DEDUCTION PLANS: A BASIS FOR
INTELLIGENT BACKTRACKING

P.T. Cox
T. Pietrzykowski

Research Report CS-79-41]
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

December 1979

Deduction Plans

P.T. Cox
T. Pietrzykowski

University of Waterloo, Waterloo, Ontario, Canada
ABSTRACT: A proof procedure is described that relies on the construction
of certain directed graphs called "deduction plans”. Plans represent the
structure of proofs in such a way that problem-reduction may be used
without imposing any ordering on the solution of subproblems, as required
by other systems. The structure also allows access to all clauses deduced
in the course of a proof, which may then be used as Temmas. Economy of
representation is the maximum attainable, consistent with this unrestricted
availability of Temmas.

Marious restrictions of this deduction system are seen to correspond
to existing linear deduction procedures, while overcoming many of their
shortcomings. One of the rules for constructing plans, however, has no

equivalent in existing systems.

This research was suoported by Matural Science and Engineering Research
Council GBrants: AR267 and A3025, ,

Authors' address: Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1.

A further economy is obtained by obviating the necessity for explicitly
performing substitutions and for calculating most general unifiers.

The source of unification failure can be located when a subproblem is
found to be unsolveable, so that exact backtracking can be performed rather
than the blind backtracking performed by existing systems. Therefore, a
deduction system based on the construction of plans can avoid the wasteful
search of irrelevant areas of the search space that results from the usual
backtracking methods. Furthermore, because of the graphical structure, it
is necessary to remove only the offending parts of the proof when a plan is
pruned after backtracking, rather than the entire proof constructed after

the cutting point.

KEY WORDS AND PHRASES: Resolution, theorem-proving, first order logic,

directed graph, unification, Tinear deduction, backtracking, plan.

CR CATEGORIES: 3.6, 5.21

1. Introduction

Early theorem-proving programs based on Robinson's resolution principle
[14], employed the "saturation" search strategy, in which the search space
is exhaustively generated level by level. For obvious reasons, the performance
of such programs was disappointing. Many search strategies were proposed in
the Tate sixties for improving the performance of resolution-based provers.
One of these, "linear resolution", independently proposed by Loveland [10],
Luckham [12], and Zamov and Sharonov [15], employed the well-known technique
of "problem-reduction", and appeared to be one of the more promising of
these refinements.

Existing 1inear deduction systems suffer from several drawbacks. First,
to ensure completeness in the original linear resolution system, it is
necessary for any clause deduced in the course of a proof to be acéessib]e as
a "lemma": that is, it must be available for use as though it were a member
of the set of clauses whose unsatisfiability is in question.

This of course requires that copies are kept of all clauses deduced,
and that this 1ist is continually scanned for useful lemmas. The storage
problem could be overcome by the use of a structure-sharing scheme such as
that proposed by Bayer and Moore [4], however, the Tist of lemmas must still
be scanned. A solution to this problem is to use the linear system proposed
by Loveland as Model Elimination [8,9,11], and Kowalski and Kuehner as
SL-resolution [7]. In these systems, a rule is used which corresponds to
the familiar proof technique "reductio ad absurdum". To ensure soundness,
however, a strict ordering must be imposed on the solution of subproblems.

Consequently, we lose one of the most attra¢tive features of problem reduction,

the parallel processing of subproblems.

Linear deduction also suffers from two problems associated with
"backtracking". If a subproblem is found to be unsolveable in the course of
a proof, the system must return to an earlier state of the proof and attempt
an alternative solution to a previously solved subproblem. The strategy
normally adopted by a 1inear theorem-prover is to return to the last
subproblem it solved for which there is an untried potential solution: however
tiis may not pe tne correct place to try an alternative, and altnougn
the correct point will be reached eventually, much effort may be expended
in the meantime on a fruitless exploration of the search space. This
inefficiency is compounded by the pruning that occurs whenever the system
backtracks: when the Tinear prover returns to a subproblem A to attempt
an alternative solution, it erases all the clauses produced since the last
attempt at solving A. Some of these clauses may constitute a perfectly
acceptable solution to some subproblem, and may ewentually be regenerated.
Furthermore, because of its blind backtracking behaviour, the Tinear system
may backtrack over this innocuous subproof several times, and regenerate it
several times.

We present here a deduction system which has all the advantages of the
linear systems, but overcomes their above-mentioned deficiencies.

A proof is represented as a directed graph, ealled a "deduction plan"

the vertices of which are occurrences bfmliterals from the set of clauses

under consideration. In building plans, the process of constructing a proof
is separated from the unification process. The word "plan" is intended to
convey the notion that such a graph proves nothing until the rules used in its
construction have been validated by a unification algorithm. In this respect,
our system is similar to Huet's higher-order "constrained resolution" [6].

To each rule of the various linear deduction schemes, there corresponds
a rule for plan construction; however, even though the rules for Model
Elimination have equivalents in plan construction, no ordering need be imposed
on the solution of the subproblems of a plan to obtain soundness. One rule,
called "backfactoring", has no equivalent in Tinear deduction, and involves

factoring a subproblem to a previously solved subproblem. It is seen that

completeness is preserved if all factorings are restricted to be of this type.
Plans allow the use of lemmas as in simple Tinear deduction, but more
lemmas are available. This is because each plan actually corresponds to a
set of linear deductions, and any clause deduced in any one of these
deductions is available as a lemma. Because of the graphical structure of
plans, however, the storage problem caused by keeping lemmas in linear
deduction is eliminated in our system. 1In fact, among systems which allow
complete access to the history of a proof, plans are the most economical,
since a plan contains only one representation of each Titeral used in a proof.
A further economy is attained in that no substitutions need ever be
performed: it is necessary only to verify that certain expressions are
unifiable, and therefore, most general unifiers need not be calculated.

Although we do not discuss it in this paper, there exists an algorithm

for determining the source of unification failure, and hence for finding all
choices for backtracking [5]. Once this has been done the proof must be
pruned, and the graphical structure ensures that no harmless subproofs are
removed. The algorithm for tracing unification failure is the subject of
a forthcoming publication.

In section 2, we present some definitions, in section 3 define plans,

and in section 4 we prove the soundness and completeness of deduction systems

based on them. In section 5 we discuss practical aspects of plans.

2. Preliminaries

Here we provide some notation, make preliminary definitions, and quote

familiar results for later reference.

2.1: Graph Theory

With a few minor exceptions, our notation and definitions for the concepts

of graph theory follows Bondy and Murty [3].

2.1.1: Definition: A directed graph G is an ordered pair < V(G),E(G)>

where V(G) is a nonempty set of vertices and E(G) < V(G) x V(G) 1is the-set

of arcs. If e = (u,v) 1is an arc, then e 1is said to join u to v, u

is called the tail:of e, and v 1is called the head of e. We also say that
e leaves u and enters v. The indegree and outdegree of a vertex v,

are respectively the number of arcs which enter v, and the number of arcs
which leave v.

We will henceforth abbreviate "directed graph" to "digraph".

2.1.2: Definition: A digraph D is a subdigraph of a digraph G if
V(D) < V(G) and E(D) S E(G).

2.1.3: Definition: Let V be a setand E SV x V. We shall say a graph

G 1is induced by E iff
E(G) = E

and

V(G) ={x e V|3 ¢ E such that x 1is the head or the tail of e}.

We shall denote G as IND(E).

2.1.4: Definition: If G 1is a digraph, a directed walk in G is a

sequence of arcs e;,...,e (n > 1) such that the tail of e. is the

n i+

head of e, for 1 <1 <n. Note that this walk can also be specified by

the sequence VyseeesV of vertices, where e; = (Vi’vi+1) for 1 <1 <n.

n+1

The length of the walk is n; V1 and v are respectively the origin

n+l
~and terminus, and V2""’Vn are called the internal vertices of the walk.

A directed walk is said to be closed if its origin and terminus are identical.
We will frequently use such expressions as "v Ties on the walk"; "a
walk from u to v"; and "the walk passes through v". The meaning of such
expressions is obvious. Since we consider only directed graphs, we will
usually omit the word "directed" and the prefix "di-", using "graph", "walk",
"subgraph", etc., instead of "directed graph", "directed walk", "subdigraph",

etc.

2.2: Language:

In what follows, we will use the expressions "variable", "constant",
"predicate symbol", "function symbol", "term", "atom" and "well-formed
expression" with their usual meaning (see Robinson [14]). Our definitions

of "literal" and "clause" are somewhat different, however.

2.2.1: Definition: A literal is either an atom or a string of the form

-A where A is an atom. If L 1is a literal, the negation of L, denoted

4L, is the literal:
(i) -A if L 1is the literal A, where A s an atom
(ii) A if L ds the literal -A.

A ground literal is a literal in which no variable occurs.

2.3: Substitution and Unification:

The notions of "substitution", "application of substitution", and
"composition of substitution" follow Robinson [14] with the exception that
a substitution component will be denoted (v,t) rather than t/v, where v

is called a replaced variable. From now on we will refer to "well-formed

expressdons” simply as "expressions".

2.3.1: Definition: A substitution 6 wunifies a set of expressions E if

and only if E6 contains one element. In this case, E 1is said to be

unifiable, and 6 1is a unifier for E. 6 is called a most general unifier

(mgu) for E if and only if for every unifier y for E, there is a
substitution B8 such that vy = 86-B.

We extend the notion of unifiability to sets of sets of expressions.

2.3.2: Definition: If € 1is a set of sets of expressions and 6 is a

substitution, 6 unifies &€ 1if and only if © unifies E for each E ¢ €.
We define "unifiable", "unifier", and "most general unifier" exactly as in

2.3.1.

10

The fact that every unifiable set has at Teast one mgu is clear from
the existence of several unification algorithms.

If E 1s a unifiable set of expressions we denote by mguE, some mgu
of E. We use this notation also for sets of sets of expressions. Note that
if E 1is a set of expressions, then mguE = mgu { E}.

Although the following result is fairly obvious, we provide a proof

since, to our knowledge, no proof has been published to date.

2.3.3: Lemma: If X] and X2 are both sets of expressions, or both sets

of sets of expressions, then:
(i) X] uX2 is unifiable if and only if X] is unifiable and
X2mguX] is unifiable.
(ii) If Xy v X, is unifiable:
mgu(X] U XZ) = mguX, s mgu(XnguX])

(i) (a) If Xy v X, is unifiable, let 6 be any unifier for Xp v Xs.
& unifies X], so that by the definition of mgu, 6 = mguX]oB for
some substitution B. But 6 unifies X2, so that B unifies
szguX]. Therefore X1 and szguX] are unifiable.
(b) Suppose X] and szguXP are unifiable, and 1et 6 be a unifier
for szguX]. Now mguXi unifies X1, so that mguX1ae unifies
X]; also 6 unifies szguX] so that mguX]oe unifies X2. Hence

mguX1oe unifies X] uX2 so that X] LJX2 is unifiable.

11

(i) If Xp vk, is unifiable, then by part (i), mgu(XnguX]) exists.
Now mguX; unifies X;, so that mgquomgu(szguX?%;‘unifies X;. Also:

X mguX]omgu(szguX1) = (szguX])mgu(szguX])

2

So mguX]omgu(szguX1) clearly unifies X2. Therefore mguX]omgu(szguX])
is a unifier for X1 u Xs.

Suppose 6 is a unifier for X] U X2, then since 6 unifies X1:
6 = mguX]eB for some substitution B

But ©6 wunifies X2, so that B wunifies X2mguX].

B mgu(XnguX])oa for some substitution o

) mguX]omgu(szguX])ou

Therefore mguX]omgu(XnguX1) is an mgu for X1 u Xo. L]

2.4: Predicate Calculus

As we remarked earlier, our definition of "clause" differs from
Robinson?s. Robinson regards a clause as a set of literals, and since a set
can have no repeated members, the clause corresponding to the propositional
formula pvp 1is {p}. To avoid confusion between distinct vertices of a
graph when these vertices correspond with the same Titeral, we need to

distinguish between different occurrences of the same 1iteral. We achieve

this hv attachina distinct indices to these occurrences.

12

2.4.1: Definition: Let I be any countable set, and L the set of all

Titerals; then the set L x I s called the sét of elements over the index

set I. We will assume from now on that I s fixed, and refer to L x I
simply as the set of elements. If (x,i) 1is an element, we define
|(x,i)| = x, and refer to i as the index of® (x,i). If (x,i) is an
element and 6 is a substitution, then the element (x6,i), also denoted

(x,i)6, is called an instance of (x,i).

2.4.2: Definition: A finite subset C of L x I 1is called a clause iff:

either C is empty

or C = {(x],i]),...,(xm,i)}, m=1

where 1],...,im are distinct indices.
We denote the empty clause by 0.
If €= {(xgsip)sens(xsi)} and D= {(xq,37).005(x 53,)} are
clauses, then C is said to be a copy of D. A ground clause is one in

which no variable occurs. A pair of clauses are said to be separated iff
they have no variables or indices in common. If C = {x],...,xm} is a
clause and 6 1is a substitution, then the clause {x]e,...,xme}, also

denoted {x],...,xm}e is called an instance of C.

2.4.3: Definition: A substitution {(v1,u1),...,(vn,un)} js called a

renaming if u],...,un are distinct variables, and:

{u],...,un} n {v],...,vn} = ¢

13

If y 1is a renaming, then Y_] is the renaming { (u,v)|(v,u) € v}.
Clearly, if ~y ds a renaming, then vyoy = v, (Y_])—] = v, and Yoy_1 = y'1.
A clause C 1is a variant of a clause D iff C and D have no variables

in common and C = Dy where vy 1is some renaming.

2.4.4: Definition: A valuation is a function I from the set of all

ground literals into the set {T,F} such that:
(L) = T iff xz(xL) =F

We extend the domain of every waluation ¥ to the set of all clauses, as

follows:

(i) If C 1is a ground clause:
2(C) = T iff z(|L|) =T for some L e C
(ii) If C s a clause which is not a ground clause:

£(C) = T 4iff z(Ce) =T for all ground instances Cé of C

2.4.5: Definition: A valuation I 1is said to satisfy a clause C if and

only if z(C) = T. We also say that £ is a model for C. Similarly, a
valuation I is said to satisfy, or to be a model for a set of clauses S if
and only if z(C) =T forall Ce S. A set S of clauses is satisfiable iff

it has notmodel, otherwise it is unsatisfiable.

14

3. Deductijon Plans

3.1: <Introduction

In this section we present a deduction system which relies on the
construction of certain directed graphs called "deduction plans". Before
defining these graphs formally, we give an informal description of their
structure.

The underlying structure of a deduction plan for a set S of clauses
is a rooted tree the root of which is a special vertex called TOP. Every
vertex other than TOP is &n element of a copy of a variant of a clause of S.
This underlying rooted tree corresponds exactly to a linear resolution
deduction from S in which the only inference rule is binary resolution.
The rule used in building such a tree is called "replacement". The
following example illustrates such a rooted tree and the corresponding

Tinear resolution deduction.

3.3.1: Example: Consider the set of clauses:
S ={ {P(x,y), P(x,f(x)), -Q(x)},
{Q(x), R(x,a), -S(x)},
£s(x), Q(x)},
{-R(x,¥), -S(¥)3,
{-P(a,f(a))} }

where a 1is a constant. In this and future examples we will omit indices
from clauses, since in our pictérdal representation of plans this will cause

no ambiguity.

15

Figure 3.1 is a linear binary resolution deduction from S, and
figure 3.2 illustrates the corresponding plan. Note that the subgraph
indicated by the dotted line corresponds to the top clause in the linear
deduction, and the arcs labelled "SUB" connect the root vertex with the
elements of the top clause. SUB stands for "subpréblem" and indicates
elements which must be removed by resolution. If a subproblem has no arcs
leaving it, then that subproblem is said to be "open": that is, it has
yet to be removed by resolution. Each arc labelled "REPL" indicates one
application of the replacement rule, and shows that we have selected a
clause C which is a copy of a variant of some clause from S, and have
performed a binary resolution on the subproblem at the tail of the arc,
using the element of C which appears as the head of the arc. The
remaining elements of C are then introduced as new subprobiem vertices
at the head of new SUB arcs: the tail of each of these new SUB arcs is
the head of the new REPL arc. In figure 3.2 the REPL arcs are numbered,
indicating the order in which the tree is constructed: this order corresponds
exactly to the order in which deductions are performed in the linear
resolution deduction of figure 3.1. When a subproblem becomes the tail of
an arc it is said to be "closed". Note that a vertex at the head of a REPL
arc is not a subproblem.

In building this tree we have not applied the unifying substitutions
as in the limear deduction. Instead, a record is kept of the expressions
which must be unified in order to validate the construction. In the case

of the plan in figure 3.2, every pair of expressions in the set

16

| P(xnyl)a P(Xl,f(Xl)), 'Q(Xl) Q
Q(x2), R(x2,3), -S(x;)

X] <" X3

P(x5,¥1); P(x,f(x2)), R(x2,2), -S(x2) €

SR /o R(X3,Y3), -S(¥5)
' y3<a _
P(x3,¥1), P(X3,f(X3)), -S(), -S(%3) €

S(x4), Q(X4)

X3 € X4

P(x4¥1), P(Xsf(x4)), -S(a), Q(x4) €

/ -P(a,f(2))
P(aayl)a 'S(a), Q(a)

A binary linear resolution deduction from the set of clauses of example

3.1.1. The substitution applied during each application of the resolution

rule is noted beside the appropriate branch.

Figure 3.1

17

/ \
/ \
i |
i i
i |
| |
1 {
= SUB SUB SUB }
i I
i |
i !
| |
t
\ X1) h
N\ //
REPL 1|
\/
SUB SUB
[5 4
REPL 2 REPL 3
\/ \/
SUB SUB
\/

A plan for the set of clauses of example 3.1.1 corresponding to the

e<

linear resolution of figure 3.1.

Figure 3.2

18

{0xgsak, TF(x))F (@)l {xqa%,s {X)0%5}s {a,y3}, {%5,%, 3 must be
simultaneously unified. Note that the substitution {(x],a), (x2,a),
(x3,a), (x4,a), (y3,a)} is in fact a unifier for this set.

At each stage during the construction of this tree, the set of open
subproblems corresponds to the clause deduced by the equivalent Tinear
resolution. If at some stage there were no open subproblems left, then
in the corresponding d%mear resolution, the empty clause would have been
obtained, showing the set S to be unsatisfiable. The object, therefore,
when using plans to prove unsatisfiability, is to construct a plan with no
opensisubproblems: such a plan is said to be "closed".

Unfortunately, binary resolution is not complete: that is, for some
unsatisfiable set of clauses it will not produce the empty clause.
Similarly, the replacement rule in plan-construction is not complete. The
completeness of linear resolution can be assured by a variety of methods,
| and we have plan construction rules which simulate each of these. Two of
these rules are "factoring"” and "reduction".

As with replacement, factoring and reduction add new arcs to the plan;
however, unlike replacement they introduce only one new arc, and add no new
vertices. Factoring is analogous to the familiar factoring rule of
resolution, and is applied by selecting an open subproblem of the plan, and
directing an arc Tabelled "FACT" from it ie another subproblem of the plan:
eventually, of course, these subproblems must be shown to be unifiable.
Factoring in plans differs from factoring in resolution in that when a FACT

arc is added, the subproblem at its head need not be open. Reduction also

19

has an analogy in linear resolution, namely, the reduction rule of
model-elimination and SL-resolution. This corresponds to the familiar
proof technique "reductio ad absurdum" in which a particular hypothesis

is shown to imply its negation. To apply reduction, we select an open
subproblem u and direct an arc labelled "RED" from it to some subproblem
v which is "above" u in the underlying rooteditree: that is, there must
be a walk from v to u consisting entirely of REPL and SUB arcs. For
the redoation to apply, we must verify that u and the negation of v

are unifiable. As for REPL arcs, subproblems at the tail of RED and FACT
arcs are said to be closed.

In figure 3.3, we illustrate a closed plan obtained from the plan
of figure 3.2 by applying these two rules.

Note that plans containing RED and FACT arcs are not trees.

There is one further rule for constructing plans called "ancestor
replacement", which is a variation of the simple replacement vule we have
already described. This allows us to close a subproblem by replacement
using a clause deduced earlier in the proof, rather than a clause from S.
In order to apply this we must have some means of extracting such clauses
from the plan. This Teads us to the definition of a special kind of subgraph
of a plan called a "subplan". The important feature of subplans is that,
although they cannot necessarily be constructed from S wusing the rules
we have described, they have the same underlying rooted tree structure as
plans. That is, each subplan contains the vertex TOP, the REPL and SUB arcs

of the subplan form a rooted tree, and if a REPL arc is in the subplan, then

a8

SUB SUB SUB
. A VA A
P(x,y)) FacT P P(Xlaf(xl))
REPL 4 REPL 1
\/ \/
RED

-P(a,f(a) m
SUB SUB
[S 4

REPL 2 REPL 3
-R(X3,¥3)
FACT
SUB
\V

A closed plan for the set of clauses of example 3.1.1.

Figure 3.3

21

so are all the SUB arcs associated with that REPL arc. To apply ancestor
replacement, some subplan is extracted from the plan, and thesset of open
subproblems of this subplan is used as though it were a clause in S for
closing a subproblem of the plan by replacement.

We present now the formal definition of deduction plans, followed by
the proofs of soundness and completeness of the various deduction systems

based on them.

3.2: Formal Definition of Plans

3.2.1: Definition: Let S be a set of claases. A pair (G,\) is a

deduction pdan (or simply a plan) for S where G 1is a graph and A

is a mapping of E(G), called the labelling, into the set { REPL,SUB,RED,FACT}

iff it is defined indugtively as follows:

3.2.1.1: Basis

G = IND({ (TOP,x)|x ¢ C})
where ¢ < S and TOP is an arbitrafy but fixed object such that

TOP ¢ L x I.
For e ¢ E(G): A(e) = SUB

This initial plan is called basic and C 1is called the top clause.
(See Fig. 3.4).

A pictorial representation of a basic plan with top clause

{1],...,1k}.

Figure 3.4

22

43

3.2.1.2: Induction:

Let us assume that a plan (G,\) for S 1id defined. Before we
proceed with the presentation of the induction rules we introduce a few
definitions.

We shall denote counter images of REPL,SUB,RED,FACT under A
respectively as REPL(G), SUB(G), RED(G), FACT(G). They form a partition
of E(G) and by specifying them we can define the mapping .

Let u,v e V(G). u is a direct ancestor of v iff there is a walk

from u to v containing only arcs of REPL(G) uSUB(G). u 1is a strong

ancestor of v iff u 1is a direct ancestor and gvery walk from TOP to

v passes through u. If u is a direct (strong) ancestor of v, then

v is said to be a direct (strong) descendant of u.

Let H be a subgraph of G. (M,AJE(H)) 1is a subplan of (6G,A) for
S iff for each x ¢ V(H) the following hold:

(I) all direct ancestors of x in G belong to V(H)

(11) if (y,x) e REPL(G) then every arc of G which has x as its

head or tail belongs to E(H).

In future, if there is no danger of ambiguity, we will refer to a
plan or subplan (G,\) simply as G. Also, we will say that H is a
subplan for S if there exists a plan G for S, and H 1is a subplan of

G for S. When the context ensures that there will be no ambiguity, we will

say H 1is a subplan of G, or simply H is a subplan.

24

Let H be a subplan of G.. The set {v|3x e V(H) such that (x,v) e SUB(H)}
js called the set of subproblems of H and denoted s(H). s(H) is
partitioned into the subset of-open-subproblems with outdegree = 0 and its
complement, closed subproblems. These sets are denoted respectively
os(H) and cs(H).

Now we may proceed with the induction. A pair (G',A') is a plan

called an inductive extension of (G,A) iff it is defined by one of the

following 3 rules:
Rule 1: Replacement

G' = IND(E(G) u{ (u,v)} u{ (v,x)|x e C' -{v}})

where C' 1is a variant of a copy of a nonempty clause C such that C'
and V(G) are separated, u e os(G) and v e C'.
For e ¢ E(6'):
REPL if e = (u,v)
A'(e) = SUB if ee{(vox)|x e C' -{v}}
A(e) otherwise
This rule is divided into two subcases:

(A) Simp]e'Replacement:

CeS

(B) Ancestor Replacement:

C = os(H) where H is a subplan of @G.

When Rule 1 is applied we say that u is repleced threugh v by C' - {v}.

(See Figure 3.5).

25

’—-———-—-—-————————————_—————————————__~

7’

e e e e e

N iy i i o W i T A S e Mot o AR D o G i S Sl M Y RO S e e S B W S S G S

G]

A representation of a plan

obtained feem G by replacement.

Figure 3.5

26

Rule 2: Reduction

[ep]
1

= IND(E(G) u { (v,u)})

where v e 0s(G) and u 1is a strong ancestor of v. For e ¢ E(G'):
RED if e = (v,u)

x(e? otherwise

In this case we say that v 1is reduced to wu.

Rule 3: Factoring

G' = IND(E(G) u { (u,v)})
where u e os(G), v es(G) -{u} and
(I) if there is a walk from v to u it must contain at least one
arc from RED(G)
(I1) if (x,y) ¢ RED(G) then y vremains a strong ancestor of x in
G'.
For e ¢ E(G'):
FACT if e= (u,v)
Aie) = (e} otherwise
THis rule can be divided into 2 subcases:
(A) Simple Factoring

v e 0s(G)
In this subcase both conditions (I) and (II) are automatically satisfied.

(B) Back Factoring

v e cs(G).

When Rule 3 is applied we say that u 1is factored to v.

27

Fiqure 3.6 illustrates the violation of conditions (I) and (II) on
factoring.

We now present an example to illustrate the construction of a plan.

3.2.2: Exampde: Let S be the set of clauses:
{ {P(x)s P(y)s -P(f(¥))},
{P(w), q(w,b), P(f(w))},
{-Q(f(2),z), P(z), P(f(f(2)))} }

where b 1is a constant. Figure 3.7 illustrates a plan G for S. Eich

arc from REPL(G) u RED(G) u FACT(G) is labelled with an integer specifying
a derivation of G. We will use such integer labels in future examples.

Note that the REPL arc numbered 3 is an ancestor replacement using the boxed
clause. G has only one open subproblem, which is the vertex with a double

outline.

29

SUB SUB
A >
@ PCECw))
7 1FACT)

5 REP' 3 REPL
-QUf(2),2) et s "P(f(V)
SUB

\/ .—_’//
@ ‘ PUC2» ’ @

A plan G for the set S of

clauses of example 3.2.2.

Figure 3.7

30

Note that in the above example the arc REPL 2 could be constructed
before the arc FACT 1. It is clear, therefore, that a particular plan may
be constructed in more than one way. We will find it necessary at times
to refer to a specific order of construction of a plan: we use derivations

for this purpose.

3.2.3: Definition: If G 1is a planand D = (GO,...,Gn) is a sequence

of plans such that GO is basic, Bn =G and for 1 <1 <n, Gi is an

inductive extension of G, ,, then D 1is called a derivation of G of length

n.

3.3: Structural Properties of Plans

In this section we note some obvious consequences of the above
definitioms, prove some technical results, and praeye some Yemmas

concerning the relationships between the pdan construction rules.

3.3.1: Consequences of Definitions

We will denote the set REPL(G) u FACT(G) uRED(G) by SOL(G).
(a) In every subplan, there are vertices which are not subproblems: TOP
is one of these, and the others are those vertices through which subproblems
are replaced.
(b) Closed subproblems are former open subproblems each of which has been

closed by one application of a rule.

31

(C) Suppose a plan G has a derivation of length n.

Since one application of a rule closes exactly one subproblem, and

adds exactly one arc to SOL(G), we note that ||cs(G)|| = ||SOL(G)]|] = n,
where || || denotes set cardinality, and that every derivation of G has
the same length. We note that every derivation of G begins with the same
basic plan. Consequently, for any plan G we can specify a derivation
either as an ordering of c¢s(G), or equivalently, as an ordering of SOL(G).
This leads to some notational devices which we will use frequently, despite
their initially ambiguous appearance: namely, to define some new plan G2

by applying a rule to G], we may write:

cs(GZ) = cs(G1) u{ x}
or SOL(GZ) = SOL(G]) uf (x,y)}
or FACT(G,) = FACT(G;) uf (x,y)}

. etc.
when it is obvious from the context exactly how x 1ds to be closed, and
exactly what vertices are to be added.
(d) If G is a plan, there is no closed walk in G, with all its arcs in
REPL(G) u SUB(G).

(e) The only rule that adds new vertices to a plan is replacement.

3.3.2: Lemma: If G 1is a plan, w e cs(G) and:

G' = IND(E(G) - { (u,v)|(u,v) ¢ E(G)
and either u =w
or (u or v is a direct descendant of w)})

then G' 1is a subplan of G.

32

Proof: Note that G' 4ds a subgraph of G.

Suppose now that G' 1is not a subplan of G: we have three cases:

(1)

(ii1)

Suppose for some x ¢ V(G') that:
(x,y) e SUB(G) - SUB(G')
Since (x,y) ¢ SUB(G')
either x =w, which is impossible since w 1is a subproblem and x
is not.
or X is a direct descendant of w, in which:ease x ¢ V(G');
a contradiction.
or y 1is a direct descendant of w, so that x 1is also a direct
descendant of w, and again x ¢ V(G'); a contradiction.
Suppose for some x e V(G") that:
(y,x) € REPL(G) - REPL(G')
Since (y,x) ¢ REPL(G')
either y = w, so that x is a direct descendant of w
or y 1is a direct descendant of w, so that x is also a direct
descendant of w
or X 1is a direct descendant of w
In each case x ¢ V(G'); a contradiction.
Finally, suppose for some x ¢ V(G') that y 1is a direct dnecestor of
x and y ¢ Y(G'). In this case, y must be a direct descendant of

w, so that x is a direct descendant of w, and therefore x ¢ V(G');

a contradiction.

Therefore G' 1is a subplan of G. [:]

33

3.3.3: Lemma: If G is a plan, (u,v) e RED(G), and (w,z) e FACT(G),

then:

(i) v is a strong ancestor of u in 6

(ii) if there is a walk from z to w in G, it must contain an arc in
RED(G).

Proof: Let D = (G .,Gn) be a derivation of G.

0"
(i) ®Obviously v is a direct ancestor of u in G.

Suppose there is a walk in G from TOP to u: we must show that this

walk passes through v. The proof is by induction on the number of arcs

in RED(G) that lie on this walk.

Bagds: Suppose the walk contains no arcs in RED{G). Let @s be the

last subproblem on this walk to be closed in the derivation D, then

for some k, 0 <k < n:

cs(Gk) = cs(Gk_]) u{w}

We have two cases to consider:

(a) w=u. In this case, the walk from TOP to u exists in Gk-]’
since all the subnroblems on the walk except u are closed in
G,_,- Hence v 1is a strong ancestor of u in G _;, so that the
walk must pass through v.

(b) @ = u. Suppose w 1is closed by replacement through z by ZyseensZ
then for some i, 1 < i <m, z; lies on the walk and is an open
subproblem of Gk. This is a contradiction since w is the Tlast
subproblem on the walk to be closed. w must therefore be closed by
factoring. However, the walk from TOP to u exists in Gk and
(u,v) € RED(Gk), so by condition (II) on factoring, v 1is a strong

ancestor of u in Gk. Therefore the walk must pass through v.

Induction: Assume the result holds for walks containing <m arcs of

3.3.4:

RED(G), and that the walk we are considering contains m arcs
of RED(G). Let this walk be TOP,w],wz,...,wr, where u = W
Suppose that Wi is the first subproblem on this walk closed
by reduction. Then TOP,w],wz,...,wk is a walk in G from
TOP to w
this walk must pass through Wipqs SO for some s, 1 < s <k,
We = Wpyqe Hence TOP,w],...,wS, Wigoseen oW, is a walk from
TOP to u in G containing m-1 arcs of RED(G). By the

induction hypothesis, this walk must pass through v; therefore

the original walk must pass through v. []

Corollary: Suppose H 1is a subplan of G, H is a plan,

(X,y) €
(i) If

FACT(G), (u,v) e RED(G), and x,u ¢ os{H).
H' s the subplan of G defined by:
SOL(H') = SOL(H) u{ (x,y)}

then H' 1is a plan provided that y e s(H)

(ii) If

H" s the subplan of G defined by:
SOL(H") = SOL(H) u{ (m,v)}

then H" 1ds a plan.

Proof:

Lemma 3.2.4 ensures that the conditions for closing either x or

u are satisfied in H. []

K with no arcs in RED(G). By the induction hypothesis,

35

We will now characterize the relationships between plans, derivations,
and subplans. First we note that a subplan is not necessarily a plan, as

illustrated by the following example.

3.3.5: Example: Consider the plan G2 for the set of clauses {{v],vz},

{v3,v4}}, where 62 has the derivation (GO’G1’GZ) defined as follows:

V(G,) = {TOP, Vys v2}

0)
SUB(Gy) = { (TOP,vy), (TOP,v,)}

V(G]) = V(GO) u{vgsv,t
SUB(G1) = SUB(GO) u{ (V3,V4)}
REPL(G]) = REPL(GO) u{ (V],V3)}

V(Gz) = V(G]) ulvy,vyl
SUB(GZ) = SUB(G]) uf (vi,vé)}
REPL(GZ) = REPL(G1) uf (V2,VA)}

where {Vz',v4‘} is a copy of a variant of { v2,v4}.
Now H 1is a subplan of G2, where:
V(H) ={ TOP, Vis Vps vi, vé}
E(H) = { (TOP,v;), (TOP,v,), (vg,vs)s (Vosvy)l

However, H is not a plan. This is illustrated in figure 3.8.

36

-
|
1
1
|
|
|
|
1
1
i
|
|
l
|
|
l
1
1
|
i
|
|
]
i
]
1
|
]
|
|
1
1
l
]
1
|

[e e e e e e

Figure 3.8

As the reader may have realised, situations such as that described in
the above example can arise only in the presence of the ancestor replacement

rule. This is proved in the following lemma.

3.3.6: Lemma: If G is a plan constructed using rules (1)A, (2) and (3)

only, then every subplan of G 1is a plan which can be constructed using

(1)A, (2), and (3) only.

Proof: Suppose G is a subplan of G, where m =l|SOL(Gm)|L We will show
that there exists a subplan G such that [ISOL(Gm_])|]= m-1, and Gm

is a plan if Gm—] is a plan. We consider two cases.

37

Case (a): If RED(Gm) U FACT(Gm) is not empty, define Gm-] by:

V(G__4) = V(G)

m-1 m
) E(Gm) - { (x,y)}

E(G

where (x,y) e RED(G) uFACT(G). Now ||SOL(G_)]]= m-1, and by corollary

m-1
3.3.4, if G, s a plan then & 1is a plan.

Case(fb): Suppose RED(Gm) u FACT(Gm) is empty. Let Xq,....X, be the
closed subproblems of Gm in order of their closure in some derivation D
of G. Suppose X is replaced through y by C -{y}, where C is a
variant of some clause in S. Now since Gm is a subplan, C < V(Gm). Also
C - {y} < o0s(G,), since otherwise x, ¢ C - {y} for some i <k since x,

is closed before x, in the derivation D. Hence we can define G _; by:

V(e 1) = V(G) -C

m-1 m

E(G _4) = E(G) - { (xp.y)}-{(y:2)[z € C - {y}}

m-1

Now IISOL(Gm_])||= m-1 and if G, is aplan, G is clearly a plan.
Since SOL(Gm) is finite, a finite number of applications of this
process must eventually yield a subplan having no arcs of SOL(G). The only

such subplan is GO, the basic plan of G. Hence Gm is a plan.[]

There exists a special relationship between derivations and subplans
which are themselves plans, as shown by the following Temma and its

corollary.

38

3.3.7: Lemma: If G and G' are plans, and G' is a subplan of G,

then every derivation (GO,...,Gm) of G' may be extended to a derivation

(G .,Gn) of G, where n = m.

0"

Prooft Suppose Gm # G, We show that there exists a plan G which is

m+1
a subplan of G, and is an inductive extension of Gm.

Since Gm #z G, thesset os(Gm) n ¢cs(G) 1ds not empty. Let XqseeeaXp
be the members of this set in the order of their closure in some derivation

D of G. We define Gm+1 by:

cs(Gm+1) = cs(Gm) lJ{X]}

It remains to prove that Gm+1 is a plan. We have four cases:
(a) Suppose X4 is closed by simple replacement in G. Then the conditions
for closing X, are trivially satisfied in Gm’ so that Gm+] is a plan.
(b) Suppose X1 is closed by reduction, then corollary 3.3.4 guarantees
that Gm+1 is a plan.
(c) Suppose X] is closed by factoring to y in G.

Suppose 'y ¢ V(Gm), then there must exist some X; € 0s{(G_) such

m
that X is a direct ancestor of y, and X; is closed by replacement
in G. But X; must be closed before Xq in every derivation of G,
in particular in D, contrary to the ordering imposed on os(Gm) n ¢cs(G).
Therefore y ¢ V(Gm), so corollary 3.3.4 guarantees that Gm+] is a plan.
(d) Suppose X is closed by ancestor replacement using some subplan H

of G. We must show that H 1is a subplan of Gm. Suppose the contrary,

then we have two cases:

39

(1) 3y < V(H) - V(5)
In this case, 3x1 € os(Gm) such that X5 is a direct ancestor
of y and is closed by replacement in G. But X; is closed
in H, and therefore is closed before Xq in any derivation of
G. This contradicts the ordering imposed on os(Gm) n ¢cs(G).

(ii) 3Je € E(H) - E(Gm), say e = (y,z)
If e ¢ SUB(G), then z ¢ V(H) - V(Gm), which we have already
shown to be impossible.
If e e SQL(G), then since V(H) < V(Gm) by case (i), y is an
open subproblem of Gm’ and so y = X; for some i > 1. But
y must be closed before X4 in any derivation of G; this
contradicts the ordering imposed on os(Gm) n cs(G).
H 1is therefore a subplan of Gm’ so the conditions for closing
X1 by ancestor replacement are sakisfied in Gm' Therefore

G is a plan.

m+1

Since c¢s(G) 1is finite and llcs(Gm+1)|| > ||cs(G_)||, a finite number of

m
such extensions must eventually result in a derivation for G.[:]

3.3.8: Corollary: A subgraph H of a plan G is a plan if and only if

there is a derivation (GO,...,Gn) of G such that H = Gm for some

ms< n.

We will now investigate the relationships between the rules from the

point of view of the structure of plans.

40

3.3.9: Reduction and Factoring

(i) In the absence of factoring we can replace the phrase "strong ancestor"
by the phrase "direct ancestor" in the definition of reduction.
(ii) In the absence of reduttian, condition (II) on factoring may be omitted.
In the absence of ancestor replacement, factoring is equivalent to
simple factoring. In order to establish this result we must first prove the

following technical lemma.

3.3.10: Lemma: If G is a plan such that FACT(G) = 0 and for all

(x,y) € FACT(G), y 1is neither open, nor closed by reduction; then
3(x,y) € FACT(G) such that y 1is closed by replacement and no direct

descendant of y is closed by factoring.

Proof: Suppose the contrary; that is:
(A) for all (x,y) e FACT(G),
either y is closed by factoring,
or y 1is closed by replacement and a direct descendant of y s
closed by factoring.
We first prove that for any integer n > 1, there is a walk of Tength n in
G such that the Tast arc in the walk is in FACT(G) and no arc of the walk
is in RED(G). The proof is by induction on n.
Basis: n = 1. Fact is not empty, so there exists (x1,x2) e FACT(G). The
walk from Xy to Xy consisting of this single arc has the required

properties.

47

Induction: Suppose there exists a walk (X1’X2)""’(Xn—1’xn) with the
required properties. Now (xn_],xn) ¢ FACT(G) by the induction hypothesis;
so by the hypothesis (A), we have two cases:
either x_~ is closed by factoring to z, say. Then (xq,X,)s...s(X _15X.)s
(xn,z) is a walk of length > n with the required properties.
or Xn is closed by replacement, and some direct descendant w of Xn
is closed by factoring to some z. Therefore, there is a walk from
X to w containing only arcs of REPL(G) u SUB(G), and a walk
from w to 2z consisting of the single arc (w,z) ¢ FACT(G).
Appending these two walks to the end of the walk (X1’X2)""’(Xn-1’xn)’
vwe obtain a walk of length > n with the required properties.
Since this holds for any integer, and V(G) is finite, there exists a walk
in G of length [[V(G)|| + T with no arcs in RED(G). Such a walk must
encounter some vertex more than once: hence there is a closed walk in G
containing no arcs of RED(G). By 3.3.1(d), some arc (x,y) on this walk
is in FACT(G). Consequently, there exists (x,y) ¢ FACT(G), and a walk

from y to x with no arcs in RED(G). This contradicts lTemma 3.2,

thereby disproving hypothesis (A), and establishing the resu]t.[]

We may now establish the relationship:zbetween ancestor replacement and

factoring.

42

3.3.11: Lemma: If G 1is a plan constructed using rules (1)A and (3),

then G can be constructed using (1)A and (3)A.

Proof: We will show that there exists a derivation (GO,...,Gn) of G
such that for some m < n, Gm is obtained from Gm—] by simple factoring,
and if m <n, then for 1 >m, G, 1s derived from G:_y by simple
feplacement. Since G is a plan constructed using (1)A and (3) only,
and [[FACT(G__1)[| = [[FACT(G)|| - 1, a finite number of applications of
this process will yield a derivation of G in which all factorings are
simple.

If FACT(G) 1s empty, there is nothing to prove, so we suppose the
contrary. We have two €asessto consider.

Case (a): Suppose for some (x,y) e FACT(G), y 1is open.

Obvdausly this factoring is simple. Define Gn-] by:

V(G)

)

V(G)
E(G) - { (xsy)}

n-1

1

E(Gn=1

Then Gn—] is a subplan of G by lemma 3.3.2, and hence a plan by

lemma 3.3.6. If (G G,.1) s a derivation of G _;, then

0°° " *%n-1

(G .,Gn), where Gn = G, is a derivation of G with the required

0"
properties.

Case (b): Suppose that for every (x,y) ¢ FACT(G), y is closed.
(A) Suppose that for every (x,y) e FACT(G),

if y 1is closed by replacement,

then either some direct descendant of y is closed by factoring,

of some subproblem 2z 1is factored to a direct descendant

of .

43

We show that hypothesis (A) leads to a contradi¢tion. To do this, we
show that, for any integer k, there éxist two sequences of subproblems,

Xq3Xo s e s Xy and Y1oYosenes¥y such that for all i, where 1 < i <k:
i) (Xi’yi) e FACT(G)

i11) Yin is a direct descendant of .

(

(i) Y; is closed by replacement.

(

(iv) no direct descendant of Ys is closed by factoring.

These sequences are constructed inductively as follows:

Basis: Since for every (x.,y) ¢ FACT(@), y 1is closed, lemma 3,2.8
ensures that 3(x,y) ¢ FACT(6) such y is closed by replacement,
and no direct descendant of y is closed by factoring. Let Xq = X

and y; =y. Then x; and y, obviously satisfy the conditions (1)
to (iv).

Induction: Suppose a suitable sequence of Tength k-1 has been constructed.
Now Y1 is closed by replacement, and no direct descendant of Y1 is
closed by factoring, by the inductionhypothesis. Therefore by the
hypothesis (A), some subproblem z 1is factored to a direct descendant y
of Y1+ Let X = 2 and Y =Y then:

(i) (Xk’yk) e FACT(G)
(i) Y is closed by replacement since it is a direct descendant of

Yi-1° and by the induction hypothesis, no direct descendant of Y1

is closed by factoring.

44

(11) Y is a direct descendant of Y1
(i¥) no direct descendant of Y is closed by factoring, since this would
imply that Yk -1 has a direct descendant closed by factoring.

Hence sequences of Temgth Kk exist with the required propetties.

Now since such sequences exist to amy length, and s(G) is finite,
there exists a pair of sequences of length ||s(G)|}] + 1: 1in this case,

yi =Y for some i <Jj, and Y5 is a direct descendant of Y- This

J
implies the existence of a closed walk in G, all the arcs of which are in
REPL(G) u SUB(G), contrary to 3.3.1(d). Thus hypothesis (A) is disproved,
and there exists (x,y) ¢ FACT(G) such that y is closed by replacement,
no direct descendant of y is closed by factoring, and there is no

subproblem z factored to a direct descendant of y.

We now define:

[
—
[<p]
~—
1}

V(G) - {z|z is a direct descendant of y}

E(Gm) = E(G) - {{ (w,z)|z 1s a direct descendant of y}
It is easy to see that this definition is equivalent to the definition of
the subgraph G' in lemma 3.3.2, so by that lemma, Gm is a gubplan of
G, and therefore is a plan by lemma 3.3.6. Also (x,y) ¢ FACT(G) and y
is open, so by case(a) there is a derivation (GO,E..,Gm) such that Gm
is obtained from Gm-] by simple factoring. Now by lemma 3.3.7, this
derivation can be extended to a derivation for G, and obviously Gi is
obtained from G, , by simple replacement, for i >m. Finally, from case(a)
we have IIFACT(Gm_1)|l = leACT(Gm)[I - 1= ||FACT(G)|]| - 1. This completes
the proof.[]

45

3.3.12: Corollary: If G 1is a plan constructed using rules (1)A, (2) and

(3) only, then G can be constructed using rules (1)A, (2) and (3)A only.

Proof: We define a subgraph H of G by:

V(H)
E(H) = E(G) - RED(G)

V(G)

One application of lemma 3.3.2 and one application of Temma 3.3.6 for each
arc of RED(G) removed, proves that H 1is a plan. But H 1is constructed
using rules (1)A and (3) only, so by Temma 3.3.11, there exists a derivation

(G .,Gm) of H, constructed using rules (1)A and (3)A only. By lemma

0
3.3.7, this derivation can be extended to a derivation (GO,...,Gn) for

G, where for 1 =m, 61 is obtained from Gi—] by reduction. (GO,...,Gn)

is a derivation of G constructed using rules (1)A, (2) and (3)A only.[]

46

3.4: Constrained Plans

So far plans have been discussed purely as syntactic objects. We now
ascribe some meaning to them by relating them to predicate calculus.using
the notion of "constrained plan" in which we keep track of the literals which

must be unified in order to validate the rules used in constructing the plan.

3.4.1: Definition: A constrained plan is an ordered pair (G,C) where G

ijs a plan and C is a function from E(G) into the set of sets of unordered
pairs of literals, defined inductively as follows:
Basis: If G 1is a basic plan
Cle) =p for e e E(G)
Induction: If (G,C) 1ds a constrained plan then (G',C') 1ds a constrained
plan where G' 1is an inductive extension of G and C' is

defined as follows:

(a) if e e E(G) then:

C'(e) = C(e)
(b) if e e SUB(G') - E(G) then:
Cc'(e) =
(c) if e = (u,v) € SOL(G') - E(G) then:

(i) if G' 1is obtained from G by simple replacement or reduction:
e) ={{|ul,|v|32
[ii) if G' 1is obtained from G by factoring:
) ={{ |u],|v|}}

(iii) 1if G' s obtained from G by ancestor replacement of u through
v by os(K)'vy ={v} where os(K)' is a copy of os(Kk), K is a
subplan of G and y 1is a renaming such that V(K)y has no
variable in common with V(G) then:

C'(e) ={{ Jul,n|v|}} v U Cle)y
ecE (k)

47

We shall say that (G',C') 1is an inductive extension of (G,C) by
the appropriate rule. If (G,C) 1is a constrained plan we define constrained

derivation in the obvious way as a sequence of constrained pdans.

3.4.2: Definition: If (G,C) 1is a constrained plan, then an ordered pair

(H,D) 1is a constrained subplan of (G,C) iff H 1is a subplan of G and

D =C|E(H). If (H,D) is a constrained subplan we define:

D(H) = U D(e)
ecE(H)

and call this the set of constraints of (H,D).

The following example shows that the constraint set of a plan is not

unique.

3.4.3: Example: Consider the $et of clauses
S = {{Q(x),P(x)},
{-P(a)},
{-Q(y),R(¥)1,
{ -R(2},-0(b)},
{Q(u)}}

where a and b are constants.

Figure 3.9 illustrates a plan which corresponds with two different
constrained plans. Thereeplacement 4 could be a simple replacement, in
which case we have a constrained plan with constraint set {{x,a}, { x,y},
{y,z},{b,u}}. This replacement could also be an ancestor replacement using
the outlined subplan and the renaming vy ={ (x,u)}: 1in this case the
constraint set is {{x,a}, { x,y}, {y,z}, {b,x}y, { x,aly}. Note that in the

first case, the constraints are unifiable, but in the second case they are not.

49

The situation illustrated in the above example is due purely to the

use of ancestor replacement.

3.4.4: Lemma: If (G,C) and (G,D) are constrained ptdns constructed

without ahcestor replacement, then C = D.
The proof is Teft is the reader, and follows immeédiately from
definition 3.4.1.

We now introduce the key notion of correctness.

3.4.5: Definition: A constrained subplan (H,C) 1is said to be correct if

C(H) 1is unifiable, in which case we denote the most general unifier of

C(H) by 6((H,C)), and call the clause os(H)6((H,C)) the clause deduced

by (H,C). Note that every constrained subplan of a coreect constrained plan

is correct.

3.4.6: Convention: In the rest of this paper, we consider only constrained

plans. To simplify the discussion when there is no dangercaf ambiguity we
will therefore use the words "plan", "subplan" and "derivation" to mean

"constrained plan" etc. Also we will abbreviate (H,C) simply as H.

3.4.7: Example: Consider the plan G of example 3.2.2 (Figure 3.7).

Figure 3.10 lists the constraints constituting C(G): each constraint in
this 1ist is labelled with the integer corresponding to the arc in SOL(G)
from which it originates (see Figure 3.7). The constraint set C(G) is
unifiabie, and its most general unifier is:

6(6) ={(x,a), (y»a), (z,a), (w,f(a)), (yy,f(a))}

52

(iid) Gj+] is derived from Gj by ancestor replacement and simple
factoring only.

(iv) there is a substitution oy such that:

ze(Gj) = ze(Gj)°aj for all z ¢ s(Gj)

This sequence is constructed as follows:
(A) Gﬁ = Gm

(B) Suppose the construction is complete up to Gj. G is generated from

J+l

Gj by reducing some x e os(Gj) to some direct ancestor y. Let

H be defined by:

<<

—

-

~—
|

= V(Gj) - {z|z is a direct descendant of y}

E(Gj) - {(w,z)|w or z 1is a direct descendant of y}

By Temma 3.3.2, H is a subplan of Gj. Also os(H] = {y',xf,...,x&},

m
—
xI
~—~—
]

where <{xi,...,xé} = os(Gj). We now generate a sequence of graphs

0 k .
(Gj,...,Gj) as follows:
(a) Let vy be a renaming such that V(H)y 1is a variant of V(H).
G? is the plan obtained from Gj by replacing x e os(Gj)

through yy by {x]y,...,ka}, where {yw,x]y,...,xky} is a copy
of -{y'y,x{y,...,x&y} which is separated from V(Gj).
(b) For ie {1,...,k} Gj is the plan defined by:

iy i-1 |
FACT(Gj) = FACT(Gj) v {(Xiy’xi)}

Let Gj+] = Gj5 it remains to show that Gj+] satisfies the required
conditions.
(i) Gj+] is clearly a plan, so we need only show that G(Gé+1) is unifiable.

First we show that {lxle(Gj), ﬂlyle(Gj) is unifiable. Since

51

3.5: Further Results on Equivalence of Rules

In this section we present two lemmas establishing the semantic

equivalence of certain subsets of the plan construction rules.

3.5.1: Lemma: If G 1is a correct plan for S generated by rules (1)A

and (2) only, than there exists a correct plan G' for S generated by
rules (1) and (3)A only, such that:
0s(G)6(G) = 0s(G')8(G")ea

for some substitution a.

Proof: If RED(G) = p there is nothing to prove, so we assume the contrary.

Let K be defined by:

i

V(K) = v(G)

E(K) = E(G) - RED(G)

One application of Temma 3.3.2 and one application of Temma 3.3.6 for each
arc of RED(G) vremoved, proves that K 1is a plan which can be construeted

using (1)A only; so by lemma 3.3.7, there is a derivation (GO,...,Gn) such

that Gm = K for some m <n; for 0 <3 <m Gi is derived from Gi-]

by simple replacement; and for m <1 < n, Gi is derived from G1_1 by

reduction. By Temma 3.4.4, Gn = G.

[} ! 1 - .
We now construct a sequence (Gm”m+1""’Gn) such that for j = m:

(i) Gj is a correct plan,

(ii) os(Gj) = os(Gj)

53

c(G = C(Gj) u {{|x],aly'|}} is unifiable, by lemma 2.3.3 and the fact

j+1)
that |y'| = ly|, {[x]6(G;), =]y|o(G is unifiable, so by the induction
hypothesis condition (1v), { |x|o(G oq lyle(a ouj} is unifiable and
therefore { |x]6(G ,1ly'9 } has a un1f1er 50U {]x]6(G.),a|y]8(G)},
Therefore there is a subst1tut1on B such that:

(1) -+ -0 50 MgU {lxle(Gj),*dyle(Gj)} = mgu { |x]6(G s”IYIe }o 8

We now proceed to show that Q(Gj+]) is un1f1ab1e.

(2) C(93+1) = C(Gj) uC(H)Y u {{|x|,a]yy]}?

v LIy s fxa] [e {1,...,k1)
Let & = y_]oe(Gj)omgu []x]6(8}).mlylo(6})}

We show that & unifies each set in the above expression (2) for C(G!

J+1)

C(Gj)d

(C(Gj)y'])(e(Gj)omgu {Ix]e(63).alylo(e))1)

(C(Gj)e(G)Imgu { [x|6(G ﬂly%e(G
since none of the replaced variabdés of y'] occur
in C(Gj).

So since e(Gj) unifies C(Gj), S unifies C(Gj).

(C(H)Y)S = (C(H) (yor™) (0(6])omgu { [x]8(8})]y [0(G!)})

j
(C(H) (v ") (e (s 5)emgu { [x]6(G;),—1|yie)})
by 2.4.3

(C(H)o (G)°mgu{l><l6 3 L)y [6(GE)}

since none of the replaced variables of y'] occur

in C(H)

54

n

So since C(H) = C(G:), e(Gj) unifies C(H), so that & wunifies C(H).

J

(0 x]mlyy]3s = {4 x]y™! ,“IYIY-1}}(6(Gj)omgu {lelo(6}),ly[e(63)})

by 2.4.3

{{le,ﬂlyl}}(e(Gj)omgu {lxle(Gj),ﬂlyle(Gj)})
since none of the replaced variables of y_1 occur

in x or y

{{|x|6(Gé),ﬂ|y|e(Gj)}}mgu {lxle(Gj),ﬂlyle(Gj)}

Therefore & unifies {{ |x],=|yy|}}.

Finally, for each i ¢ {1,...,k}:
1 - "1 1 '] |] 1
{|x1y|,|xi|}a = {|X1|Y ,lxily }(e(Gj)omgu {]x[e(Gj),]y]e(Gj)})
by 2.4.3

Therefore & unifies { |x.v|,[x;]}, since [x.| = |x;].

Hence C(G.

j+]) is unifiable so that Gj+1 is correct.

(i1) os(Gl+]) = os(Gj) - {x}

J
os(Gj) - {x}

os(Gj+1)

(iii) Since {xi,...,x&} < os(Gj), all the factorings performed in

deriming Gj+] are simple.

55

(iv) In the proof of (i) above, we have shown that
Y-loo(ujh.urﬁj:le(ﬁﬁ).-dyjﬁ(tj)} unifies c(65+]). so for some substitution t:

(3) ...8(6}, 0ot = ¥ 6(8])ngu { |x|0(85),7[y|0(6})}

Llet B be the substitution defined in equation (1) in part (i)

above, and let %547 = T8 , then if Z € s(Gj*]):

‘oe(GJ'-)omgu{ [x[8(63) sy [0(65)}o

2y

from (3) above

ze(Gj)omgu {lxle(ej);ﬂlyle(ej)}os

since none of the replaced variables of

y'1 ogcur in z

Ze(Gj)oadomQU{ lxle(Gj){’lym(Gj)}

by (1) in (i) above

26(G)omgu { [x]8(G;),7ly]6(G;)}

by induction hypothesis, condition (iv),
and since z ¢ s(Gj+]) = S(Gj)

But C(G;,) = C(Gj) v {{x,y}}

j+l
So by Temma 2.3.3:

G(GJ+1) = e(Gj)omgu{ |Xle(GJ)s_'l.VIe(GJ)}

ze(Gj*]) = 10(6i+‘),aj*]

56

The sequence having been constructed, let G' = Gﬁ and o = O s then:

0s(G) = os(G")
and z6(G) = z6(G')eac for all z e s(G)
", 0s(6)8(6) = 0s(6')6(G" Yoo [

3.5.2: Lemma: If G 1is a closed, correct plan for S generated by rules

(1)A and (2) only, then there exists a closed, correct plan G' for S

generated by rules (1) and (3)B only.

Proof: If RED(G) = P there is nothing to prove, so we assume the contrary.
Let K and the derijvation (GO,...,Gn) be defined as in the proof of
lemma 3.5.1, and let H be defined by:

V(H) = V(G) - {z|3(x,y) « RED(G) such that
z is a direct descendant of y}
E(H) = E(G_) ={ (w,z)|3(x,y) ¢ RED(G) such that

m
egither w or z 1is a direct descendant of y}

Again, lemmas 3.3.2 and 3.3.6 ensure that H 1is-a subplan of G.
Now suppose X e os(Gm), then (x,y) ¢ RED(G) for some direct ancestor
y of x; but x is then a direct descendant of y, so that x ¢ V(H).

Hence os(H) < cs(Gm).

57

We now construct a sequence of graphs (GQ,G$+],...,GA) such that

for j = m:
(i) Gj is a correct plan.

(i1) os(Gj) = os(Gj)

(ii1) Gj+] is derived from Gj by ancestor replacement and back factoring
only.
(iv) there is a substitution oy such that:

ze(Gj) = ZG(Gj)oaj for all z e s(Gj)

(v) G isa subplan of Gj'
This sequence is constructed as follows:

(A) G:== G,

(B) Suppose the construction is complete up to Gj. G is generated

\.-j+.|

j) to some direct ancestor y.

Now y e os(H), since y 1is at the head of an arc of RED(G), and

from Gj by reducing some x e 0s(G

all such vertices lost their direct descendants in the construction
of H. Suppose os{H) = {ylxi.....xi}. We now generate a sequence

of graphs (‘g""-‘;) as follows:

(a) Let Yy be a renaming such that V(H)y is a variant of V(H).

G? is the plan obtained from G5 by replacing x e os(Gj)
through yy by -{x]y,...,xky} where {yy,,x]@,...,xkﬁi is
a copy of {y'y.xiy.....x&y} which is separated from I(Gj).

i

(b) For 1 e{l,...,k}, Gj is the plan defined by:
1

- .i'T 1
FACT(Gj) = FACT(GJ.) ol (xvsx3)1

58

Let Gj+]

conditions.

= G?; it remains to shqw that Gj+1 satisfies the required

(i), (i1) and (iv) are proved analogously to the corresponding parts
of Temma 3.5.1.
(111) Now since os(H) = cs(6), then by condition (iv), os(H) € cs(G}).

Hence all the factorings performed in deriving G!

41 from Gj

are back factordngs.
(v) G, 1s a subplan of Gj and hence of Gj+1'
The sequence having been constructedi let G' = Gﬁ’ then os(G') = os(G) = P,

and G' 1ds correct. []

These two Temmas show that reduction may be replaced by ancestor
replacement and factoring. In the first lemma we see that with simple
factoring we can simulate reduction in that for every plan obtained using
reduction, we can construct a plan with the same open subproblems. The
second lemma shows that such a close correspondence does not necessarily

exist using backfactoring.

59

4. Soundness and Completeness

In this section we present the basic result, linking the notion of
satisfiability with that of closedness and correctness. Soundness is
established directly by considering the relationship between a model for
a set of clauses and a plan for the set. The proof of completeness relies

on the completeness of the resolution principle.

4.1 Soundness

4.1.1 Definition: If G is a subplan, and vy 1is any substitution, we

define TOPy = TOP and:
E(G)y = { (xy,yy)[(x,y) e E(G)}
~ Also, we denote the graph < V(G)y,E(G)y> by Gy, and call Gy an instance

of G. Gy 1is a ground instance of G iff for every x ¢ V(G), xy is

a ground instance of x. If vy is a renaming Gy is a variant of G iff
V(G)y 1is a variant of V(G). If G 1ds a plan for a set S of clauses,
then clearly so is every variant of G 1if we define the labelling of the

variant in the obvious way.

4,1.2: Lemma: Let G be a correct plan for a set S of clauses, H a

subplan of G, % a model for S, and HO(H)ey a ground instance of He(H):
then there exists a walk (XO’X1)""’(XH-1’Xn) in H containing no arcs
in RED(H), such that Xg = TOP, Xy € os(H), and Z(lxi]e(H)oy) =T for

every X; e s{H), 0 <4 < n.

60

Proof: Let D be a derivation of G. We prove the result by induction on
the number of ancestor #deplacements in D.
Basis: Suppose D 1is constructed without ancestor replacement. Ue
construct the mlk recursively as follows:
(1) The top clause {&|(TOP,x) ¢« SUB(H)} o&f H is
some clause in S, and therefore contains some element X1 such
that Z(IX]IG(H)OY) = T. (TOP,xT) is the first arc in the walk.
(1) Suppose the walk has been constructed up to the arc (xi_],xi),
and that X; 1s a subproblem. Suppose (xi,y) e RED(H).
either the walk from TOP to Xs contains no arcs of FACT(H),
in which case all direct ancestors of X; must Tie on
the walk, so y in particular must 1ie on the walk.
or the walk from TOP to Xy contains arcs in FACT(H).
In this case, let (xj,xj+]) be the first arc on the walk
in FACT(N), where j < i, then:
gither that part of the walk from Xge1 to X, passes through y,
or by Tehma 3.3.3, y is a direct ancestor of Xy SO that

part of the mlk frem TOP to xj passes through .

Inony event, y must 1ie on the milk.

E(lylo(W)ey) = T

But =(|y|6(H)ev)

[l

Z(vx; 16 (H)ey)

=}

61

which is a contradiction. Therefore X, is not closed by reduction imn N.
Hence we have three cases to comsider:
(a) Xy € os(H), in which case n = i, and we have the required walk.

(b) X; is closed by factoring in H, say (xi,z) e FACT(H), in which

case:
26(H) = xie(H)
L szMen) = T(1x;]e(H)ey)
=T

Let 31+] = z; <X1’xi+1) is then the next arc in the walk.

(c) X is closed by simple replacement through y 1in H; then we
define Xi41 = ¥» SO that (X1KX1+1) e REPL(H). In this case
‘&u1+1} lJ{XI(X1+1,X) ¢ SUB(H)} s a copy of a variant of a clause
in S, and therefore:

E(COIxgq 13 vlx] [(x5495%) € SUB(H)3I8(H)ey) = T
But [x.,1]6(H) =-1|x1]e(H)
L. Z(!x1+]|6(H)oy) = Z(ﬁlinG(H)oy)
L
Hence 3z ¢ {xl(x”..n) « SUB(M)} such that:
z(|z]o(H)ey) = T.
We define Xi40 = 2. Then (xi.xi+1), (x1+1,xi+2) are the next two
arcs in the walk, and satisfy the required conditions.
Suppose this construction dees met tewwinate as in case (a), them since
V(H) s finite, the process must generate a walk which passes through some

vertex of H twice. In the latter case, there exists a closed walk in H

containing no arcs in RED(H). By 3.3.1(d), however, no closed walk can

62

consist entirely of arcs in REPL(H) u SUB(H). Therefore some arc
(Xj’xj+1) on this closed walk must belong to FACT(H): then there is a
walk Srom X341 to xj containing no arcs in RED(H), contrary to lemma
3.3.3. Hence the construction must terminate as in case (a).

Induction: Assume the result for derivations with fewer ancestor replacements
than D. We then construct the required walk in H exactly as in the basis
of the proof, except that we have one more case to consider when extending
the walk, as follows:
(d) X; is closed by ancestor replacement, using a variant Ko of
some subplan K of G. Suppose X; is replaced thwough ya.
Let X, = Yo, then {y} v {w[(x;,ywad e SUB(H)} is a copy
of os(K).
Let D = (GO,...,Gm), then for some k < m:
cs(G) = cs(G 1) ulix;}

G is a correct plan for &, constructed using fewer ancestor

k-1
replacements than are used in the construction of G, and K is
a subplan of Gk-]‘ $® by the induction hypothesis:
(1) If Ke(K)et i3 @ §rewmd ins&ance of Kg(K), then

3z ¢ 0s(E) such that:

z(jajo(Kk)er) = T

Also we have:
€(K)a = C(H)
8(H) unifies C(K)o

aoB(H) unifies C(K)

63

Therefore:
) P, ac8(H) = 6(K)oB

for some substitution B

Ho(H)oy is a ground instance of Ho(H). Sippose variables occur in
(Ka)6(H)oy; this is possible since K 1is not necessarily a subplan of
H. In this case, let Y1 be some substitution such that no variables
occur in (Ku)e(H)oxoyl; then:

(3)......... xB(N)oyoyl = x8(H)oy if Xx ¢ V(H)

Now since (Ka)e(H)°y°y] contains no variables, by applying (2),

we see that KB(K)o(Boyoy1) is a ground instance of Ke(K), so by (1):

Z(lzle(K)o(Boyoy1)) =T for some 2z ¢ os(K)
Now z(]z]8 (K)o (Boyeyy)) = (%447 10(H)= (vovq))
by applying (2)
2(afx;10(H)e (voyy))
2] x; 16 (H)ay)
by (3)

= F

N

|z]
o' 2] € Clwl[{x;,qomx) € SUB(H)}
Let v e {wj(x, ,.m) c SUB(N)} be such that |u| = |z|, and Tet Xipp = Ua.
SUB (M)
2(([z]o 8 (H)oyey,)

z(]z]6 (K)o (Bovey;))
=TT

ly|

m

Then (l"] p‘i*z)
and ez([xi+2l9(H)°Y)

(xi.xi*]).(xi*].xi+2) are then the next two arcs on the walk and
satisfy the required conditions. L]

64

This result allows us to establish soundness as follows.

4.1.3: THeorem: The SBoundness of Plans

If there exists a closed, correct plan for a set S of clauses, then

S 1is unsatisfiable.

Proof: Let G be a closed, correct plan for S, and suppose S has a model.
Then by lemma 4.1.2, there is a walk from TOP to y 1in G such that

y € 0s(G), contradicting the fact that G 1is closed. Therefore S has no

mode].[]

65

4.2: Completeness

To establish the completeness of plans, we consider first only those
plans with derivations constructed using simple replacement and reduction.
We prove the completeness of these restricted plans using a standard technique:
the result is obtained first for the geound case, and is then generalised.

For the ground case our proof relies on the completeness of resolution.

4.2.1: Definition: If A and B are separated ground clauses and u

is a literal such that
u= |p| =-]|q|] for some pe A and q e B,
then the set:
C=(A-{x2&A|l |x] =u}) v(B-{xe B| |%X|] =-u})

is called the resolvent of A and B on u. Since A and B are

separated, C 1is a elause.

4.2.2: Definition: If S 1is a set of ground clauses, then we define a

set of ground clauses R(S) by:
R(S) ={c|3A,B,u such that C 1is a resolvent of A' and B'
where A' and B' are separated copies of
A and B vrespectively}

We also define inductively:
sk0) - g

sU+1) = s0) JrisUily for 550

66

Although our definition of "clause" differs from the usual in that we
allow multiple occurrences of literals, it is obvious that the following
theorem, due to Robinson [14], holds for our definition of clauses and

resolution.

4.2.3: Theorem (Robinson)

A set of ground clauses S is unsatisfiable iff for some k = 0,

O e S(k).

4.2.4: Convention: We now temporarily restrict our attention to derivations

constructed using rules (1)A and (2) only, so to simplify the discussion,
we will use the word "derivation" with this restricted meaning. Similarly
we will use the word "plan" to mean a plan with such a restricted derivation.
By Temma 3.4.4, the constraint function and constraint set will be
independent of the particular derivation we choose for a plan throughout
the scope of this convention.

The next lTemma (4.2.5) is the key result in proving the completeness
of plans for ground clauses. In it, we show that if there is a closed
correct plan for the set S uR(S), then there is a closed correct plan for
S. By applying this result inductively and using theorem 4.2.3, we can then
obtain the desired result. The proof of lemma 4.2.5 is inductive. In the
inductive step we select some application of the replacement rule which uses
a clause Cin R(S)} and remodel this portion of the plan by performing two
replacements using the clauses A and B from S of which C s a

resolvent. Unfortunately, replacement and resolution do not correspond

67

exactly, since replacement operates on only one element from each clause
whereas resolution operates on several. Consequently, our remodelling
introduces several new open subproblems. These can be closed, however,
using copies of other parts of the plan as shown in lTemma 4.2.6. Another
problem arises in our remodelling: namely, when we have restructured one
part of the plan, how do we know that all the old subproblems which existed
in the original plan can still be closed in the same way? Again lemma
4.2.6 ensures that they can. Strictly, lemma 4.2.6 should precede Temma
4.2.5 in the presentation; however, in isolation it has no intuitive

basis, so we present it after 4.2.5 where it is far more easily understood.

4.2.5: lemma: Let S be a set of ground clauses. If there exists a

closed correct plan for S uR(S) then there exists a closed correct plan

for S.

Rroof: Suppose G is a plan for S u R($) with derivation (GO,...,Gm)
in which there are u replacements performed using clauses from R(S).
Now we will construct a new derivation of a closed correct plan H for
S uR(S) 1in which there are u-1 such replacements. Clearly u
applications of this process will yield a derivation of a closed correct

plan for S.

68

Let k be an integer such that 6 < k <m, Gk is derived from
Gy _ by replacement of u tthrough v by C -{v} where C is a copy
of a clause from R(S), and for i such that k <i <m, Gi is derived
from Gi—] by reduction or replacement using a copy of a clause from S.

Since C s a copy of a clause from R(S):

C=A"uB'
where A=A LJ{X],...,XE} (2 21)
and B =B LJ{y1,...,yr} (r 2 1)

and A and B are copies of clauses from S. Since G is correct,

IA

Ix;| = ﬁ|yj] for 1 <4i<2,1=<j<r. Note that in the derivation

0”"’Gk—1) there are only u-1 replacements using clauses from R(S).

We define a derivation (HO,...,Hn) as follows:
2

(G

(1) H, = G, for 0 < 4 < k-1

(i) Hk is obtained from Hk-] by replacing u thoough v by A -{v}.

We may assume without losing generality that v e A.

(i11) He
B -{yjl.

Note that {x;,....X

is obtained firom Hk by replacing X through 2 by

2} is separated from -{y],...,yr} and since the

index set is infinite, we may assume that {x],...,xz,y],...,yr} is
separated from V(Gk_]). The correctness of Hk follows from the fact that
{ [u],7|v]} s a constraint of a correct plan G . Also, the corregtness of

H follows from the fact that { [x;[,7]y;[} is unifiable since

k+1
IX]I =—'I.V'|I°

This construction is illustrated in figure 4.1.

70

Now we continue with the construction.

(iv) By applying lemma 4.2.6 where G,H,p and q of the lemma correspond
with G Hyq> ac V(Gk) and a e V(Hk+]) where a ¢ A' uB',
we close a in Hk+]’ extending the derivation. Similarly, we
apply 4.2.6 to the rest of A' uB', extending the derivation to
(HO,...,Hm), where:

os(Hm) = {XpsunesXd UlYosenisy)
The problem of verifying that the conditions for applying the lemma
are satisfied is left to the reader who may find figure 4.1 and the
definition of the integer k helpful.
By the definition of k the closure of vertices in A' uB' relies
only on clauses from S, so that the set S' of the Temma is < S. Therefore
the number of replacements using clauses from R(S) remains unchanged.

(v) By r-1 consecutive applications of reduction, we close

Ypseeesy, by reducing them to Xy obtaining plans Hm+4""’Hm+r-1'
Correctness follows from the fact that [x;| ==y,]| for
2 <1<,

Figure 4.2 illustrates the constructions performed in (iv) and (v).

72

(vi) By applying lemma 4.2.6 where G, H, p and ¢ of the lemma correspond

with H Hotpo1%-X3n and x,, we close X,, extending the

m+r-1°

derivation to (HO,...,Hn). Similarly, by 2-2 further applications

L

of lemma 4.2.7, we close x extending the derivation to

3""’X,Q,

(HO,...,Hn). In all these applications of lemma 4.2.7, S' in the

2

statement of the lemma is the set of all clauses used in repdacing

X, or direct descendants of Xq - Clearly this set contains no
clauses from R(S). Hn is obviously closed, and is correct by

L
Tommea 4.2.7.

To complete the proof, we note that only u-1 replacements using
clauses from R(S) are made in the derivation (HO,...,Hk_]): in
steps (i1) and (iii) of the construction we use anly clauses ffom S:
step (iv) does not introduce any such replacements: step(v) consists
solely of reductions: and step (vi) also does not introduce any
replacements using clauses from R(S). Therefore (HO,...,an) is

a derivation of a closed correct plan, constructed with u-1

replacements using clauses from R(S). [|

We now prove the technical result required in the above proof.

4.2.6: LéhMma: Let G and H be correct plans for a set of ground clauses

8. Suppose there exists p ¢ cs(G) and there exists q e os(H) such that:

73

(i) Ipl = lal
(ii) all direct descendants of p are closed in G.
(iii) dif 2z s a direct ancestor of p 1in G then there exists
a direct ancestor w of g in H such that [z]| = |w]|.
let $s' = {clp] or some direct descendant of p, is cloded by
replacement using a copy of C ¢ S}.
Then any derivation (Ho,....M-) of H may be extended to

(H ’Hn) where:

0,.--
(a) H, is correct

(b) os(H) = os(H) -{q}

(c) if H,,, fis derived by replacement from H, (m< i <n) using

a clause C, then C ¢ S'.

Proof: Let G' be the subgraph of G which results from removing all
the direct descendants of p, and every arc which enters or leaves
a direct descendant of p. By lemma 3.3.2, G' 1is a subplan of G, 50 by

Temma 3.3.7 G has a derivation (GO,...,G ,G ,G such that

r’r+l? 0
Gr = G'. Clearly, for each is such that 1< i< S, if Gr+1 is obtained

r+s)

by closing x e os(G), then x is either p or a direct descendant

r+i-1
of p.
Let (HO,...,Hm) be any derivation of H. We now define a sequence
(Hm+1""’Hm+s) of plans and a sequence of functions (wo,...,ws) such

that for 0 < i < s:

74

(1) if i =0 then Hm+1 is an inductive extension of Hm+i—1’

and if the extension is by replacement, the clause used is a copy
of a clause in S'.

(2) Ho.i s correct.

(3) vy is a bijection from V§1) to ng) where:
V$1) = {x|x is a direct descendant of p in G .} u{p}
V(z) ={ x|x is a direct descendant of q in Hm+i} u{ a}

1
(#) os(H) = (os(H) ~{a}) u (g, (x)]x € 0s(G,,.) n Vi)

(5) w00 = x| for xevil)

(6) if X,y e vgl)
then (x,y) e REPL(G ., ;) implies (W (x) w5 (y)) « REPL(H_,.)

and (x,y) ¢ SUB(G.,) implies (#5(x) 59, (¥)) e SUB(H ,.)

We construct this sequence inductively as follows:

~ Basis: Since p e os(Gr) and q « os(Hm) we have:
(1)
Vo © = {p}
(2) _
Vs {q}

Define wo(p) = q
The conditions (1) to (6) obviously hold for i = 0.

Induction: Assume the construction in complete up to Hm+k-1 and wk-]‘

Suppose G, is obtained from G by closing x « Os(Gr+k—1)' Now

r+k-1
X € Vﬁl%, so by induction hypothesis (condition (4)) wk_1(x) € 05(Hm+k—1)’

and by condition (5), lwk—l(x)l = |x]

We now have two cases to consider:

(A) Suppose x is closed by reduction to some y « V(Gr+k—1)' Now
either y 1is a direct ancestor of p, or y ¢ Vél%. In the first
case, by condition (iii) in the statement of the lemma, there exists
w which is a direct ancestor of g and is therefore a direct ancestor
of wk_](x). Consequently, we obtain Hog Trom Hotko1 Dby reducing
wk_](x) to w. In the second case, wk_](y) is a direct ancestor of
wy_](x), by condition (6) of the induction hypothesis, so we generate
o from Hi+k-q by reducing wk_1(x) to wk_](y). In both cases
we define ¥, =1y, ;.

(B) Suppose x 1is closed by replacement through Xn by x],...,xq where
{XO’X1""’Xq} is a copy of a clause in S'. Let {yo,y1z...,yq}
be another copy of this clause separated from V(Hm+k-1)’ where
ly;] = Ix;] for 0<1i<aq. Wedefine Hoy to be the plan that

results from closing wk_](x) in H by replacement through

m+k-1

Yo by YioeeosYpys we also define:

(1
'bk_] (X) for x e Vk_
0

A -t

b (x) =

\y' if X=x.i (i_<.q)

1

In both the above cases, verifying that conditions (1) to (6) hold for

H and wk is straightforward, and is left to the reader.

m+k
NMow let n =m+ s, then Hn is a correct plan for S with derivation

(HO”"’Hn)’ clearly satisfying conditions (a) and (c). As &or (b) we

note that:

76

os(H) (os(Hm) -{q}) LJ{ws(x)lx e 0s(G .,) H Vgl)}

by condition (4) on the sequences.

r+s

= os(Hm) -{q}
sinde OS(Gr+s) n Vgl) =P
= os(H) -{q}

Hence (b) is satisfied, and the lemma is proved. []

We now prove the completeness of plans.

4.,2.7: THeorem: The Compléteness of Plans

Let S be an unsatisfiable set of clauses, then there exists a closed,

correct plan for S.

Proof: (A) First we prove the result for ground c]auses.

k) for some k = 0.

Since S s unsatisfiable, by theorem 4.2.3, 0 € S(
Therefore ({TOP},p) 1is a closed, correct plan for S<k>. If k is O
the theorem is proven, otherwise by the definition 4.2.2 and lemma 4.2.5,

k-1)

S(has a closed, correct plan. A further k-1 applications of lemma

4.2.5 proves the result for S.

(B) We may now prove the general case.

Since S 1is unsatisfiable, by Herbrand's theorem there exists
an unsatisfiable set of ground clauses T = {0161,...,Cm6m} where e],...,em
are substitutions whose terms are from the Herbrand universe; and for
1<ism, C1 e S and all the replaced variables of ei occur in Ci'

Since T 1is unsati$fiable, by part (A) there exists a closed correct plan

for T with derivation (HO""’Hn)' We now inductively define a derivation

of substitutions

(GO”"’Gn) of a plan for S, and a sequence QpseeesOlp

such that for 0 < i < n:

77

(a) CH-(Hi) = CG (G.)di
1

where CH and CG are the constraint functions of Hi and Gi'

1 1

(c) every replaced variable of a; OCCurs in V(Gi) or in S.

Basis: H0 is basic so that for some D e T:

Ho = INDE (TOP,x)|x ¢ D e T})

0
Suppose D = Crer/ We then define GO to be the basic plan with top clause

Cr’ that is:

[<p]
1]

IND({ (TOP,x)|x € Cr})
We also define:
% ~ er

Conditions (a), (b) and (c) are clearly satisfied.

Induction: Suppose (GO""’Gi) and Qs e e e s have been defined, where

0 <4 <n. We now define Gi+1 and IR

(1) Suppose H1+] is derived from Hi by rep]dcing qe os(Hi)

there are two cases to consider.

through 2 by -{yz,...,yz} where {y],...,yg} is a copy of
clause in T. Then there is a clause {xy,...,X,} =Cp e S such
that lyj] = Ixj]ek for 1< j < 4. Let y be a renaming such
that Cky is a variant of Ck having no variables in common with
V(G.) or S, and every replaced variable of <y occurs in Cpr

j
Now let:

Ck = LUxglvaigdliy s the indes of y, and 15 <)

78

then C& is a variant of C_ which is separated from V(Gi)
since it has the same variables as Cky which has no variab#eés
in common with V(Gi), and since C& has the same indices as
{y1,...,y2}, V(Gi) has the same indices as V(Hi), and
{y],...,yl} and V(Hi) are separated. Also, by the induction
hypothesis Hi = Giai’ so there is a vertex q' ¢ os(Gi) such
that q'ai = q. We construct Gi+{ from Gi by replacing gq'
through (|x1|y,11) by Cy - {(IX]IY’11)}= the conditions for
performing this replacement are 9bvious1y met. We now define:
Gy = op Y o0y
Suppose that Vv e V(Gi+]) - C&, then vo,,, = VaiOY_1°6k = Vo,
since v, contains no variables. Also, we note that for
1 <3< 2
(IleY)ai+1 = (lley)aioy‘1oek
However, |ley has no varjab®és in common with V(Gi) ofF S,
and by the induction hypothesis, all the replaced variables of
a; occur in V(Gi) or S; hence (lley)ui = lleY- Also, by
2.4.3 yoy'1 = y'1 so that lleyey_1 = lley'1 = lxﬁl Since
nmone of the replaced variables of y_] occur in x_ . Therefore:

-1
(lley)u{@y 8, = |x;]6) = ij]

(lleYs'ij)OL.i+'| = (I.V-ls'i-)

I
<

79

Summarizing these results, we have:

vo, if v V(Gi)

(*) VOL.H_] =

N

5 1w xglvsiy)

We may now verify conditions (a), (b) and (c) for G1+], O yqe

(a) CG1’+

](G1'+1)O°1'+1 = [CG_i(Gi) U {(lq'lﬂlx1|y)}]oc1.+1

= CG (Gi)ai U {(lq'ai!,ﬁlyll)}
by (*)

= CHi(HT.) v {(lalsly 13
by the induction hypothesis and
the definition of q'
=C (H..,)
H1+] it]

is trivial to prove using (*), and is left to the reader.

Since a, 1° aioY-]Oek, any replaced variable v of a, must

it i+l
be a replaced variable of as s y-1 or ek. If v 1is a replaced
variable of ek then it occurs in S. If v is a replaced
variable of y-1, then it occurs in C& and therefore in V(G{+1).
If v occurs in Qs then it occurs in V(Gi) or S by the

induction hypothesis, and therefore in V(Gi+1) or S.

80

(2) Suppose H, . is derived from H. by reducing gq e os(Hi) to
r. Since Hi = Giai there exist q' and r' such that

r' e os(Gi), q" s a direct ancestor of r', and q'a; = q,

=
Q
]

r. We define Gi+1 by reducing q' to r', and define

Q
1

= . Verification of conditions (a), (b) and (c) is trivial
and is Teft to the reader.

This completes the induction. To complete the proof it is sufficient to

note that conditions (a) and (b) on Gn and the fact that Hn is chosed

and correct ensures that Gn is closed and correct. []

This ends the scope of convention &.2.4: however, the completeness

result of theorem 4.2.7 holds for plans constructed using all the rules.

81

4.3: Some Final Remakks

We are now in a position to demonstrate that the restrictive conditions

on reduction and factoring are necessary to ensure soundness.

4.3.1: Example: Let S be the set of clauses:
{{P(x), P(a), R(x)},
{-P(y), Q(y)},
{-R(z), Q(z), M(z)},
)
)

{-Q{w), -R(w)},

{ -M(r), -R(r), -R(a)}}
where a 1is a constant. S is obvdously satisfiable. Consider the graph
of figure 4.3: this graph can be constructed using the rules for plan
construction with condition (c) on reduction removed, and condition (c) on
backfactoring weakened to "y is not an ancestor of x". This graph is

closed and is clearly correct, despite the satisfiability of S.

4.3.2: Sound and Complete Subsets of Rules

If R is any subset of the rules for constructing plans, we say that

R 1is sound (complete) if, for every set of clauses S, S 1is unsatisfiable

if (only if) there exists a closed, correct plan for S constructed using
the set R ofruules.

By theorem 4.1.3 the set of all rules is sound, so obviously any subset
is also sound. By theorem 4.2.7 and corollaries 3.5.1 and .3.5.2, the sets

{ (A, (2)},{ (1), (3)A} and { (1), (3)B} are complete, so a superset of

82

A plan for the set of clauses of example 4.3.1 demonstrating the unsoundness

that results when the restrictive conditions on reduction and factoring are

removed.

Figure 4.3

83

any of these sets is also complete. Furthermore, these three sets are
minimal in the sense that no subsets of them are complete. This is clear
jf we observe that sets which do hot contain (1)A are not complete; and
that neither { (1)A, (3)} nor {(1)} are complete since, for example,
neither can generate a closed plan flor the unsatisfiable set of clauses
{{P(x),P(y)}, { -P(x),-P(y)}}. MWe also note that the subsets { (1)A,(2),(3)}
and { (1)A,(2),(3)A} are equivalent in the sense that both generate

exactly the same plans for a given set of clauses (corollary 2.3.12).

Furthermore, both are equivalent to { (1)A, (2), (3)B} in that they

generate the same set of closed plans for a given set of clauses.

84

5: Practical Considerations

5.1: Constraint processing

We have defined plans and proved the soundness and completeness of
various deduction systems based on them. We have not, however, suggested
any methods for unifying the set of constraints produced during the
construction of a plan.

In a practical theorem-proving system, it would obviously be unwise
to attempt to construct a closed, correct plan in the way suggested by the
presentation of sections 3 and 4 (that is, by constructing a closed plan,
then verifying its correctness) since constraints introduced early in the
derivation may be nonunjfiab]e, so that continuing the derivation past the
point where these constraints are produced is pointless. Instead, as each
open subproblem is closed, the new constraints this closure introduces
should be unified with the constraints already produced, to determine
whether the new plan is correct. Consequently, to process the constraint
set, we require an algorithm which can efficiently unify the constraints
on-l1ine as they are produced. This requirement indicates which of the
existing unification algorithms we should choose as the basis of our
constraint processing system, according to the following argument.

Two formulae may be nonunifiable for two reasons. For example, the
formulae F(G(x)) and F(a) cannot be unified because of the disagreement
between the function symbol G and the constant a. The second type of
nonunifiability is exemplified by the two formulae F(G(x)) and F(x), which

cannot be unified becasse x occurs in G(x).

85

A recent unification algorithm of Baxter [1,2] is.based on detecting
these two types of nonunifiability separately, and accordingly, operates in

two stages: first the tran§formational stage detects nonunifiability due

to incompatible function symbols, then the sorting stage checks that no

variable is unified with a formula in which it occurs. This requires time
proportional to nG(n), where n is the length of the input formulae,

and G(n) 1is an extremely slow-growing function of n. The transformational
stage operates in a serial manner on the constraints, and so is particularly
suited to our on-line application: the sorting stage is a topological sort
of a digraph, and unfortunately, no efficient on-line algorithm is known

for this task. However, when a new constraint is added to a previously
unified set, only the sorting stage of the algorithm must be completely
repeated. By contrast, other unification algorithms combine the
transformational and sorting stages, so that complete reprocessing must be
done following the addition of a new constraint. A recent algorithm of
Paterson and Wegman [13], although of Tinear time complexity is of this
latter type, and hence is not suited to our purposes. In fact, because of
its two-stage structure, Baxter's algorithm appears to be the only one

which satisfies our requirement for efficient on-Tine operation.

5.2: Deduction plans and linear deduction

To each linear deduction rule there corresponds a rule for plan
construction; however, one of our rules, backfactoring, has no equivalent
in existing deduction systems. Backfactoring requires that a record is kept

of subproblems that have been solved. The Tinear systems which have a

86

reduction rule are the only ones which keep a record of some solved
subproblems, but those which are kept are ancestors of the rightmost literal
of a chain and so eannot be used in factoring. Hence any factoring in a
Tinear deduction system is simple.

An dinteresting property of the factoring rule for plan construction is
that in any complete subset of the rules which contains factoring,
completeness is preserved regardless of which factoring rule we use; so
we can actually 1imit ourselves to factoring only to subproblems which have
been closed. This suggests strategies for choosing clauses for use in
replacement aecording to what closed subproblems are availabte for
backfactoring.

Of the three minimal complete subsets of the rules, { (1)A, (2)}
corresponds to the ME-deduction system of Loveland [8, 9, 11], and the
SL-resolution system of Kowalski and Kuehner [7]. The set { (1), (3)A},
although similar to the original simple Tinear deduction system of
Loveland [10], Luckham [12], and Zamov and Sharonov [15], is actually more
powerful in that more lemmas are available for use in ancestor replacement
(see below).

Most linear deduction systems allow the use of lemmas: that is, any
clause which has been deduced in the course of the current proof may be used
as an input clause, as though it belongs to the set S, whose unsatisfiability
the system is trying to establish. The linear structure of these systems,
however, precludes the use of many Temmas which are available in the

construction of plans.

87

5.2.1: Example: Let S be the set of clauses:
{{-P(x), Q(x)},
{-0(y), P(f(y))
{P(z), -Q(h(z))
)
}

1,
},
{ -P(f(f(b)))},
{Q(h(h(b)))

where b 1is a constant. Figure 5.1 illustrates a closed, correct plan for

}

S the construction of which requires two ancestor replacements using
variants Ci and Cé of clause C] and C2 deduced by subplans as
indicated in the diagram. In a linear system, once -P(x) in the top
clause is closed, it is no longer available for use in a Temma; similarly
for Q(x). One of these subproblems has to be solved first, however, so
that only one of the two lemmas C] and C2 used in generating the plan
is available.

If a deduction system is to have access to the variety of lemmas which
are available in plan construction, each 1iteral used in a proof in that
deduction system must be represented at Teast once. In a plan, each literal
is represented exactly once, so among systems which use ancestor repnlacement,
ours attains the best possible economy of representation.

There have been other attempts at representational economy in theorem-
proving programs. Boyer and Moore in [4], suggested a method for representing
resolvents of clauses by a system of pointers to parent clauses, and to
fesolved literals. In their system, as in ours, each literal is represented
only once: theirs, however, is strictly a method of representation, and

solves none of the problems associated with efficient backtracking, use of

Sl e v e o e v S s v

(—P(f(f(b))))

A plan for the set of clauses of example 5.2.1.

Figure 5.1

89

Temmas, ordering of subgoals, etc. Although clauses are not explicitly
created, they exist implicitly; also, substitutions are performed implicitly.
Therefore, in order to perform a resolution, it is necessary to search
recursively through the structure to carry out the unification and implicit
construction of the resolvent.

The use of unification is also more economical in plans than in other
deduction systems, since the unification algorithm is used only to verify
the applicability of the rules: whenever a plan is ¢losed, we have a
refutation provided that the constraint set is unifiable. Substitutions
are therefore never performed, and mgus are not calculated. In this regard,
our system is similar to Huet's higher-order constrained resolution
system [6].

A major difficulty with using problem-reduction in predicate calculus
is that the subproblems are usually not independent. In solving a
particular subproblem, we may destroy our chances of finding a solution to
another subproblem. To take advantage of the problem-reduction method,
therefore, we must process the subproblems in essentially a breadth-first
fashion, so that if the attempted solution of subproblem A blocks the
solution of subproblem B, then this fact is discovered as soon as possible,
before great effort is expended on a solution for A that must eventually
be erased.

Ordinary linear deduction with factoring and ancestor resolution
[10,12,15] allows subproblems to be solved in any order, but lacks the power
of plans in that it has no reduction rule, and its use of lemmas is
comparatively restricted. When reduction is used in=a linear format

[7,8, 9, 11, a strict ordering must be imposed on the solution of subproblems

80

to ensure completeness. Hence, the processing is done in a depth-first
manner, and the system suffers from the shortcomings mentioned above.

The open subproblems of a plan, however, may be closed in any order.
So, although plans share with simple linear deduction the advantages of
parallel processing, they are also more powerful than the more sophisticated

lTinear deduction systems.

5.3: Backtracking:

An important consideration when deciding how constraints are to be

processed, involves backtracking: a problem which to date has received

Tittle or no attention from researchers in the field of mechanical deduction.
At each point in the search for a proof, there is usually a variety

of possible actions which can be performed by a theorem-proving system:

it must choose the subproblem to work on next, then choose which of several

solutions to that subprobliem it should try. If the system should fail to

solve a subproblem, it must return to an earlier point in the search, and

attempt &n alternativersolution to an earlier subproblem. This action is

termed “backtrabking". The usual strategy employed in backtracking, is to

return to the last point in the search at which there exists an untried

alternative solution. The wastefulness of this exhaustive approach is

illustrated by the following example.

5.3.1: Example:

(1)
2

(2)
(3)
(4)
(5)
(6)
(7)
and b

where a

We present a deduction from S

0

Let S be the set of clauses:

(x,y), P(x), P(a)
P(x)

Q(x5y)s S(y), Rix,y)
R(x,x), -Q(y,z), P(x)
S(x), T(x)

T(x), M(x), M(¥)
M(b)

are constants.

91

using model elimination with factoring

[g] in which subproblems are solved from right to left and the rules are

applied in the order contraction, factoring, reduction and extension; and

input clauses for extension are selected in the above order.

In the following search, A-literals are framed, and the rules applied

are recorded to the right in abbreviated form:

extension using clause (1).

(1) 0(x,y)
(8) Qfa.y)
(9) Qla,y)
(10) Qfa,y)
(11) Qa(a,y)
(12)
(13)
(14) [Q(a.a)
(15) [Q(aa)
(16) [a(a,a)

s -Q(W,i), P(a)
’ 'O(W:Z)’
» ~Q(w,z)

for example "ext(1)" means
top

fact

ext(2)

cont

ext(3)

ext(4)

ext(2)

cont

red

cont

92
ext(5)
ext(6)
fact
ext(7)
cont

Q(a,a)|, [Sta), {T(a)l, M(a), [M(b)

Q(asa)}, [S(a)}s [T(a)}, M(a)

backtrack to (18)
backtrack to (14)

(18) |a(a,a)} (S(a)), [T(a)}, M(a), M(y)
(21) |a(a,a)),[S(a))s [T(a)] M(a)

(17) [q(a,a)}, [s(a)l, T(a)

(19)

(20)

—~ — — —~ — — —~ — —
— [a\] Lo O ™~ N N Lo O
~—— 42 ~— o+ o+ 4 ~— ~— E) —r 4 ~— + ~— 4= 4+ 4 ~— ~—
-, Q + [< = + + Q + o= + fot + < < < + +>

= 1] ot (o] (o] (=} > e (1] x (o] = o x o] o o x x

[0) Y- (3] (&] O (&S] [O] 9 4 [} 8] @ O (O] (& o (@])] Q
—~ —
1] [1o3
~— ~—
o o
L) . "

—~ —_ — — — —~
X] © = = =

S S S N N N
[a [a a. [a N o o

L) [l Ll L Ll L)

— —~ — —~ — — — —

N N N N N N N N
L3 o L) Ll L. L o« L
=) © < kS = = =

e S e Nt S N S’ S
(ang (ang (v g [ancy (evg (@ (ang (ang
) 1 1 i 1 1 1 [}

Lo Ll Lad -~ Ll Ll L) Lol

— — —~ — —~ — —— —

© 1o} (1] < [4+] (12} 1] (=]
L L3 Lol L " " L "
< [1+] © < - — < < © <=}
~—— ~— ~— ~— N [q ¥} Ay’ ~— ~— ~—

[a4 o o o N (N [o (s o

~— ~——
-~ Lo L, " - - -« "

—~ — — —~ o o —~ — —~ —
(1] (1) © [} + + © © (1] ©

~— ~— ~ ~— ~— ~—— ~— ~—

w (%) w %] X X (%) (%] (%] %)

O (8]
"~ n © [(=] [} La) L " "

— — —~ — — — — — — [— — [. — —~ o~ — — — — —
(1] [1+] (1=} © L O M~ [e @) ()] + o — + (15} < © < [¥2] O M~ [e9}

o n L o — [— — ~— X N o X o . o L — r— — —
< f1o] < [ie3 ~— ~— ~— ~—— ~— Q ~— ~ Q < fio] < fie] ~— ~— ~ ~——

St S St S < [{o] St S N —

x (g o (=4 [{} " 1l U} n -0 U i 0 (=g [y o < n 1} 1] [{}

— —~ — —~ —~ — — — — —~ — —~ —~ — — — — — —

N o < Lo (=] ~ o8] ()] o — [N o~ < L0 O ~ Q [8))] o

AN o N (3] N N o~ N o o o ™ o o o o o o <t

~— ~— ~— ~— ~— ~ ~— ~— ~— ~ ~—

R N - N

93

fact

backtrack to (40)

= (20)

= (21)

ext(7)

(42)

cont

(43)

backtrack to (1)

— — —~ — —~ —~ — —
N [Q\V] o < [§ [T) O M~
~— 4+ S) — — ~— +2 +o ~— — ~— 4 4= + 42
+ < + < + + +> < o < + + R + < < < <
> o > [} > > = (@) (O] O = > [©} bt (@] (@] (o] (@]
[¢b] O (O] O (O] Q (] Q ~ (&) [} [¢}] P [¢}) (@] Q (&) O
— —
x e
S S
o o
L) - —_
—_ — — >
N N N S~
'y « " =
= = =
SN S N L.
(awg o [eng —~ — —
| 1 1 = x -0
~—— ~— ~—
) » " = = =7
— — — — —
> x = = > 2 L o
— LY © L " L — — — ~—~ —~
© = x > = = e = = O O
~— ~—- ~— ~— ~— ~— ~— ~— ~— ~ L
(= [= 4 [a4 [+ o o [l — = | =
® L - Ll L} -~ L] [l " L3 Lol
— —~ —~ — — —~ ~—~ —_ — — —~ —~ — — —
> bl = >y = = = = > < = = O O Nal
~— ~ ~ ~— ~ ~ ~— ~—— ~ ~— ~— ~— ~— ~— ~—
ao [a o (%) w v (%2 (%) [%2] (%) (%23 [%) (%) w) (%)
L3 « Ly . L.y)) o [o o " L) [Y Ly
— — — —~ — — —~~ — — — —~ — — — — — —
> > > 2 | > x x x x > b x X|{lallaljel o
Lad L] =" L) L) " Ll " L - - - ® L] " ” «
= = bad = = x bed x = = = > x 0 O O 0
~— S~ ~—r ~ ~— ~— ~— ~— ~— ~— ~— ~— ~— ~— ~ ~— ~—
o < (an g (en g (eng (w4 [ang [eng o (eng (ang (ang o> (ang [<g (ag (e [
—~ — —~ — — — — — —~ — — — — — — — — —~
<t Lo O M~ (0] (o] (] — (9% (301 <t Lo O ™~ [e0] ()] o —
< < <3 <t <3 < Lo Lo Lo Lo Lo L Lo LO Lo Lo o)

R . N i N N N

94

Six backtrackings are performed before the source of nonunifiability
js discovered. Note also that when the correct cutting point is finally
discovered at clause (43), in the above deduction, all previously found
subproofs are lost even though they are correct, and are reproduced in
clauses (45) to (56). In fact, between the various backtrackings, parts of
the proof are generated several times: for instance, the subproblem M(x)
corresponding to the third Titeral of clause (6) in S, is closed sewen:
times.

Plans do not suffer from the deficiencies df Tinear deduction which
are illustrated by the above example. Firstly, when an unsuccessful
unification is attempted, it is possible to detect all sources of this
nonunifiability by analysing the set of constraints. By associating with
each constraint information concerning its origin, we can then determine
the largest subplans which have unifiable constraint sets, then "backtrack"
to one of these. Since no substitutions were applied to the vertices, no
alterations need to be made to the remaining part of the plan. The reader
should note that this appreach to backtracking sheds an entirely new light
on the proof-construction process, since at any time during the search, the
history of the plan-construction can be reviewed in every detail and altered
if necessary: this is not possible in other systems since some vital
information is always Tost. Clearly although all linear deductionsstrategies
are applicable, new strategies need to be developed which take advantage of
all the information available in plans. Details of constraint processing
and backtracking can be found in [5] and future publications. Secondly,
when a plan is pruned after backtracking the only parts removed are those

strictly involved with the

95

nonunifiability: this is not the case with linear deduction. The following
example, using the same set of clauses as example 5.3.7, illustrates these

points.

5.3.2: Example: Figure 5.2 illustrates a closed plan G for the set of

clauses of example 5.3.1. The construction of the plan simulates the linear
deduction performed in that example. The constraint set for this plan is
shown in figure 5.3: the reader may easily verify that C(G) is not
unifiable. Using the pracess described in [5], we discover that by removing
the arc 1, we obtain a correct subplan which is not a subgraph of any larger
correct subplan. This process gives all subplans with this property of
"maximal correctness": in this case there are theee such subplans: the
other two are obtained by removing arcs 4, 5 and 6, or arc 10 respectively.
Since M(x6) has no solution other than that represented by the arc 10,
we will not backtrack by removing this arc. This leaves two choices:
remove arcs 4, 5 and 6, or remove arc 1. If the strategy employed is to
remove as little as pessible, we would remove arc 1. There is then only one
choice for closing P(a); that is, by replacement using the clause {-P(x)}.
As the reader has probably noticed, backtracking to one of the maximal
correct subplans could result in the system eventually generating a graph
which is not a plan, since not all subplans are plans. This will not cause

unsoundness, however, in view of lemma 4.1.2.

SuB

- A
FACT 5

RED 6

SUB SuUB

A closed plan G for the set of clauses of example 5.3.1. The integer

labels on the arcs of SOL(G) dindicate the order of construction of G.

Figure 5.2

.98

REFERENCES

1.

10.

11.

12.

13.

Baxter, L.D., A practically linear unification algorithm.
Research Report CS-76-13, Department of Computer Science,
University of Waterloo, 1976.

Baxter, L.D., The complexity of unification. Ph.D. Thesis,
Department of Computer Science, University of Waterloo, 1976.

Bondy, J.A., and Murty, U.S.R., Graph Theory with Applications,
American Elsevier, New York, 1977.

Boyer, R.S., and Moore, J.S., The sharing of structure in theorem-proving
programs. Machine IHtelligence 7, John Wiley and Sons, New York,
1972, pp. 101-116.

Cox, P.T., Deduction plans: a graphical proof procedure for the
first-order predicate calculus. Ph.D. Thesis, Department of
Computer Science, University of Waterloo, 1977.

Huet, G.P., Constrained resolution: a complete method for higher order
logic. Report 1117, Jennings Computing Center, Case Western Reserve
University, 1972.

Kowalski, R.A., and Kuehner, D., Linear resolution with selection function.
Artificial Intelligence 2, (1971), pp. 227-260.

Loveland, D.W., Mechanical theorem proving by mode3 elimination,
J.ACM 15 (April, 1968), pp. 236-257.

Loveland, D.W., A simplified format for the model elimination theorem
proving procedure J.ACM 16 (July, 1969), pp. 349-363.

Loveland, D.W., A linear format for resolution. Lecture Notes in
Mathematics 125 (Symposium on Automatic Demonstration),
Springer-Verlag, Berlin, 1970, pp. 147-162.

Loveland, D.W., A unifying view of some Tinear Herbrand procedures.
J.ACM 19 (April, 1972), pp. 366-384.

Luckham, D., Refinement theorems in resolution theory. Lecture notes in
Mathematics 125 (Symposium on Automatic Demonstration),
Springer-Verlag, Berlin, 1970, pp. 163-190.

Paterson, M.S., and Wegman, M.N., Linear unification.
Proc. of Eighth Annual ACM symp. on Theory of Computing, 1976, pp. 181-186.

99

14. Robinson, J.A., A machine-oriented Togic based on the resolution
principle. J.ACM 12 (Jan., 1965), pp. 23-41.

15. Zamov, N.K., and Sharonov, V.I., On a class of strategies which can
be used to establish decidability by the resolution principle.
Issled po konstruktivnoye matematikye i matematicheskoie Togikye
IIT 16 (1969), pp. 54-84.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

