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ABSTRACT

We discuss six relatively old open problems about regular languages,
namely:

Star Height

Restricted Star Height

Group Complexity

Star Removal

Regularity of Noncounting Classes
Optimality of Prefix Codes
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0. Introduction

The theory of regular languages and finite automata was developed in the
early 1950’s, and is therefore one of the oldest branches of theoretical computer
science. Regular languages constitute the best known family of formal languages,
and finite automata constitute the best known family of abstract machine models.
The concepts of regular languages and finite automata appear very frequently in
theoretical computer science, and have several important applications. There is a
vast literature on these subjects.

In spite of the fact that many researchers have worked in this field there
remain several difficult open problems. Six of these problems are discussed in this
paper. There are more than six open problems about regular languages; the
choice of these six represents the personal prejudices of the author. It is not our
intention here to imply that other open problems are not significant. However, the
problems chosen do appear to be of fundamental importance and considerable
difficulty. Most of them are intimately involved with the fundamental property of
finite automata, namely finiteness.

For the most part we have adopted the terminology and notation of
Eilenberg [13,14].

1. Star Height

In a monograph [21] published in 1971 McNaughton and Papert include a
collection of open problems concerning regular languages. Their list is headed by
the star height problem. To illustrate their uncertainty about the problem, I quote
their final paragraph:

Research supported in part by the Natural Sciences and Engineering Research
Council of Canada under Grant No. A-1617. Preparation of this paper was
supported in part by the National Science Foundation of the United States under
Grant No. MCS79-04012.
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At this mon.ent we are unwilling to conjecture even that there
exist events of general loop complexity two or more. The entire
question of events whose general loop complexity exceeds one is wide
open. Only one of our conjectures remains credible: that if there
exist regular events of loop complexity n, for n>2, then there exist
regular events of loop complexity n whose syntactic monoids are
groups. We suspect that someone might prove this hypothetical
statement without answering the main question.

After eight years not much has changed. I find it surprising that no progress
had been made on such an intriguing question. The interest in the theory of finite
automata and regular languages as a research topic for computer scientists has
decreased significantly over the last 15 years. This is understandable since the
problems that are left are quite difficult and perhaps unfair as Ph.D. thesis topics.
However, the number of people that were actively involved in the area was very
large indeed, and I would expect that a handful of them would retain an active
interest in this problem, as a hobby. Yet there appear to be no new results.

Let 2 be a finite alphabet and =* the free monoid generated by T with unit
element 1. Regular expressions over Z are defined inductively:

(a) ¢, | and ¢ for each ¢ € Z are regular expressions.
(b) If E and F are regular expressions, then so are

E EUF ENF, EF and E".

. N~ e - * ..
In this definition ¢ denotes the empty language and £ = 2 —F. The remaining
operators are union, intersection, concatenation and star.

The (star) height Eh of a regular expression E is defined inductively as
(a) ¢h = 1h =0, and oh = 0 for all c € Z.

(b) If E and F are regular expressions then

Eh = Eh,
(EU FYh = (EN FYh = (EF)h = max{Eh. Fh}.
E'h = \+Eh.

In other words Eh is the maximum number of nested stars in E. For example, if
* *
E =(cU77r0), then Eh = 2.

If4czisa regular language, the height 47 of A4 is the least height of a
regular expression denoting 4. If E is a regular expression let | E| be the
language denoted by E. In the example above | E'| is of height zero because

[E| =1 U0

and (I U@o)h = 0.

The family of languages of height zero was characterized in 1965 by
Schiitzenberger [26] who showed that Ak = 0 iff the syntactic monoid M of A4 is
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aperiodic, i.e. has only trivial subgroups. This family of star-free languages is
relatively well-known. Apart from this, we know that if M contains a non-trivial
group then Ak >0, but it is not known whether there are any languages of height
two!

As McNaughton and Papert reported [21], for many years before 1971 the
language | A | accepted by the automaton A, of Figure 1 was thought to be of
height two.

Fig. 1. Automaton A,
Henneman [18] showed that it is of height one. In fact an expression of height
onefor4; = | Ayl is
A;=[ENF]U [(tUer0)E N (70)2F],

where E = ((r U o7'0)?)", and F = (r U (r'e)*)". A natural height-two
expression for A4 | is:

(O’T*O' U 'r(a‘r*a)* 7",

where 7 = (@ ¢ @). Informally, one can view A | as counting ¢’s modulo 2 and
counting 7’s modulo 2, but only those 7’s that occur after an even number of ¢’s.
A more complicated example suggested by Therien [29] is

Ay = (6770 U 16" 1(a770) 70" 1),
accepted by the six-state automaton of Figure 2. This language is suspected of
being a height-two language.

The language A of Figure 1 is very closely related to 4 3 accepted by A 3
of Figure 3. This language has a very natural description as follows.

Let uw € =" with u = o...0,, where oy, ..., 6, EZ. The binomial coefficient

Wy . . .
( u) is the number of factorizations
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Fig. 3. A 3

W = V00|V i02... Vy—10pVp
with vg, ..., v, € =", One can verify that
* w
A3 ={w|w€Els7}" and (4, ) = 0 mod 2}.

In other words, 4 3 counts modulo 2 the number of ways in which o7 is a subword
of w. A height-one expression is easily obtainable for 4 3 from 4 ;. In fact
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Az = U 1704 (1 v o).
A natural generalization of 4 3 is
Ag=1{w|we {o.7.7}" and (0:}77 = 0 mod 2}.

The reduced automaton accepting A 4 is shown in Figure 4. At the present time
A4 is another candidate for height two.

T,7

o

Fig. 4. Ay

To the best of our knowledge, the only published work on the star height problem
(other than Schiitzenberger’s paper on star-free languages) is that of Henneman
[18]. His main results are summarized below. Let G be the syntactic monoid of
the language A4, and let the order of G be n. Then

if G is a group, Ah < n

if G is a solvable group, Ah < log n

if G is a supersolvable group, Ak < 2+1loglogn
if G is an abelian group, Ah <1

Henneman defines the height A 4 of a complete (deterministic) automaton
A=(Q.i.T) to be the height of the language | A | accepted by A . The height
Sh of a semiautomaton S (automaton without initial state and final states) is

the maximum height of any automaton associated with S . Let
S(gg')y=1{w|w€Z" and gw = ¢’} in the semiautomaton S . One easily
verifies that the height of S is equal to the maximum height of the languages
S(q.q") over all g.q" € Q.

Given a semiautomaton S with state set Q and input alphabet Z, let M be
the transformation monoid associated with S. Then the monoid semiautomaton
of S is a semiautomaton Sj; with state set M and input alphabet Z.
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Henneman shows that Sh = Sj/h  To illustrate an application of this result
consider Figure 5. One verifies that S 3 is isomorphic to the monoid
semiautomata of both S| and S; Hence Sih = Spyh = S)h Itiseasy to
verify that S»h = 1; we can then conclude also that S;4 = 1.

Fig. 5(a). S, Fig. 5(b). S,

Fig. 5(c). Sy

The bounds on star height that were mentioned above apply only to
languages whose syntactic monoids are groups. In that case the corresponding
semiautomata are permutation semiautomata. Henneman observes that, for a
permutation semiautomaton S, Sh = (S(q.g))h where g is any state of S.
Hence one needs to consider only one language associated with any
semiautomaton. '

In the general case, if it is known only that the syntactic monoid of a
language A is a group G of order n, then the monoid automaton has n states. It
is easy to find expressions of height <n for any n-state automaton, using for
example the McNaughton-Yamada algorithm [22]. If the reduced automaton for
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A has n states and m < n, then of course the bound can be lowered to m.

In case G is abelian, it is not difficult to write a height-one expression which
is a finite union of expressions of the form

QAZ“(AZ“)*.
e

where 4, =@ o @) o (@ o @) is the set of all words over £ containing exactly
one o, and ps.g, > 0.

The results concerning solvable and supersolvable groups are deduced from
some classical results from group theory and the following theorem of Henneman:

Theorem: Let G be a group and N a normal abelian subgroup of G. Then
Gh < (G/NYr + 1.

(The height of a group G is the height of the monoid semiautomaton with state set
G, input alphabet G, and multiplication in G as the transition function.)

Henneman’s thesis closes with some techniques for proving that certain two-
input semiautomata are of star height one, and with a list of open problems.

The fundamental question remains: Is the star height hierarchy finite or
infinite? Our ignorance about this problem is well illustrated by the fact that we
are not even able to answer a much simpler question: Is there a language of height
two?

Henneman’s results lead one to believe that the star height of a language is a
property that can be characterized in its syntactic monoid. Also, almost all
known characterizations of subclasses of the class of regular languages can be
done in the framework of Eilenberg’s variety theory [14]. The following
observation shows that this approach can work only if all languages are of
height < 1. Let H; be the class of all languages of height < i, for i > 0.

Proposition:  H| is a *-variety ifl every regular language is of height < 1.

Proof: Suppose 4 € H; fori > 1, and let M 4 be the syntactic monoid of 4. By
a recent theorem of Pin [24], there exists a finite language B such that M 4 divides
M g+. However, B'e H, If H isa x-variety, it follows by Eilenberg’s theorem
that also 4 € H|. Hence all regular languages are of height < 1, if His a =
variety. The converse holds since the class of all regular languages is a *-variety.

Note that membership in H ¢ is a property determined by the syntactic
monoid. Also, H( is a *-variety.

2. Restricted Star Height

A restricted regular expression is a regular expression without intersections
and complements. The restricted star height of a regular language A4 is the
minimum height of a restricted regular expression E denoting 4. Our knowledge
of the restricted star height problem is considerably better than it is for the
problem of the last section. It is known that the restricted height hierarchy is
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infinite, and algorithms for finding the restricted height exist for several families of
languages. However, the general case is still open; i.e., given an arbitrary regular
language, it is not known how to find its restricted height. Throughout this
section height means restricted height.

The restricted star height problem was introduced by Eggan [12] in 1963.
He showed that for each 4 >0 there exists a language A over alphabet Zj; which
has height A; the size of the alphabet 2, grows with A. Eggan raised the question
whether there exist languages of arbitrary height over the two letter alphabet.
(Languages over a one letter alphabet are all of height O or 1.) The question was
answered positively by McNaughton (unpublished notes) and later by Dejean and
Schiitzenberger [11] in 1966. Let A, = (0, i Li}) be the automaton over the
alphabet = = {a,7}, where Q =1{0,1,..2"—1}, go = g+1 mod 2" and
gt = q—1 mod 2" for all g € Q. Dejean and Schiitzenberger showed that
| Ap| is of height A.

Eggan related star height of a language to the notion of cycle rank of a
graph representing the language. The rank of a graph is a measure of the loop
complexity of the graph; the precise definition is somewhat involved. Eggan
showed that for every regular language A4 there exists a transition graph (a finite-
automaton-like object which permits empty word transitions) whose rank is Ah.
Cohen [6,9] showed that the search can be limited to nondeterministic automata,
namely that for each regular language A there exists a nondeterministic
automaton whose rank is Ah. We will briefly describe one of Cohen’s approaches.

In what follows we need to have an explicit notation for the transitions in a
finite automaton. Thus we will use the notation A = (Q,/,T.E) where
E C QXZXQ. For any set S, S denotes the set of all subsets of S.

_ Let _A _=(Q.TE) be a minimal deterministic Z-automaton. Let
A = (Q.I.T.E) be the nondeterministic subset automaton derived from A as
follows:

=0-¢

=(X| X€0 i€X]
={X| XET - ¢}
={(X,e.X')| Xoa C X'}

e N o~ QO

where Xo = {¢' €Q|(q,0.9"') € E for some g € X}, as usual. One verifies that,

if X 3 X' is a path in A for some s € =" then Xs C X'. It follows that
s €| A | implies Xs C X' for some X such that i EX and X' CT. In
particular, is € Tors € | A |. Hence | A| C| A |. It is easily seen that
Al Ct Al:thus| A | =] A .
Next let k>0 and let Ay = (QXk, I Xk, TXk, Ef), where
k = {0, 1, .., k=1}, be the nondeterministic k-subset automaton with
Ex = {((X.j).o.(X"j)) | X.0.X')EE}

One easily verifies that | A x| = | A|. Note that A | is isomorphic to A.

~
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Let Ay = (Qk.Ii.Ti.E)) be a nondeterministic automaton,
where Q) C Q~Xk, Iy C iXk, T, C T Xk and Ey C Ek.

In other words, the graph of Ay is a subgraph of the graph of A ;. We will say
that any A, satisfying the conditions above is a k-graph of A . Clearly
| Ax| C| A|. Without loss of generality we can assume that A is trim (i.e.
every state appears in some successful path).

Cohen showed that any nondeterministic automaton recognizing a given
language A can be viewed as a k-graph of A, where A is the minimal
deterministic automaton recognizing A. For let B = (P.Ig.Tg.Ep) be any trim
nondeterministic automaton for 4. Let

B, = {s| s €X', p Elgs)
for any p € P. Define the function f : P = é by
pf =iB,
One can verify that
p € P implies pf # ¢;
p € Ig impliesi € pf;
p € Tp impliespf C T,

(p.op') € Eg implies (pf)a Cp'f.
Thus all the conditions are satisfied for B to be isomorphic to a k-graph of A .

As an example, consider the minimal deterministic automaton A of Figure
6(a) over = = {o, 7.7}, and the nondeterministic automaton B of Figure 6(b).
The set of states of A associated with each node of B is shown in Figure 6(b).
Note that {g} appears twice; hence B is a 2-graph of A. The cycle rank of B is
| and, if A4 is the language of A , we conclude that Ak = 1. One can verify that
there does not exist any I-graph of A that is of rank 1; i.e. it is necessary to use a
2-graph in order to display the height of 4. In fact for each k >1 an example can
be produced where it is necessary to go to a k-graph. The question is whether k
can be bounded. The following conjecture of Cohen is still open:

Conjecture: 1f A has m states then there exists a (2”—1)-graph of A whose rank
is equal to the height of A4.

The interested reader is referred to the literature [1,6-12,17-20] for further
results about star height.

3. Group Complexity

In the first two problems we have considered two rather direct measures of
complexity of a regular language. It is by now a well-established fact that many
properties of languages are reflected in the properties of the corresponding
semigroups. The problem discussed here deals with the complexity of semigroups.

A transformation semigroup X = (Q.S), abbreviated s, consists of a finite
set O and a subsemigroup S of PF(Q), where PF(Q) is the monoid of all partial
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Fig. 6(a). A

Fig. 6(b). B

functions Q — Q with composition as multiplication. If X and Y are fs5’s, then
X < Y denotes the relation X divides Y and X o Y is the wreath product of X
and Y. It is well known that any ts X = (Q, S) has a decomposition

X<An+lOGnoAnomoGloAL (l)
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where A; is an aperiodic (group-free) s for i=1, ..., n+1, and G; is a group for
i=1,....n. The (group) complexity Xc of X is the smallest integer n over all
decompositions of type (1). The Krohn-Rhodes Decomposition Theorem
guarantees the existence of such a decomposition for each ts X. Moreover, G; can
be chosen to be a simple group such that G; < S. However, in the definition of
complexity, these conditions are not imposed; any finite group may be used in (1).

The open problem is: Does there exist an algorithm for finding the
complexity of a given ts? Intuitively one would expect that, given the cardinality
m of S, one should be able to eliminate those groups that are “too large” for S
and limit the search to groups of cardinality < some bound depending on m.
However, no such bound has been found.

Notice that a ts has group complexity zero iff it is aperiodic. Every ts that
is a nontrivial group has complexity one. The group complexity hierarchy is
infinite because it can be shown that for n > 1 the s X, = (n, F,), where F, is
the monoid of all functions n = n, has complexity n —1.

The complexity problem was introduced by Krohn and Rhodes in 1965. A
rather detailed account of the problem is given by Tilson in a chapter of
Eilenberg’s Vol. B [14].

An interesting connection between a related complexity measure and a
certain hierarchy of languages has been recently made by Straubing [28]. He
showed that any transformation monoid X containing only solvable groups has a
decomposition

X<KpeoKu,—1°..°Kjy, (2)

where for each i, K; is either aperiodic or an abelian group. Let Xa be the
abelian group complexity of X, i.e. the smallest number of abelian groups over all
decompositions of type (2).

Let D,- be the family of all languages that can be constructed from the
letters of the alphabet using boolean operations, concatenation, and < j levels of a
certain counting operation [28]. Straubing shows that a language A4 is in T iff
its syntactic monoid has abelian complexity < j.

4. Star Removal

In 1965 Paz and Peleg [23] asked whether every regular language can be
decomposed as a product of a finite number of stars and primes, where a subset A4
of =" is prime if 4 = BC implies B = 1 or C = 1, and itis a star if 4 = A4 .
A positive answer to this question was given by Brzozowski and Cohen [2] in
1967. The decomposition procedure described in [2] does not lead to a unique
factorization as shown by the following example:

A=(1Ugg[o100U(s3Ucr01)(020) (c109Uaq]
(1Uo3U a0 (0200 0

=(1Uo3) [o201U(0gUai00) (0100 (020U a3)]
(1UagUaiag)(a100) a1

In both cases all the factors are either stars or primes.
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In contrast to this, the ideas of [2] and [23] suggest a natural procedure
leading to a unique decomposition as described below.

Let A =(Q.i.T) be a deterministic Z-automaton and let 4 = | A |.
Consider the Z-automaton B = (Q,i,T') where the transition function of B is
the same as that of A and

T'={q| g4 CT}|

We will show that B = | B | is the maximal left star factorable from 4. Since
iA CT, we have i €T and 1 €B If st €B then is,it € T' and
isA,itA C T. The last condition is equivalent to t4 C A.  Thus
istA CisA C T, ist € T' and st € B. Altogether B is a star. It is also easy to
check that 4 = BA. Now suppose A4 = B'C for some star B’; then
A =BBC =BA. Ifs€B' thensd CA,isACT, is€T ands € B. It
follows that B' C B, i.e. that B is maximal.

One easily verifies that, given any decomposition 4 = BD where B is a star,
there is a unique minimal tail C of A4 with respect to B (such that 4 = BC),
namely

C =4 —-(B—DhA.

The following procedure then suggests itself. Given a regular language A, find its
maximal left star By and its minimal tail C; with respect to B). Repeat,
replacing 4 by C, etc. After n steps we have 4 = B ... B,C,, where C,, is the
minimal tail of B, C,, with respect to B,,. The process terminates if the maximal
left star of C, is 1. The question is: Does this process always terminate?

5. Regularity of Noncounting Classes
A language 4 C =" s noncounting of order n.n > 1 iff forall u, v € ="

us™v € 4 «—— us"thy e 4.

It is well-known that every star-free language is noncounting, but the converse is
false in general.

Let ~, (or simply ~ if n is understood) be the smallest congruence on ="
satisfying s ~ s" 7! for all s € Z* Let M = 2%/~ and let p:Z > M be the
natural morphism mapping each element s € =" into the equivalence class [s} of
~ containing s. Then mup~ " is the set of all words of =" that are in the same
equivalence class. The question is: Is mu~ " a regular set for all in m € M?

Incase £ = {o}. we find:
M=1.[cl=0 ...[¢" '1=0¢""" [¢" = o

From now on assume therefore that Z has at least two elements. The case n = 1,
i.e. the case where M is idempotent, has been characterized by Green and Rees
[15]. They have shown that ~ is of finite index, i.e. that M = 2/~ is a finite
monoid. It follows that all the classes for n = 1 are regular, in fact star-free [3].
Thus every noncounting language of order 1 is star-free.

It is easy to show that ~»> is of infinite index in case card £ > 3 using a

result of Thue [30]. He has shown that there is an infinite set of ‘“‘squareless”
words, i.e. words s such that s = ur%v implies 1 = 1. This set of words is clearly
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noncounting of order 2, and each word constitutes a distinct equivalence class.
The same argument shows that ~, is of infinite index for all » > 2 and card
2 > 3. In the case n > 3 one can use another result of Thue to show that ~ is
of infinite index for card £ > 2. Thue has shown that there is an infinite number
of ““cubeless” words (words s such that s = ur3v implies ¢ = 1) for card T > 2.
This leaves only the case card £ = 2 and n = 2, which was settled by Brzozowski,
Culik and Gabrielian [3]. Let £ = {o.7} and let f:Z" = =" be the monoid
morphism defined by

of =oor and 71f = o77.

One can show that afi~>af/ iff i = j. Hence {[c]. [of]. .... [of']. ...} is an
infinite set of equivalence classes, and so ~; is of infinite index. It was shown in
[3] that [o f'] is regular for all i > 0. This supports the conjecture that all classes
are regular.

This problem was considered by Simon in 1970. The following is a
reworking of his unpublished observations.

Let M = E*/~zmd let r € M. Define the set
Ne={tmeM|r&MmM}

It is easily seen that N, is an ideal of M, ie. that MN, M = N,. We can
construct the Rees quotient monoid [S] M /N, = Q, of M with respect to N, as
follows. First, the Rees congruence <= induced by N, is defined by

m <—=>m' iff m € N,and m" € N,, orm = m'.

Then Q, = M /N, = M /<> ldentify each congruence class of <> containing a
single element m with that element, and let O be a new element not in M —N, that
corresponds to the class of all elements of N,. Then we can view Q, as consisting
of (M —N,) U 0, and having the multiplication ° defined by

mm'. it mm' &N,

n o ! = .
rem 0, otherwise .

Note that 0 is indeed the zero element of Q,. Let » be the natural morphism
v: M — Q, mapping each element m € M into the equivalence class of «—
containing n1. Let 6 be the composition of y and »; i.e. we have

> hE m Lo,
and

*

60=pv
- ZH o,
We are interested in rpv_l‘ Since r & N,, rv~! = r  Thus rp._l = ru_lp‘-'
= r(pv)”' = r67", and we conclude that if Q, is finite, then ru~t=r07" s
regular. However, it is not known whether <= on M is of finite index.

A second approach is as follows. Define on any monoid M the following
relations:

mLm iff m €Mm' and m' € Mm
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mRm' ff m Em'M and m' € mM,;
m Hm' iff m L m' and m R m'.

These are the well-known Green equivalence relations. Let L,, R, and H,,
denote the corresponding classes containing m. Then

R, ={m'€E M|m € m'M and m' € mM},
Lm =fm' €EM|m € Mm' and m' € Mm'},
Hp =Ry N Ly,

If M = 2%/~ then it satisfies m” = m"*! for all m € M; hence M is H -trivial;
i.e. each H -class consists of a single element. For suppose m | Hm, Then there
exist u,v € M such that

m|=umy and my = mv.
Thus m| =umy=um v = u"mv'=u"mv"t' = m v = my. Hence we
have
m = Hpy =Ry N Ly,
and

mp~'=Ryup~ "N Lyp~t.

Thus if one could prove that R,, and L,, are regular for each m € M one
would have the result that mu~" is regular.

6. Optimality of Prefix Codes
Our final problem is a conjecture by Schiitzenberger [25].
Let = be a finite alphabet. A code C over T is a subset of =" such that for
all s;.1; € C,
S]..‘Sn = t]-..lm
implies n = m and s; = ¢; for i =1, ...,n If Cis a code and s € C" we will
say that s is a message. Thus every message is uniquely decipherable. For

example {a.ab.ba} is not a code for a(ba) = (ab)a. A code C is prefix iff no word
of C is a prefix of any other word of C.

Two words s,r € =" are commutatively equivalent, s ~ t, iff they differ only
in the order of their letters, i.e. iff for each ¢ € 2

S\ _ (t

(c) = (2).
Two languages A.B C =" are commutatively equivalent, 4 ~ B, iff there is a
bijection § from A4 to B such that s € 4 and sf € B are commutatively
equivalent. Thus A4 ~ B iff one can write 4 = {s;s7 ....5,, ...} and
B = {t.ty ....t;, ...} where s; ~ t; for all i. For example let

Co={o, 70,770, 7770, 7777}
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and

C, = {o.70, 077, 7077, TTTT}.

Clearly Cy ~ C. Note that Cgis prefix while C 1 is not.

Conjecture: Every code is commutatively equivalent to a prefix code.

The conjecture is supported by a theorem of Perrin and Schiitzenberger
about a restricted class of codes.

Let C C 2" be a code and s.t € 2", The pair (s.1) is synchronizing for C
iff for any message w, if w = ustv for some w,v € =" then us and v are also
messages. In other words the appearance of sz in any message w permits us to cut
w into two shorter messages. For example, et

C> ={g0, 07, 70. 770, TTT}.

The pair (o7.07) is not synchronizing for C> because the message 7(o7)(o7)o
contains the pair but neither 7o7 nor oro are messages. However, the pair
(o170, 70) can be verified to be synchronizing.

A code C has bounded svnchronization delay if there exists an integer n such
that each pair (s,7) satisfying

s =sp.s,and t = 1.1y,

with s;.4; € C for i =1, ....n, is synchronizing. Codes with bounded delay have
been studied in several papers: see [25]. One can verify that code C; does not
have bounded delay because (%" 7#") is not synchronizing for any n. The code
C4 = {0, o7, 70, Tor7} has delay bound 1.

The main result of [25] shows that every code with bounded synchronization
delay is commutatively equivalent to a prefix code. However, the general case
remains open, even for regular codes.

7. Concluding Remarks

The problems described above do not appear to have any immediate direct
applications to computer science. However, if one accepts the premise that
mathematics should form the foundation of theoretical computer science, then the
questions are quite relevant. They demonstrate our lack of proper understanding
of the basic mathematical objects involved.

To end on a more positive note, I would like to mention two difficult
problems that were recently solved. Since 1967 the following question was open:
Given a regular language 4 can one decide whether there exists an integer n such
that 4" = 477 The problem was solved in 1978 by Hashiguchi [16] and Simon
[27]; the two solutions are independent and use different techniques.

The second problem concerns the dot-depth hierarchy. Let B be the
family of finite or cofinite languages. For any family F of languages let F M
and FB denote the closure of F under concatenation and boolean operations
respectively. Let
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B, = BoMBY"

Then B, is the family of languages that can be expressed with n or fewer levels
of concatenation, and languages in B, — B, _| are said to be of dot depth n.
The question whether the dot-depth hierarchy

Bpc Bc..c B,C

is infinite (i.e. whether B, +;# B, for all n) was open since 1967. It was
settled by Brzozowski and Knast in 1977 [4]: the hierarchy is infinite.
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