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ABSTRACT

A number of recent results and open problems on
homomorphisms on free monoids are discussed. Many of the results
and conjectures state that various equivalence problems about
homomorphisms are decidable. Also discussed are equality sets, test
sets and new representation theorems for families of languages.
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0. Introduction

We survey a number of recent results and open problems on
homomorphisms on free monoids. Except for the last section, dealing with
representation of language families, most of the results are decidability results.
They were motivated or directly constitute problems in L-systems theory.
However all of them are basic problems about free monoids and as such are not
only of purely mathematical interest but also, since they are all simply formulated
decidability problems, are of fundamental interest for theoretical computer
science.

Whenever possible we give an algebraic formulation of each problem so that
reading, not only the whole paper, but even a particular problem or theorem does
not require any specialized knowledge. Open problems are specifically of interest,
which makes us stress some topics. The only new results in this paper are some
relations among the open problems (conjectures) mostly very easily shown.

In section 2 we deal with iterations of one or more homomorphisms (DOL,
HDOL, DTOL systems) and some generalizations thereof. The next section is
about “homomorphism equivalence on languages,” i.e. the problem whether two
given homomorphisms agree “string by string” on a given language, and its
applications to transducers.

In Section 4 we consider elementary homomorphisms and questions about
equality sets, in particular over a binary alphabet. In the next section we consider
“homomorphism compatibility on languages,” i.e. the problem whether there
exists a string in given languages on which two given homomorphisms agree, in
particular various restricted forms of the Post Correspondence Problem.

In Section 6 we discuss the Ehrenfeucht conjecture: Each language possesses
a finite subset such that any two homomorphisms which agree (string by string) on
the subset agree also on the whole language. Some partial solutions are discussed.
Finally in the last section we list some new representation theorems for language
families based on equality sets and related phenomena.

Research supported in part by the Natural Science and Engineering Research
Council of Canada under Grant No. A-7403. Preparation of this paper was
supported in part by the National Science Foundation under Grant No. MCS79-
04012.
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1. Preliminaries

We consider homomorphisms =™—A", where =" A" are free monoids
generated by finite alphabets Z, A. The monoid unit (empty word) is denoted by e,
the length of a word w in 2" by | w|. We also use | n| to denote the absolute
value of number n. The cardinality of set .S is denoted by card S.

An alphabet 2. homomorphism 4 :2 = 2" and an (initial) word w in ="
form a DOL system G = (Z.h.w). The sequence generated by G, denoted E(G),
is defined by E(G) = w, h(w), h>(w). ....: the language generated by G. denoted
L(G), is defined by L(G) = {h"(w)| n»0}.

A DOL system G and another homomorphism g form an HDOL system
K = <G.g>. It generates the sequence

E(K)=g(w). g(h(w)). g(h3w)), ...
and the language
L(K)=g(L(G)) = {g(h"(w))| n>0}.

A DTOL system G is a tuple (Z, by, .... h,. w) where h,':E*—>E* for
i =1,... n It generates a set of sequences

{W, h,‘l(W), hil(hiz(w’)), l l.l' 1'2. E{I. e n}}
and the language
L(G) = {hi (hiy by (w) D | iy, ig €41 n )

For homomorphisms g.,A "> A" the equality set for the pair (g.h) is
denoted by E(g.h) and defined by E(g.h) = {x € 2*| g(x)=h(x)}

A deterministic generalized sequential mapping (dgsm mapping) is a
mapping defined by deterministic generalized sequential machine with accepting
states (dgsm) as in [32].

For other standard definitions and notations we refer the reader to [40, 41 or
47]

2. Iterated Homomorphisms

We will discuss a number of decision problems about iterative
homomorphisms. The following problem and techniques used in its proof
stimulated most of the research reported in this paper.

Theorem 2.1 [15] (DOL sequence equivalence problem). Given two
homomorphisms g.h 2" > 3" and win 27 it is decidable whether g"w)=h"(w)
for all n > 0.

The strategy of the solution of this problem is to show that any two (normal)
equivalent systems must behave in certain “‘similar” ways and then to show the
decidability for similar systems only. Here a pair of DOL systems is similar if the
pair (g.h) has “bounded balance” on the language {g"(w)| n > 0}.
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Thz balance of a string w in 2* with respect to a pair of homomorphisms
g.h on 2 is defined as

B(w)=[gw)| = [h(w)]

The pair (g.h) is said to have bounded balance on language L if there isa C >0
so that | B(w)| < C for each prefix of every word in L.

A property of a pair of DOL systems G| = (Z.g,w) and G, = (Z,h,w)
equivalent to ‘““bounded balance” is introduced in [15]. The pair (G |, G ;) is said
to have a true envelope R if L(G ) U L(G3) ER S E(gh). Obviously, if a pair
(G1.G ) has a true envelope, then G| and G, are sequence equivalent. It is
shown in [15] that a pair of equivalent DOL systems (G |,G 5) has a regular true
envelope iff the pair of homomorphisms (g.#) has bounded balance on L (G 1), and
consequently that each pair of equivalent normal DOL systems has a regular true
envelope. The latter result is extended in [25] to all pairs of equivalent DOL
systems.

The “bounded balance technique” is also useful when testing homomorphism
equivalence discussed in Section 3. (See [20]). The same holds also for another
technique introduced in [8], the “‘shifting argument”. Roughly speaking, it is used
to show that if homomorphisms g.h agree on two words of the form xwy and uwv,
i.e. with a common subword w, where w is “sufficiently long” and
B(x)— B(u)| ‘sufficiently small”, then either B(x) = B(u) or g(w) and h(w)
are periodic.

The bounded balance technique is not helpful in proving the following
generalization of the DOL sequence equivalence problem.

Conjecture 2.2: (HDOL equivalence problem). Given four homomorphisms
g2/ =2, g2:Z=>Z2y. h:A/=>A. hy:A{—>A; and strings
WEZ. vEA. Itisdecidable whether gz(g'lz(u)) = h>(h ';(v)).

We show later a problem equivalent to the HDOL equivalence problem
(Theorem 3.3). There are two other interesting extensions of DOL equivalence
which have been shown decidable by reducing them to DOL equivalence.
(Theorems 2.3 and 2.6). The proof of the following theorem also uses results
about monoids generated by integer matrices obtained by [34] and by [37].

Theorem 2.3: [10] (Ultimate sequence equivalence). Given two homomorphisms
gh: 2> 32" and w.v in 27 it is decidable whether there exists n >0 such that
gk(zl) = h*(v) for all k > n.

[t is natural to ask whether sequence equivalence remains decidable for more
complicated mappings than homomorphisms, in particular for mappings defined
symbol by symbol but in a context dependent manner. This is also strongly
biologically motivated since such mappings abstract developmental systems of
higher level where individual cells interact, i.e. their behaviour is context
dependent. The simplest case is dependence on one symbol at the left, the so
called DIL system. The sequence equivalence has been shown undecidable even
for propagating (nonerasing) version of these systems.

Theorem 2.4: [52] The PDIL sequence equivalence problem is undecidable.
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In the view of the last theorem it is rather surprising that the equivalence
problem becomes decidable when the rewriting of a letter might depend on one
neighbour from each side but only when the letter is being rewritten by at least
two new letters. That is any letter-to-letter rewriting must be context free (no
erasing is allowed). A deterministic system based on this type of rewriting is
introduced in [16] and called an e-GD2L system. Two main results of [16] are
that e-GD2L systems have essentially context-free behaviour and that the sequence
equivalence for them is decidable. The former result could be compared to
“Baker’s Theorem” (29, Theorem 10.2.1) giving a condition under which context-
sensitive grammar generates a context-free language.

Theorem 2.5: If the sequence s¢, 5. ... is generated by an e-GD2L system, then
there exist a nonerasing homomorphism A and a letter-to-letter homomorphism
(coding) g so that s,, = g(h"(sq)) for all n >0.

Theorem 2.6: [16] The sequence equivalence problem for e-GD2L systems is
decidable.

We are not directing our attention here to the languages generated by
various parallel rewriting systems, but for completeness of the decidability results
we mention the following two theorems. The DOL language equivalence had
already been reduced to DOL sequence equivalence in [38] before the latter was
shown to be decidable. Recently even the inclusion problem has been shown
decidable.

Theorem 2.7: [45] The inclusion problem for DOL languages is decidable.

In the nondeterministic case we have the following result which follows from
the undecidability of the equality problem for sentential forms of context free
languages.

Theorem 2.8: [3] The equivalence problem for OL (even POL) languages is
undecidable.

Another biologically important generalization of DOL systems is obtained
when several starting strings and several homomorphisms (tables) are considered.
Given two such systems with matching starting strings and matching pairs of
homomorphisms we can ask whether all “matching” sequences are identical.

Consider
(hy o hy) (R hy) 2.1

where h;, h," are homomorphisms ' >3 fori =1,... n

Conjecture 2.9: (DTOL sequence equivalence). Given strings ww' €2 and
homomorphisms (2.1) it is decidable whether

hi (s Cochy (w) o)) = k' (R, R (W' )

forall iyis...ig inf{l....n 1

Lemma 2.10: [20] Conjecture 2.9 holds if it holds for n = 2 (two tables).
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Later we show another conjecture equivalent to Conjecture 2.9 (Theorem
3.4).

Note that the DTOL language equivalence problem has been shown
undecidable in [39] and recently [46] it has been shown that it becomes decidable
if only one system is a DTOL system and the other is DOL. This is a
strengthening of the decidability of DOL language equivalence.

All the decidable problems mentioned in this section, as well as some other
problems in L-systems (see e.g. [22]) have been shown decidable by reducing them
to the DOL sequence equivalence problem (Theorem 2.1). Another problem
shown decidable in the same way has been the equivalence problem for simple
single loops programs with respect to symbolic evaluation [33].

3. Homomorphism Equivalence on a Language

The problems discussed in this section originated in a simple observation in
the proof of decidability of DOL equivalence problem [8,15]. The first step in the
proof was that given homomorphisms g.h:E*-—> =" and win Z7 the following two
conditions are clearly equivalent.

(i) g"(w)=h"(w)foralln >0;
(i) guy=h@)foralluin L, L = {g"(w):n >0}.

So, the testing of iterative equivalence of two homomorphisms g,k can be reduced
to the testing of string by string equivalence of g and h on a certain language,
namely the language generated by g from the “‘starting string” w. It is natural
and also very useful (c¢f. Theorems 3.10 and 3.11) to attempt such testing also for
other types of languages.

The problem to test whether two homomorphisms agree (string by string) on
a given language from family L is called the homomorphic equivalence problem
for L [20]. Its decidability for regular sets was already implicitly contained in
[15]. The following is the main result from [20].

Theorem 3.1: [20] (Homomorphism equivalence for CFL). Given a context free
language L €2 and homomorphisms h,g:E*-—> A" it is decidable whether
h(x) = g(x) for each xEL.

The decidability of homomorphic equivalence is open for all families of
languages between DOL and indexed. In particular we have the following:

Conjecture 3.2: (Homomgrphisin equivalenc,;e for DOL languages). Given w in N
and homomorphism 4 :2"—=>32" and f.g : 2" A" it is decidable whether

fh"(w)) = g(h"(w)) (3.1)
for all n > 0.

The following is mentioned in [20].

Theorem 3.3: Conjecture 2.2 is equivalent to Conjecture 3.2, i.e. the HDOL
equivalence problem is decidable iff the homomorphism equivalence problem for
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DOL languages is decidable.

Proof: 1. To test (3.1} means to compare two HDOL sequences based on the
same DOL system. 2. Given « €2 vEA" and hemomornhisms g4 DN
F8 T b A=A ‘A" =T, Assume without loss of generality that
ZNA = ¢ and define homomorphisms f, f, and f> (2 U AY = (2 U AY by
f(a) =g (a)fora €Z, f(b)=hy(b)for b EA, [i(a)=g-r{a} fr(a) = € for
a€Z, b)Y = e (b)Y = hy(b) for h EA. Then, clearly,
1 (M) = L7 () for all niff g, (g'll (u)) = hy (h'{ (v) for all n.

Using similar techniques as in the proof of Theorem 3.2 we also get the
following reduction result.

Theorem 3.4: The following three problems are equivalent (and thus all
conjectured to be decidable by Conjecture 2.9).

(a) DTOL sequence equivalence problem;
(b) HDTOL sequence equivalence problem;
(¢) Homomorphism equivalence problem for DTOL languages.

Proof: We show the reduction {c¢) to (a); the others are easier.

Let T = {d|a €2} and for w in Z let W denote the word obtained from w
by “barring”™ each symbol. Given DTOL system G = (Z, h;. k>, w) and
homomorphisms g;. g>. we construct DTOL systems G; = (ZUZ, hy. h>. fi.ow)
for i = 1.2, where h (a) =h(a). hj @) =¢€ for al a€Z and j = 1.2:
fita) =g (@). fi(@) =eforallainZ andi =12,

Since h/-/ (fiu)=ce€foralli,j =1 2and u €2, itis easy to verify that G,
and G> are sequence equivalent iff homomorphisms g; and g» are equivalent on
L(G).

In [20] it has been conjectured that even a much stronger result than
Conjecture 3.2 holds. However, in the view of Theorem 3.3 we cannot expect it to
be easy to prove the following:

Conjecture 3.5: The homomorphism equivalence problem for indexed languages is
decidable.

For the special case of elementary homomorphisms (see Section 4)
decidability has been shown using Theorem 4.4

Theorem 3.6: [49] 1t is decidable whether two given elementary homomorphisms
are equivalent on a given indexed language.

The following is a partial solution of Conjecture 3.5, which is incomparable
with Theorem 3.1. It is based on the fact that every homomorphism on a binary
alphabet is either elementary or periodic with the same period for each letter (see
Section 4). and on Theorem 3.6.
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Theorem 3.7: [19] The homomorphism equivalence problem for ETOL languages
over a binary alphabet is decidable.

Finally, we have an easy undecidability result:

Theorem 3.8: [20] The homomorphism equivalence problem for (deterministic)
context-sensitive languages is undecidable.

We conclude this section with applications of Theorem 3.1 to problems
about finite and push-down transducers [12]. All these quite powerful results
follow easily from Theorem 3.1. Note, for example, that the equivalence problem
for deterministic generalized sequential machines is a very special case of Theorem
3.11.

We call a transducer defining a regular (rational) translation a finite
transducer (a-transducer in [28]). In [1] it has been shown that regular (rational)
and push down translations can be homomorphically characterized, i.e. each
regular or push-down translation 7 can be expressed as

t={gw) h(w):welL}

where g.h are homomorphisms and L is regular or context free, respectively.
Therefore, we immediately obtain by Theorem 3.1:

Theorem 3.9: [12] Given a finite transducer or a push down transducer it is
decidable whether it defines an identity relation restricted to its domain.

From Theorem 3.9 we easily obtain the following:

Theorem 3.10: [12] Given a finite transducer M and a context-free grammar G, it
is decidable whether #4 (the relation defined by M) is functional on L (G).

The inverse relation of the restriction of 7y to L(G) is not necessarily equal
to the restriction of t/J' to 3y (L (G)). Hence it does not follow as a corollary of
Theorem 3.10, as claimed in [12], that it is decidable whether 734 is one-to-one on
L(G). Actually this problem has been shown to be undecidable in [30].
However, we can test whether 1y is one-to-one (on its domain).

Among the other consequences of Theorem 3.1 shown in [12] is the
decidability of the equivalence problem for functional finite transducers, or the
even stronger result which follows, where an unambiguous pushdown transducer is
a p.d.t. based on an unambiguous pushdown automaton [32].

Theorem 3.11: [12] (Equivalence between a functional finite transducer and an
unambiguous pushdown transducer). Given an unambiguous pushdown transducer
P and a functional finite transducer it is decidable whether tp = 13 .

4. Elementary Homomorphisms and Equality Sets

Here we consider a very useful special type of homomorphism first
introduced in [23], equality sets for them and equality sets over a binary alphabet.
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A homomorphism A :Z = A" is elementary if there is no decomposition of
h into homomorphisms fand g, thatish = gf:

* h A H

> A\

such that card I'< card Z. Similarly, a finite language L is elementary if there is
no language K such that card K< card L and L S K" Let
L, =th(a):a€Z}. Clearly, a homomorphism #& 2T AT s elementary iff
card L, = card Z7and Ly is elementary.

Properties of elementary homomorphisms and languages were studied in [23,
24,41 and 35]. We mention a few of them.

Theorem 4.1: [23] Each elementary homomorphism is injective.
Theorem 4.2: [41] Let L = {u,....u,} be an elementary language over the

alphabet 2. If wuxz = u;p for some i #) x, yEL* and z €Z2" then
wix | < wqua ouy| —n

Corollary 4.3: [41] Every elementary language is a code with bounded delay (both
from left to right and from right to left).

The following is an important result. In particular it has made it possible to
simplify the proof of the decidability of DOL sequence equivalence.

Theorem 4.4: [24] If homomorphisms g and A are elementary, then the equality set
E(g.h) is regular.

This result has been strengthened in [26] for the weaker assumption that at
least one of g and h is elementary and then for even weaker assumptions in [35].
No effective proof even for the weakest result is known so we have the following
open problem and its even harder versions.

Open Problem 4.5: Given elementary homomorphisms g, A :2">A" can the
regular set E(g.h) (represented e.g. by a regular expression) be found effectively?

This problem is presently open even for the case of binary alphabets [17]. A
positive answer in this special case already implies the validity of Conjecture 5.2,
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the decidability of PCP restricted to lists of length two.

The fact that every homomorphism on a binary alphabet is either elementary
or periodic severely restricts the form of equality sets for homomorphisms over a
binary alphabet (on free monoids with two generators). Each equality set is either
regular or of the form {w&{a.b}"| #a(w)/#b(w) =k} for some rational
k # 0., where #a(w) is the number of occurrences of letter a in w. In [17] an
attempt has been made to fully classify such equality sets. In particular for some
words all possible homomorphisms agreeing on them are shown. On the other
hand a number of sets or words (singleton sets) are shown to be ‘“periodicity
forcing,” meaning that only periodic homomorphisms could agree on them. These
results support the following:

Conjecture 4.6: Every regular equality set for homomorphisms over a binary
alphabet is of the form F* where F is of cardinality at most two.

This conjecture would imply a simple proof of Theorem 6.2 and also sharpen
this theorem, namely it would imply that for L S{a.b}" there always exists
(noneffectively) a test set (see Section 6) of cardinality at most three. Some other
implications of Conjecture 4.6 are discussed in [17].

Note that there is no loss of generality in assuming that the range of
considered homomorphisms is over a binary alphabet, since a larger alphabet can
always be encoded into a binary one, preserving the equality set. This is, of
course, not the case for the domain. Hence, we have a rather unusual situation
that many problems considered here are much easier for a binary alphabet than in
the general case. One such example is the DOL equivalence problem.

5. Homomorphism Compatibility

In Section 3 we were interested in testing whether two given
homomorphisms agree “‘string by string’”” on a given language. In [20] four kinds
of “*homomorphism agreements’ were considered, namely, compatibility, strong
compatibility, ultimate equivalence and equivalence. The last one was considered
in Section 3, here we will consider the first one, the other two are omitted since
the results for them are similar to the two cases considered.

Homomorphisms g and & are compatible on a language L if g(w) = h(w)
for some win L, thatisif L NE(g.h) # ¢.

To decide whether homomorphisms g and A are compatible on =%, ie.
whether E(g.h)—{e} # ¢, is nothing else but the Post Correspondence Problem
(PCP). An instance PCP(g,h) is given by two nonerasing homomorphisms
gh {1...n} == traditionally called lists of length n.

The problem of homomorphism compatibility for a family of languages L
can be stated as: given L in L and homomorphisms g and A, to decide whether
there is w in L such that g(w) = h(w). Hence, this problem is undecidable for
any family containing =% for arbitrarily large alphabet 2. Actually, it is known
that there is a certain fixed size for Z, which is sufficient to make the PCP
undecidable. However the minimal size is not known. We have the following
open problem and conjecture.
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Open Problem 5.1: What is the minimal integer »n such that PCP with only lists of
length n is undecidable?

The results in [17] support the following generally accepted but not yet
proven

Conjecture 5.2: The PCP with the restriction to lists of length two, i.e.
homomorphic compatibility on 2 for a binary 2, is decidable.

More difficult to prove would be the following:

Conjecture 5.3: The PCP restricted to instances PCP(g.h) with elementary
homomorphisms (lists) g and 4 is decidable.

Open is also the modification of Conjecture 5.3 obtained by assuming that
the homomorphisms are injective rather than elementary.

Theorem 5.4: The positive solution of Problem 4.5 implies the validity of
Conjectures 5.2 and 5.3.

Proof: 1f g and h are elementary, then we can effectively find a regular set E(g.h)
and test whether E(g.,h) # {e}. This validates Conjecture 5.3, in the case of
Conjecture 5.2. There remains the easy case when at least one of g,/ is periodic,
see [17].

Obviously, #E*, for every alphabet 2 and # € Z, is a DTOL language.
Hence, the homomorphism compatability problem is clearly undecidable for the
family of DTOL languages. However, we have the following:

Open Problem 5.5. (Homomorphism compatibility on DOL languages). Given w
in =, and homomorphisms 4 :Z"—=> 32" g f:Z"=>A" is it decidable whether
there is an n >0 such that g(h"(w)) = f(h"(w))?

Related are the following two problems:

Open Problem 5.6: (Intersecting DOL sequences). Given u,v in =" and
homomorphisms g.h :Z = 2" is it decidable whether g”(u) = h"(v) for some
n>0?

Open Problem 5.7: (Intersecting HDOL sequences). Given u in =" vin A" and
homomorphisms

gle*—>E*,
g 2">T"
hy:A"=> A"

hz:A**F*
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is it decidable whether g (g'll (u)) = hy (h'I' (v)) for some n ?

Theorem 5.8: Problems 5.5 and 5.7 are equivalent, the decidability of Problem 5.5
implies the decidability of Problem 5.6.

Proof: Similar, to the proof of Theorem 3.3.

If we modify Problem 5.6 so that only the length of generated strings is
compared we obtain the following problem which is shown in [S1] to be equivalent
to the well known open problem of finding zeros of Z-rational functions.

Open Problem 5.9: (Intersecting DOL growth sequences). Given u in . vinA
and h 1 A" = A" decide whether | g"(u)| = | /"(v)| for some n.

There are a large number of results (and open problems) concerning growth
(length) and Parikh vector sequences generated by one or more iterative
homomorphisms. Mathematically, they belong to the theory of noncommutative
formal power series and we refer the interested reader to [S1]. We have included
Problem 5.9 here because of its strong implications to our other open problems
shown in the following theorem. The first part was shown in the terminology of
Z-rational functions in [42] the second follows by Theorem 3.3.

Theorem 5.10: The decidability of Problem 5.9 implies

(i)  The decidability of the HDOL sequence equivalence problem (Conjecture
2.2).

(i)  The decidability of the homomorphism equivalence problem for DOL
languages.

Clearly, the decidability of Problem 5.7 (or 5.5) implies the decidability of
Problem 5.9 and therefore, by Theorem 5.10, also the decidability of (i) and (ii)
above.

In [17] a problem which can be considered dual to the Post Correspondence
Problem is shown to be decidable by reducing it to Makanin’s result concerning
solvability of equations in free monoids [36].

Theorem 5.11: Given a string w in T, it is decidable whether there exist two
distinct homomorphisms g.h : Z — A for some A, such that at least one of them
is aperiodic and g(w) = A (w).

Note that the problem is trivial if g and 4 are not required to be distinct or
aperiodic.
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6. Test Sets and Checking Words

The very interesting ‘“Ehrenfeucht conjecture” (Conjecture 6.1) is at least
several years older than the notion of homomorphism equivalence to which it is
closely related.

We say that a finite subset F of a language L is a test set for L if, for any
pair of homomorphisms (g.h). g(x) = h(x) for all x in L if and only if
g(x)=h(x) for all x in F, i.e. g and h are equivalent on L iff g and h are
equivalent on F.

Conjecture 6.1: For every language there exists a test set.

It immediately follows by Theorem 3.8 that given a context sensitive
grammar G a test set for L(G) cannot be effectively constructed, since the
effective existence of a test set for a family L obviously implies the decidability of
homomorphism equivalence for L .

The discussion in Section 4 indicates that proving the validity of the
Ehrenfeucht conjecture is considerably easier for languages over a binary alphabet.
This has actually has been done recently in [21].

Theorem 6.2: [21] For each language L S 2", where 2 is a binary alphabet, there
exists a test set F, i.e. a finite set F, such that for each pair of homomorphisms
gh. g(x)=h(x)forallxin Liff g(x) = h(x) forall xin F.

It easily follows from the discussion in (15 or 20) that for each regular set

there effectively exists a test set. Recently this result has been extended to context
free languages.

Theorem 6.3: [2] For each context free language there effectively exists a test set.

As mentioned above, this result immediately implies the decidability of
homomorphism equivalence on the CFL (Theorem 3.1).

Actually, a somewhat stronger form of Theorem 6.3 is shown in [2], namely

that given a CFG G = (N, T.P.S) with n=card NV and m the maximal length of
the right side of the a production in P,

F=fweL:|w|<m¥*h
is a test set for L(G).

This result is then used to obtain also finite “test sets’” for CFL with respect
to gsm mappings realized by gsm with a uniformly bounded number of states.
Despite our reasons for expecting it to be hard to prove Conjecture 3.2 (equivalent
to Conjecture 2.2) we venture to make an even stronger one:

Conjecture 6.4: For every indexed language (given by an indexed grammar) there
effectively exists a test set.

According to [21] a word in 27 is a checking word for a language L pRET
for any pair of homomorphisms (g.h). g(x) = h(x) for all x in L if and only if
g(w) = h(w). Observe that it is not required that w be in L, hence {w} might not
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be a test set for L.

A language L is rich if two homomorphisms g and & are equivalent on L
only in case g = h. Somewhat surprisingly it is easier to show the following result
than Theorem 6.2.

Theorem 6.5: [21] Every language over a binary alphabet is either rich or
possesses a checking word.

7. Representation of Language Families

Equality sets have already been discussed in the previous sections mainly in
relation to decidability problems about homomorphisms. They were explicitly
introduced in [24] under a different name and their basic properties were studied
in [49]. A generalization of equality sets to more than two homomorphisms is
considered by [6].

It turned out that equality sets and similarly fixed point languages [26]
provide simple representations of the recursively enumerable languages [11, 27, 49]
which can also be extended to various time and complexity classes [4, 5, 13, 14].
The first results say that the closure of equality sets under dgsm mappings is the
family of recursively enumerable languages.

Theorem 7.1: [27, 49] For every recursively enumerable (r.e.) set L, there exists a
pair of homomorphisms (h, h2) and a dgsm mapping g such that
L = g(E(h1h)).

This result has been strengthened in [11] by replacing dgsm’s by erasings and
equality sets by minimal equality sets.

A homomorphism h :Z"—= A" is called an erasing if, for each a €2 either
h(a) = a or h(a) = e. For homomorphisms g,h : "> A" the minimal equality
set is the set e(g, h) = {w€E+| gw) = h(w) and if w = uv for u, vezt,
then g(u) # h(u)}, that is, using the notation of [32],

e(g. h) = min(E(g. h)) —{e}.

Theorem 7.2: [11] For every r.e. language L, there exist homomorphisms A, />
and an erasing h g so that L = ho(e(h 1, h2)).

Also we have a representation based on fixed points of dgsm mappings. Let
g:2"—=>2" be a function. The fixed-point language Fp(g) of the function g is
defined to be F,(g) = {w EX| gw) = wl.

Theorem 7.3: [27] For every r.e. language L, there exists a dgsm mapping g and
an erasing h such that L = h(F,(g)).

By imposing simple restrictions on the mappings used in Theorems 7.1, 7.2
and 7.3 we obtain a simple “‘machine independent” characterization of many time
and space complexity classes of languages. Similar results have been shown
independently in [4, 5] and in [13, 14]. We give here a few of these results.
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We say that C is a class of complexity functions if C is a class of functions
closed under addition of and multiplication by a constant. A language L is of
time (space) complexity C if L is accepted by a nondeterministic multitape on-line
Turing machine M which operates within time-bound (space-bound) f, for some f
in C . we write L ENTIME((C) (L €NSPACE(()).

We generalize the notion of k-limited erasing [32] as follows: For a function
f on the integers we say that an erasing h is f-bounded on a language L if for each
win L, w = xyz and h(y) = € implies | y| <f(|w]), that is at most f(} w])
consecutive symbols of w may be erased. We say that & is C-bounded, for a class
C of complexity functions, if & is f-bounded for some f from (.

We get the following ‘““machine independent” characterization of the time
complexity classes of languages.

Theorem 7.4: [5,14] Let C be a class of complexity functions closed under
squaring. Then the following three conditions are equivalent.

(i) L ENTIME(C)
(i) L = hole(h. h»y) where h |, h5 are
homomorphisms and A ¢ is a C -bounded erasing on e (h 1. & ).
(i) L = h(F,(g)) where g is a dgsm mapping and 4 is an
erasing on F)(g).
Corollary: A language L is in NP iff there exist homomorphisms A, 4 |, h 5 such
that A (e (h 1. h1)) = L and his polynomial-bounded erasing on e (4, h ).

Corollary: A language L is primitive recursive (recursive) iff there exist
homomorphisms kg, k|, ho such that hgle(hy, ho) = L and hq is primitive
recursive- (recursive-) bounded erasing on e (h |, h 7).

In order to get a characterization of space complexity classes we need to
generalize the notion of bounded balance on a language considered in Section 3.

Consider two fixed homomorphisms g4 : Z*—> A" Recall that for each w in
2", the balance of w is defined as B(w) = | g(w)| —|h(w)|. Now, for a
monotone function f on the integers, an erasing m and L €2~ we say that the pair
(g.h) has f-bounded balance on language L, with respect to erasing w, if for each x
in L and each prefix w of x we have | B(w)| < f(] h(x)]). For a complexity class
C, we say that (g.h) has C-bounded balance on L, with respect to =, if the same
holds true for some f € C.

Theorem 7.5: [14] Let C be any class of complexity functions. Then
L ENSPACE(C) iff L = hole(h,h;y)) where hg is an erasing and the pair
(h 1.h 5) has C-bounded balance on e(h 1,h ) with respect to & .

Corollary: A language L is context sensitive iff there exist an erasing Ao and

homomorphisms 4|, A, such that L = he(h | h5) and the pair (h ho) has
linear-bounded balance on e(k |, A 7).

The class NP also has an alternative characterization:
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Theorem 7.6: [5] The class NP is the smallest class containing all equality sets
E(hy, h») (of nonerasing homomorphisms) with square-root-bounded balance (i.e.
with the pair (h.hy) having square-root-bounded balance on E(hy, hy) with
respect to the identity) and closed under intersection with regular sets and
polynomial-bounded erasings.

We also have an alternative necessary condition for PSPACE:

Theorem 7.7: [S] For every language L in PSPACE there is a pair of nonerasing
homomorphisms (4, h;) with log n-bounded balance, a regular set R, and an
eraksing h such that L = h(E(h |, h2)N R) and for some constants ¢ >1, k>0, h is
¢ -bounded on E(h . h2)NR.

The study of equality sets has contributed representation theorems of the
following form:

Let [ be a family of languages over an alphabet . Then there exist a
language L s and an erasing wx such that L € L iff L = wx(L 3N R) for some
regular set Ry .

Letting L being the family of context free languages we have the well
known Chomsky-Schiitzenberger theorem with L 5 being the Dyck language over
2; for the families of EOL and ETOL languages such representation has been
established in [7].

Now, given 2 let T denote the alphabet disjoint from Z consisting of
“barred” symbols, T = {7 | a € 2}, and for any word x in =", let X denote the
word obtained from x by barring each symbol. To get a representation as above
for the r.e. sets, the twin-shuffle over Z has been defined in [27] as

L(Z)={xeEUD)| 73(x) = m5(x)}

where 7 3. w3 are erasings on (2 UZ)", which only preserve the symbols from
=, T respectively.

Clearly, the twin-shuffle L(Z) is an equality set of two homomorphisms.
They cannot be nonerasing as shown in [5].

Theorem 7.8: [27] Let L be an r.e. language over Z. There exists a regular set
R, S(ZUZTU{0.0.1.T.} such that L = 7s(L(ZU{0, 1}))N R ), where 73 is the
erasing which only preserves the symbols from Z.

This theorem has essentially been shown in [27] using Theorem 7.3. It also
follows by Theorem 7.2, see [13, 18].

It is actually not difficult to show that every principal cone has a
representation as above. A family of languages L is a principal cone if there is
an L in L such that L is the closure of {L} under the operations of
homomorphism. inverse homomorphism and intersection with a regular set, or
equivalently L is the closure of {L} under finite transducers (rational relations),
see [28].

Theorem 7.9: [13,18] Let Z be an alphabet and L a principal cone. There exists a
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language Ly in L such that for each L in L, L C =" there exists a regular set
R; such that L = w#x(LyN R;) where 73 is the erasing, which only preserves
the symbols in 2.

We refer to [4,5,13,14,18,27] for a number of additional representation

results.
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L. Preliminaries
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cumivaionee discussed o Section 30 See 200 The same holds also for another
techingue mtreduced v 181 the “shifting sreument™, Roughly speaking, 3t is used
to show that if homomorphisms 2.8 sgree on two words of the form vwy and mev.
cooowath g epmmon subword  w, w&"ee:fg: woois Usefliciently long” and
DBy Byl sutliciendy smallT then either B{xy = Bilud or glw) and Aiw)
are poriodie,

The ?gz%zz‘-a‘%m‘i Bulunce technique is not bheipful in proving the following
generadization of the DO sequence canivilence problom,

Comieciere 100 (HDOL cquivalence problemy. Given four  homomorphisms
Y * o F % F 5 * N
N S g Sy B Al Al s ;&fWA» and  strings
¥ #
e N v e Ay s deadable whether fﬂw sz? & #if*?{ﬁ? I
We show E'mr w problom couivident 1o the HDOL equivalence problem
theorems 330 There are two other interesting extensions of DOL eguivalence

which Bave heen shown decnluble by reducing theny 1o DO cguivalence.
(Theorems 203 and 263 The proo! of the following theorerm also uses resalis
shout monoids gonerated by ateper matrices obtained by 341 and by [37].

hooressy 230 PO (U tmate seguenee cguivalencel Given two homamorphisms
cho X e and pvin D0 s decdsble whether there exists 12 0 such

rother sequence cuuivadeno remias decidable for mare
iwubur for mappmgs defined
s This s abe strongh

comphosied s homomorphisms o pa
syrnhol i

hiolovcnih

woecontext dependent

such developmieninl sysioms of

iehor lovel faotherr bBehoviour s conton

coden, ang symbed gt othe lelt the e

©has bBeen shown aadecidable oven

o these ssivie,

[ERSE BRI S NFE S

cosdencr prablom o andeoidable

AEETR
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In the view of the st theorem i iy rather surprising that the equivalence
probivm becomes decidable when the rewriting of o fetter might depend on one
neihbour from cuch side but only when the feter s being rewritten by at feast
two aew fetters. That s any letter-o-letior rewriting must he context free (no
crasing v allowed) A deterministic sysiom based on this type of rewriting is
introduced i [16] and called an o GD2L system, Two main results of [16] are
that e-GD2L svstens have essentally content-free behaviour and that the seguence
equivadence for them is deadible. The former result could be compured 1o
“Buker's Theorem™ (29, Theorem 10.2.1Y giving g condition under which context-
Sensiive gRummar generaies o context-free Lanpuage.

Thearem 250 1 the sequence oo sy, i generated by an o-GD2L svstem. then
there exist o nonerasing homomorphism % and a letier-to-letter homomaorphism
(eodingd g so thut s, = g ™o forall n 20
Fheorem 2.6 [16] The sequence cquivadence problem for ¢ GD2L svstems is
decidable. »

We are not directing our attention here to the languages generated by
various parallel rewriting svstoms, but for completeness of the decidability results
we mention the following two theorems. The DOL language equivalence had
alresdy been reduced 1o DOL sequence equivalence in [38] before the lutier was
shown to be decidable. Recently even the inclusion problem has been shown
deciduble,

Theorem 2.7: [431 The inclusion problem for DOL languages is decidable.

T the pondeterministio case we have the following result which follows from
the undevidability of the equality problem for sentential forms of context free
Languages.

Theorem 280 [31 The cqwvalence problem for OL (even POL) languages is
undecidable. -

Another biclogically important generalization of DOL systems is obtained
when several starting sivings and several homomorphisms (tables) are considered.
Given two such systems with mutching starting strings and matching pairs of
homomorphismy we can ask whether all “matching” sequences are identical

Consider .

thy ok (hy By (2.0
4 . L ¥ o .
where fi; fy e homomorphisms S =3 for/ = 1 n
o o . . . o\
Conjecture 29 (DTOL sequence couivadence). Given strings wow' €3 und
homomorphis (2.1 i is deciduble whether

i (0 B dwy )y = ;?‘égé_;?;\;‘zé S TECRR I

for altiyis ion it}

fomppae 20 1200 Coniecture 79 holds of 0 holds for 2 = 2 (two 1ablesy
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Later we show another conecture caguivalent 1o Conivcture 29 (Theorem

Note that the DTOL longuase eguivalence problem hos been shows
undecdable in 1391 and %‘a:sa:%f%a F61 0 By beon shown that i hecomes decidable
Coonlvene svsiom s oa ‘0% aw?e:m and the other i DOLL This s g
stheming of the dgmé% iv of BOL linsuage cquivielenee

Vi the decid gzz’a%&icssz:\ mentioned i this section, as well as some uther
prosborn i Lasystem (wee oo, {221 have been shown decidable by reducing them
to the DO sequence eguivalenee problem (Theoreny 2000 Another problem
sdable in the wime wayv s been the egiivalence problem for simple
seoproprams wih respeet Lo svimbobo evaluation 331

shown

3. Homomorphism Equivalence on a Language

The probloms discossed i thiy section oreinuted in oo sinple ohservation in
the proof of deaidabiliny of DO cguiv ziﬂzv;g, m’a% s (RUTSE The first sten i the
proal wis that siven %'zmzmnmm?,mm @k 2 >3 and win 27 the following two
vondiions are clenrly cgmvalent

w

0y pfiwy = e for all i (s
Gy gy = Ay for st win 2,0 = {27 0whin 204

So, the testing of Herative vquivalence of two homomorphisms o f can be reduced
to the testing of string by string equivalence of g and & on o certain lunguage,
mnely the finguage peserated hy g from the “starting siring” w1 ds naturad
and also verv useful {of Theorems 310 and 3111 1o stiempt such testing also for
ether svpes of longuges,

w4

The probleny o tost whether two bomomorphisms seree (siring by string) on
Gogiven %«s?‘%“iﬁ e from Gamily Lds ealled the homomarphic equivalence probien:
for L Lobee decidabitiny For regular sets was slrendy implicitly contained in
PESE The following s the mam rosult from (200 '

Theoreny 31 §"’€§ {Homomorphism eguiv 2;%,%’2&,%3 for (? 1o Given o ocontext iree
Linguace £ €2 and homomorphisms g S > A %% i decidable whether
vy = givy for ouch vésg

The decidability of homomorphic equivalonce s open for wll fannlies of
Bnguages hatween DO and indesed. I particulur we have the following

. . . . . L
Cenjecrnre 30 {Homomorphinm cguivalenee for i‘%?i Dmpuaeest, Given woin 2

Fhomomorphism A0S e 27 and fg 2 =» A7 it s decidable whether
fih7owyy = ghwy I

{he following i mentioned in [201

fe i HEEMOME

ey prondeny for

B3 Conpoiare 2.0 s eguivident to Cong
t

e the Bomomarphion cgun

caevaienve problens s decida

.
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DOL langzuages s decidable

Proof> 10 To test (3.1) means to compure two HDOL sequences based on the
same DOL svstem 20 Given w ey vea and homomorphistms gy : 2 =3
o 2 1 h A A i ‘A - IT. Assume without loss of generality thut
ENA = ¢ and define homomorphisms £ f; and (S U AY = (2 U AY by
flay=glayfora €Z, fby=hiibylor b €A Jiiay = griay [iar = ¢ for
d@x. [y e e f+iby = ha(b) for hEeA Then, cleurly.,
o vy = 7 vy for all il gy {gf (1)) = b §}§!; fe3) for all &,

Using simiar techmigues as in the prool of Theorem 3.2 we also set the
following reduction result

Thesrens 340 The followinp three probloms ore equivalent {und thus all
conjectured 1o be deciduble by Congecture 2.9y

{a} DTOL sequence equivalence problem:
{by HDTOL sequence equivalence problem:
(wy Homomorphism cquivalence problem for DTOL languages.

Proof: We show the reduction (¢) 1o {a)x the others are easier,

Let T = [@la €2 and for w in ¥ let ¥ denote the word obtained from s
by “barring” each svmbel. Given DTOL system 6 = (2 . b, w) and
homomaorphisms gy, g2, we construet DTOL svsterms G = (SUZ b b fow
for 7= 1.2 where By (o) = Iy{a) b (@) = ¢ for all €% and j = 1.2:

filay = gitay, LHi@y=eforallain Tand i = 12,

- ‘ . s s o e iy :

Stwce by ( Ly = efor all i f = 1 Jund w & 2, it 18 casy 1o verify that ¢
and Gy are seyuence equivalent i bomomorphisms gy und g are equivalent on
LG

In 1201 it hus heen conjectured thut cven a much stronger result than
Conjecture 3.2 holds. However, in the view of Theorem 33 we cannot expect i 1o
be casy fo prove the following:

Conjecture 3.5 The homomorphism equivalence problem for indexed lunguuses i«
deeidable. .

For the special case of elementary homomorphisms  {see Section 4}
decidability has been shown using Theorem 4.4

Thegreny 360 1491 1t is decidable whether two given elomentary homomorphisms
are equivalent on g given indeved lunguage.

The following 8 g partisl solution of Conjecture 3.5, which ix incomparable
with Theorem 300 1t 38 bused on the fae thar every homomorphing on g hinun

alphabet & either clomentary or periodic with the wime poriod Jor coadh |
Section 43, and on Theorem 36
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-

Theorem 370 {191 The homomorphisey cquivalence problem for FTOL lapguages
over a binary alphabet is decidable.

Finally, we have an easy undecidability result: o . T

Theorem 3.8 1201 The homomorphism eqguivalence problem for (determinisiic)
contexi-sensitive fanguages is undecidable,

We conclude this section with applications of Theorem 3.1 to problems
about fimte and push-down transducers [12]. All these quite powerful results
follow eusily from Theorem 3.1, Note. for example. that the equivalence problon
for deterministic generalized sequential machines is a very special case of Theorem
EN S

We call o transducer defining o regular (rational) translation o finite -
transducer (a-transducer in [28]). In [1] it has been shown that regular (rational)
and push dowsn translations cun be homomorphically charucterized. Te. ench
reguiar or push-down franslation £ can be cupressed as '

o Helwhihiw) w €1

where g h are homomorphisms and £ s regular or context {ree. respectively,
Therefore, we immediniely obtaln by Theorem 31

Theorem 390 [121 Given a finite transducer or o push down transducer it is
decidable whether 1t defines an identity relntion restricted to s domain,

From Theorem 3.9 we casily obiain the following:

Theorem 3.10: [12] Given u finite transducer M and a context-free srammar G, it
is decidable whether gy (the relation defined by M0 is functional on 7 (G,

The inverse relation of the restriction of 1y 1o L{G ) is not necessarily equal
to the restriction of 157" 10 13y (L(G)YY. Hence it does not follow as 1 corollary of
Theorem 310, as claimed in [12] that it is decidable whether 1y s onc-to-one on
LiGy. Actually this problem hus been shown 1o be undecidable in [301
Haowever, we can test whether 4y is one-to-one {on s domaind,

Among the other conseguences of Theorem 31 shown in [12] is the
decidubility of the eguivalence problem for functional finlte transducers, or the
ever stronger result which follows, whore an unambizuous pushdown trunsducer s
a padt. based on ar unambiguous pushdown automaton (321 _ T

Theorem 3717 {121 (hauivalence between o functional finite transducer snd an
unzmbiguous pushdown transducer). Given an unambiguous pushdown transducer

Poand a funciionad Gnite transducer s decidable whether o=y

4. Elementary Homomorphisms and Equality Sets

Hore we conuder a0 very wseful special type of homomorphism v
ratroduced i (231 cquality sets Tor them and equality seis over a binary giphaber
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i . ; Ed E N . . . o
A hoemomorphan 0 X -» A s elementary i there s no decomposition of
I ointo homomerphisms £ . :

such that card U< card L7 Sy L slementary 1 F there s
ng lnsuage A such that card K< card L and LS Kl

" N - . . ® . g
Ly = thtay e &l Clearlv, o homomorphism B2 ~» A s clementary

card L= ocard ¥ oand Ly s elementary,
s # 3

Praperties of clomentary homomorphisms and languages were studied in 123,
2441 and 331 We mention g few of tham,

Theorem 4.1 1231 Each elementary homopmorphism is injective,

Theoreny 4.2 1417 Lot L o= {uy.u,) be an clementary language over the

¢ . ‘ C o # P
siphabet 200 W vz = wyy for some 7#j x yE&L  and : €2 thes
TPS I TR RN T R

Coroflary 437 1411 Pvery clementary language is.a code with bounded delav thoth
from loft 1o right and frow right 1o lefiy ‘

The following i up important rosult. In particular & has made it possible ©
siraphity the proof of the decidability of DOL sequence equivalence,

Theorens 4.4 12410 W homomorphisms g and B are elementary, then the eguality so
Fiohy o ronularn

This result has been strengihened in [26] for the weaker sssumption that ot
feast one of g oand Ais cementary and then for even weaker assumptions in {331
No effective prool oven for the woskest result s known so we huve the lollowing
apen problem and s even harder versions,

Y

w o 5 ¥ ®
Oper Probles 4.5 Given clomentary homomorphisms g A2 -4 cun the

ronular st Figh Y freprasenied ¢ g by o repular expression) be found effectively?

This problem s presently open cven for the case of binury alphabers 1170 A

positive gmswer in this specirl case slready maphioy the volidiny of Coneoture 5.7
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the devidability of POP rostricted 1o Bt of B,

snary alphobet s cither clementary

: The et that overy homomornh
ur periadic severels resinicts the forad of couulinn sets for homomorphissis over o
bimary siphabet (o0 free monosds with two generatorsy. bach equality set s oo
repular or of form Iw &la bl datw V7 dbiny = k) for some ratio
Ao O where sutn'y o the number of ocvureenoes of fetter @ v e o 1170 an
sitempt has been moade o Ty Sloafy such cqualitg sets o particuiar for some
mwd\ i poseble homomerphisms aprecing on them e shown, (’?ez the other
hand o pumber of sois o words Gangleton seisd are shown 1o he “periodicits
forcime " meaning that ondy peradic homomorphisas could agree on them, These

resibie support the followine:

Conpecture 460 byery regalar equality set for homomorphisms over a binany
. N N L F “ v . . .
aiphabet s of the form £ where Fis of cardinality al most two.

This conjecture would snply u simple proof of Theorem 6.2 and abso sharpen
thiv thearem. memely 0 world imply that for 7 @ lahl there alwavs exisis
(noneffectivelvy a test set (seo Section 6Y of curdi v b mosl three, Some other
implications of Coniecture 4.6 are discussed in [17]

Note that there s po foss of generality io assuming that the range of
considercd homomorphisms is over o binury alphabet, since u larger alphabet cun
slways be encoded tnte o binary one, preserving the eguality set. This is.
course, not the case for the domain, Hence, we have o rather unusual situation
that muny probloms considered here are much caster for & binury alphabet than in
the gencrad case. One such example s the DOL equivalence problem.

5. Homoemorphism Compatibility

In Section 3 we  were interested  in testing whether  two  given
homomoerphioms ugrec “stving by string” on o given lunpuage.  In 1201 four Kinds
of “homomorphism agrecments” were &’i?i’%?&é(ﬁf&‘ﬁi aaoely, compatibibity, strong
cornpntibiliny, ultimate vgurvalesce and eguivalence. The last one was considered
i Sechion 3, bere we will consider the first one. the other two are omitied since
the results for thom are shmilar o the two cases considered.

Homaomorphinms ¢ and 7 are comparible on o language L gOw) = hiw)
for some win Lothat 0L N Ew Y # 6. )
R

To decide whether homomorphisms g and A are computible on 7 e

whether g Ay ~{e] # &, s nothing clse but the Post Correspondence Problem

{(PCPy An %§‘§‘w2§§*a:a: PCPig sy is wiven by two vonerasing  homomorphisms
ah b - S traditonally called fivss of longth o

The problem of homomorphismy compatibility for a family of linpuages L
can be stated ase ouwiven £oin L and homamorshis s woand B oto decide whether
there is w in £osuch that giw )y = 500y Henee, this sroblem s undecidabic for
any familv containing TV for arbiirarily laree alphaber £ Actuallv, @ i Lnown
that there s o cortain fsed size for X which s suificwent 1o muake the POP
gmdevidable. However the a
1y orpud Cé?f?éaﬁjiiﬁ%’a.

gl sive wonol kpown, We have the following

s ool
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wit decidable whether gv (0 ol = 42 (87 0001 Tor come n ?

Tiorenm S8 Probloras S5 gnd 87 are equivident, the du@da‘ﬁ ity of Problem 33
Bebits of Prablem 5.6

svplioy the

Preat Sionlar, to the prool of Theoren 3.3

owe medile Problom 56 so that only the lensth of generated strings s
ihe nlowing problem wzsch is shown-in {$1] fo be equivalent
irg yeros of Zorations! functions.

wz*mycd W b
ythe woll Rnown open problem of find

Open Problem 39 (ntersecting DOL growth sequences), Given win X, vinA
and A0 A -w & deesde whaether 12"l = L A0 for some o0

Thire ure o barge mumber of resulisd zz*a% open probdens) convernimg growih
{lenpiby o zgé uences gonernted by one or more  ilerative
hoamomorh they z.isgéa,:sﬁ i the theery of nonconunutative
foroud power wr;m and we relor the interested veader o 311 We have ingluded
Probiom 89 here because of s strong implications 1o our other open problerms
shown in (he following theorems, The Brgt part was shown in the terminclogy of

Zerational fu netions in {421 the second follows by Theorem 3.3,

Theores 510 The decidubility of Problom 3.9 implies ‘

(i) The decidabiliy of the HDOL sequence equivalence problem (Conjecture
22

Gy The decidability of the homomorphism  equivalenc e problem for DOL
fanguages. : ~

19 of Problem 5.7 (or 5.5 implies the decidability of
by Theorem S0 also the e,éu, dability of (i) and (1)

Clenrly, the devidubili
Problem 39 and therofore,
Sabove.
fn {171 s problom which can be considered dual 1o the Post Correspondence
Problom i shown 1o be decidable by reducing 8 o Makanin's result concerning

sebvabiliny of countions ree monoeids 360

Theoress 371 Given & wiving i & u i decorduble whether there exist fwo
. ¥ i L

distinet homomorphisms g& 02 ~» & for some A such that af feast one of them
oaporiodic and plwy e Alwh

s i g and B oare pot rogared 1o he distinet or

‘Note that the srobiem i
&@%fﬂ‘i‘g o




giwy = Siwy Observe that
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6. Test Sets and Checking Words

The very anteresting TBhresfoucht coniecture™ (Conjectire 6.0 > at icast
severad venrs older than the sobion of homomorphism equivalence to which # s
closely related,

We sy that o it subset F ol o langunge Lois a test set for 1Ol for any
pair of homomorphismy (g2 givy = Avy for il v oin Lif and onlv i
gixy = Ax) for all v oin Fode goand B oare equivalent on L i g und & are
equivaient on £

Conjecture 6.1 For every language there exisis i tost set

fe bmimedintely follows by Theorem 38 that viven s conlexi sensilive
grammar G oo test oset for L 406GY ceanol be effectively constructed, since the
effective uxistence of o test set for a familv L obviously implies the decidability of
homomorphism cquvalence fov lf.;

The discussion in ‘smém; 4 indicates that provisg the validity of the
Ehrenfeucht conjecture is considerably eusier for langi iges over o binary siphabet,

CThis has actuadly has been done recently in 211

Theorem 6.2 1217 For cach language L €27, where £ is o binary alphabet. there
CRists o fest M,i }?, Lo u finite set P osuch that for q:;zch pair of homomorphisms
phogivy = hixdforallcim Lt ey = A{vy for all x in £

frocasily-follows from the discussion in (15 or 20 that for cach regular sot
there effectively exists o test set. Recently this result has been extended (o context
free languages

Theorem 6.3: {21 For cach context free language there effectively exists o test set.
As mentioned shove, this result immediately implies the decidabiliy of
homomoaorphism equivalence on the CFL {Theorem 3.1).

Actually. a somewhat stronger form of Theorem 6.3 is shown in [2], namely
that given « CFG G = (NT PSS with n=card N and »r the maximal length of

the right side of the 4 production in £,

Foolwe&l lw gm%f‘ i
iv o test set for L{G
This result s then used to obtain also finite “tost sets™ for CFL with respect
to gsm omappings realized by ssm with a uniformiv bounded number of states.
Despite our reasons for expecting it o be hard to prove Conjecture 3.2 {equivalent
to Conjecture 2.2) we venture to muke an even sironger one:

vy

Conjecture 6.4: For every indexed funguage {(given by an indexed grammar) there
effectively exises o fest sot ' :
According to 21 a word in 2 s w checking word for o lanpuage 1 €300
for any puir of homomorphisms (o h ) vivy = S0y for ol v in L 0f and onlv if
Uis onot required that s ben £ honee fw ) mieh no




OO IR

otest st for £

% wage Lo rich G twe homomorphivins poaad Boare equivalent on L
visy g = Ao Somewhuat surprisingly s casior 1o show the following rosult
than Lheorom 6.2, ’ '

Theoreny 6.5 1211 Peery longuage over o binary alphabet is. either rich or

pomsceses § checking word,

7. Representation of Language Families
bauabiy sets hove already been discussed in the previous sections mainly in

relation o decidabiliny probloms sbout homomorphisms, They were explicitly
introduced in 241 under o diferent name and their busic properties were studied
YA peneralization of cquality sets 1o more than two homomorphisms is
concdered by [6L

iotorned out that equality sets and simdlardly fixed point langugses 261
sl simple representations of the recursively enwmerable languages {11, 27, 491
whooh cun alse be extended 1o various thne and complexity classes [4, 3, 13, 141
The first results say that the closure of cquality sets under dgsm mappings is the
Femily of recursively enumerable languages.

Theorem 710 {27, 491 For every z"ms;%m}%x enumerable {re) set L, thcrc eXists a
puic o homomorphisms by Ax) und  a desm mapping g such  that
= ook (h Lhosh

This result has been strengthened in [11] by replacing dgsm’s by ¢rasings and
equality sets by minunal equality sets, :

A homomorphism 3 > A" s catied an erasing i for ecach g € 3 either

X . % ® . )

fay = a or hia) = ¢ For homomorphisms g.h 1 2 = A", the minimal equality
ser s the set elg Ay = Pw €S glwi = hiwy and f w = uv for wveES?
then gtu ) # A(f that is. using the notation of [32L :

elg, By = min(E{g. h) ~ e

Theorem 720 {1 For every re. %;mg»mge L. there g:\i\% homomorphisms by ho
and an erasing haso that L= haletr . o )
A%m we have o representation based on fixed points of desm mappings. M:i
o F o
g 2 -3 he s function. ”I%‘:e,, Jixed-point language Fyigi of the function ¢ i
defined 1o be Folgy = w2 § giwl = §

Theorem 7.3: 1277 For every r.o t;mgmgéz L. there exists a dgsm mapping g and
an erasing £ such that L = A(F, (g

o

By imposing simple restrictions on the mappings used in Theorems 7.1, 7.2
and 7.3 we obtuin a simple “maching independent” characierization of many time
and space complexity clusses of lunguuges. Similar results huve heen shown
independently in [4. 81 and in 13 141 We give here o fow of these results,
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o T g = e

€ i a o of {un
A dunvsage £
SEIC mi Bl oneding
shound) /L Tor some

We sy tha U380 s
closed sader addinon of
terne fvpaced comploxity €8 £ 0y nveepted |
Tuping machine 47 which operates within
G wo wriie L ENTIMIGEY (1€

enerabize the notion of A-limited
fon the intepers wo say that an erasing B i f m;zm;& o o g langnage £ {oy cach
e anpdies D vowl A w Dy that s oar omost F |
Cbe erased. We say thot £ €-bounded. for @ class

FieE

as foillows For g function

woinc il ow

&\?E?\Q’kif? 411 y
c of complexty i A febounded for some £ from @

We g “machine independent” charncterizution of the time
cortpieviy olasses of linguages .
Fheoren: ?’»if Ef«, 41 Let € be o cluss of complexity functions closed under
syunring. Then the LEEgmmf three conditions are cguivalont

Gy L ENTIM E{igﬁ
(1Y L= e th L h )Y where By By are
homomorphisms and Jigis a £ -bounded erasing on ¢ (4 :
() 1 o= AU ,020) where g s o dgsm mapping and A s an
erasing on Fu(g}l
Corsfiary. A lunguage L is in NP there oxist homomorphisms &g b &> such
that figle (g B = Loand Ay s pelynominl-bounded erasing on e(h . J .

s

Coroflary: A language L% primitive recursive (recursive) T there  exist

homomorphisms Ao A hy suchathar holeth o hayy = L .:sg*zai o s prim

FECUESIVES (FOCUTSIve-) zmgzgzdui erasing on ¢ (. ko)
in opder to get o characterization of space mzv’;gﬁéméz’; classes we need 1o
+ genershze the notign of boundoed balence on w languuge vonsidered in Section 3

- Consider two fixed homomorplismy g f <% - A Recall that for cach w in
37 the balancelof w o is defined as 8wy = fgiw} = f;m; Now., for g
mopoione function f on the integers, an eraging w and L €L we say that the pair
(g i) bay Pbounded balance on fmzmgw&’ L. with respect to erasing =, iF For cach x
in £and vach prefin w of v owe have | Bw i € /0 A{x)1 ). For a complexity class
& we say' that (g} has Q f}f&iéiéé&*gg hadane ¢ on L, with respeci o w, if the same
%m?é% true for some /€ g

'5?;;-’{3&55?: ?"Sgw [1d1 Lets a@ be any class of complexity functions.  Then

Trabnded hatunce i?ﬁ)‘s’{;s’ LB ss;zéz respect 1o ko

Corod fg&g’} A language L ois context” sUfsitiy
homomorphisms &5, b o such that Ll ke

hnear-hounded balagoe on ik, £

o Y there exist an erasing fo ;md
e{hy By and the puair (ha B hag

EA\ ! i
. The class NP alvo has an gliornative cluracterization:

Bl L= hgle(h Ry where g is an erasing and the pair




—— — _ )

Jpa——

Lk Uil

Theorem 767 15T The clise NP aw ol eguality sweis
Frih o By ool nonerasine homoes
with e pair By Baving g

respoct to the dentny and closed wnder srorsection with rozulor sels and

sro-root-bounded balonoe G

roepoot-bognded holance on il by with

pelvnomiabboumded orusings,

W alno Bave an shernative necossary eondition Tor PSPACE:
For vvery binensge £oin PRPACE there o o paie of nonerasuny

Balunee. aorepuher st RO oapd an

L
{far some vonstants o> ADD B s

Thooron:
Bomomuornhioms o d with log e ;
erising fosuch that L= B A0V R Y um
¢# bounded on Fi AR,

The study of cguabity sets B contrhited representation theerems of the

bt £ o o Bimily of lansuages over an ;’;E;ﬁ?z;z?m 2 Then there exist g
fingige Ly and an ensing wy such that £& LT 1= wy(l s R ;) for some
regular st Ry

Letting L bomg the family of context free longuages we have the well
knows ChomslveSel zzs%f&z;%‘v reor theorem with Loy being the Dok langusee over
X for the famvhies of POL and ETOL Lieguages such reprosentation has been
estabbsbied o {70

Now, given 3 let 3 denote the slphabet disjont from 2 consisting of
“harred” svmbols, 3 = 7 | ¢ € 2] and for any word v in 27 et ¥ denote the
word obtsined from v by buarring each svmbol, To gor o orepresentation as above
for the ro, sets, the pwineshuffle over 2 has beeon defined in 277 as

Ligy=vexudh

w3y} = wylv)

. . N . .
where wy ms are erasings on (32U 2y, which only proserve the svmbols from
D2 respectively,

Clearly, the twinshoMle 22y s an cquality set of two homomorphisms.
Thoey cannot be nonerasing s shows i ﬁ%
Theorepr 7801270 Lor £ be an re languasge over 20 There exsts o resular sol
R, G SUTUI00. 171 such that £ = *:w{i’ (SU BN R, where wy s the
shy

crasiny which only preserves the symbols from £

This theorem has essentadly been shownan (271 using Theorem 7.3 1t also
follaws by Theorerm 7.2, see [13 181

s aotually pot difficult to show  thut every principal cone hus a
reprosentation ax shovel A fumily of himguages L. privcipal cone 1 there s
an Lo Loseeh that L7 is the closure of {01 under the operations of
i sverse homomorphism and ntersection wah g oregubsr <ot or
~cthe closurs of T under finite transducers {rational relationsy,

Bomon:

i

Theorent 7.9: (13,181 Let 2 be an slphabet and Lo princinal cone. There exists o




HOMOMORP”!SMQ DOInABILY FQU \iHY \\i) HS? St
!:mguugc v in «iL such Yy fow b 1 S 2T there exists a reguli o L =
Fposuch that weil v fx; 3 owh RN TS v.owhich ondy prosorves wl -

the svimbaols

of additionul representation
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