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ON REVERSE SKOLEMIZATION

by

P.T. Cox
T. Pietrzykowski

ABSTRACT

An algorithm is presented which, for an arbitrary Titeral
containing Skolem functions, outputs a set of closed quantified Titerals
with the following properties. If a and b are formulae we define
a3b iff {sk(a),dsk(b)} is unifiable where sk denotes Skolemization
and dsk denotes the dual operation, with the roles of V¥V and 3

reversed. If d 1is an arbitrary literal and X is the output, then:

-

(i) Soundness: if xe X then x>d
(ii) Completeness: if a o> d then exists Xx ¢ X such that a >

(ii1) Nonredundancy: if X,y eX then x#y and y 32 x.

X



1: Introduction

We consider the problem of reversing Skolemization and present an
algorithm which assigns to a literal one or more closed 1iterals where here,
as in the rest of this paper, "closed literal" meansz a closed formula
whose matrix is a literal. In the simplest case, if the input literal
is the result of skolemizing a closed Titeral then by applying our algarithm,
skolemizing and applying the algorithm again we will produce the original
closed Titeral.

In the general case, however, the situation is more complex;
for example if the input literal is one deduced by a mechanical question
answering system. The ability &b quantify such literals is especially
important when the system attempts to answer a question beginning "Why ..."
[ 2]. For such applications, the output of our algorithm must have
properties of completeness and implicational independence. By "completeness"
we mean that if some closed literal A 1implies the input Titeral B in
a general sense to be defined later, then there is an output C from

our algorithm such that A implies C . By "implicational independence"”

we mean that no output implies another different output.

2: Preliminaries

In this section we reviéew standard concepts and notation, as

well as introduce some specific definitions.

2.1: We shall use the word expression to refer to literals, terms and
variables, where a variable is not a term.

Any term beginning with a Skolem function is called a Skolem term.



A quantifier string is a string of the from Q]x]...ann (n 2 0)

where Qi is either 3 or Vv (1 =21 <n) and X]s---o%, are distinct
variables.

We use the word "formula" with its standard meaning in mathematical
logic.

If s =pm is a formula such that p is a quantifier string

and m contains no quantifiers then we define:

prefix(s) = p

- matrix(s) =m

If a 1is any string, the head of a 1is the Teftmost symbol
of a .
n) , b= x(s],...,sn) aee expressions, then
expressions t and s are said to be vis-a-vis in a and b iff for

If a=X(t~l’°"st

some i (1 <1< n) wither S and t=t1 sor t and s are
vis-a-vis in &ti and S;
If m is a literal, p is a quantifier string and v 1is a

variable which does not occur in p , we define:

sk(m) = m
sk(pyvm) = sk(pm)
sk(p3vm) = sk(pmo)

where 6 = {v. <« f(u],...,ur) , T 1is a new Skolem function and Upseeesl,
are all the variables immediately preceded by ¥ in p . We also define
a function dsk with the same range as sk by replacing in the above
definition "sk" by "dsk", "y" by "3" , and "3" by "vy" . Clearly,

sk is Skolemization and dsk is the dual operation (see [31]).

If m 1is a formula and b 1is an occureenee of an expression in

m , then b 1is called a top-level occurrence (in m) iff it is not a

proper subexpression of a Skolem subterm (of m).



If m 1is a formula and b 1is an expression with a top-Tevel

occurrence in m , then we will say that b 1is top-level (in m).

We will abbreviate the phrase "top-lewel Skolem" to TS.
If x 1is an expression we wrote x[t] #o indisate that an

expression t occurs in x .

2.2: Unification

We assume that the reader is familiar with standard definitions
of such concepts as "substitution", "variant", "unification.," Substitutions
will be denoted by lower case Greek letters. We will call a substitution
that trabsforms a Titeral into one of its variants a renaming. We
abbreviate the phrase "most general unifier" to mgu., We assume a
familiarity with some of the standard terminology of graph theory, used
only in the proof of theorem 4.3.2.

We extend the definition of unification as follows:
E is a set of sets of expressions and © is a substitution, 6 unifies
E if and only if & unifies E for each E ¢ E,

The following results is used in section 4.

2.2.1: Lemma

If X and Y are sets of expressions or sets of sets of
expressions, then X U Y is unifiable iff X is unifiable and Yo is

unifiable where o 1is an mgu of X .

2.2.2: Baxter's unification algorithm

Here we present a unification algorithm due to Baxter, which
is used only in the proof of theorem 4.3.2. The result otherwise is only

available as a technical report [1].



Let C be a set of unordered pairs of expressions. If F

is a partition of the set of subexpressions of C, and p and q are

subexpressions of C, then we denote by [p]F the class in F which

contains p. When F is understood from the context, we will write

[p] for [pl.

of C

terms.

In the following, Fn is the partition of all subexpressions

in which each class contains a single expression.

algorithm TRANSFORM(C)

S« ¢C
P «F.
while S # ¢

do Delete a constraint {p],pz} from S
if [pql # [p,]

then if [p]] contains a term f](q]],...,q]m)
and [p2] contains a term fz(qZ],...,an)

then if f] 7 f2
then unification fails
stop

else add to S the pairs:

{q'l'l’qZ'I},oct,{q'In,qzn}
Replace [p;] and [p,] by [py] v [p,] in F
TRANSFORM <« F

stop

This algorithm detects nonunifiability due to conflict of

It remains to detect nonunifiability of the type characterized

by the pair {x,f(x)}.



The unification graph for C -is a directed graph whose vertex

set is TRANSFORM(C) (if this is defined; that is TRANSFORM has not
detect nonunifiability). For each pair of vertices X and Y , (X,Y)

is an edge iff p 1is a subexpression of g , where g e X and p e Y.

2.2.2.1: Lemma: A set of apirs of expressions C is unifiable iff

TRANSFORM(C) succeeds and the unification graph for C has no cycles.

3: The algorithms

In this section we describe two algorithms which together
produce the required set of closed 1iterals. The first of these
algorithms, PREPROCESS, is unnecessary in the case when the input
literal has no unifiable TS subterms.

If o is a substitution, m is a literal, t 1is a top-level
subexpression of m and x 1is a top-level variable of m , we say that

o disturbs t in m with x iff x occurs in t but not in to ,

or X occurs in to but x notin t . We will omit "in m" and
"with x" when m 1is understood from context, and x 1is irrelevant. We

say that o disturbs m iff o disturbs some top-level subexpression

of m .
Let d be a literal.

algorithm PREPROCESS(d)

W< {d}
R «
while W # ¢

do Jdelete e from W;

if every unifier of every pair of distinct TS subterms of
e disturbs e , and R contains no variant of e

then R <« R U {e}
(W~ W U { ec|t and s are distinct TS subterms of e with mgu

PREPROCESS <« R
stop

A

o}



If m 1is a formula, we define:

Ww(m) = {{v|v 1is a free top-level variable of m and
occurs in t}
[t is a TS subterm of m}

We then define free(m) as the set of Tower bounds of the set

W(m) with the partial ordering c . For example, if

m = 3wP(a(X,w),B(Y>z,u)sy(x,8(y),2)sX,y¥>2z,w), where all the function

symbols are Skolem, then w(m) =" {{x},{y,z},{x,y,z}} and free(m) =
“{{x},{y,z}}.

of

If m is a formula, we define:

ground(m) = {t|t is a TS subterm of m , and contains
no free top-level variables of m }

If X 1is a set, we denote by ; an arbitrary but fixed ordering

-
If X = (x],...,xn) we define:

v

= VXVl WX (n = 0)

)
) = Ixy3x, 3 (n = 0)

If X 1is a set of variables and D 1is a set of variables

>
or terms such that |X| = |D|, and if X = (Xl""’xn) and D = (g],...,gn),

then we denote the substitution'{x1+g1,...,xn+gn} by {X < D}.

If m 1is a formula or expression, and a and b are expressions,

then repl(a,b,m) is the formula or expression obtained by replacing

all top-level occurrences of a in m by b . We extend this definition

to ordered sets of expressions as follows:

repl((ay,...,a.),(by, b ).m)
= rep]((al,...,an_]),(b],...,bn_]), repl (an,bn,m))

Let us note that if u 1is a free, top-level variable of m then

repl(u,b,m) = m{u<b}.



Now we shall present a second main algorithm:

Let d be a Titeral.

algorithm QUANTIFY(d)

Q< ¢
S « {d}
while S # ¢
do delete s from S ;

G <« ground(s)

if for every mgu o of every pair of distinct

terms in G

either o disturbs a top-level variable in s

#) 4o for some v and y , where v is the

y .
then [F < free(s)

new variable corresponding to some TS ,
subterm t of d , ¥v occurs in prefix(s)
to the left of 3Jy and o disturbs t with

H< {v|lv 1is a free variable in s , and
does not occur in any TS subterm of s}

p « prefix(s)v(V) (see * below)

m < repl(G,V,matrix(s))

if F=4¢
then Q <« Q U {p3(H)m}
else while F # ¢

do delete F from F :
S« S U {p3(F)m}

QUANTIFY <« Q
stop

(* V is a set of variables which do not occur in

s ,and |V| = |G].)

Examples which illustrate these algorithms are presented in

section 5 where they may be more fully appreciated in the 1ight of the

results presented in section 4.



4: Correctness and Implicational Independence

Here we prove some properties of the algorithms considered
independently, such as their termination; and some properties of the

algorithms combined.

4.1: Termination

4.1.1: Lemma: PREPROCESS(d) halts for any literal d.

Proof: If a 1is a literal, we define:
f(a) = (n!)?
where n = number of distinct TS subterms of a.

If W dis a set of literals, we define:

F(W) = ) f(a)

ael
Let W' and W" be the value of W at the beginning and
end of some execution of the loop; let a be the element of W' deleted
and L ERERPL I the Titerals added, then:

W" = W' - {a} u {a],...,a }

k

S F(W™) = F(W') - f(a) + if f(ai)

i=1
= (n1)2 1 12
If f(a) = (n!)", then k < En(n-l) and f(ai) < ((n-1)1)".
SR < FY) - ()2 + In(n-1)((n-1)D)2 < F(WY).
Since F(W) 1is always non-negative, CASES obviously halts. g

4,1.2: Lemma: OQUANTIFY(d) halts for any literal d.

Proof: We define a non-negative integer-valued function G on sets

of formulae as follows:

0 if S=p
G(s) =

Y N(b)! otherwise

beS

where N(b) = total number of free variables and Skolem terms in b.



Now consider some execution of the major Toop of the algorithm
and let S' and S" be the values of S at the beginning and end
respectively of this execution. Also let s be the element of S'

deleted and SqseesSy the formulae added to S' in the loop. Then:

S" = (S' - {s} u {s],...,ik}

and G(S") = G(S') - N(s)! + ) N(s.)!
=1

If s has no free variables occurring in Skolem terms, then
F=0 so that k=0 and:
G(S") = G(S') - N(s)!
< G(S")
If s has free variables occurring in Skolem terms, then
N(s) = N(sj) +2 (1 <j <k) since at least one Skolem term and one
free variable of s 1is quantified in S5 Also k < N(s), so that:

f(S') - N(s)! + k(N(s);Z)!

f(s") <
< f(S') - N(s)! + N(s)(N(s)-2):
< f(S")
Since G(S') 1is non-negative, the algorithm must halt. g0

4.2: Soundness

If a and b are formulae whose matrices are literals we
write a o b iff {sk(a), dsk(b)} are unifiable. In the case when a
and b are closed, our definition coincides with the standard definition
of »o.

4.2.1: Lemma: Soundness of QUANTIFY.

If a e QUANTIFY(d), then a o d.
Proof: We will show that at the beginning of every execution of the

major loop, if b e S u Q then {sk(b), d} has a unifier o such that
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no free variable of b occurs in o.

At the beginning of the first execution of the major loop
S uQ-={d}, so the result clearly holds.

Let S', Q' and S", N" be the values of S and 0 at the
beginning and end respectively, of some execution of the major Toop.
Assume the result holds for S' u Q'. Now suppose b ¢ S" u Q" then
either b ¢ S' u Q' in which case the result holds, by the above
assumption; or b is introduced during the current execution of the

loop. Let s be the element of S' deleted then:

> -> > >
b=p'Y(V)3(F) repl(G,V,m")
where p' = prefix(s), m' = matrix(s), and V, F and G are as defined
in the algorithm.

>

P Y(V)repl (3,V,m")

Let ¢

sk(p'repl(8,V,m"))

Then sk(c)

rep](G,V sk(p'm'))

rep](G,V,sk(s))
Since s € S' uQ', by the above assumption {sk(s), d} has a unifier

o containing no free variables of s.

Let v = (dy) {V<G} oo
> >
then Sk(C)Y = Pep](G,VsSk(S))Y
= sk(s)o
= do

dy since none of the variables in V occur in d.
Hence <y unifies {sk(c), d}; also, since the elements of G are
ground Skolem terms of s, y contains no variables free is s. Now

let p" = prefix(c), m" = matrix(c);
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+
then b = p"3(F)m"

".sk(b) = sk(p"repl(F,T,m"))

1]

where T is a set of Skolem terms containing only
variables immediately preceded by VY in p"
> >
= repl(F,T,sk(p"m"))
> >
= repl(F,T,sk(c))
- -
Llet § = {F*—T} %
- -
= vo{F « T}
since none of the variables in F occur in Y.

_)
(Note that the meaning of Ty, although we have not defined it, is

obvious.)

(dy){F « T}

= (sk(c)Y){F « Ty}

= (sk(c){F < THy

= rep](F,?,sk(C))({F « ?}OY)

Then ds

= sk(b)$
Hence & wunifies {sk(b), d} and does not contain any variables free
in b. Note that we have assumed that‘hF # ¢. In the case when F = ¢
and H # ¢, b=c in the above, and only the proof that {sk(c), d} is
unifiable is necessary. VThis can be obtained from the above by replacing
all occurrences of F by H. N

4.2.2: Theorem: Soundness

If b e QUANTIFY(c), where c e PREPROCESS(d), then b > d.

The proof follows immediately from lemma 4.2.1, and lemma 4.4.2.
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4.3: Completness

If d and d' are literals such that d' ¢ PREPROCESS(d),
we shall denote by Pd“’ the partition of the set of all TS subterms

of d such that s, t e XeP iff s'* =t', where s' and t' are

d [N
TS subterms of d' which are vis-a-vis s and t respectively.

4.3.1: Lemma: Completeness of PREPROCESS

If ¢ is a closed Titeral such that ¢ > d, then there is
a literal b e PREPROCESS(d) such that {sk(c), b} has a unifier £
with the property that t& # s& for all pairs of distinct TS subterms
t and s of b.
Proof: Let u be an mgu of {sk(c), d}; denote sk(c)u by e; Tlet
n be an mgu for P 3 and let d' = dn. By lemma 2.2.1, sk(c) and
d' are unifiable; let their mgu be o. It is easy to show that at
some time during the execution of PREPROCESS(d), d' ¢ W u R: to show
this, we can select pairs of terms which belong to the same class of
ZE ; these terms are obviously unifiable, and will be unified during
some execution of the loop. By continuing this process we can construct
a sequence of Titerals such that each is in W u R, and the last in
the sequence is d'. If d' ¢ R, then b = d' 1is obviously the
required literal.

If d' ¢ PREPROCESS(d), we construct a sequence d],dz,...,d

n

(n = 2) where d] =d', and di+1

an mgu of some pair of distinct TS subterms of di which does not

= diei where ei (1 <1 <n-1) is

disturb di’ and dn has no pair of distinct TS subterms with a
unifier e] that does not disturb d]. Also since the number of
distinct unifiable TS subterms is reduced at each extension of the

sequence, the construction must terminate. Obviously d_ -« PREPROCESS(d).
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It remains only to show that dn and sk(c) are unifiable. We will

show that d2 and sk(c) are unifiable; the argument can be extended

to the rest of the sequence.

Denote 61 by 6. We will show that oecBogebog 1is a unifier

of d, and sk(c) with the required property. First we show that

0cBogofog = BogofhogoBog

(1)

(1)

(a)

(b)

1

If v is a top-level variable, then v = v6 since no replaced
variables of 6 are top-level because 6 does not disturb d].
In this case the result obviously holds.

If v 1is not top-level then v = vo, since all the replaced
variables of o are top-level because o does not unify any
distinct TS subterms of d], and is an mgu.

If vB contains no top-level variables then:

v = vbo
vOobobo = vB0obo
= vBobo

since none of the replaced variables of ©
occur in the terms of 6.
= vofobo

If vB contains a top-level variable, say u, we will show that
v does not occur in wuc. Suppose the contrary; then in the
simplest case there is an expression t 1in sk(c) which is
vis-a-vis u, and in which there occurs a variable x, which
is top-level in sk(c) (as are all the variables of sk(c))
and is vis-a-vis a term s in d], where v occurs in s.
Since © does not disturb d], u must also occur in s.
Therefore, to unify d] and sk(c), it is necessary to unify

{{u,t[x]} {s[ul,x}}, which is impossible. In the general case,
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this nonunifiability between u and s will always arise,
although there may be more than two pairs of expressions con-
tributing to it. Now if y s any variable with the same
properties as v, then by identical reasoning, y does not
occur in wuc. Therefore, v6o does not contain any variables
of this type, and no top-level variables. So by similar
reasoning to case (a), the result holds.
Hence 0oBHocoBoo is a unifier of d]e and sk(c). The fact
that this substitution does not unify any distinct TS subterms of d]e
follows from the fact that o does not unify any distinct TS subterms
of d,. 0

1
4.3.2: Theorem: Completeness

If a 1dis a closed Titeral, and d 1is a literal such that
a >d, there exists ¢ and b such that c¢ e PREPROCESS(d),
b ¢ QUANTIFY(c), and a > b.
Proof: By lemma 4.3.1, there is a Titeral c e PREPROCESS(d) such
that {sk(a), c} has an mgu that does not unify any distinct TS sub-
terms of c. We now consider the execution of QUANTIFY(c), and show
that at the beginning of every execution of the major loop there is a
formula e € S u Q such that
(i) {dsk(e), sk(a)} 1is unifiable
(i1) no vertex of the unification graph of {dsk(e), sk(a)}
contains more than one Skolem subterm of dsk(e).
(ii1) either e € Q
or if v 1dis a variable existentially quantified in e
and t 1is a TS subterm of e, then there is no walk
from [v] to [t] in the unification graph U, of
{dsk(e), sk(a)l.
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At the beginning of the first execution of the major loop,
e=de S uQ clearly satisfies the conditions.

Let S', Q' and S", Q" be the values of S and Q at the
beginning and end respectively of some execution of the major loop.
Assume the result holds for S' u Q' and let e ¢ S' v Q' be the
formula with the required properties; then either e ¢ S' u Q" 1in which
case the result holds for S" u Q" or e is the formula deleted from
S' in the execution of the loop. In the latter case we assume that
the condition of the first if statement is satisfied so that quantifi-
cation of e proceeds: we will show that a formula f with the
required properties is added to S' u Q' during the execution of the
Toop.

Let f = pV(V)H(E) rep](a,v,m) where p, m, G, V are as
defined in the algorithm and K 1is either F or H as defined in the
algorithm: then f ¢ S" u Q". The particular K we choose for con-
structing f is irrelevant to the proof that f satisfies conditions
(i) and (ii); consequently we will postpone the explanation of how K
is selected until these conditions have been proved.

- > >
Now dsk(f) = dsk(p¥(V) rep1(G,V,m)

>

)
> > >
= dsk(p rep1(V,G',rep1(G,V,m)))
> >
= dsk(p repl(6,G',m))
= rep](a,g',dsk(e))
where G' 1is a set of new Skolem terms intro-
duced by the application of dsk.
We now describe the construction of Uf from Ue: the reader

should verify that this construction is correct. The construction is as

follows:
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For each t ¢ G replace t by t' in [t], where t' is the

new Skolem term corresponding to t.

Delete all vertices which contain expressions which do not occur

in dsk(f). Note that such expressions have no top-level

occurrences in e, so by condition (ii) on e, these deleted

vertices each contain a single expression.

Delete all edges which enter or leave vertices deleted in (2).

For each t ¢ G and each top-level variable v of dsk(f) which

occurs in t', where t' is the new Skolem term corresponding

to t, add the edge ([t'],[v]).
We now show that f satisfies the conditions

(1) Suppose there is a closed walk in Ug. Since U, has no
closed walks, some of the edges on this walk must be added
in the above construction. Suppose there is exactly one such
new edge ([t'],[w]) on the walk, where w is existentially
quantified in e and t' 1is the new Skolem term in dsk(f)
corresponding to some term t in e. Then there is a walk
from [w] to [t] in Ue contradicting the assumption that
e satisfied condition (ii). If the walk contains more than
one such edge, we consider the part of the walk connecting
two consecutive new edges and obtain the same contradiction.
Hence {dsk(f), sk(a)} 1is unifiable.

(i1) That f satisfies this condition is obvious from the above
construction.

(iii) In order to show that f satisfies this condition, we now

explain how K is selected. Suppose free(e) # ¢, then

the set NG = {t|t is a TS subterm of e and t ¢ ground(e)}
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is not empty. Since Ue has no closed walks, it induces a

partial ordering < on NG as follows: t] < t2 iff there is

a walk from [t,] to [t]]. Let t be a minimal element of

NG under this ordering; then we choose K to be that element

of free(e) which is a subset of

{v|v is a free top-level variable of e, and occurs in t}.

Now suppose that v is existentially quantified in f and s
is a TS subterm of f and hence of e. Either v ¢ K, and by the
selection of K there is no walk from [v] to [s] 1in Ue; or v is
existentially quantified in e so by condition (iii) on e, there is
no walk from [v] to [s] in Ue' Hence if there is such a walk in

U. it must contain at least one new edge introduced in the above con-

£
struction. Suppose ([s'],[w]) 1ds the last such edge on this walk,
then there is a walk in U, from [w]l to [s]; however, w e K so
such a walk contradicts our selection of K. Hence no walk from [s]
to [v] exists in U, so condition (iii) is satisfied.

In the case when free(e) = ¢, K=H and f ¢ Q", so
condition (iii) holds.

Now suppose that the condition (#) of the first if statement is
not satisfied so no further quantification of e 1is done. Then there
is a pair {t,s} of distinct TS subterms of ¢ in ground(e) with an
mgu o with the following properties:
(i) o does not disturb top-level variables
(ii) for every TS subterm r of d and every variable vy, if

r 1is disturbed by o with y then either r occurs in e

or 3Jy occurs in prefix(e) to the left of Vx, where x

is the new variable corresponding to r.
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Let b be the formula added to S when the first such 3y is intro-
duced into the prefix. Consider that execution of the loop of
PREPROCESS(d) 1in which ¢ is deleted from W: 1in the loop the
literal co 1is added to W. Also, unifying any TS subterms of ¢
disturbs ¢ since c¢ ¢ PREPROCESS(d), therefore, unifying any TS
subterms of co disturbs co; hence co ¢ PREPROCESS(d). Now since
o disturbs only TS subterms of d that occurs in b it is clear
that during the execution of QUANTIFY(co) a formula b' will be

produced such that:

b' = pm'
where p = prefix(b)

m' = mo

p = matrix(b)

Suppose that QUANTIFY were modified so that quantification
of all formulae is completed (i.e. the first if statement is replaced
by its then part). Let g be the formula output by this modified
algorithm as a result of complete quantification of b, such that
{dsk(g), sk(a)} 1ds unifiable: such a formula exists, by the above
proof. The essential difference between b and b' 1is that some of
the TS subterms of b' contain more top-level variables than their
counterparts in b. These extra variables, however, will be existentially
quantified before any term disturbed with them is removed by QUANTIFY.
Consequently, the order of quantifications performed in producing g
from b can be exactly duplicated in quantifying b'. The resulting
formula g' will differ from g only in the following way: the two
quantifiers VYxVy 1in prefix(g) introduced when quantify removed TS
subterms t and s are replaced by a single quantifier VYx in

prefix(g'), and all occurrences of y in matrix(g) are reolaced by
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x in matrix(g'). Obviously {dsk(g'), sk(a)} are unifiable. Note
that Tlater in the quantification of b' processing may again be
terminated should the condition in the first if statement not be
satisfied: 1in this case we repeat the above construction as many times
as necessary. O

4.4: Implicational Independence

4.4.1: Lemma: Implicational Independence of QUANTIFY

If d is a literal, e,f ¢ QUANTIFY(d), and e # f, then
epf and f pe.
Proof: First let us assume that matrix(e) = matrix(f): this assumption
is justified by noting that no two formulae in QUANTIFY(d) are
variants of each other, and that each TS subterm can always be replaced
by the same new variable. Let us also assume that the variables of
e and f are ordered by a relation < in an arbitrary but fixed
manner, and that blocks of quantifiers of the same type in the prefixes
of e and f are arranged according to this ordering: that is, if
Qu]Qu2 occurs in prefix(e) or prefix(f), where 0 is V¥ or 3,
then Uy < Uo.

Since e # f, prefix(e) # prefix(f). Let p be the longest
quantifier string which is the left part of both prefixes (note that

p could be empty), then:

prefix(e) = pQ'u ...

prefix(f) = pQ"v ...,

where Q'u # Q"v.

Now if Q' =Q" =V, then u # v. Suppose u and v were introduced
to replace TS subterms s and t, respectively; then all top level

variables occurring in s and t must occur in p. Therefore, Q'v
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must occur to the right of Q'u in prefix(e), and is introduced by
QUANTIFY at the same time as Q'u; hence u <v. Similarly, by con-
sidering prefix(f), we find théf vV < u. Consequently, not both Q'
and Q" are VY. Now suppose that Q' =V and Q" = 3 (or vice-versa);
then there is a TS subterm s with all its top-level variables occurring
in p: QUANTIFY always removes all such terms before existentially
quantifying any further top-level variables. This contradicts the
supposition that Q" = 3. The only remaining possibility is that
Q' = Q" =3, which implies u # v. Let U be the set of variables
existentially quantified at the same time as u in the production of
e: we define v analgously for v A f.

Clearly U # V, since if U =V we can conclude u <v
(from prefix(e)) and v <u (from prefix(f)); also U ¢V since
UcV dimplies that V cannot be chosen as a minimal set of free
variables to be existentially quantified. Consequently, there exists
variables x ¢ U\V and y ¢ VAU, and TS subterms s and t such

that x occurs in s not t, and y occurs in t not s, and:

prefix(e) = p...3x...¥w...3y...Vz...

prefix(f) = p...3y...¥z...3X...Yw..

where w and 2z are new variables corresponding to s and t
respectively. Hence in order to unify {sk(e), dsk(f)} it is necessary
to unify {{a,x}, {w,y[yl}, {B[wl,y}, {z,8[x,y]}}, where o and B are
Skolem terms introduced by the application of sk to e, and vy and

§ are Skolem terms introduced by the application of dsk to f.

Therefore, {sk(e), dsk(f)} 1dis not unifiable; by symmetry, neither is
{dsk(e), sk(f)}. 0
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4.4.2: Lemma: If d' e PREPROCESS(d) and © is an mgu of Pd" then
d' = do.
The proof follows easily from the definition of PREPROCESS, and is left

to the reader.

4.4.3: Corollary: If d', d" ¢ PREPROCESS(d) and Pqr = Pyqu, then

d' =d".

Proof: 1If P, = Pyu then d' =do' and d" = do" where o' and

c" are mgus of Pd" Hence either d" and d' are variants, con-

tradicting the definition of PREPROCESS, or d' = d". O
If d', d" ¢ PREPROCESS(d), we shall.say that d' > d" iff

for each X ¢ Py there exists Y ¢ Pyn such that X c Y.

4.4.4: Lemma: If d', d" e PREPROCESS(d), d' > d", o' is an mgu of

Pyrs and © 1is an mgu of Pd“o' then d" = d'06. Again, the proof,
based on the definition of PREPROCESS and lemma 4.4.2, is left to the
reader.

4.4.5: Theorem: Implicational Independence

Let d, d', d" be literals such that d', d" e PREPROCESS(d)
and d' # d"; and suppose g' e QUANTIFY(d'), g" e QUANTIFY(d"), then:
(i) ¢" 249
(ii) g' A g"
Proof: We consider two cases as follows:

(a) Suppose d' # d" and d" # d'. From the definition of >, it
follows that d' has TS subterms s]', t]', S,'s to' which are
vis-a-vis 51“, t]", Sp"s ty," in d", such that s]" = t]" and
52' = t2' but s]‘ # t]' and 52" # t2"' Consequently,

vx;", Yy,' and ¥X,"' occur in prefix(g") where X1's ¥q"s

xz', x]", xz", y2" are the new variables corresponding to s]', t]', 52'



22

(= tz'), s]', (= t]"), 52", t2" respectively. Therefore, to
unify {dsk(g'), sk(g")} it is necessary to unify
{{a]‘,x]"},{81",x]“}} where a]', B]' are distinct Skolem terms
introduced by the application of dsk to g'; this is clearly
impossible. Hence (i) is proved, and (ii) is similarly proved
by considering the new terms in dsk(g") which are vis-a-vis
Xo in sk(g').

(b) Suppose d' > d". Let © be a substitution as defined in
lemma 4.4.4 such that d" = d'0; by corollary 4.4.3, since
d' #d", Pd' # Pyn SO © must unify at least one pair of
distinct TS subterms of d'. Therefore, vis-a-vis these distinct
terms of d' are identical terms of d", so by reasoning
identical to that used in case (a), (i) holds.

Since d' e PREPROCESS(d) but has distinct unifiable TS
subterms (since © wunifies at least two of them), © must
disturb d'. There are two ways this can happen:
either (A) © disturbs a top-level variable u of d'

or (B) © disturbs a top-level subterm of d'.

In case (A), u in d' occurs vis-a-vis a new Skolem term
a in sk(g'). Suppose u occurs vis-a-vis an expression t in d".
If t 1is a term, then it occurs vis-a-vis a term in dsk(g") with a
head different from that of a, so (ii) clearly holds. If t 1is a
variable, say v then it occurs in d" vis-a-vis both u and w in
d', where w # u, since © disturbs u. Then v occurs in dsk(g")
vis-a-vis two different Skolem terms in sk(g'). Then v occurs in

dsk(g") vis-a-vis two different Skolem terms in sk(g'). Again it is

clear that (ii) holds.



that:

23

In case (B) we will show that g' has a TS subterm s' such

(1) some top-level variable y' occurs in s" = s'®@ but not in

s', and

(2) vx' occurs to the left of 3Jy' in prefix(g'), where x'

is the new variable corresponding to s'.

Let t' and r' be two distinct TS subterms of d' which

are unified by ©. We have two cases to consider:

(a)

(b)

Suppose t' and r' are not replaced by new variables during
the same execution of the major loop of QUANTIFY. Then some top-
level variable y' occurs in t" but not in r' and y' is
still free. Clearly V¥x' occurs to the left of 3y' in prefix(g'),
where x' is the new variable corresponding to r'.
If t' and r' are replaced by new variables in the same
execution of the major loop, then suppose that for all TS subterms
s and all top-level variables y and d', if © disturbs s
with y, VYx occurs to the right of 3y in prefix(g') where
X 1s the new variable corresponding to s. In the case when ©
is an mgu of t' and r', processing of the formula by QUANTIFY
will be terminated because of condition (#), contradicting the
fact that g' e QUANTIFY(d'). The general case, when © 1is not
an mgu of r' and t', 1is left to the reader.

Now for g e QUANTIFY(d"), it follows from (1) that 3y'
occurs to the left of Vvx" in prefix(g'), where x' 1is the
new variable corresponding to s". From this fact, and (2) it
follows that to unify {sk(g'), dsk(g")} it is necessary to
unify {{x',aly']},{y',B8[x']}} where o and B are Skolem

terms introduced by sk and dsk. This proves case (ii). ]
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5: Examples and Final Remarks

First we illustrate QUANTIFY.

5.1: Example: Let d be the literal P(a(x,y),B(x,z),v(y,z),f(x,y),z)

where o, B and y are Skolem functions and f 1is not. Then:

{ 3x3yva3zvbvc m,

QUANTIFY(d) = Jy3zv¥cIxyzyvb m,
Ix3z¥b3yvavc m }
where m = P(a,b,c,f(x,y), z)

The reader should note that for every b e QUANTIFY(d),
dsk(b) # d.

The next example illustrates that expressions which are not
top-level have no influence on the output of QUANTIFY; and that the
names of Skolem functions are unimportant.

5.2: Example: Let d] = P(f(a),y(q(z)),B8(x),x) and d, =

P(f(B(z)),8(a),y(h(x)),x) where a, B, vy, § are Skolem functions, and
f dis not. Then:

QUANTIFY(d1) = QUANTIFY(dZ) = {VyYw3xVvP(f(y),w,v,x)}.

In the preceding examples, no TS subterms are unifiable, so
PREPROCESS would have no effect. The next example shows that PREPROCESS
is required for completeness.

5.3: Example: Let d = P(a(z),a(x),x), where o 1is a Skolem

function, then:

QUANTIFY(d) = {vy3x¥vP(y,v,x)} = {b}
Consider the closed Titeral c¢ = VyP(y,y,a). Clearly c > d, but
c £b. This is because QUANTIFY distinguishes between Skolem terms

which are not identical but are unifiable. However:
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PREPROCESS(d) = {d,e}
where e = P(a(x),a(x),x).
Then QUANTIFY(e) = {3xVyP(y,y,x)} = {f}, and c o f.

Now we provide an example to illustrate how PREPROCESS avoids

redundancy.

5.4: Example: Let d = P(a(x,z),a(x,x),x) then PREPROCESS(d) =

{P(a(x,x),0(x,x),x)} = {b}. Note that unlike example 5.3, d 1is not
in PREPROCESS(d), since the unification does not cause a disturbance;
and that d - b.

Our final example illustrates the need for the condition
(#) in QUANTIFY.
5.5: Example: Let d = P(a(x),v(y,v),B(z,y),8(z,x),x,z,v) then:

PREPROCESS = {d,e}

where e = P(a(x),v(x,v),B(z,x),B(z,x),x,Z,V).
Suppose condition (#) 1is removed from QUANTIFY, then this modified
algorithm produces from d the following:

{3x¥a3zyb, ¥b,3v¥c m (= d1),

3xVa3vaHsz]Vb2 m (= dZ)’

HZVb]HVVCHXVaVb2 m,

32Vb13xVb2Va3va m,

3va3xVa32Vb]Vb2 m,

Av¥c3z¥b,3xYb,Ya m}

where m = P(a]c]b],bz,x]z1v)
From e, QUANTIFY produces:
{3xva3vvcazvb m' (= eq),
Ixvadzvbavve m' (= e,)}

where m' = P(a]c,b]b1x]z]v)
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Clearly d] > e and d2 > eq. However, condition (#)

restricts QUANTIFY such that d, and d2 are not produced, since at

1
the point where the two unifiable terms have no free variables remaining,
the term vy(y,v) which is disturbed by the mgu with x is either still
in the matrix (in d]) or its corresponding new variable ¢ occurs to

the right of 3x in the prefix (in d2).
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