the size of the structure.

It is perhaps worth noting that a beap, which is a two
dimensional grid, gives the best balance we can obtain
between the cost for searching and the <cost for inser-
tion/deletion (both take O(¥N) time). By going to a one
dimensional grid (a sorted 1list), 1insertion and deletion
will become more expensive and searching will become
cheaper. Going to the obvious extension in three dimensions
(see Fig. 2.3.1) or more reduces the cost of modification at

the expense of retrieval cost.

4
A

Figure 2.3.1: Three dimensional Beap.

- 25 -

A related result on lower bounds has been obtained by
Borodin et al. [Borodin79]. They consider the cost P(N) of
creating a partial order on N elements such that a search

can be performed in S(N) comparisons. They show :

Lemma 2.3.3.

P(N) + N log(S(N)) > (1 + o(1)) N log N

This result complements Theorem 2.3.1 rather nicely.
Combining the two and letting DI(N) to denote the number of
moves required to make a delete/insert pair on a structure
containiﬁg N elements, we have a lower bound on the cost
P(N) such that a search can be performed in at most S(N)
comparisons and a deletion/insertion pair can be done in

DI (N) moves. This is shown in the following corollary

Corollary 2.3.4:

P(N) + 2N 10g(S(N)) + N log(DI(N)) > (2 + o(l)) N log N

Proof
By Theorem 2.3.1, we get S(N) * DI(N) > N
or log(S(N)) + log(DI(N)) > log N.

The corollary now follows from lemma 2.3.3.)

Looking at the proof of Lemma 2.3.3 (Lemma 4 in
[Borodin79]), we note that P(N) is indeed the information
theoretic 1lower bound on the number of comparisons required

to construct a partial order. This lower bound can be ex-

- 26 -

pressed as log N! - log(#(N)). Combining this fact with the

previous corollary, we get an interesting combinatorial view

of the corollary.

Corollary 2.3.5:

2 N log(S(N)) + N log(DI(N)) - log(#(N)) > (1 + o(l)) N log N.

2.4 Structures Not Using a Fixed Partial Order

In this section, we present several implicit (and
"semi-implicit") structures under which the product of
search time and insert (or delete) time is less than N. The
main tfick employed is to store each block of elements in an
arbitrary cyclic shift from increasing order. We then call
such a block "rotated list". An example of a rotated list

is given in Figure 2.4.1.

Figure 2.4.1: A Rotated List of Size 5.

2.4.1 Rotated lists

Again the array 1is partitioned into blocks such that
the ith block contains i elements. The order maintained is

much more stringent than that of a beap. We insist that

- 27 -

(i) all elements in block i be less than or equal

to all elements in block i+1;

(ii) block i is a rotated list of size 1i.

An example is shown in Figure 2.4.1.1.

! l l
1 3 2 6 4 5 9 |10 7 8 o s o o
1 2 3 4 5 6 7 8 9 10
< ~ V2N Blocks >

Figure 2.4.1.1: Each Block is a Rotated List.

Before discussing searches, it is helpful to describe a
technique for finding the minimum of a rotated list con-
taining distinct elements. The method used 1is a bisection
technique. Figure 2.4.1.2 illustrates the problem of deter-
mining the minimum value in the interval [F,L]. A modified

binary search procedure is described below in Pidgin-Algol :

- 28 -

procedure Block Min (F, L)
begin
if (L-F+1) < 2 then

return (min (el[F], el[L])

else begin

M= | (F+L) / 2 |
if el[M] < el[L] then Block Min(F,M)

else

if el[M] > el[L] then Block Min(M,L)

end

end

el [M] denotes the element in position M of the el.

F
[P
{ { i ¥

mi A
in min

M
|
i

-t

F
%;

Lt

Y
<

M
|
|

Figure 2.4.1.2 : Finding the Minimum in a Rotated List.

Lemma 2.3.1.1 :

If the size of the block, b, is one more than a power
of two, then the procedure Block Min requires 1log(b-1) + 1
comparisons. In general, at most [log(b-1) + 17 comparisons

are required.

- 29 -
Proof

The number of comparisons satisfy the following recur-
rence relations
T(2X + 1) = T(2¥"1 + 1) +1
T(2) =1
It is easy to show by induction that x+1 is the solution.

For b=2%X+1 this yields log(b-1) + 1. o

It should be noted that the above procedure does not
work 1f equal keys are present. For example, suppose all
elements in a block are equal except the minimum of the
block. In the worst case we have to use (b-1) comparisons
to find the minimum. One way to overcome this problem is by
adding a flag (one bit) to each array location. The flag is
on if the key (element) occurs more than once in the struc-
ture. This also indicates that the number of occurrences is
stored in the next location to the right (logically, not
physically) of the key. The flag in the count location is
also on. With little modification, the algorithm explained
below can still be applied. The extra cost will not affect
the total search costs dramatically. While this technique
can save space if the frequency of occurrence of a key is
large, the structure has to be «classified since semi-
implicit, since it needs an extra O(N) bits for the flags.
The procedures given below operate on the assumption that

there are no repeated keys.

- 30 -

We now describe methods for performing basic operations

on rotated lists.

1.

Finding the minimum.

Again, this element is in the first array location.

Finding the maximum:

The maximum is 1in one of the locations in the last
block. By using a modified binary search, we can find
the minimum element of that block; the maximum is in the
immediately preceding location (or in location N, if the
block minimum is in the first location within the

block) . Hence only [log(v2N-1)]1+1 comparisons are re-

quired.

Search:

Our basic approach is to perform a simple binary search
until it is determined that the desired element lies in
one of two consecutive blocks. Next the procedure
Block-Min is performed to determine the minimum element
in the 1larger block. Based on the outcome of a com-

parison between this minimum and the desired element, we

either

(1) perform a (cyclicly shifted) binary search on

the larger block

- 31 -

or (ii) determine the position of the minimum element
in the smaller block and perform a binary search

on that block.

Lemma 2.4.1.1

In the worst case, searching requires at most

2 log N + O(1) comparisons.

Proof:

Let k and k+1 be the sizes of the two consecutive
blocks. The number of comparisons in finding these two
blocks is at most (log N - log k). Locating the minimum
value 1in the 1larger block requires at most log k + 1
comparisons. Completing the search requires at most
log k + 1 + log k comparisons. Thus, the entire process
costs at most log N + 2 log k + 2 comparisons. This

again is bounded by 2 log N + 3 comparisons. o

An alternate search technique with the same worst-
case behaviour is to first do a binary search on the
blocks to find two consecutive blocks that may contain

the desired element and then proceed as before.

Insertion:

Using the basic strategy suggested for performing a
search, the block into which a new element should be in-
serted can be found in log N + O0O(l) comparisons. A

further 2N (at most) moves suffice to insert the new

- 32 -

element 1into its proper position, remove the block max-
imum and shift the elements which lie between the new
element and the former location of the block maximum.
At this point, we see that for each block 1larger than
the one in which the insertion was made, we must perform
the operation of inserting a "new" minimum element and
removing the old maximum. Fortunately, the new minimum
can simply take the place of the o0ld maximum and no
further shifting (within blocks) is necessary. This
transformation can be performed on a block of i elements
in log i + 0(1) comparisons and one swap. Thus, the en-
tire task can be accomplished in about

V2N

iji (log i + 0(1)) = /(N/2) log N + O(VN) comparisons

and O(/N) moves in the worst-case.

Deletion:
Deletions are performed in essentially the same way as

that outlined for insertions.

Selecting the kth smallest:

The kth smallest element must 1lie in block
r(ﬂjgﬁ - 1)/2]. Determining the minimum element in
this block, and so the value of the desired element, re-

quires about 1/2 log k comparisons.

- 33 -

Summarizing the above results and observing that once
the structure is formed, O(Y/N log N) comparisons are suf-

ficient to complete a sort of the list, we have shown:

Theorem_g.4.l.2

Storing N different data elements in an array of length
N, and retaining no information other than the data and the
value of N, it is possible to perform searches in 2 log N
comparisons and insertions and deletions in VN/2 log N +
O(/N) comparisons and swaps. N log N - 6(N) comparisons are

necessary and sufficient to create this structure.

2.5 Improving Insertion Time with Extra Storage

At this point, it is natural to ask whether or not we
can simultaneously achieve the 0(log N) search time of the
rotated lists and the O0(¥N) modification cost of the beap.
In this section we show that this is possible with o(N) ad-

ditional storage.

2.5.1 With v 2N Pointers

Observe that the O(VN log N) behaviour of the above
technique is due to the search, in each block, for the
(local) maximum. By retaining a pointer to the maximum of
each block, the insertion and deletion times are reduced to
O(/N). Furthermore, the problem with equal keys will no

longer exists.

2.5.2 Batching the Updates with a Small Auxiliary Map

Another approach is to "batch" insertions and dele-
tions. This can be accomplished with an insertion map and a
deletion map. Each map can hold up to log N pointers (in-
dices) to the array to indicate the elements to be inserted
or deleted. A total of O((log N)2) bits are required for
these maps; up to 1log N extra locations in the array may

also be used for elements which have already been deleted.

We now describe the basic operations.

1‘

When

Insertion:

Search the deletion map to see if the "new" element 1is
actually in the array but to be deleted. If this is the
case, we just remove the corresponding entry 1in the
deletion map. Otherwise, we put the key in location
N+1, incrementing N at the same time, and keep a new

pointer to this location in the insertion map.

Deletion:

Search the 1insertion map to see if the element to be
deleted is newly inserted. If this is the case, remove
the entry 1in the insertion map and the element in the
array, close the gaps created by this removal, and
decrement N. Otherwise, put a pointer to the key to be

deleted in the deletiom map.

Search:

We search the maps first. If there is an entry pointing
to the desired element in the array, the answer will
depend on where the pointer is. Otherwise, we search on
the structure by using the bisection method described in
the previous section. The case of equal keys has to be

handled separately.

either map is full, we sort each map according to the

newly inserted and deleted keys in the array and then, make

the

changes 1in a single pass. This restructuring will re-

- 36 -

quire O(VN log N) operations and can be "time-shared" with
the next log N insert/delete commands.

At this point, one is also inclined to ask whether or
not both the search and modification costs may be reduced to
below O(YN). The answer is in fact positive. This can be
achieved by combining the ideas of a beap and the rotated

sorted list as described in the next section.

2.6 A Beap of Rotated Lists

In this section we will present a structure of N ele-
ments which allows us to perform a search, a deletion or an
insertion in 0(N1/3log N) comparisons and swaps. Again the
array is partitioned into blocks. The ith block is stored
from location (i-1)i(2i-1)/6 + 1 through location
i(i+l) (2i+1)/6, and is divided into i1 consecutive subblocks
containing i elements each. The subblocks correspond to the
elements (nodes) of the beap and each subblock is stored as
a rotated 1list. Note that the height of the structure is
about (3N)1/3, which is equal to the number of blocks. More

precisely,

(i) each subblock of block i is a rotated list of

size i

(ii) all the elements of the kth subblock of the
jth block are less then all elements of the kth

and k+1St subblocks of block j+1.

height

—
) Subblock)

__hi\

Figure 2.6.1: A Beap of Rotated List.
As in the case of a beap, we note that moving along rows and
columns from subblock to subblock can be done easily without
computing the pairing function and its inverses, provided
three or four parameters are kept. We now describe how to

perform these operations:

- 39 -

Finding the minimum:

Again this element is in position 1.

Finding the maximum:

The maximum is in one of the last (3N)1/3 subblocks.
The maximum element in a subblock can be found in
(log N)/3 + 0O(l) comparisons, so the maximum element in
the entire structure can be found in (N/9)1/3 log N +

0(N1/3) comparisons.

Insertion:

By combining methods for the grid and the rotated lists,
we insert the new element into the N+1St position of the
array, which is part of a subblock. Since the subblock
is cyclicly sorted, about 2/3 log N comparisons and
(3N)1/3 swaps are required in the worst case to insert
the new element into the subblock. As in a beap, if the
new element is smaller than either of the maximum ele-
ments of its parents, it is interchanged with the larger
one. This process continues (as in a beap) until the
imposed ordering 1is restored. Since the height of the
structure is about (3N)1/3, o0o(®N1/3 log N) comparisons

and swaps are in fact used.

Deletion:

Similar to insertion.

- 40 -

5. Search:
Searches are performed in a manner similar to that
described for the beap. The key difference is that a
comparison with a single element in the grid is replaced
by a (modified) binary search to find the minimum (and
the maximum) of a subblock, and hence the decision to
move left along the row or down along the column will
need more comparisons. Again, we start searching for an
element, say x, at the top right corner subblock of the
matrix. After finding the minimum and maximum of the

subblock under consideration, we will do the following:

(i) If x 1is less than the minimum element, move

left one subblock along the row.

(ii) If x is larger than the maximum element, move
down one subblock along the column, if this cannot
be done (on diagonal) then move left and down one

subblock in each direction.

(iii) If x is in the range of this subblock, then
do a binary search to find x. If successful, then
stop searching; otherwise, move left and down one

subblock in each direction.

This process is repeated until either x is found or the

required move cannot be made. 1In this manner a search can

be performed in 0(N1/3 log N) comparisons.

Theorem 2.6.1

Storing N different data elements in the first N 1loca-
tions of an array and retaining, in addition to data, only
the current value of N, it is possible to perform each of
the operations insert, delete and search in O(N1/3 log N)

comparisons and swaps.

We note that the easiest way to initialize the struc-
ture is to sort the N elements of the array. The cost of
doing so is within a (small) constant factor of that of op-
timal method. Again, the case of equal keys has to be

handled with more care.

- 42 -

CHAPTER 3

ON FORMATION OF A BEAP AND SELECTION

The complexity of creating a beap is explored in this
chapter. A lower bound based on the enumeration of beaps is
derived in Section 3.1. An algorithm for forming a beap is
given and analyzed in Section 3.2. This algorithm, which is
based on the mode-finding algorithm [Dobkin79al, has a
running time within a lower order term of the derived lower

h smallest element on a

bound. A method for selecting the kt
beap is suggested in Section 3.3. It is similar to the al-
gorithm for selecting the kth element in X + ¥, i.e. finding

h

the kt smallest element of { x. + yj | X; € X, yje Y, i=1,n,

i

j=1,n} [Johnson78]. It is shown that O(min(k log k, VN log
N)) are sufficient to do the selection. It should be noted
that all algorithms in this chapter will need temporary

working storage in addition to the storage required by the

data.
3.1 A Lower Bound on Beap Formation

First we introduce the closely related notion of a
Young Tableau [Knuth73b, pp. 48-67]. A Young Tableau of
shape (nl,n2,...,nm), where annZZ...anZO, is an arrange-
ment of nl+n2+...+nm distinct integers in an array of left-

justified rows such that

(i) row i contains ni elements
(ii) the rows and columns of the array are sorted in in-
creasing order.
For example, the following 1is a Young Tableau of shape
(3,3,1):
1 36
2 57

4

A complete beap can be viewed as a Young Tableau of
shape (m, m-1 , ... ,1). If the beap is not complete, it is
of shape (m, m-1, ..., k, k, ..., l). Each element in a
Young Tableaux is associated with a hook, which consists of
the element itself, those lying to its right, and those

directly below it. An example is illustrated in Fig. 3.1.1.

ZZ2

o

AN

Figure 3.1.1 : A Hook of length 7.

- 44 -

The number of different ways to put N distinct integers in a
Young Tableau of a given shape is related to the lengths of
the hooks. This relation is shown in the following theorem

taken from [Knuth73b, pp. 62-63].

Theorem §°l°l’

The number of different Young Tableaux of a specific
shape on N distinct integers is N! divided by the product of

the hook lengths.

Since a beap 1is a special case of a Young Tableau, a
formula for the number of different beaps on N distinct in-

tegers is easily found.

- 45 -

Lemma 3.1.2:

The number of Young Tableaux of shape (m, m-1, ..., 1)

on N elements is #(N)

(m2/4)+(m/2)+(7/24) 5
27 e (m™/2)+(m/2)+(23/24)
=‘/: At — m (1+40(1/m))
m-+(3/2)m+(17/24)
A 2

where m = -1/2 + V2N (1 + 0(1/N)) =V2N

and A = 1.2824271... is the Glaisher”s Constant.
Proof:

We need the following facts:

(i) 1T*#3 %5 % % (2p-1) = (2™) (M (m+1/72)) /17 (1/2).

11 ¥ 2

- (m2+m+1/6)/2 *

m

2 % .. ¥

(ii) G(m)

2
A ™M) (4 0(1/m))

[Knuth73a, pp. 112 & 499].

2 2
A (2m)(4m +2m+1/6)/2 o

(iii) G(2m) (1+0(1/m)).

(iv) YG(em) = /& (2m)(4m2+2m+1/6)/4 e—(mz)/z

(1+0(1/m)).

(v) In "(z) = (z - 1/2) In 2z -2 + 1/2 1n (27) +

1/(12z) - 1/(360z3) + 0(1/2°).

By Lemma 3.1.1, we get

#(N) = N!

But,
17 %33 %
Hence,
#(N) = N!
= N!

- U6 -

[1 %3 % % (2p-1)1°mt]
G(2m)
. * (2111—1)21’1-1 = -——é-—-—n ————————————— é —————
2° ® 47 % % (om) <"
G(2m)
= ";é';';ﬁ'; """ ;';éﬁ';';élﬁl”’:éﬁ
G(2m)
" AT
G(2m) (F (1/2))2m+]
(G(;;;é'gﬁ(ﬁITF"' ';ﬁ(ﬁﬁlTF'}:z;"";;;;éﬁlT
Glem) (P (1/2)™1/2
2
2(3m +2m) /2 G (m) (F‘(m+1/2))m+1/2

H"'(m+1/2)]m+1/2 can be computed as follows:

By (v), In *(z) = (2-1/2) In z - 2z + 1/2 1n (27) +

(M (z2))

Substituting

zZ

4

1/(122) - 1/(36023) + 0(1/2°).

2(z-1/2) -z° z 1/12 (=1/(360z%) + 0(1/z")
e (V27) e e
z(z-1/2) -z° z 1/12) Y
e (V27) e (1 = 1/(360z7) + 0(1/2z ")) .

z = m+1/2

- 47 -

(vi) m+1/2 m(m+1/2) -(m+1/2)2+1/12 m+1/2
[f (m+1/2)] = (m+1/2) e V2T)

% (1 - 1/360(me1/2)2 + 0(1/m™))

It can be shown that

y(me1/2)m - m(me1/2) (m/2)+1/8 (oo sy

(m+1/2

Thus,

me1/2 m(me1/2) (m/2)+1/8 —(m+1/2)°+1/12
[(m+1/2)] = m e e

2 (V27)™V2 (1 4 0Ci/m)).

N! must now be expressed as a function of m.

By (v):
In(N!) = (N+1/2) 1In N = N + 1n/37 + 1/12N - 1/(360N3) + 0(1/N°)

S I ——mmom = —mmeee + 1n V27 + 0(1/m2)
2 2 2
(m2+m+1)/2 -m(m+1)/2 5
N! = [(m.m(1+1/m)) /2] e V2r (1+0(1/m°))

It can be shown that

2
(1+1/m)(m +m+1)/2 em/2+1/)-l (140(1/m)) .

This gives

(vii) , (m24ms1)/2 m/2+1/4 n(me1)/2
N! = (m“/2) (e V2)/e (1+0(1/m)) .

The lemma follows from (ii), (iv), (vi), and (vii). 0

Corollary 3.1.3:

log (#(N)) = (N/2) log N - N (3 - log e)/2 + O(N log N)

Theorem g.l.é:

In the worst-case, the minimum number of comparisons

required to form a complete beap is

N/2 log N - 3/2 N (log e - 1) - O(/N log N)

Proof:

The information theoretic lower bound on the number of
comparisons to form an object on N elements having # (N) dif-
ferent possible arrangements is log N! - log(#(N)). This

gives the theorem. a

- 49 -

3.2 Forming a Beap

Although sorting an array to form a beap is very prac-
tical and efficient, it leaves the question of whether or
not we can form a beap in about N/2 log N comparisons rather
than the N log N - O(N) required on average for a full sort.
We are interested in achieving an upper bound which differs
from the lower bound of N/2 log N by at most a lower order

term.

The method presented here is a modification of the mode
finding algorithm of Dobkin and Munro [Dobkin79a], which is
in turn based on the median finding algorithm of Blum et al.
[Blum73]. The basic idea in forming a beap of size N is to
partition the elements into blocks of sizes 1, 2, ..., V2N
such that every element in block i is less than any element
in block (i+l). Although this is <clearly a stronger
restriction than that of a beap, we will see that the time
requiredr to form such a structure is not much more than the

lower bound given in the preceeding section.

block i
A

block i+1
[~ N\

Figure 3.2.1: A Beap where each Element in Block i is smaller
than any of Block i+l.

- 50 -

An adequate first approximation to the above situation
can be achieved by selecting points, one in each block, and
partioning the set of elements S about these points such
that every element to the left or above each chosen point is
smaller than any to the right or below the point. This is

depicted in Figure 3.2.2.

/ ¥ \
Figure 3.2.2: Elements are partitioned about the points.

The elements which are bounded by two chosen points
form a segment. Thus, we would like to partition S into
segments such that the endpoints of each segment reside in
two consecutive blocks. These points and therefore the seg-
ments are found repetitively from an initial segment which
contains all the elements, with the minimum and maximum of
the elements as the endpoints. Having performed this rough
partition, at most O(N) more comparisons are needed to
achieve to a valid beap by performing one selection on each

segment.

Following [Dobkin79a], the basic algorithm is given

below; more details and analysis follow.

algorithm beap;
begin
Initially the entire list is a segment, H, with the

minimum and maximum elements as its endpoints.

Split H into sublists of length t=[log N1 and sort
each sublist in increasing order. We will call each

such sorted sublist a column.

while there 1is a segment H with end points not
within two consecutive blocks (or the same block) do

begin
Let |H| = h.

Using o(h) comparisons, £find an element mid,
such that at most 1/2%*0(l) of the elements of H

are less than mid;

Split H into 2 segments Hl1 and H2, whose ele-
ments are < and > mid respectively. Mid is a

new endpoint for both H1 and H2.

If the endpoints of Hl are not within consecu-
tive blocks, repeatedly merge pairs of columns
of H1 until the average <column length is

restored to about t. Do the same with H2.

- 52 -

For each segment having endpoints in two consecutive
blocks, partition the elements such that the smaller
elements are moved to the smaller block and the
larger ones are moved to the larger block. This is
equivalent to finding 1St, 3rd, eth, 10th, .. ele-

ments of the entire structure.

We now describe and analyze the algorithm in more

detail.

a) The Initialization:

Finding the minimum and maximum can be easily accom-
plished in 3N/2 comparisons. The sorting of the columns

will require about N log log N comparisons.

b) The Splitting and Finding the Mid:

We follow the spirit of [Dobkin79a] in our descrip-
tion. Initially all columns are of the same length and
we start by finding the median of the column medians and
determine its rank with respect to all elements. Unfor-
tunately, this splitting will only guarantee that the
median of medians ranges from the 25th to the 75th
percentile. Since this is too vague for our purpose, we
try to get a better estimate by doing some more itera-
tions. Inevitably, we will have to cope with columns or

subcolumns of varying sizes. To be able to guarantee

- 53 -

that in each iteration at least 1/4 of the elements are
disqualified from being the median, we will find the

weighted median of the column medians as in [Dobkin79a,

Johnson78]. Suppose c(l1), c(2), ..., c(m) are the column
medians and w(c(i)) is the weight (equal to the size of
the column i) assigned to c(i). The weighted median

c(i is the one which partition {c(i)} such that:

k)
(ii) For any ordering c(il), c(i2), ceey c(ik),
...,c(im),
c(ij) < c(ik) for j < k
c(ij) > c(ik) for j > k.
(ii) w(c(il))+ +...+ w(c(ik)) > w(c(ik+l)) +...4
w(c(i))

(iii) w(c(il)) +ooot w(c(ik_l)) < w(c(ik)) +o..t

w(c(i))

The weighted median can be found in time proportional to the

number of elements [Dobkin79a, Johnson78].

The process to determine mid will itself be iterative.
In each iteration, we find the weighted median of the sub-
column medians of H that may contain the true median of H.
All elements of H are partitioned about this weighted median
by performing binary search on each column. This process re-
quires O(h/t) + (h/t) log t comparisons, if the average
length of the subcolumns is t. This leaves us with h/t sub-

columns of various sizes, one of which contains the segment

- 54 -

median. The key point, of course, is that the number of
elements in these subcolumns is at most about 3/4 of what it
was on the previous iteration. After i iterations, the size
of the subsegment containing the median is at most h(3/4)1.
Thus, after w(l) iterations we can guarantee that we can
produce two segments of sizes at most 1/2 + o(l) of the seg-
ment. By performing, say O(t/(log t)2) (= o(t/log t))
iterations, an adequate splitting is performed in o(h) com-
parisons. We refer to [Dobkin79a] for more details of the

splitting.

c) The Merging

The merging process to construct Hl and H2 is exactly
the same as the merging process in [Dobkin79al, where sub-
columns are merged into columns with average length about t.
This is easily achieved by repeatedly merging the smallest
pair of subcolumns until this condition is met. A nice but
unnecessary side effect of this approach is that the 1length
of all columns will be between t/2 and 2t. Although certain
elements may be involved in many comparisons, the total
number of comparisons used for reconstituting the columns of

Hl and H2 will be at most h (see [Dobkin79a] for details).

d) The Cost Analysis

Constructing the first segment uses only O(N) com-
parisons while building and sorting the columns contribute N

log £t = N log log N comparisons to the total cost. For ease

- 55 -

of analysis, we first assume that mid is the median of the
elements; we will adjust the analysis later. Each time the
while 1loop is executed, it contributes h + o(h) comparisons
to the total cost, if there are merges. While the number of
loop executions 1is of interest, the size of the segments
created plays a bigger role in determining the cost con-
tributed by this loop. The splitting process can be nicely
described by a binary tree whose internal nodes are tagged
with the size of the segment under consideration,
representing the merge cost. It should be noted that the
leaves need not be tagged since merging is not required and
they do not contribute any costs. An example of such tree is

given in Fig. 3.2.1.

- 56 -

N
-1 , N
byt | /) \
// R
! ' ;v 2V2N
/ - - -
/ (v 2(+1) ? /

Figure 3.2.1 : A Tree Representing the Merge Cost
Building a Beap.

The total merge cost would be the sum of all the
numbers tagged in the internal nodes. Taking another view,

we could express the sum roughly as the area shown below.

- 57 -

%f AT f‘w“i“’ﬂ“W§qﬁﬂﬁ?_}i‘

Figure 3.2.2 : Geometric View of the Merge Cost.

Since up to depth 1/2 log N - 1, every 1level of the tree
sums up to N, we can represent the sum as a rectangle. From
then on, the tree leans somewhat to the left. This effect is
also depicted 1in Fig. 3.2.2. The shaded area on the right
is N/4 and the shaded area on the left is
N/2 (/2 +1/4 +1/4 +1/8 +1/8 + 1/16 + ...)
= N/2 (1/2 +1/2 +1/4 +1/8 + ...) < 3/4 N.
Thus, the total cost for the merging is bounded by 1/2 N log

N + 1/2 N.

Since we cannot guarantee that mid is always the
median, it are clear that more iterations are needed. But
the crucial point 1is that the depth of each leaf in Fig.

3.2.1 will increase by at most o(log N), since :

- 58 -

(172 + £(£))Xx N > 1
where x is the height of the tree and f(t)=o(l).
Or, log N + x log(1l/2(1 + 2£(t)) > O

X < log N / (1-log(1+2f(t)) < log N (l+cf(t))

for a constant ¢ > 2/(ln 2 (1-2£(t)2))
Thus, x < log N (l+o(l)).
Clearly, the while loop contributes 1/2 N log N + o(N log N)
to the total cost which sums to

1/2 N log N + o(N log N) + N log log N + O(N)

= 1/2 N log N + o(N log N).
The partitioning in the last statement of the algorithm can
be done in O(N) comparisons. With Theorem 3.1.4, we have

shown:

Theorem 3.2.1:

1/2 N log N + o(N log N) comparisons are sufficient to
build a beap of size N. Furthermore, 1/2 N log N - O(N) com-

parisons are necessary.

3.3 Selecting the kth Smallest Element

Another operation that can be performed rather ef-
ficiently on a beap is the selection of the kth smallest
element. Indeed, one expects some improvement over selec-
tion from an unordered set since the beap is almost as dif-
ficult to construct as it is to sort and, therefore, it con-

tains information that can facilitate the selection process.

First, we present a simple method that works well for

small values of k.

Figure 3.3.3 : Candidates For The kth Smallest Element.

- 60 -

Lemma 3.3.1:

h

The kt smallest element can be found in O(k 1ln k) com-

parisons.

Proof:

h smallest element must lie in the shaded area of

The k©

Fig. 3.3.3. The number of elements in this shaded area is
k

bounded by k + 2k /{YI/X) dx = k + k 1n k. Therefore, the

th

k smallest element can be found in O(k log k) comparisons.

a

While the above method is efficient for small values of
k, it 1is wvery bad if k is large (e.g. k = O(N)). For this
case, however, we can do better with a different algorithm
presented below. It 1is similar to the algorithm for

selecting the kth element in X + Y [Johnson78].

Again, the basic method is based on the median finding
algorithm. We arrange the elements in sorted columns and
find the weighted median of the column medians and partition
the elements around this value, removing at least 1/4 of the
elements from consideration. The difference is that we have
to deal with columns of varying size and that we can save

some work by taking advantage of the structure.

Viewing the beap as a upper triangular matrix, we note
that the columns are already 1in sorted order but have

varying sizes. After finding the weighted median of the

- 61 -

column medians, we partition the elements by searching the
beap for this weighted median from both the upper right

corner and the lower left corner (see Fig. 3.3.4).

Figure 3.3.4 : The Search Paths Partitioning about the Element.

The search technique from the upper right corner has been
described in Section 2.2.1. The dual search technique from
the lower left corner can be described as follows:

After comparing the median of medians with the element under

consideration, do one of the following:

(1) If the element 1is too 1large, move up one position
along the row

(ii) If the -element 1is too small, either move right one
position along the row, or, if this 1is not ©possible
(because we are on the diagonal), then move diagonally

up and right one position.

(iii) If the element is equal to the median of medians, stop

searching.

The paths generated by these two search processes will meet
in the location containing the element being searched. This
path, in fact, generates the partition about the median of

medians. This process can be performed in 2v2N comparisons.

The algorithm can be written as follows:

Algorithm kth smallest;

begin

- 63 -

Initially S denotes the entire set of elements

(1s]=N).
Take the v2N sorted columns of the beap

starting point.

while |S| > /2N do
begin

find the weighted median of the column

as our

medians;

partition S into S1 and S2 containing elements

of S < and > respectively;
if |s1l] > k then S8 := S1

else begin

S := 82;

k k - |s1]|

end;

end;

Select the k-smallest element from S using a
algorithm.

end.

o(lsl)

- 64 -

The cost of one iteration of the while-loop is O(WN)
and the while-loop 1is executed at most (O(log N) times,
since each iteration removes at least 1/4 of the element.
The selection in the last statement can be done in O(W)
comparisons. Thus, the total cost is bounded by O(/N log N)

comparisons. We have shown the following theorem.

Theorem 3.3.2:

The kth smallest element can be found in O(min(k log k,

YN log N)) comparisons on a beap of size N.

Recently Dobkin and Munro have improved the bound for
selection on a beap to O(VN) comparisons [Dobkin79b].
Frederickson and Johnson [Frederickson79] have recently an-

nounced results similar to those of this chapter.

CHAPTER 4

PARALLELISM ON BEAPS

One way to increase speed in solving various problems
is through parallelism. Of interest, for any given problem
P, 1is the speed-up gained by the use of k processors. Let

us define this speed-up factor as Pl / Pk’ where Pi is the

worst-case complexity of P on i processors. Clearly, the
maximum speed up factor achievable is k. While parallel al-
gorithms for sorting and graph-theoretic problems have
received much attention [Batcher68, Gavril75, Hirschberg78,
Hirschberg79, Knuth73b, Preparata78, Regbati78, Valiant75],
little has been done in devising dynamic data structures
that allow parallelism. The main reasons are, probably,
that serial techniques such as hashing and tree-structures
are extremely efficient and there is an expectation of a low
speed-up factor based on one of the few known bounds, a
speed-up factor of only log(k+l) for searching a sorted list
[Borodin72, Knuth73b]. This pessimism 1is, however, not
justified for the structures we have been studying. As we
have seen, because of a time-space trade-off, the perfor-
mance of the basic operations for an implicit structure for
the dictionary problem is rather slow compared to an ex-
plicit tree representation. The opportunity for utilizing
parallelism is, then, much greater for implicit representa-

tions than for the explicit ones. We will show that this

- 66 -

optimism 1is justified by demonstrating a speed-up factor of

about 2k/3 for performing the basic operations.

We will adopt Valiant's model of parallel computation
[Valiant75]; k processors perform comparisons or swaps
simultaneously on a shared memory. It should be noted here
that in the algorithms proposed there will be no access con-

flicts as the processors will act on different parts of the

memory.

Divide and conquer algorithms have been successfully
applied in devising parallel algorithms for sorting
[Hirschberg78, Gavril75, Preparata78, Valiant75]. Con-
tinuing that approach, we will first describe an alternate

searching method for beaps based on divide and conquer.

4.1 A Divide and Conquer Technique for Searching

It is convenient first to describe a search procedure
for finding an element, say x, in an arbitrary m by n rec-
tangular array in which the rows and columns are maintained
in increasing order. The following search procedure is then

applied :

- Take the middle column (the Ln/2]-th) of the rec-
tangular array and use binary search to find a pair
of consecutive elements which are less and greater

than x, respectively (see Fig. 4.1.1). The (roughly)

- 67 -

(mn/2) elements in the shaded area are discarded.
- The search is recursively continued on the two
remaining structures until either m or n is reduced

to 1. At this point, a simple binary search is em-

<X

ployed.

Il

1%

Figure 4.1.1 : Divide and Conquer Method.

Figure 4.1.2 : Column Tree. Figure 4.1.3 : Row Tree.

- 68 -

This process of divide and conquer can be nicely
described by two binary trees, a column-tree and a row-tree.
They describe the columns and rows splitting in the itera-
tions. The column tree is fixed for a given n since the
columns are always split into two equal parts. Actually, it
corresponds to the process of binary search on n elements.
Therefore, it 1is balanced, with the exception that some
nodes on the next to the lowest level may have only one son,
and the number of nodes 1in each subtree is equal to the
number of column of the rectangle under consideration. As
an example, the case n = 9 is depicted in Fig. 4.1.2. Un-
like the column-tree, the row-tree describing the row splits
does not have a fixed shape. It depends on how the rows are
divided during the binary search of the middle columns. The
number of leaves in each subtree is equal to the number of
rows in the corresponding rectangle under consideration. An
example of a row-tree is given in Fig. 4.1.3. In the first
iteration, it is assumed that the rows are divided into two
parts containing 3 and 8 rows respectively. Superimposing
these trees, we can see that the splitting process ter-
minates whenever the leaves of either tree are reached. This
tells us that the number of either the rows or the columns
of the rectangle under consideration is equal to one. Now

binary search can be employed to search for the element x.

- 69 -

The number of comparisons in the worst-case to find an
element in any m by n grid can be described by looking at
the column- and row-trees or by the following recurrence

relation:

T(m,n) = T(ml, L(n-1)/21) + T(m2, [(n-1)/21) + [log(m+1)]

where ml + m2 = m, m,n > 2, and
T(l,n) = [log(n+l)]
T(m,1) = [log(m+l)]

We first look at the solutions for some special cases.

Lemma 4.1.1:

For m= 23, n=2i -1,n > 2m - 1 and assuming that
ml = m2 = m/2, (i.e. the rows are always partitioned in the
middle), the solution of the above recurrence relation is
723, 21 - 1) = 23 (i-j) + 3*2] - (j+3)
or

T(m,n) = m (log ((n+l)/m))) + 3m - (log m + 3)

Proof:

By induction on (j,1i)

Il
=

Basis : for (0,1) : T(1,1) =20 * 1 + 3 - 3

Induction Hypothesis : Assume true for (jl, il) < (j,i)

- 70 -

Induction Step
T(23, 2i-1) = 27(23-1, 2i-1 - 1) + § + 1

(by induction hypothesis)

2] (i-1-3+1) + 3*2J - 2(j-1+3) + j + 1

23 (i-j) + 3*23 - (j + 3) o

For n < 2m - 1, a similar result is shown in the following

lemma.

Lemma

|

|~
L]

|80
(X}

For m = 2j, n =21 -1, but n < 2m - 1 and assuming

m/2, the solution of the above recurrence

that ml1 = m2
relation 1is

T(m, n) = n (log (m/(n+l)) + 3) - log (n + 1)
Proof

Similar to Lemma 4.1.1. a

It 1is interesting to note that the solutions of the
recurrence relation under the above assumptions depend
primarily on the smaller of the two sides of the rectangle.
This justifies our search method of taking the middle column
regardless of m and n. If n = 2m - 1 = 21 - 1, the column
and row-trees are equivalent and the solution of the recur-
rence relation under the above assumptions is

T(m,n) = 2n - log(n+l) = 4m - log m - 3 < 3./un.
The following lemma tells us about the monotonicity of the

solutions.

- 71 -

Lemma g.i.g :

For a fixed N = mn,

(i) T(m,n) = m(log ((n+l)/m) + 3) - (log m + 3) is monotonic

increasing for m > 2

(ii) T(m,n) = n(log (m/(n+l)) + 3) - log (n+l) is monotonic

increasing for n > 2

Proof:

(i) Consider

(N/m) + 1
f(m) =m (log(————————-) + 3) - (log m + 3)
m
=m (log ((N+m)/m2) + 3) - (log m + 3)
daf N+m
-- = log (-—----) + 3 +
dm m2
1 m2 1 - 2m(N+m) 1
Mm(-—== —=—=— ———————————) - ———————-—
In 2 N+m m4 m ln 2

= log ((N+m)/m2) + 3 +

(1/1n 2)((1 - 2m(N+m))/((N+m)m)) - 1/(m 1ln 2)

= log ((N+m)/m2) + 3 +

1/(m (N+m) 1ln 2) - 2/(1ln 2) - 1/(m 1ln 2)

- 72 -

1 +3 +1.44/((N+m)m) - 2.88 - 1.44/m

v

since (2m - 1) < n or m2 < (N+m)/2

> 0 form > 2

(ii) Consider
g(n) = n (log ((N/n)/(n+l)) + 3) - log (n+l)
= n (log N/(n2+n) + 3) - log (n+l)
dg N
-- = log (-———-) + 3 +
dn n2+n
1 n2+n - (2n+1) 1 1
n(---- ---—-—- —-=——=—-—-) - (————— —————————)
1n 2 N (n2+n) 2 ln 2 (n + 1)
N n (2n+1) 1
= log (-———-) 4 3 - ————= m————————m & — e —
n2+n (In 2 N*n* (n+1) (1n 2) (n+1)

= log (N/(n2+n)) + 3 -
(2n+1)/((1ln 2)*N*(n+l)) - 1/((n+l) 1n 2)
since n < (2m - 1) or n2+n < 2N

(N/(n2+n)) > 1/2
> -1 + 3 - 2.88/N - 1.44/(n+l)

> 0 for n > 2 o

- 73 -

Lemma 4.1.3 tells us that for m, n > 2, m = 27,
n = 2i-1 and assuming that ml = m2 = m/2, the maximum com-

parisons are made when n = 2m-1, and this number is bounded

by 3/mn.

The case m = n is of particular interest as the beap
has this shape. Again, assuming that m = 2J and that the
split is always into two equal parts, the cost for searching
can easily be calculated by considering the row- and column-

trees as shown in Fig. 4.1.4.

0O 0o g @

m : 2‘/

Figure 4.1.4 : Row- and Column-Trees.

It

In

ml

as

- 74 -

can be shown from the trees that

T(23, 23) = T(23, 23-1) + 1

(n-1)*3 - log n + 1

3n - log n - 2

3,/mn - (1/2) log (mn) - 2

general, assuming that m= 27, n = 2j-1, and
= m2 = m/2, a formula for adding k new rows can be found
follows:

(a) n<2m -1, 1<k < 21

(b)

T(2), 2i-1) = (2i-1) ((j-i) + 3) - 1

T(23, (2i-1)+k) = (2i-1) (j-i+3) - i + k (j - 1 + 1)

T(m,nl) = (nl-k) (j-i+3) - i + k (j-i+1)
= nl (j-i+3) - k(j-i) - 3k - i + k(j-i) + k
= nl (j-i+3) - i - 2k

T(m,nl) = nl (lLlog (m/(n+l))) + 3) -

Llog (nl+l)]) - 2(n-2Llog (n+l)J+1)

2i-1 < n < 2i+1-2

n > 2m-1

(i) 1 < k < 2]
T(2], 2i-1) = 23(i-3) + 3*2] - (3+3)

T(23, (2i-1)+k) = 23 (i-j) + 3*2] - (j+3) + k

- 75 -

T(m,n) = m L log ((n+l)/m) | + 3m -

(log m + 3) + (n - 2Llog(n+l)l+1)

2i-1 < nl < 2i-1+m.

(ii) 2i-1 + m < nl < 2i+1-1
T(m,nl) = m ([log((nl+l)/m) 1 + 3) - (log m + 3)

This means that adding the last column will not increase

the search-cost in the worst-case.

The dual problem of adding new rows is more difficult to

analyze and not pursued here.

So far we have analyzed the case where the rows are
divided 1into two equal ©parts. Another case that can be
easily analyzed is when ml = 1 and m2 = m - 1, that is, the

row-tree has degenerated as shown in Fig. 4.1.5.

Figure 4.1.5 : Degenerate Row-Tree.

- 76 -

Again, assuming n = 2i - 1, the search cost can be found as
follows:

(i) m < log (n+l) = i

i-1 levels ~

/.’(”74) /é‘Ve/x

Figure 4.1.6 : Row- and Column-Trees.

- 77 -

The search cost is
T(m,n) = (i-1 + (i-2) + ... + (i-(m-1)) + (i-(m-1)) +

[log(m+1)T + Tlogm]1 + ... + [log 21

(m-1) (i-1+i-m+1) m+1
= e +i- (m-1) + = T log (k+1) 1
2 k=2
(m-1) (2i-m) m+2
= m—mm e + i - (m-1) + X [log k 1
2 k=3

Using the fact that
m [log m]

> [log kT = m [log m] - 2 + 1
k=1
[Knuth73b, pp. 184]
(m=1) (2i-m) m+2
T(m,n) = ——————————- + i - (m-1) + 2 [log k1 -
2 k=1
Mlog 17 - [log 21

(m=1) (2i-m)
——————————— + i - (m-1) + (m+2)|log (m+2)]| -

2Mlog(m+2)T + 1 - 1

O(m log(n+l)) 0((log n)2).

(ii) m > log(n+l) = i

\\\ - \\\
\\\ ‘\\\37_

\a\\\ - o:>~ m-(l~1)
-

The search cost is

(i-1) + ... + 1 + Tlog (m+1)] + ... +

T (m,n)

Mog (m-(i-2))T + log (m-(i-1))

((i-1)i)/2 + (i-1) [log (m+1l) 7

In

O0((log n) (log m))

O((log N)2) where N mn.

- 78 -

- 79 -

It is conjectured that this 1is the best case of
splitting the rows. This is consistent with the result of
lemma 4.1.3 which tells us that the search cost is maximized

if n = 2m.

The fact that taking ml = |m/2] and m2 = [m/2]1 does not
maximize the search cost can be seen in the following ex-

amples:

11

7, m

Example 1: n

a)

Column Tree Part of the Row Tree

search cost = 18

~

- 80 -

b)

19

search cost

Example 2: n =7, m = 12

a)

search cost = 18

- 81 -

b)

search cost = 21

One explanation of this fact is that although
2 log (6+1) is larger than log (4+1) + log (8+1),
2l1log (6+1)7 is smaller than [log (4+1)1 + [log (8+1)]. It

seems that the ceiling operator plays an important role.

The worst-case complexity of the search cost for small
values of m and n can be easily found by a dynamic
programming approach. These values are given 1in Table
4.1.1. It is interesting to note that they are almost sym-
metrical. This reaffirms that the search cost does not
depend wupon the side on which the binary searches are per-

formed. These costs are bounded by 3vmn - logm - 1 as

shown in table 4.1.2.

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m

1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5
2 1 2 3 4 5 6 6 6 7 8 8 8 8 8 8 8 9
3 1 2 4 5 6 7 8 8 9 10 11 11 1L i1 11 11 12
4 | 3 5 7 8 9 1o i 12 13 14 15 15 15 15 15 16
5 1 3 6 7 9 10 12 12 13 14 15 16 17 17 17 17 18
6 | 3 6 & 10 11 13 14 15 e 17 18 19 19 20 20 21
7 1 3 6 8 11 12 1l4 15 16 17 18 19 21 21 22 22 23
8 1 4 7 1o 12 14 16 18 19 20 21 22 23 24 25 26 217
9 I 4 8 10 13 15 17 18 20 21 22 23 25 26 271 21 28
10 | & 8 10 13 16 17 19 21 22 23 24 26 28 28 29 30
11 4 8 10 14 16 18 19 22 23 24,25 27 29 30 30 31
12 ! 4 8 11 14 16 19 21 23 24 26 27 29 30 32 33 34
13 1 & 8 11 15 17 20 21 24 25 27 2&8 30 32 34 34 35
14 1 4 8 11 15 18 20 22 24 26 28 29 31 33 35 36 37
15 1 4 8 11 15 18 20 22 ¢ 27 29 30 32 34 36 37 38
16 1 5 9

13 16 19 22 2% 21 29 31 33 35 37 39 41 42

Table 4.1.1 : The Search Costs (Worst-Case Behaviour).

Al 1 2 3 4 5 6 7 s 9 10 112 13 14+ 15 16
E\\:

L 2.0 5.2 4z 5.0 5.7 6.3 6.9 7.5 8.0 8.5 8.9 9.4 9.4 1062 le.o LD
2 1! 2.2 4.0 5.3 6.5 7.5 8.4 9.2 10.0 10.7 1l.4 12.1 12.7 13.3 13.9 l4.4 15.0C
3 14 2.6 4.8 6.4 7.8 9.0 190.1 11.2 12.1 13.0 13.8 14.6 15.4 16.2 16.5 17.5 1a.2
4 1 3.0 5.5 7.4 9.0 10.4 1i.7 12.9 14.90 15.0 16.0 16.9 17.8 18.6 19.4 2v.2 21.0
5 ! 3.4 6.2 8.3 10.1 11.7 13.1 14.4 15.7 16.8 17.9 18.9 19.9 20.9 21.3% 22.7 23.5
6 | 3.8 6.8 9.1 11.1 12.8 1¢.4 15.9 17.2 18.5 - 19.7 20.8 21.9 22.9 23.3 24.9 23.8
7T 1 4.1 T & 9.9 12.1 13.9 15.6 17.2 18.6 20.0 21.3 22.5 23.7 24.8 25.9 26.9 27.9
8 1 4.5 8.6 10.7 13.0 15.0 16.8 18.4 20,0 21.5 22.8 24.1 25.4 26.6 27.7 28.9 279.9
9 1 A.8 8.6 1l.4 13.8 16.0 17.9 19.b 21.3 22.8 24.3 25.7 27.C 28.3 29.5 3u.l 31.8
101 5.2 9.1 12.1 14.7 16,9 18.9 20.8 22.5 24.1 25.7 27.1 28.5 29.9 3l.2 3Z.4 330
1 5.5 9.6 12.8 15.4 17.8 19.9 21.9 23.7 25.4 27.0 28.5 30.0 3l.4 32.8 34.1 35.3
12 1 5.8 1u.1 _13.& 1le.2 18.7 20.9 22.9 24.8 26.6 28.3 29.9 31.4 32.9 34.3 35.7 137.0
150 6ol 10.6 140 16.9 19.5 21.8 23.9 25.9 27.7 9.5 3l.2 32.8 34.3 35.8 37.2 33.6
14t 6.4 11.1 14,5 17.6 20.3 22.7 24.9 26.9 28.9 30.7 32.4 34.1 35.7 37.2 38.7 4c.l
15 ¢ 6.7 1.5 152 18.3 21l.1 23.6 25.8 28.0 29.9 31.8 33.6 35.3 37.0 38.6 40.1 4l.6
16 ! 7.0 12.0 15.8 19.0 21.8 24.4 2647 28.9 31.0 32.9 34.8 36.6 38.3 39.9 4l.5 43.9

Table 4.1.2 : 3/mn - log m - 1.

- 83 -

It is still an open question which shape of the row-
tree maximizes the search cost. However, we note that the
"even split" is at least close to the worst-case as we show

in the following theorem.

Theorem 4.1.4:

Let T(m,n) be defined as
T(m,n) < T(ml, L(n-1)/2]) + T(m2, [(n-1)/21) + [log(m+1)7
T(l,n) < [log(n+l)T ml+m2 = m

T(m,1) < llog(m+l)]

Then, T(m,n) < 3v/mn - logm - 1

Proof:
By induction on (m,n).
Base: By Tables 4.1.1 and 4.1.2.

Ind. Hypothesis: Assume T(m',n') < 3/m'n' - log m' - 1 for

all (m',n') < (m,n).

Ind. step:

T(m,n) < (3Vml L(n-1)/2] - log ml - 1) +
(3Vm2 T(n-1)/21 - log m2 - 1) + |log (m+l)]|
< 3/ml n/2 - logml - 1 +
3/m2 n/2 - log m2 - 1 + [log (m+1l)]

- 84 -

Consider
f(ml) = 3/l n/2 - log ml + 3/m2 n/2 - log m2
= 3 v/l n/2 - log ml + 3/(m-ml) n/2 - log (m-ml)

daz2f 3/2/n/2 1 3/2/0/2 1
e e (mmm———————) + —mmmmm—m — e 4 e
dml2 2 ml3/2 ml2 1n 2 2 (m-ml)3/2 (ln 2) (m-ml)2
3 [n 1 1 1 1 1
= - (-§-- (——--- + mmmmm o) 4 —mm= (mmo o+ —mmmmmee)
4" 2 ml vl (m-1) /m—-1 ln 2 ml2 (m-ml) 2
d2f | 3 n 2 1 8
—_——— l =- - _—_— memem—m——= :':_-’:__—') + —————————
dml2 | 4 2 (m/2) /m/2 ln 2 m2
|ml=m/2

= - 3n/(mym) + (8/(1ln 2)) (1/m2)

< 0 for m > 15 n>1

- 85 -

Thus, f(ml) is maximized if ml = m2 = m/2 for m > 15.

Going back to the recurrence relation,

T(m,n) < 2*3 /m/2) (n/2) - 2 log (m/2) - 2 + [log (m+1)]

<3 7Ymn - 2 logm-4+ logm+ 1
<3 vmn - logm - 3
< 3 Vmn - logm-1

We note that if N = mn, at most 3/N comparisons are re-
quired to find an arbitrary element. Given a search
procedure for a rectangular grid, we can easily develop a
similar technique for a beap, i.e. the upper triangular half
of an n x n grid. The easiest method is to imagine that
"virtual elements" having the value 40 are in the 1lower
triangle which would complete a square. Note that this leads
to a 3/2N solution. By <careful implementation, 1i.e. by
checking if the element under consideration is in the upper
or lower triangle, which can be done easily by using the in-
dices of the element in the matrix, further saving of com-

parisons between keys can be achieved at the cost of more

comparisons between indices.

-. 86 -
4.2 Parallel Algorithms for Beaps

4.,2.1 Parallel Searches

Having explored and analyzed the divide and conquer al-
gorithm for searching in the last section, we can adopt it
to a parallel search algorithm in a natural way. From the
fact that the rectangles resulting from the splitting are
independent, different processors can be assigned to perform
the search. The problem of how to assign these processors
immediately arises as we try to keep the processors busy all
the time. The easiest way is to put new rectangles produced
by the splittings into a queue and assign these to available
processors; In the analysis we assume that k 1is much
smaller than m or n (in fact, k < min(log m, log n)). We

first look at some special cases:

’ m=2j, n=21—1 and assuming that the rows are
always divided into 2 equal parts, then
Tk(m,n) < 3/k Ymn + log k log m.
Proof
Consider the row- and column-tree. Until level
log k -1, not all processors can be utilized simul-
taneously. After this level, each level can be processed k

times faster.

- 87 -

Lemma 4.2.1.2 :

With the same assumption as above, except that k is not
a power of two,
Tk(m,n) < 3/kvmn + log k log m + log m.

Proof

After the [log thh level, there are at most k consecu-
tive 1levels whose number of nodes (rectangles) is divisible

by k (since 2X+l+...+2X+d

is divisible by k for some d < k
and x > [log k1). This group of levels can be speeded up by

a factor k with a 1 step penalty per level.

For the general case, we have the following theorem

Theorem 4.2.1.3 :

Tk(m,n) < 3/k ymn + (k+1) log m.

Proof:

Case (1) : Assume that once all processors are busy, they
remain so except at the final steps. It can be
seen that the "full" speed up can be achieved ex-
cept at the beginning and the 1last steps. The
bound then follows immediately. It should be

noted that this bound is quite pessimistic.

Case (2) : Assume that at most p < k processors are busy all

time. Since the depth of the superimposing trees

- 88 -

is at most min(m, log n), the total cost is
bounded by (log mn)2 + log mn which is below the

bound stated in the theorem.

Case (3) : Assume that for some period all processors are
busy, then some processors remain idle. Again,
from case (2), idleness of the processors tells
us that some subproblems can be solved faster
than the case 1if all processors were active.

Thus, the bound follows.

Again, as in the case of the sequential search, we can
imagine a beap as a rectangle (with +® in the lower

triangle). This gives the following corollary :

Corollary 4.2.1.2 :
For k < log N, searching an arbitrary element on a beap
can be done in 3/k V2N + (k+1) log m steps under

k-paralellism. Thus, a speed up factor of approximately

2k/3 can be achieved under k-parallelism.

- 89 -

4,2.2 Parallel Insertion and Deletion

For the sake of completeness, we include this section
which is taken from [Munro79]. Parallel insertions can be
performed directly on the beap. It is divided into k groups

of equal height as shown in Fig. 4.2.2.1.

/ V4 \\

Figure 4.2.2.1 : A Beap Divided into k Groups.

We note that an element has at most i+l ancestors at the ith
preceeding generation or next i higher level (two parents,
three grandparents, etc.). A new element is 1inserted into
the location (N+1l). All the ancestors of that element in the
next V2N/k higher level can be determined by index manipula-
tion. We then assign all k processors to find the maximum
of these ancestors. This can be done in at most
/2N/k2 + 0(log log k) comparisons [Valiant75]. If this max-
imum is bigger than the new element, we then swap these two
elements. We repeat the same "Jjumping" process until the

new element is bigger than all its ancestors in the next

- 90 -

v¥2N/k higher level. These preliminary steps can be done in
at most vV2N/k + O (k log log k) steps. At this time an ele-
ment within each group may not satisfy the beap property.
The point is that because of the preliminary steps they can
only filter up by at most /2N/k levels. We then assign each
processor to each group to restore the order simultaneously.
it can be seen that at most 2v5ﬁ/k steps are required.
Hence, a total of 3v2N/k + O(k log log k) steps are suf-

ficient to insert a new element. We have shown:

Theorem 4.2.2.1:

For k < N, inserting a new element into a beap of size
N can be done in [3V2N/k]1 + O (k log log k) steps under
k-parallelism, in addition to index manipulation for finding

the ancestors.

Corollary 4.2.2.2:

A speed up factor of approximately 2k/3 can be achieved

in parallel insertion under k-parallelism.

By noting that an element has at most i+l descendants
in the next i 1lower 1level (ith succeeding generation),

parallel deletions can be handled in an analogous manner.

CHAPTER 5

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

5.1 Summary

In chapter 1, we described the motivation for this
thesis, previous related research, and an overview of this

thesis.

In Chapter 2, we showed that the product of the search
cost and the cost for deletion/insertion is at least N, the
number of the elements, for implicit data structures which
use a fixed partial order as this underlying scheme. We
also suggested a structure that "essentially" achieves this
bound. We showed that the product of these costs can be
reduced if schemes other than a fixed partial order are
used. Indeed, O(N1/3 log N) steps are sufficient to perform

a search, an insertion, or a deletion.

In Chapter 3, we gave the lower and upper bounds on
forming a beap. We showed that the number of comparisons
required to form a biparental heap are 1/2 N log N minus
lower order terms, while 1/2 N log N plus lower order terms
are sufficient. We also showed how to select the kth
smallest element in such a structure in

O(min(k log k, N log N)) steps.

- 92 -

In Chapter 4, we showed that a speed up of approx-
imately 2k/3 can be achieved in performing the basic opera-

tions on a biparental heap if k-parallelism is allowed.

5.2 Conclusions

We have suggested solutions to the dictionary problem
with regard to the worst-case complexity by wusing implicit
data structures. Although the algorithm suggested have not
been implemented yet, we expect that they can be coded

easily.

We have <contributed to study of the time-space trade-
offs for data structures representing a dictionary 1in our
model of computation. Table 5.2.1 summarizes this trade-off
assuming that a key requires the same amount of storage as

an index does.

Array Size Cost of Searching Cost of Insertion/Deletion
3N 0(log N)/ 0(log N)
(tree-structures)
2N 0(log N) oml+l/dy, a> 2
(array with gaps) . (a sequence of N operations)
N + V2N 0(log N) O¥N)

(Rotated Lists + pointers)

N O(log N) O¥N log N)
(Rotated Lists) :

N , omN1/3 log N) o (N1/3 log N)
(Beap of Rotated Lists)

Table 5.2.1 : Time-Space Trade-Offs for Structures Con-
taining N elements.

Although we have addressed to the solution of the dic-
tionary problem, there are other potential useful applica-

tions of the structures discussed in this thesis:

a) All structures we suggested are suitable for representing
priority queue since the minimum element can be found in
constant time. Furthermore, if two beaps are placed
"back to back" as a "twin-beap" in a similar way as
"twin-heap" [Knuth73b, exercise 5.2.3.31], both the

minimum and maximum elements can be found in constant

- 94 -

time. The cost for the three basic operations remains as

before.

b) Selecting the kth smallest element can be done in O(yN)
time on a beap and in O(log N) time on rotated lists. It
is also possible on these structures to locate all keys
which 1lie between two given wvalues k1l and k2 (range
searching) in sublinear time by partitioning the elements

around k1l and k2.

For the rest of this section, we try to make brief com-
parisons between the tree structures (with explicit
pointers) and the implicit structures and between the hash
table and implicit structures under the assumption that
there is a memory manager that allocates a contiguous array

of a requested size.
a) Tree Structures vs Implicit Structures

Both share the same problem in allocating storage for
the structure; it is not obvious how much storage should be
allocated. However, tree structures are more flexible in
the sense that an arbitrary number of trees can be "grown"
in the same memory space and therefore, tree structures have
the potential in increasing the memory utilization. In con-
trast, only 2 implicit structures can be maintained 1in the
array to ensure that overflow will occur only when total

size of the structures exceeds the total space.

- 05 -

Other than the facts mentioned above, the time-space
trade-off dominates the difference between the two struc-
tures. It should be noted, however, that rotated lists are
attractive for applications where the number of searches is

much bigger than the number of insertions and deletions.

b) Hash Tables vs Implicit Structures

While 1implicit structures such as heaps or rotated
lists can answer the range queries including the nearest
neighbour queries efficiently, hash tables cannot answer the
same queries in any reasonable manner. Implicit structures
are more flexible 1in the sense that two structures can be
maintained in an array. They are also more manageable when

overflow occurs.

A brief comment about deletions is in order. When
chaining 1is wused with separate lists for each cell of the
table, deletions will cause no problem. However, the search
time 1is ©proportional to N when the size of the table is
fixed and N becomes large (re-hashing is required to avoid

this).

If linear probing 1is wused, deletion will cause no
degradation in performance. However, a search on a full
table costs ©(Y/N) comparisons on the average (although a
search on 99% full table will take a constant time on the

average).

- 96 -

If open addressing 1is used, for full table, any
sophisticated scheme known 1including the double hashing
costs Q(N) for a deletion unless flag indicating "dirty"
cell is used. This method 1is workable only when enough
insertions are made so that the dirty cells are reused;
otherwise, since the dirty cells will never become empty

again, they can degrade the performance drastically.

In summary, an implicit structure such as a rotated
list is a better structure than the hash table if the struc-
ture is required to be dynamic, if range queries are to be
made, or the minimum is to be found efficiently, or 1if we
must be able to respond in guaranteed time when searching

for an arbitrary element.

In conclusion, we feel we have shown the class of im-
plicit data structures to be of practical as well as

theoretical interest.

5.3 Future Research

There are several problems left open in this thesis.
The most interesting problem is, of course, concerning the
lower bounds on general implicit structures. A special case

of this would be to determine the lower bounds for rotated

lists embedded in a partial order, which are still unknown.

- 97 -

The sizes of the blocks on the beap or rotated list
play a major role in the performance of the operations.
This sequence of blocksizes (called the triangular number)
and others are used in transforming static data structures
to dynamic structures [Saxe79]. It would be interesting if
this useful method of blocking can be applied to other
problems. Also, whether or not rotated lists and others
will have an application for secondary memories (including

bubble memories) remains to be seen.

The method described in Chapter 3 to form a beap can be
generalized to arbitrary partial order. The question of
whether this method of forming a partial order requires a
number of comparisons differing from the information
theoretic lower bound by only a lower bound term is cur-

rently under investigation.

The reliability issue of implicit structures compared
to structures with explicit pointers also provides potential

for future work.

- 98 -

REFERENCES

[Aho74]
Aho, A.V., J.E. Hopcroft, J.D. Ullman, The Design and

Analysis of Computer Algorithms, Addison Wesley, 1974.

[Batcher68]
Batcher, K.E., "Sorting Networks and Their Applications",

Proc. AFIPS 1968 SJCC, Vol 32, pp. 307-314

[Bentley78]
Bentley, J.L., D. Detig, L. Guibas, J. Saxe, "An Optimal
Data Structure for Minimal Storage Dynamic Searching", un-

published manuscript.

[Blum72]
Blum, M., R.W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan,
"Time Bounds for Selection", JCSS 7 (1973), pp. 448-461.

[Bondy76]
Bondy, J.A., U.S.R. Murty, Graph Theory With Applications,

American Elsevier Publishing Co., 1976.

[Borodin72]
Borodin, A.B., J.I. Munro, Notes on "Efficient and Optimal

Algorithms", Department of Computer Science, University of
Toronto, 1972.

[Borodin79]
Borodin, A.B., L.J. Guibas, N.A. Lynch, A.C. Yao, "Efficient

Searching via Partial Ordering", unpublished manuscript,
1979.

[Dobkin79a]
Dobkin D., J.I. Munro, "Determining the Mode", Research

Report CS-79-27, Dept. of Computer Science, University of
Waterloo, 1979.

[Dobkin79b]
Dobkin D., J.I. Munro, private communication, 1979.

- 99 -

[Floyd64]
Floyd, R.W., "Algorithm 245 : Treesort 3", CACM 7 (1964),

pp. 701.

[Frederickson79]
Frederickson, G., D.B. Johnson, private communication, 1979.

[Gavril75]
Gavril, F., "Merging With Parallel Processors", CACM

18(1975) pp. 588-591.

[Hirschberg78]
Hirschberg, D.S., "Fast Parallel Sorting Algorithms", CACM
21 (1978) pp. 657-661.

[Hirschberg79]

Hirschberg, D.S., A.K. Chandra, D.V. Sarwate, "Computing
Connected Components on Parallel Computers", CACM 22 (1979)
Pp. 461-464.

[Johnson78]

Johnson, D.B., T. Mizoguchi, "Determining the k-th Element
in X +Y and X1 + X2 + ... + Xm", SICOMP 7 (1978), pp-.
147-153.

[Knuth73al

Knuth, D.E., The Art of Computer Programming,

Vol. I : Fundamental Algorithms, Second Edition, Addison
Wesley, 1973.

[Knuth73b]
Knuth, D.E., The Art of Computer Programming,
Vol. III : Sorting and Searching, Addison Wesley, 1973.

[Melville78]
Melville, R., D. Gries, "Sorting and Searching Using Con-
trolled Density Arrays", TR 78-362, Computer Science Dept.,

Cornell University, 1978.

[Munro79]
Munro, J.I., E.L. Robertson, "Parallel Algorithms and Serial

Data Structures", Proc. 17-th Annual Allerton Conference on
Communication, Control, and Computing (1979).

- 100 -

[Preparata78]
Preparata, F.P., "New Parallel-Sorting Schemes", IEEE Trans.

on Computers. C-27 (1978), pp. 669-673.

[Regbati78]
Regbati, E., D.G. Corneil, "Parallel Computations 1in Graph

Theory", SICOMP 7 (1978), pp. 230-237.

[Saxe79]
Saxe, J.B., J.L. Bentley, "Transforming Static Data Struc-

tures to Dynamic Structures", Proc. 20-th IEEE Symposium on
FOCS (1979), pp. 148-168.

[Snyder77]
Snyder, L., "On Uniquely Representable Data Structures",

Proc. 18-th IEEE Symposium on FOCS (1977), pp. 142-146.

[Tarjan77]
Tarjan, R.E., "Reference Machines Require Non-Linear Time to
Maintain Disjoint Sets", Proc. 9-th Annual ACM STOC (1977),

pp. 18-29.

[Valiant75]
Valiant, L.G., "Parallelism in Comparison Problems", SICOMP

4 (1975), pp. 348-355.

[Williams64]
Williams, J.W.J., "Algorithm 232 : Heapsort", CACM 7 (1964),

pp. 347-348.

[Yao78]
Yao, A.C., "Should Tables Be Sorted?", Proc. 19-th IEEE Sym-

posium on FOCS (1978), pp. 22-27.

Addendum to CS-80-04 (page 63)

The algorithm kP

smallest described in page 63 was intended for beaps
containing distinct elements. If repeated keys are present in &he beap, the

algorithm needs a slight modification in partitioning the beap.

Here we partition S into S], 32 and 53 containing elements of S
<, =, and > vrespectively. This can be achieved by searching the value
of (weighted median - €) and (weighted median + €) from upper right corner

and lower left corner respectively as depicted below.

/

If]S]I z k then repeat the same process with S,. Otherwise, if
if |Sq] + [S,] =k then the weighted median is the k™ smallest element.

Otherwise, assign k : =k - ISy = IS,] and repeat the same process with S3-

Note that this process is repeated until the test in while statement fails.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

